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Abstract

Network coherence generally refers to the emergence of simple aggregated dynamical behaviors, despite heterogeneity in the
dynamics of the subsystems that constitute the network. In this paper, we develop a general frequency domain framework to
analyze and quantify the level of network coherence that a system exhibits by relating coherence with a low-rank property of
the system’s input-output response. More precisely, for a networked system with linear dynamics and coupling, we show that,
as the network’s frequency-dependent algebraic connectivity grows, the system transfer matrix converges to a rank-one transfer
matrix representing the coherent behavior. Interestingly, the non-zero eigenvalue of such a rank-one matrix is given by the
harmonic mean of individual nodal dynamics, and we refer to it as coherent dynamics. Our analysis unveils the frequency-
dependent nature of coherence and a non-trivial interplay between dynamics and network topology. We further show that many
networked systems can exhibit similar coherent behavior by establishing a concentration result in a setting with randomly
chosen individual nodal dynamics.
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1 Introduction

The study of coordinated behavior in network systems
has been a popular subject of research in many fields,
including physics [2], chemistry [3], social sciences [4],
and biology [5]. Within engineering, coordination is es-
sential for the proper operation of many networked sys-
tems, including power networks [6, 7], data and sensor
networks [8,9], and autonomous transportation [10–13].
Among many forms of coordination, coherence refers to
the ability of a group of nodes to have a similar dynamic
response to some external disturbance [14]. While co-
herence analysis is useful in understanding the collective
behavior of large networks, little do we know about the
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underlying mechanism that causes such coherent behav-
ior to emerge in various networks.

Classic slow coherency analyses [15–18] (with applica-
tions mostly to power networks) usually consider the
second-order electro-mechanical model without damp-
ing: ẍ = −M−1Lx, where M is the diagonal matrix of
machine inertias, and L is the Laplacian matrix whose
elements are synchronizing coefficients between pair of
machines. The coherency or synchrony [16] (a general-
ized notion of coherency) is identified by studying the
first few slowest eigenmodes (eigenvectors with small
eigenvalues) of M−1L. The analysis can be carried over
to the case of uniform [15] and non-uniform [17] damp-
ing. However, such state-space-based analysis is limited
to very specific node dynamics (second order) More-
over, it is widely known that such coherence is related
to strong interconnection among the nodes, such rela-
tion is not formally justified in the aforementioned slow
coherency analyses.

A vast body of work, triggered by the seminal paper [13],
has quantitatively studied the role of the network topol-
ogy in the emergence of coherence. Examples include,
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Table 1
Comparison with prior work.

References Nodal dynamics Input Signal
Coherent
dynamics

Time-domain
Bounds

Slow Coherency, Synchrony [15–18]
First- or second-order LTI;

Heterogeneous
Any ✔ ✗

H2-Analysis
[13, 19] LTI; Heterogeneous White Noise ✗ ✔

[20–25] LTI; Homogeneous White Noise N/A ✔

H∞-Analysis [22, 26,27] First-order LTI; Homogeneous Any N/A ✔

Frequency-domain analysis This work LTI; Heterogeneous Any ✔ ✔

directed [24] and undirected [23] consensus networks,
transportation networks [13], and power networks [7,20,
21,25,26]. The key technical approach amounts to quan-
tifying the level of coherence by computing the H2-norm
of the system for appropriately defined nodal distur-
bance and performance signals. Broadly speaking, the
analysis shows a reciprocal dependence between the per-
formance metrics and the non-zero eigenvalues of the
network graph Laplacian, validating the fact that strong
network coherence (low H2-norm) results from the high
connectivity of the network (large Laplacian eigenval-
ues). Unfortunately, the analysis strongly relies on a ho-
mogeneity [13, 20, 23–26] or proportionality [7] assump-
tion of the nodal transfer functions, and thus fails to
characterize how individual heterogeneous node dynam-
ics affect the overall coherent network response.

1.1 Our contribution

In this paper, we seek to overcome these limitations by
formalizing network coherence through a low-rank struc-
ture of the system transfer matrix that appears when
the network feedback gain is high. This frequency do-
main analysis provides a deeper characterization of the
role of both network topology and node dynamics on the
coherent behavior of the network. In particular, our re-
sults make substantial contributions towards the under-
standing of coordinated and coherent behavior of net-
work systems in many ways:

• Frequency-domain analysis: We present a general
framework in the frequency domain to analyze the
coherence of heterogeneous networks with arbitrary
LTI nodal dynamics. We show that network coherence
emerges as a low-rank structure of the system trans-
fer matrix as we increase its frequency-dependent al-
gebraic connectivity–a quantity that depends on the
network coupling strength and dynamics.

• Characterization of coherent response: Our
analysis applies to networks with heterogeneous nodal
dynamics, and further provides an explicit charac-
terization in the frequency domain of the coherent
response to disturbances as the harmonic mean of
individual nodal dynamics. Thus, in this way, our
results highlight the contribution of individual nodal
dynamics to the network’s coherent behavior.

