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Abstract— Gradient Descent Ascent (GDA) methods for
min-max optimization problems typically produce oscilla-
tory behavior that can lead to instability, e.g., in bilinear set-
tings. To address this problem, we introduce a dissipation
term into the GDA updates to dampen these oscillations.
The proposed Dissipative GDA (DGDA) method can be seen
as performing standard GDA on a state-augmented and
regularized saddle function that does not strictly introduce
additional convexity/concavity. We theoretically show the
linear convergence of DGDA in the bilinear and strongly
convex-strongly concave settings and assess its perfor-
mance by comparing DGDA with other methods such as
GDA, Extra-Gradient (EG), and Optimistic GDA. Our find-
ings demonstrate that DGDA surpasses these methods,
achieving superior convergence rates. We support our
claims with two numerical examples that showcase DGDA’s
effectiveness in solving saddle point problems.

Index Terms— Optimization; Optimization algorithms;
Lyapunov methods

I. INTRODUCTION

In recent years, there has been a significant focus on
solving saddle point problems, namely min-max optimization
problems [1]–[5]. These problems have garnered considerable
attention, particularly in fields such as Generative Adversarial
Networks (GANs) [5]–[7], Reinforcement Learning (RL) [8],
and Constrained RL (C-RL) [9], [10]. However, a major
challenge in these approaches is the instability of the training
process. That is, solving the min-max optimization problem
via running the standard Gradient Descent Ascent (GDA)
algorithm often leads to unstable oscillatory behavior rather
than convergence to the optimal solution. This is particularly
illustrated in bilinear min-max problems, such as the training
of Wasserstein GANs [11] or solving C-RL problems in the
occupancy measure space [12], for which the standard GDA
fails to converge [1], [2].

In order to understand the instability of the GDA method
and further tackle its limitation, we draw inspiration from the
control-theoretic notions of dissipativity [13], which enables
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the design of stabilizing controllers using dynamic (state-
augmented) components that seek to dissipate the energy
generated by the unstable process. This aligns with recent work
that leverages control theory tools in the analysis and design of
optimization algorithms [14]–[19]. From a dynamical system
point of view, dissipativity theory characterizes how energy
dissipates within the system and drives it towards equilibrium.
It provides a direct way to construct a Lyapunov function,
which further relates the rate of decrease of this internal energy
to the rate of convergence of the algorithm.

We motivate our developments by looking first at a simple
scalar bilinear problem wherein the system’s energy, expressed
as the square 2-norm distance to the saddle, strictly increases
on every iteration, leading to oscillations of increasing ampli-
tude. To tackle this unstable oscillating behavior, we propose
the Dissipative GDA method, which, as the name suggests,
incorporates a simple friction term to GDA updates to dissipate
the internal energy and stabilize the system. Our algorithm
can be seen as a discrete-time version of [20], which has been
applied to solve the C-RL problems [9]. In this work, we build
on this literature, making the following contributions:
1. Novel control theory inspired algorithm: We illustrate how
to use control theoretic concepts of dissipativity theory to
design an algorithm that can stabilize the unstable behavior of
GDA. Particularly, we show that by introducing a friction term,
the proposed DGDA algorithm dissipates the stored internal
energy and converges toward equilibrium.
2. Theoretical analysis with better rates: We establish the
linear convergence of the DGDA method for bilinear and
strongly convex-strongly concave saddle point problems. In
both settings, we show that the DGDA method outperforms
other state-of-the-art first-order explicit methods, surpassing
standard known linear convergence rates (see Table I and II).
3. Numerical Validation: We corroborate our theoretical results
with numerical experiments by evaluating the performance of
the DGDA method with GDA, EG, and OGDA methods. When
applied to solve bilinear and strongly convex-strongly concave
saddle point problems, the DGDA method systematically
outperforms other methods regarding convergence rate.
Outline: The rest of the paper is organized as follows. In
Section II, we provide some preliminary definitions and back-
ground. In Section III, we leverage tools from dissipativity
theory and propose the Dissipative GDA (DGDA) algorithm
to tackle the unstable oscillatory behavior of GDA methods. In
Section IV, we establish its linear convergence rate for bilinear



TABLE I
GLOBAL CONVERGENCE RESULTS FOR BILINEAR OBJECTIVE

FUNCTIONS.