• Time-domain bounds under general inputs: We
formally connect our frequency-domain results with
explicit time-domain L∞ bounds on the difference
between individual nodal responses and the coherent
dynamic response to a broad class of input signals,
suggesting that network coherence is a frequency-
dependent phenomenon. That is, the ability of nodes
to respond coherently depends on the frequency com-
position of the input disturbance.

• Coherent response in large-scale networks: By
providing an exact characterization of the network’s
coherent dynamics, our analysis can be further applied
in settings where only distributional information of
the network composition is known. More precisely, we
show that the coherent dynamics of tightly connected
networks with possibly random nodal dynamics are
well approximated by a deterministic transfer function
that only depends on the statistical distribution of
node dynamics.

Notably, the problem of characterizing coherent dy-
namic response is unique to heterogeneous networks
since the coherent dynamics for homogeneous networks
are exactly equal to the common nodal dynamics. In
real applications, however, such as power networks,
such characterization is relevant to model reduction [28]
and control design [29]. Our analysis provides, in the
asymptotic sense, the exact characterization of coher-
ent dynamics that can be used in control design for
heterogeneous networks.

1.2 Comparison with prior work

We compare our work to existing analyses on network
coherence (summarized in Table 1):

Slow coherency and Synchrony: Classic coherency
analysis [15–18] assumes a first- or second-order LTI
nodal dynamics, which do not account for more com-
plex dynamics or controllers that are usually present at a
node level; e.g., in the power systems literature [29–31],
while our analyses apply to general LTI nodal dynam-
ics. Moreover, classic analysis lacks theoretical bounds
on the difference between the nodal responses and the
coherent responses. Our results provide a set of such
time-domain bounds (See Section 4).
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H2/H∞-Analyses The seminal paper [13] quantifies
network coherence as H2-norm of the system that maps
disturbance to some cohesiveness measure of network
states, and [22, 26, 27] also considered the H∞ norm.
While H2/H∞-norm can be computed [13] for any
network with heterogeneous LTI nodes, interpretable
closed-form solution can only be obtained when nodal
dynamics are homogeneous [20–27] or proportional to
one another [7]. More importantly, H2/H∞-analyses
cannot characterize aggregate nodal response. In other
words, H2/H∞-norm only measures how similar nodal
responses are close to each other but does not lead to
a dynamic representation of the coherent response. On
the contrary, our analysis is valid for networks with
heterogeneous LTI nodal dynamics and explicitly char-
acterizes the coherent response. Lastly, H2-analysis im-
plicitly assumes that the network is subjected to white
noise disturbance, while our results hold for a broad
class of inputs and particularly highlight the role input
signals have in the emergence of coherence.

1.3 Other related work

Consensus and synchronization: Consensus [4, 11–
13,24,32,33] refers to the ability of the network nodes to
asymptotically reach a common value over some quan-
tities of interest. Synchronization [5, 8–10, 34–36] refers
to the ability of network nodes to follow a commonly
defined trajectory. Although for nonlinear systems syn-
chronization is a structurally stable phenomenon, in the
linear case [10,34–36], synchronization requires the exis-
tence of a common internal model that acts as a virtual
leader [35, 36]. As such, consensus and synchronization
are coordinated behaviors generally achieved in steady
state, and require a common internal model for every
node. On the contrary, the network can exhibit coherent
behavior during the transient phase (a formal compar-
ison is presented in Section 4.3), and coherence exists
even without a common internal model.

Area aggregation and dynamic equivalents: For a
group of nodes that exhibit coherent behavior, one can
construct dynamic equivalents [15,16] that characterize
the slow coherence. Finding the dynamic equivalent, or
an aggregate model, for interconnected power generators
is a long-standing research subject in power system lit-
erature. Previously proposed aggregation model [7, 17,
28, 37, 38], mostly assume first- or second-order genera-
tor dynamics, which does not account for more complex
dynamics or controllers [29–31]. Our explicit character-
ization of coherent dynamics provides a principled way
to obtain an aggregate model for general node dynamics.

1.4 Paper organization

The paper is organized as follows. In Section 3, we dis-
cuss the network coherence as a low-rank property of
the network transfer matrix. In Section 4, we discuss the

time-domain implication of such coherence in the trans-
fer matrix. In Section 5, the dynamics concentration in
large-scale networks is discussed. In Section 6, we apply
our analysis to synchronous generator networks. Lastly,
we conclude with a discussion on future research in Sec-
tion 7.

Notation: For a vector x, ∥x∥ =
√
x⊤x denotes the 2-

norm of x, and for a matrix A, σmin(A) denotes the
minimum singular value of A, ∥A∥ denotes the spectral
norm of A. Particularly, if A is real symmetric, we let
λi(A) denote the ith smallest eigenvalue of A. We let
diag{xi}ni=1 denote an n×n diagonal matrix with diag-
onal entries xi. We let In denote the identity matrix of
order n, 1 denote column vector [1, · · · , 1]⊤, [n] denote
the set {1, 2, · · · , n} and N+ denote the set of positive
integers. We use Sn−1 := {u ∈ Rn : ∥u∥ = 1} to denote
the set of all unit-norm vectors in Rn. Also, we write
complex numbers as a+ jb, where j =

√
−1. We denote

C the field of complex numbers and define the following
subsets B(s0, δ) := {s ∈ C : |s− s0| ≤ δ}.

2 Problem Setup

Consider a network consisting of n nodes (n ≥ 2), in-
dexed by i ∈ [n] with the block diagram structure in
Fig. 1. L is the Laplacian matrix of a weighted undi-
rected graph that describes the network interconnec-
tion. We further use f(s) to denote the transfer func-
tion representing the dynamics of network coupling, and
G(s) = diag{gi(s)} to denote the nodal dynamics, with
gi(s), i ∈ [n], being a SISO transfer function repre-
senting the dynamics of node i. Throughout this paper,
we assume all gi(s), i = 1, · · · , n and f(s) are rational
proper transfer functions, and the Laplacian matrix L is
real symmetric.

G(s)

f(s)L

u y

−

Fig. 1. Block diagram of networked dynamical systems

Under this setting, we can compactly express the trans-
fer matrix from the input signal vector u to the output
signal vector y by

T (s) = (In +G(s)f(s)L)−1G(s)

= (In + diag{gi(s)}f(s)L)−1diag{gi(s)} . (1)

Many existing networks can be represented by this
structure. For example, for the first-order consensus
network [11, 32], f(s) = 1, and the node dynamics are
given by gi(s) =

1
s . For power networks [7,25], f(s) =

1
s ,
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gi(s) are the dynamics of the generators, and L is the
Laplacian matrix representing the sensitivity of power
injection w.r.t. bus phase angles. Finally, in trans-
portation networks [11, 12], gi(s) represent the vehicle
dynamics whereas f(s)L describes local inter-vehicle
information transfer.

Since L has an eigendecomposition L = V ΛV ⊤

where V =
[

1√
n
, V⊥

]
, V V ⊤ = V ⊤V = In, and Λ =

diag{λi(L)} with 0 = λ1(L) ≤ λ2(L) ≤ · · · ≤ λn(L), we
can rewrite T (s) as

T (s) = (In + diag{gi(s)}f(s)L)−1diag{gi(s)}
= (diag{g−1

i (s)}+ f(s)L)−1

= (diag{g−1
i (s)}+ f(s)V ΛV ⊤)−1

= V (V ⊤diag{g−1
i (s)}V + f(s)Λ)−1V ⊤ . (2)

As we mentioned in the introduction, we are interested
in the regime where the closed-loop system T (s) of (1)
has a low-rank structure. To gain some insight, we first
consider the following simplified example.

2.1 Simple case: homogeneous network

Suppose gi(s) are homogeneous, i.e., gi(s) = g(s). Then
using (2) one can decompose T (s) as follows

T (s)=
1

n
g(s)11⊤+V⊥diag

{
1

g−1(s)+f(s)λi(L)

}n

i=2

V ⊤
⊥ ,

(3)
where the network dynamics decouple into two terms: 1)
the dynamics 1

ng(s)11⊤ that is independent of network
topology and corresponds to the coherent behavior of
the system; 2) the remaining dynamics that are depen-
dent on the network structure via both, the eigenvalues
λi(L), i = 2, · · · , n and the eigenvectors V⊥. Notice that
|f(s)λ2(L)| ≤ |f(s)λi(L)|, i = 2, . . . , n, then 1

ng(s)11⊤

is dominant in T (s) as long as |f(s)λ2(L)| (later referred
as frequency-dependent algebraic connectivity), is large
enough to make the norm of the second term in (3) suf-
ficiently small. Following such observation, we can find
two regimes where the coherent dynamics 1

ng(s)11⊤ is
dominant:

(1) (High network connectivity) If a compact set S ⊂
C contains neither zeros nor poles of g(s), then
limλ2(L)→∞ sups∈S

∥∥T (s)− 1
ng(s)11⊤

∥∥ = 0 . 1

1 In this paper, we write most of our convergence results
in the high connectivity regime as the limit of differences in
norm when λ2(L) → ∞ for simplicity. However, one does
not require infinitely high connectivity to achieve coherence.
These limits suggest, under sufficiently high connectivity,
the transfer matrix T (s) is, in some sense, close to coherent
dynamics 1

n
g(s)11⊤. The precise non-asymptotic result is

presented in Lemma 2.

(2) (High gain in coupling dynamics) If s0 is a pole of
f(s), and the network is connected, i.e., λ2(L) > 0,
then lims→s0

∥∥T (s)− 1
ng(s)11⊤

∥∥ = 0 .

Such convergence results suggest that if 1) the network
has high algebraic connectivity, or 2) our point of inter-
est in the frequency domain is close to a pole of f(s), the
response of the entire system is close to one of 1

ng(s)11⊤.