Bilinear Mokhtari, 20 Azizian, 20 This Work

EG κ−1

20
κ−1

64
-

OG κ−1

800
κ−1

128
-

DG - - κ−1

4
Summary of the global convergence results for EG, OGDA, and
DGDA methods with bilinear objective functions. If a result shows
that the iterates converge as O((1−r)t), the quantity r is reported
(the larger the better). κ represents the condition number.

and strongly convex-strongly concave problems, which outper-
forms state-of-the-art first-order explicit algorithms, including
GDA, EG, and OGDA methods. In Section V, we support our
claims with two numerical examples. We close the paper with
concluding remarks and future research directions in Section
VI.

II. PROBLEM FORMULATION

In this paper, we study the problem of finding saddle points
in the min-max optimization problem:

min
x∈Rn

max
y∈Rm

f(x, y), (1)

where the function f : Rn × Rm → R is a convex-concave
function. Precisely, f(·, y) is convex for all y ∈ Rm and
f(x, ·) is concave for all x ∈ Rn. We seek to develop a novel
optimization algorithm that converges to some saddle point
(x∗, y∗) of Problem 1.

Definition 1 (Saddle Point): A point (x∗, y∗) ∈ Rn×Rm is
a saddle point of convex-concave function (1) if and only if it
satisfies f(x∗, y) ≤ f(x∗, y∗) ≤ f(x, y∗) for all x ∈ Rn, y ∈
Rm.
Throughout this paper, we consider two specific instances of
Problem 1 commonly studied in related literature: strongly
convex-strongly concave and bilinear functions. Herein, we
briefly present some definitions and properties.

Definition 2 (Strongly Convex): A differentiable function
f : Rn → R is said to be µ-strongly convex if f(w) ≥
f(w′) +∇f(w)T (w − w′) + µ

2 ∥w − w′∥2.
Notice that if µ = 0, then we recover the definition of
convexity for a continuously differentiable function and f(w)
is µ-strongly concave if −f(w) is µ-strongly convex. Another
important property commonly used in the convergence analysis
of optimization algorithms is the Lipschitz-ness of the gradient
∇f(w).

Definition 3 (L-Lipschitz): A function F : Rn → Rm is
L-Lipschitz if ∀w,w′ ∈ Rn, we have ∥F (w) − F (w′)∥ ≤
L∥w − w′∥.

Combining the above two properties leads to the first
important class of problem that has been extensively studied
[1], [2], [21], [22].

Assumption 1: (Strongly strongly convex-concave functions
with L-Lipschitz Gradient) The function f : Rn × Rm →
R is continuously differentiable, µ strongly convex in x,

TABLE II
GLOBAL CONVERGENCE RESULTS FOR STRONGLY CONVEX-STRONGLY

CONCAVE AND L-LIPSCHITZ OBJECTIVE FUNCTIONS.

S.C Zhang, 21 Mokhtari, 20 Azizian, 20 This Work
GD κ−2 - - -
EG - κ−1

4
κ−1

4
+ ϵ -

OG - κ−1

4
κ−1

4
+ ϵ -

DG - - - κ−1− O(κ−2)
Summary of the global convergence results for GDA, EG, OGDA,
and DGDA methods with strongly convex-strongly concave and
L-Lipschitz objective functions. The table reports the term r of a
(1− r) linear rate. The constant ϵ > 0 depends on the problem.

and µ strongly concave in y. Further, the gradient vector
(∇xf(x, y);−∇yf(x, y)) is L-Lipschitz.

It is also crucial to consider situations where the objective
function is bilinear. Such bilinear min-max problems often
appear when solving constrained reinforcement learning prob-
lems [9], [23], and training of WGANs [11].