We refer 1
ng(s)11⊤ as the coherent dynamics 2 in the

sense that in such system, the inputs are aggregated,
and all nodes have exactly the same response to the ag-
gregate input. Therefore, coherence of the network cor-
responds, in the frequency domain, to the property that
the network’s transfer matrix approximately has a par-
ticular rank-one structure.

The aforementioned analysis can be extended to the case
with proportionality assumption, i.e., gi(s) = pig(s) for
some g(s) and pi > 0, i = 1, · · · , n, where one can still
obtain decoupled dynamics through proper coordinate
transformation [7] and the coherent dynamics are again
characterized by the common dynamics g(s). However, it
is challenging to analyze the transfer matrix T (s) with-
out the proportionality assumption: First, it is unclear
whether a low-rank structure would even emerge under
high network connectivity or high gain in the coupling
dynamics; Then most importantly, there is no obvious
choice for coherent dynamics, hence characterizing the
coherent dynamics is a non-trivial problem unique to
heterogeneous networks, and no existing work has shown
an explicit characterization.

Remark 1 For any connected graph with λ2(L) > 0,
scaling all the weights by a factor of α > 1 leads to a new
graph Laplacian αL with λ2(αL) = αλ2(L), thus one can
make λ2(αL) arbitrarily large by increasing α, for finite
n, and regardless of the network topology. Therefore, high
connectivity can be achieved without having a complete
graph; However, the motivation behind studying the high
connectivity regime is not to achieve some desired level of
coherence by increasing the connectivity of the network
but rather to provide theoretical explanations for practical
networks exhibiting coherent behavior.

2.2 Goal of this work

Our work precisely aims at understanding the coher-
ent dynamics of non-proportional heterogeneous net-
works. We would like to show that even when gi(s) are
heterogeneous, similar results as in our simple example
of homogeneous networks still hold. More precisely, we
show that, in Section 3, T (s) converges to a rank-one
transfer matrix of the form 1

n ḡ(s)11⊤, as the frequency-
dependent algebraic connectivity |f(s)λ2(L)| increases.
2 We also refer g(s) as the coherent dynamics since transfer
matrix of the form 1

n
g(s)11⊤ is uniquely determined by its

non-zero eigenvalue g(s).
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However, unlike the homogeneous node dynamics case
where the coherent behavior is driven by ḡ(s) = g(s),
the coherent dynamics ḡ(s) are given by the harmonic
mean of gi(s), i = 1, · · · , n, i.e.,

ḡ(s) =

(
1

n

n∑
i=1

g−1
i (s)

)−1

. (4)

The convergence results are presented in the aforemen-
tioned two regimes: high network connectivity and high
gain in coupling dynamics. We then discuss in Section
4 their implications on the network’s time-domain re-
sponse:

(1) Network with high connectivity responds coher-
ently to a wide class of input signals;

(2) Network with coupling dynamics f(s) = 1
s is nat-

urally coherent with respect to sufficiently low-
frequency signals, regardless of its connectivity.

One additional feature of our analysis is that it can be
further applied in settings where the composition of the
network is unknown and only distributional informa-
tion is present. More precisely, we, in Section 5, consider
a network where node dynamics are given by random
transfer functions. As the network size grows, the coher-
ent dynamics ḡ(s), the harmonic mean of all node dy-
namics, converge in probability to a deterministic trans-
fer function. We term such a phenomenon, where a fam-
ily of uncertain large-scale systems concentrates to a
common deterministic system, dynamics concentration.

Lastly, we verify our theoretical results in Section 6 by
several numerical experiments on linearized power net-
work model and discuss a general aggregation model for
a group of coherent generators.

3 Coherence in Frequency Domain

In this section, we analyze the network coherence as
the low-rank structure of the transfer matrix in the fre-
quency domain. We start with an important lemma re-
vealing how such coherence is related to the algebraic
connectivity λ2(L) and the coupling dynamics f(s).

Lemma 2 Let T (s) and ḡ(s) be defined as in (1) and
(4), respectively. Suppose that for s0 ∈ C that is not a
pole of f(s), we have

|ḡ(s0)| ≤ M1, and max
1≤i≤n

|g−1
i (s0)| ≤ M2 ,

for some M1,M2 > 0. Then the following inequality
holds:∥∥∥∥T (s0)− 1

n
ḡ(s0)11⊤

∥∥∥∥ ≤ (M1M2 + 1)
2

|f(s0)|λ2(L)−M2 −M1M2
2

,

(5)

whenever |f(s0)|λ2(L) ≥ M2 +M1M
2
2 .

We refer readers to Appendix A for the proof. Lemma
4 provides a non-asymptotic bound for our incoherence
measure: when |f(s0)|λ2 is sufficiently large, then there
exists a constant C > 0 such that∥∥∥∥T (s0)− 1

n
ḡ(s0)11⊤

∥∥∥∥ ≤ CM2
1M

2
2

|f(s0)|λ2(L)
. (6)

A large value of |f(s0)|λ2(L) is sufficient to have the
incoherence measure small, and we term this quantity as
frequency-dependent algebraic connectivity. This term is
jointly determined by the algebraic connectivity of the
network λ2(L), and the gain of the coupling dynamics
|f(s0)| at the frequency of our interest s0, which reduces
to the standard algebraic connectivity if we evaluate it at
some frequency s0 where |f(s0)| = 1, and gets amplified
(or weakened) when |f(s0)| > 1 (or |f(s0)| < 1).

We see that there are two possible ways to achieve such
point-wise coherence: Either we increase the network al-
gebraic connectivity λ2(L), by adding edges to the net-
work and increasing edge weights, etc., or we move our
point of interest s0 to a pole of f(s). This point-wise co-
herence via frequency-dependent connectivity provides
the basis of our subsequent analysis. As we mentioned
above, we can achieve such coherence by increasing ei-
ther λ2(L) or |f(s0)|, provided that the other value is
fixed and non-zero. Section 3.1 considers the former and
Section 3.2 the latter.

3.1 Coherence under high network connectivity

It is intuitive that a network behaves coherently under
high connectivity. A formal frequency domain charac-
terization is stated as follows.

Theorem 3 Let T (s) and ḡ(s) be defined as in (1) and
(4), respectively. Given a compact set S ⊂ C, if

(1) S does not contain any pole of ḡ(s);
(2) S does not contain any zero of gi(s) for i = 1, · · · , n;
(3) infs∈S |f(s)| > 0 ,

we have limλ2(L)→+∞ sups∈S

∥∥T (s)− 1
n ḡ(s)11⊤

∥∥ = 0 .

PROOF. On the one hand, since S does not contain
any pole of ḡ(s), ḡ(s) is continuous on the compact set
S, and hence bounded [39, Theorem 4.15]. On the other
hand, because S does not contain any zero of gi(s), every
g−1
i (s) must be continuous on S, and hence bounded as

well. It follows that max1≤i≤n |g−1
i (s)| is bounded on S,

and the conditions of Lemma 2 are satisfied for all s ∈ S
with a uniform choice of M1 and M2. Given any λ2(L)
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that satisfies λ2(L) ≥ M2+M1M
2
2

infs∈S |f(s)| , one can apply (5) for

all s0 ∈ S, which lead to

sup
s∈S

∥∥∥∥T (s)− 1

n
ḡ(s)11⊤

∥∥∥∥ ≤ (M1M2 + 1)
2

Flλ2(L)−M2 −M1M2
2

,

where Fl = infs∈S |f(s)|. We finish the proof by taking
λ2(L) → +∞ on both sides.

Theorem 3 formally shows that high network connectiv-
ity leads to coherence. We emphasize that such coher-
ence is frequency-dependent: the incoherence measure is
defined over a compact set S. Roughly speaking, if we
would like to see whether the network could have a coher-
ent response under certain input signals, then S should
cover most of the frequency components of that signal,
as well satisfy the assumptions in Theorem 3. We discuss
the proper choice of S when we use Theorem 3 to infer
the time-domain response at the beginning of Section 4.

3.2 Coherence under high gain in coupling dynamics

However, high network connectivity is not necessary for
coherence. A high gain in the coupling dynamics effec-
tively amplifies the network connection, leading to the
following frequency-domain coherence.

Theorem 4 Let T (s) and ḡ(s) be defined as in (1) and
(4), respectively. Given a pole of f(s) denoted by s0, if

(1) s0 is not a pole of ḡ(s);
(2) s0 is not a zero of gi(s) for i = 1, · · · , n ,

then lims→s0

∥∥T (s)− 1
n ḡ(s)11⊤

∥∥ = 0 .

PROOF. Since s0 is neither a pole of ḡ(s), nor a zero
of any gi(s), ∃δ1 > 0 such that ∀s ∈ B(s0, δ1), we have
|ḡ−1(s)| ≤ M1 and max1≤i≤n |g−1

i (s)| ≤ M2 for some
M1,M2 > 0.

Now notice that lims→s0 |f(s)| = +∞, by the defini-
tion of the limit, we know that ∃δ2 > 0 such that ∀s ∈
B(s0, δ2), we have 1

2 |f(s)|λ2(L) ≥ M2 + M1M
2
2 . By

Lemma 2, let δ := min{δ1, δ2}, then ∀s ∈ B(s0, δ), the
following holds∥∥∥∥T (s)− 1

n
ḡ(s)11⊤

∥∥∥∥ ≤ (M1M2 + 1)
2

|f(s)|λ2(L)−M2 −M1M2
2

≤ 2 (M1M2 + 1)
2

|f(s)|λ2(L)
.

Taking s → s0, the limit of the right-hand side is 0.