Assumption 2 (Bilinear function): The function f : Rn ×
Rm → R is a bilinear function if it can be written in the form
f(x, y) = xTAy. For simplicity, we further assume that the
matrix A ∈ Rm×n is full rank, with m ≤ n.

As seen in Table I and II as well as in Section IV, the linear
convergence rates of existing algorithms are frequently char-
acterized by the condition number κ. Specifically, when the
objective function is bilinear, the condition number is defined
as κ := σ2

max(A)/σ2
min(A), where σmax(M) and σmin(M)

denote the largest singular value and smallest singular of a
matrix M respectively. When the objective function is strongly
convex-strongly concave with the L-Lipschitz gradient, the
condition number of the problem is defined as κ := L/µ.

III. DISSIPATIVE GRADIENT DESCENT ASCENT
ALGORITHM

This section introduces the proposed first-order method for
solving the min-max optimization problem 1. The algorithm
can be seen as a discretization of the algorithm proposed by
[20], wherein a regularization framework was introduced for
continuous saddle flow dynamics that guarantees asymptotic
convergence to a saddle point under mild assumptions. How-
ever, the analysis presented in [20] does not generally extend
to discrete time. In this paper, we show the linear convergence
of the discrete-time version of this algorithm.

Our results build on gaining an intuitive understanding of
the problems that one encounters when applying the vanilla
GDA method to solve saddle point problems (1):
Gradient Descent Ascent (GDA)

xk+1=xk−η∇xf(xk, yk), yk+1=yk+η∇yf(xk, yk). (2)

When (1) is strongly convex-strongly concave with L-
Lipschitz gradients, the GDA method provides linear conver-
gence, with step size η = µ/L2 and a know rate estimate of
1 − 1/κ2 [24]. However, when the problem is bilinear, the
GDA method fails to converge, illustrated in Figure 1.

Our proposed algorithm draws inspiration from dissipative
theory in control by introducing two dynamic feedback con-
trollers (friction) to dissipate the energy stored and amplified



by the GDA algorithm. This is implemented in the form of
high pass filters of the form

ζk+1 = ζk − ρ(ζk − vk), wk = ρ(vk − ζk), (3)

with transfer function ŵ(z) = z−1
z−(1−ρ) v̂(z), that is in-

terconnected in negative feedback to attenuate dampen the
oscillations of both xk and yk. This modification leads to
the following proposed algorithm, effectively dampening the
oscillations in our illustrative example in Figure 1.

Dissipative gradient descent ascent (DGDA):
xk+1

x̂k+1

yk+1

ŷk+1

 =


xk − η∇xf(xk, yk)− ρ(xk − x̂k)

x̂k − ρ(x̂k − xk)
yk + η∇yf(xk, yk)− ρ(yk − ŷk)

ŷk − ρ(ŷk − yk)

 (4)

Particularly, for f as in (1), in (4) we introduce two new sets
of variables x̂ ∈ Rn and ŷ ∈ Rm and a damping parameter ρ >
0. One important observation is that, due to the high-pass filter
structure of the feedback, once the system reaches equilibrium,
i.e., xk+1 = xk, yk+1 = yk, x̂k+1 = x̂k, ŷk+1 = ŷk, one
necessarily has x̂k = xk and ŷk = yk, which ensures that the
fixed point is necessarily a critical point of the saddle function.

Fig. 1. Trajectories of states for GDA and DGDA for the simple bilinear
objective function f(x, y) := xy.

The first important observation is that the above DGDA
update could be considered as applying a vanilla GDA update
to the following regularized surrogate for f(x, y):

f(x, y, x̂, ŷ) :=f(x, y)+
ρ

2
∥x−x̂∥2− ρ

2
∥y−ŷ∥2. (5)

While our algorithm also introduces two regularizing terms,
the following Lemma verifies the fixed positions of saddle
points between f(x, y) and f(x, y, x̂, ŷ) with virtual variables
aligned with original variables.