Theorem 4 suggests that for any connected network,
some coupling dynamics cause coherent responses from
the network under specific input signals. For example,
when f(s) = 1

s , the network T (s) is naturally coherent
around s = 0, which implies that such a network be-
haves coherently under sufficiently low-frequency input
signals. This is formally justified in Section 4.2, along
with time-domain results for other choices of coupling
dynamics.

Remark 5 The convergence results presented in this
section exclude the region that contains any zero or pole
of ḡ(s). One can derive convergence results over those
regions under certain conditions, but the results is less
useful in understanding the network’s time-domain be-
havior. We refer readers to the technical note [40] for
details.

4 Implications on Time-Domain Response

In this section, we discuss how one can infer the
network’s time-domain response using the estab-
lished frequency-domain coherence in Theorem 3
and 4. Provided that the network T (s) and the
coherent dynamics ḡ(s) are BIBO stable, we let
y(t) = [y1(t), · · · , yi(t), · · · , yn(t)]⊤ be the response of
the network when the network input is an n-dimensional

U(s), and let ȳ(t) be the response of ḡ(s) to 1⊤

n U(s).
The inverse Laplace transform [41] suggests that for all
i = 1, · · · , n, we have

|yi(t)− ȳ(t)| =∣∣∣∣ limω→∞

∫ σ+jω

σ−jω

este⊤i

(
T (s)− 1

n
ḡ(s)11⊤

)
U(s)ds

∣∣∣∣ ,
(7)

with a proper choice of σ > 0. Here ei is the i-th column
of identity matrix In. This integral can be decomposed
into two parts: one integral on the low-frequency band
(σ − jω0, σ + jω0); and another on the high-frequency
band (σ− j∞, σ− jω0)∪ (σ+ jω0, σ+ j∞), with some
choice of ω0. The former can be shown to be upper
bounded by the frequency-domain difference ∥T (s) −
1
n ḡ(s)11⊤∥ over the set S : (σ − jω0, σ + jω0). Then we
identify conditions under which this difference is small.
In particular,

(1) sups∈S ∥T (s)− 1
n ḡ(s)11⊤∥ is small under high net-

work connectivity, as suggested by Theorem 3;
(2) sups∈S ∥T (s)− 1

n ḡ(s)11⊤∥ is small when S is con-
fined in a neighborhood around pole of coupling
dynamics f(s), suggested by Theorem 4. The case
f(s) = 1

s is of the most interest.

Moreover, when U(s) is a sufficiently low-frequency sig-
nal such that the high-frequency band (σ − j∞, σ −
jω0) ∪ (σ + jω0, σ + j∞) does not include much of its
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frequency components, the latter integral can be made
small. Given an upper bound on the integral in (7), we
show that the time-domain response of every node in the
network resembles the one from the coherent dynamics
ḡ(s). Similar to Section 3, we show such time-domain
coherence in two regimes: high network connectivity or
high gain in the coupling dynamics.

Remark 6 In order to infer the time-domain response,
it is necessary that both the transfer functions T (s) and
1
n ḡ(s)11⊤ are stable. Since our primary focus is on the
interpretation of the frequency domain results, we are
largely working under the tacit assumption that these
transfer functions are stable whenever required. It should
also be noted that there exists a range of scalable stabil-
ity criteria in the literature that can be used to guarantee
internal stability of the feedback setup in Fig. 1. Perhaps
the most well known is that if each gi(s) is strictly positive
real, and f(s) is positive real, then the transfer functions
ḡ(s) and [

G(s)

I

]
(I + f(s)LG(s))

−1
[
f(s)L I

]
are stable (see e.g. [42]). Alternative approaches that can
be easily adapted to our framework that give criteria that
allow for different classes of transfer functions include
[43–45].

4.1 Coherent response under high network connectivity

Our first result considers networks with high connectiv-
ity.

Theorem 7 Given a network with node dynamics
{gi(s)}ni=1 and coupling dynamics f(s), assume that
there exists γ > 0, such that ∥ḡ(s)∥H∞ ≤ γ and
∥T (s)∥H∞ ≤ γ for any symmetric Laplacian matrix L.
Consider a network coupling f(s) and a real input signal
vector u(t) with its Laplace transform U(s) such that for
some σ ≥ 0, we have

(1) infω∈R |f(σ + iω)| > 0;
(2) supRe(s)>σ ∥U(s)∥ is finite;

(3) limω→∞
∫ σ+jω

σ+j0
∥U(s)∥ds is finite .

The following holds:

• If σ = 0, then for any ϵ > 0, there exists a λ > 0, such
that whenever λ2(L) ≥ λ, we have ∥y(t)− ȳ(t)1∥L∞ ≤
ϵ, i.e.,

max
i∈[n]

sup
t>0

|yi(t)− ȳ(t)| ≤ ϵ .

• If σ > 0, then given any ϵ > 0 and T > 0, there exists
a λ > 0, such that whenever λ2(L) ≥ λ, we have

max
i∈[n]

sup
0<t<T

|yi(t)− ȳ(t)| ≤ ϵ .