Lemma 1 (Saddle Point Invariance): [20, Lemma 6] For
problem 1, a point (x∗, y∗) is a saddle point of f(x, y) if and
only if (x∗, y∗, x̂∗, ŷ∗) is a saddle point of f(x, y, x̂, ŷ), with
x̂∗ = x∗ and ŷ∗ = y∗.
More interestingly, the regularization terms, ρ

2∥x − x̂∥2 and
ρ
2∥y − ŷ∥2, do not introduce extra strong convexity-stong
concavity to the original problem. Precisely, the augmented
problem f(x, y, x̂, ŷ) is neither strongly convex on (x, x̂) nor
strongly concave on (y, ŷ). Indeed, on the hyperplane of x = x̂
and y = ŷ, the augmented problem recovers the original
problem f(x, y, x̂, ŷ) = f(x, y).

We finalize this section by comparing DGDA with recent
efforts to solve min-max optimization problems. We note
that DGDA is different from the Proximal Point Method
[21] or introducing a L2 regularization [25]. Notably, in
[26] they introduce an accelerated proximal point method,
MINIMAX-APPA that has Õ(

√
κxκy) gradient complexity,

matching the theoretical lower bound up to logarithmic factors.
In the following section, we will show that our proposed
algorithm gets a comparable and slightly better complexity
bound O(

√
κxκy), while we do not require x, y to belongs to

bounded sets.
Recent research has also utilized Moreau-Yosida smoothing

techniques to tackle various optimization problems, ranging
from nonconvex-concave [27]–[29] to nonconvex-nonconcave
optimization problems [30]. These approaches also fall under
the category of first-order Implicit methods. In this work, we
focus on comparing with first-order Explicit algorithms. While
our primary focus lies on strongly convex, strongly concave,
and bilinear settings, we also delve into further analyses across
other contexts, including nonconvex [27]–[30] and stochastic
settings [31], [32].

IV. CONVERGENCE ANALYSIS

In this section, we provide a theoretical analysis of the
proposed algorithm. Consider a quadratic Lyapunov function
to track the energy dissipation of the DGDA updates

Vk := ∥xk − x∗∥2 + ∥yk − y∗∥2 + ∥x̂k − x̂∗∥2 + ∥ŷk − ŷ∗∥2,

which denotes the square 2-norm distance to the saddle point
at the k-th iteration. The goal is, therefore, to find some 0 ≤
α < 1 such that Vk+1 ≤ αVk, where α denotes the linear
convergence rate.

A. Convergence Analysis for Bilinear Functions

When applied to the bilinear min-max optimization problem
f(x, y) = xTAy, the DGDA update (4) is equivalent to a
linear dynamical system. Specifically, denote z = [x, y]T , ẑ =
[x̂, ŷ]T yields:[

zk+1−z∗

ẑk+1−ẑ∗

]
=

[
(1−ρ)I−ηM ρI

ρI (1−ρ)I

][
zk−z∗

ẑk−ẑ∗

]
, (6)

where M =

[
0 A

−AT 0

]
. Therefore, the linear convergence

rate of DGDA can be derived from the analysis of the spectrum
of the associated matrix that defines the DGDA update in (6).
This yields the following theorem.

Theorem 2: (Linear convergence of DGDA, Bilinear Case)
Let Assumption 2 hold. Then the updates 4 of DGDA with
0 < η ≤ 2ρ

σmax(A) and ρ > 0 provide linearly converging
iterates:

Vk≤O
((

1−2ρ+2ρ2+(1−ρ)
√
4ρ2−η2σ2

min(A)
)k)

V0,

Particularly, setting ρ = 1/2 and η = 1/σmax(A) we have

Vk ≤ O
((

1− 1
4κ

)k)
V0. (7)