We refer readers to Appendix B for the proof. Theorem
7 provides a formal explanation of coherent behavior
observed in practical networks and show its relation with
network connectivity. That is, a stable network with high
connectivity can respond coherently to a class of input
signals. More importantly, the coherent response is well
approximated by ḡ(s), then it suffices to study ḡ(s) for
understanding the coherent behavior of a network with
high connectivity.

Furthermore, depending on the poles of the signal U(s),
our results vary: When U(s) has no pole on the imag-
inary axis (exponentially decaying signals), our time-
domain bounds between system response y(t) and the
coherent response ȳ(t)1 holds notably for all time t > 0.
When U(s) has poles on the imaginary axis, our the-
oretical analysis only provides the time-domain bound
within some time interval [0, T ], due to some limitations
in our current proof techniques. Refining the bound for
the latter scenario is left for future research.

While the theorem suggests that some level of coherence
can be achieved by increasing the network connectivity,
one should be cautious about the potential network in-
stability caused by strong interconnection. Nonetheless,
some simple passivity-motivated criteria that ensure sta-
bility even as λ2(L) becomes arbitrarily large:

Theorem 8 Suppose that all gi(s), i = 1, · · · , n are out-
put strictly passive: Re(gi(s)) ≥ ϵ|gi(s)|2, ∀Re(s) > 0 ,
for some ϵ > 0, and f(s) is positive real: Re(f(s)) ≥
0, ∀Re(s) > 0 , then there exists γ > 0, such that given
any positive semidefinite matrix L, we have

∥ḡ(s)∥H∞ ≤ γ, and ∥T (s)∥H∞ ≤ γ .

We refer readers to the technical note [40] for the proof.
Theorem 8, together with Theorem 7, shows that for
certain passive networks, the coherence can be achieved
over a class of input signals by increasing the network
connectivity.

Remark 9 Besides network stability as a prerequi-
site, a few assumptions are made in Theorem 7: infi-
mum on |f(s)| ensures that the network coupling does
not vanish over our domain of interest; supremum on
∥U(s)∥ is needed for utilizing inverse Laplace trans-
form; and the last assumption requires U(s) to have a
light tail on the high-frequency range. A low-frequency
signal with no abrupt change at t = 0 satisfies the
assumption with some σ > 0, for example, sinusoidal
signal U(s) = α

s2+α2u0, or exponential approach signal

U(s) = α
s(s+α)u0 of some shape u0 ∈ Rn. Moreover, if

one adds an exponential decay to the aforementioned
input signal, then the new signal U(s− ν) (ν > 0 can be
arbitrarily small) satisfies the assumption with σ = 0.
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4.2 Coherent response under special coupling dynamics

As we discussed in Section 3, coherence is not all about
network connectivity, and high gain in the coupling dy-
namics causes coherence as well. One simple and prac-
tically seen coupling dynamics are f(s) = 1

s . Due to its
high gain at s = 0, we expect that the network has a co-
herent response under low-frequency signals, as formally
shown below.

Theorem 10 Given a network with node dynamics
{gi(s)}ni=1, coupling dynamics f(s) = 1

s , and a fixed
graph Laplacian L with λ2(L) > 0, such that ∥ḡ(s)∥H∞
and ∥T (s)∥H∞ are finite. Then for any ϵ > 0 and T > 0,
there exists an α0 > 0 such that if the network input is
either (we use χ(t) = 1t≥0 to denote step signal)

• a sinusoidal signal uα(t) = sin(αt)χ(t)u0 with 0 ≤
α ≤ α0, in an arbitrary direction u0 ∈ Sn−1;

• or a general inputu(t) =
∑∞

j=1 βj sin(αjt)χ(t)uj, with

uj ∈ Sn−1, 0 ≤ αj ≤ α0, βj ≥ 0, ∀j = 1, · · · , and∑∞
j=1 βj ≤ 1,

we have maxi∈[n] sup0<t<T |yi(t)− ȳ(t)| ≤ ϵ

We refer readers to Appendix B for the proof. Theorem
10 shows that a stable network with f(s) = 1

s is natu-
rally coherent subject to sufficiently low-frequency sig-
nals, regardless of its connectivity. Notably, the require-
ment on the node dynamics here is much weaker than
one in Theorem 7 as we only need to establish stabil-
ity for a given interconnection L, whereas Theorem 7
requires stability under any interconnection. However,
similar to Theorem 7 applying to signals with poles on
the imaginary axis, our results only provide the bound
in the transient phase until some time T > 0. We be-
lieve it is possible to provide an error bound for all time
t > 0 if an exponential decay is added to the sinusoidal
inputs, similar to the result in Theorem 7 for the case of
σ = 0, and a formal proof is left to future research.

4.3 Comparison with different notions of coordination

Our Theorem 7 and 10 show the coherent response of the
network in the time domain. We compare our results to
prior work that studies different forms of time-domain
coordination in network systems.