Proof: We consider, for ease of presentation, the case
when A ∈ Rm×m is a square non-singular matrix, i.e.,
the point (x∗, y∗) = (0,0) is the unique saddle point. The
extension for non-square matrices is straightforward and has
been covered in the literature [33, Appendix G]. According
to [2, Lemma 7], we have Sp(M) = {±iσ|σ2 ∈ Sp(AAT )}.
Therefore, we can compute the eigenvalues of system (6):

µj = 1− ρ± i(
1

2
ησj)±

1

2

√
4ρ2 − η2σ2

j , (8)

where ±iσj ∈ Sp(M). Suppose that for all j ∈ [m], we
choose 0 < η ≤ 2ρ

σmax
≤ 2ρ

σj
and ρ > 0, which implies 4ρ2 −

η2σ2
j ≥ 0, then we can construct the following upper bound

for the magnitude of eigenvalues,

|µj |2 = 1− 2ρ+ 2ρ2 ± (1− ρ)
√

4ρ2 − η2σ2
j (9)

< 1− 2ρ+ 2ρ2 + (1− ρ)
√

4ρ2 = 1 . (10)

It follows from standard linear systems theory, e.g. [34,
Theorem 8.3], the above spectral radius analysis of the linear
system (6) results in the following linear convergence rate
estimate:

Vk ≤ O

((
1− 2ρ+ 2ρ2 + (1− ρ)

√
4ρ2 − η2σ2

min

)k
)
V0,

where Vk := ∥xk−x∗∥2+∥yk−y∗∥2+∥x̂k−x̂∗∥2+∥ŷk−ŷ∗∥2.
Furthermore, the analysis of the above bound identifies the
following optimal step sizes η = 2ρ

σmax
and ρ = 1

2 , and the
following linear convergence rate estimate

Vk ≤ O
((

1− 1
4κ

)k)
V0. (11)

We remark that linear convergence requires ρ > 0. This
is not surprising since GDA, which is known to diverge for
bilinear functions, can be interpreted as the DGDA method
when ρ = 0. More importantly, by choosing the optimal step
size ρ = 1/2, η = 1/σmax(A), DGDA method achieves a
better linear convergence rate than the EG and OGDA methods
(see Table I).

B. Convergence Analysis for Strongly Convex Stronly
Concave Functions

We now consider the case of strongly convex-
strongly concave min-max problems. Let F (zk) :=
(∇xf(xk, yk),−∇yf(xk, yk)). The DGDA updates can
be written as follows:[

zk+1

ẑk+1

]
=

[
zk − ηF (zk)− ρ(zk − ẑk)

ẑk − ρ(ẑk − zk)

]
(12)

Because of the existence of the nonlinear term F (zk),
we cannot analyze the spectrum as in the previous bilinear
case. This is indeed a common challenge in analyzing most
optimization algorithms beyond a neighborhood of the fixed
point. We circumvent this problem by leveraging recent results
on the analysis of variational mappings as F (·) via integral
quadratic constraint [15]–[17].

Theorem 3: (Linear convergence of DGDA, Strongly
Convex-Strongly Concave Case) Let Assumption 1 hold, then

the updates (4) with ρ = 1/2 and η = 1/(L+µ) of the DGDA
algorithm provide linearly converging iterates:

Vk ≤
(
1− κ−1 +O(κ−2)

)k

V0 (13)

Proof: Given a linear dynamical system of the form:
ξk+1 = Aξk + Bwk, where ξ ∈ Rnξ is the state, wk ∈ Rnw

is the input, A is the state transition matrix and B is the
input matrix. Suppose that there exist a (Lyapunov) function
V , satisfying V (ξ) ≥ 0,∀ξ ∈ Rnξ , some 0 ≤ α < 1 and a
supply rate function S(ξk, wk) ≤ 0,∀k such that

V (ξk+1)− α2V (ξk) ≤ S(ξk, wk), (14)

then this dissipation inequality (14) implies that V (ξk+1) ≤
α2V (ξk), and the state will approach a minimum value at
equilibrium no slower than the linear rate α2 [15]. According
to [17, Lemma 6], we could construct the following Linear
Matrix Inequality and supply rate function for DGDA updates,
by augmenting the states ξk = (zk; ẑk),

S(ξk, wk)=

zkẑk
wk

T  2µLI 0 (−µ+L)I
0 0 0

(−µ+L)I 0 2I

zkẑk
wk

≤0

(15)

where the nonlinear operator F (zk) meets the conditions
specified in Assumption 1.

Finally, according to [15, Theorem 2], constructing the
dissipation inequality (14) and proving linear convergence
can be achieved through solving a semidefinite programming
problem. Precisely, if there exists matrix XT = X and
P ∈ Rnξ×nξ with P ⪰ 0 such that

[
ATPA− α2P ATPB

BTPA BTPB

]
−X ≤ 0, (16)

where S(ξ, w) :=

[
ξ
w

]T
X

[
ξ
w

]
, then the dissipation inequal-

ity holds for all trajectories of ξk+1 = Aξk + Bwk, with
V (ξ) = ξTPξ. Given the set of problem parameters, a set
of feasible solutions is given by:

ρ =
1

2
, η =

1

L+ µ
, P =

[
(L+ µ)2 0

0 (L+ µ)2

]
⊗ I, (17)

α2 =
3L2 + 2Lµ+ 3µ2 +

√
(L+ µ)4 + 16L2µ2

4(L+ µ)2
. (18)

After substituting the condition number κ := L/µ, the
convergence rate simplifies to α2 = 1− κ−1 +O

(
( µL )

2
)

Similarly, as in the bilinear case, we remark on the im-
portance of the dissipation component. When ρ = 0, a
similar analysis as in the proof of the theorem recovers the
lower bound of the convergence rate of GDA (1 − κ−2)
as shown in [18, 3.1]. Thus, our DGDA method provides
a better convergence rate estimate than GDA, since clearly
κ ∈ [1,∞), and therefore κ−2 ≤ κ−1. Additionally, Theorem
2 and Theorem 3 indicate that if we want to achieve an
ϵ-accurate solution, we need to run at most O(κ log(1/ϵ))
iterations (gradient evaluations).



Fig. 2. Convergence of GDA, EG, OGDA, and DGDA in terms of the
number of gradient evaluations for the bilinear problem. GDA diverges
and the error is not shown. All other three algorithms converge linearly,
where the DGDA method provides the best performance.

We remark that while the rate obtained in Theorem 3 is
better than those of the EG and OGDA methods for large
condition numbers κ (see Table II), the theorem fails to
quantify the comparative performance of DGDA for small
values of κ. The following corollary shows that indeed, the
rate of DGDA is provably better for all κ ≥ 2.

Corollary 4 (SCSC, comparison with known rates): Let
Assumption 1 hold, and suppose that L ≥ 2m, i.e., κ ≥ 2.
Then, the linear convergence rate estimate of DGDA (13) is
smaller (better) than that of EG and OGDA, i.e., 1 − κ−1/4
(Theorem 6&7 [2] and Theorem 4&7 [1]).

V. NUMERICAL EXPERIMENTS

In this section, we compare the performance of the proposed
Dissipative gradient descent (DGDA) method with the Extra-
gradient (EG), Gradient descent ascent (GDA), and Optimistic
gradient descent ascent (OGDA) methods.

A. Bilinear problem

We first consider the following bilinear min-max optimiza-
tion problem: minx∈Rn maxy∈Rm xTAy, where A ∈ Rm×n

is full-rank. The simulation results are illustrated in Figure 2.
In this experiment, we set the dimension of the problem to
m = n = 10 and the iterates are initialized at x0, y0, which
are randomly drawn from the uniform distribution on the open
interval (0, 1).

We plot the errors (distance to saddle points) of DGDA,
EG, and OGDA versus the number of gradient evaluations
for this problem in the left plot of Figure 2. The solid line
and grey-shaded error bars represent the average trajectories
and standard deviations of 20 trials, where in each trial the
randomly generated matrix A has a fixed condition number,
i.e., κ = σ2

max(A)/σ2
min(A) = 25. The key motivation is

that all three algorithms’ convergence rates critically depend
on κ−1, and by fixing the condition number, we provide an
explicit comparison of their convergence speed.

We pick the step size for different methods according
to theoretical findings. That is, we select ρ = 1/2 and
η = 1/σmax(A) for DGDA (Theorem 2), η = 1/4L =
1/4σmax(A) for EG and OGDA (Theorem 6&7 [2] and
Theorem 4&7 [1]). We do not show the error of GDA since

it diverges for this bilinear saddle point problem. All other
three algorithms converge linearly, with the DGDA method
providing the best performance.

Finally, to provide a qualitative demonstration of how
DGDA fares with other existing algorithms, we further plot
the sample trajectories of GDA, EG, OGDA, and EGDA on
a simple 2D bilinear min-max problem, with m = n = 1. In
right plot of Figure 2, we observe that while GDA diverges, the
trajectories of all other three algorithms converge linearly to
the saddle point (x∗, y∗) = (0, 0). Interestingly, our proposed
algorithm (DGDA) despite taking larger steps, exhibits faster
linear convergence.

B. Strongly convex-strongly concave problem

In the second numerical example, we focus on a strongly
convex-strongly strongly-concave quadratic problem of the
following form:

min
x∈Rn

max
y∈Rm

1

2
xTAx− 1

2
yTBy + xTCy, (19)

where the matrices satisfy µAI ⪯ A ⪯ LAI , µBI ⪯ B ⪯
LBI , µ2

cI ⪯ CTC ⪯ L2
cI . As a result, the problem (19)

satisfy Assumption 1. In this experiment, we set the dimension
of the problem to n = 50,m = 10, and the iterates are initial-
ized at x0, y0, which are randomly drawn from the uniform
distribution on the open interval (0, 1). We plot the errors
(distance to saddle points) of GDA, DGDA, EG, and OGDA
versus the number of gradient evaluations for this problem
in Figure 3. Again, the solid line and grey-shaded error bars
represent the average trajectories and standard deviations of
20 trials, where in each trial the randomly generated matrix[

A C
−CT B

]
is chosen such that the condition number of (19)

remains constant, i.e., κ = L/µ = 31. Similarly as in the
bilinear problem in Section V-A, we pick the step size for the
DGDA method according to our theoretical finding in Theorem
3. The step size of the GDA method is selected as η = µ/L2

(Theorem 5 [35]). The step sizes for EG and OGDA methods
are selected as η = 1/4L (Theorem 6&7 [2] and Theorem 4&7
[1]). According to the plots, all algorithms converge linearly,
and the DGDA method has the best performance.

VI. CONCLUSION AND FUTURE WORK

In this work, we present the Dissipative GDA (DGDA)
algorithm, a novel method for solving min-max optimization
problems. Drawing inspiration from dissipativity theory and
control theory, we address the challenge of diverging oscilla-
tions in bilinear min-max optimization problems when using
the Gradient Descent Ascent (GDA) method. Particularly, we
introduce a friction term into the GDA updates aiming to
dissipate the internal energy and drive the system towards equi-
librium. By incorporating a state-augmented regularization,
our proposed DGDA method can be seen as performing stan-
dard GDA on an extended saddle function without introducing
additional convexity. We further establish the superiority of
the convergence rate of the proposed DGDA method when
compared with other established methods including GDA,



Fig. 3. Convergence of GDA, EG, OGDA, and DGDA in terms of the
number of gradient evaluations for problem 19. All algorithms converge
linearly, and the DGDA method has the best performance.

Extra-Gradient (EG), and Optimistic GDA. The analysis is
further supported by two numerical examples, demonstrating
its effectiveness in solving saddle point problems. Our future
work includes studying the DGDA method in a stochastic set-
ting and its application in solving Constrained Reinforcement
learning problems in the policy space.
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