The consensus [32] and synchronization [5, 8, 10] are ar-
guably the simplest form of coordination in network sys-
tems, which can be viewed as a problem tracking some
reference signal ȳ(t) representing the final consensus or
synchronization. However, one only requires yi(t) → ȳ(t)
when t → ∞, i.e., that the node responses become close
to ȳ(t) in steady state. The coherent response considered
here is different in that we have yi(t) ≃ ȳ(t), ∀t > 0, i.e.,
ȳ(t) is a good approximation for yi(t) for all time t > 0,
hence our results can be also used for transient analysis.

The work on coherency and synchrony [16,46–48] stud-
ies a similar behavior as ours, but the behavior is charac-
terized as pairwise coherence achieved under input sig-
nal of certain spatial shape: given an input signal vector
u(t) = v(t)u0, [46, 47] shows the condition on u0 such
that the responses of some pair of nodes are similar (or
generally, proportional [16]), i.e., yi(t) ≃ yj(t) for some
i, j ∈ [n]. Our results show that certain temporal shape
v(t) also causes coherence, and in a stronger form: our
coherence does not depend on the shape u0 and holds
for all nodes.

5 Dynamics Concentration in Large-scale Net-
works

In Section 3, we looked into convergence results of T (s)
for networks with fixed size n. However, one could easily
see that such coherence depends mildly on the network
size n: In Lemma 2, as long as the bounds regarding
gi(s), i.e. M1 and M2 do not scale with respect to n,
coherence can emerge as the network size increases. This
is the topic of this section.

5.1 Coherence in large-scale networks

To start with, we revise the problem settings to account
for variable network size: Let {gi(s), i ∈ N+} be a se-
quence of transfer functions, and {Ln, n ∈ N+} be a se-
quence of real symmetric Laplacian matrices such that
Ln is a square matrix of order n, particularly, let L1 = 0.
Then we define a sequence of transfer matrix Tn(s) as

Tn(s) = (In +Gn(s)Ln)
−1

Gn(s) , (8)

where Gn(s) = diag{g1(s), · · · , gn(s)}. This is exactly
the same transfer matrix shown in Fig. 1 for a network
of size n. We can then define the coherent dynamics for

every Tn(s) as ḡn(s) =
(
1
n

∑n
i=1 g

−1
i (s)

)−1
.

For certain family {Ln, n ∈ N+} of large-scale networks,
the network algebraic connectivity λ2(Ln) increases as
n grows. For example, when Ln is the Laplacian of a
complete graph of size n with all edge weights being
1, we have λ2(Ln) = n. As a result, network coher-
ence naturally emerges as the network size grows. Recall
that to prove the convergence of Tn(s) to

1
n ḡn(s)11⊤ for

fixed n, we essentially seek for M1,M2 > 0, such that
|ḡn(s)| ≤ M1 and max1≤i≤n |g−1

i (s)| ≤ M2 for s in a cer-
tain set. If it is possible to find a universalM1,M2 > 0 for
all n, then the convergence results should be extended to
arbitrarily large networks, provided that network con-
nectivity increases as n grows. The results follow after
we state the notion of uniform boundedness for a family
of functions.

Definition 11 Let {gi(s), i ∈ I} be a family of complex
functions indexed by I. Given S ⊂ C, {gi(s), i ∈ I} is
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uniformly bounded on S if

∃M > 0 s.t. |gi(s)| ≤ M, ∀i ∈ I, ∀s ∈ S .

Theorem 12 Suppose λ2(Ln) → +∞ as n → ∞. Given
a compact set S ⊂ C, if both {g−1

i (s), i ∈ N+} and
{ḡn(s), n ∈ N+} are uniformly bounded on a set S ⊂ C,
and infs∈S |f(s)| > 0, then we have

lim
n→∞

sup
s∈S

∥∥∥∥Tn(s)−
1

n
ḡn(s)11⊤

∥∥∥∥ = 0 .

The proof is similar to the one for Theorem 3. Due to
the space constraints, we refer readers to the technical
note [40] for the proof. Interestingly, in a stochastic set-
ting where all gi(s) are unknown transfer functions in-
dependently drawn from some distribution, their har-
monic mean ḡn(s) eventually converges in probability to
a deterministic transfer function as the network size in-
creases. Consequently, a large-scale network consisting
of random node dynamics (to be formally defined later)
concentrates around a deterministic system. We term
this phenomenon dynamics concentration.

Remark 13 In this section, we only discuss the coher-
ence due to connectivity since the coherence from a high
gain in coupling dynamics shown in Theorem 4 can be
applied to any connected network, regardless of its size.

5.2 Dynamics concentration in large-scale networks

Now we consider the cases where the node dynamics
are unknown (stochastic). For simplicity, we constraint
our analysis to the setting where the node dynamics are
independently sampled from the same random rational
transfer function with all or part of the coefficients are
random variables, i.e. the nodal transfer functions are of
the form

gi(s) ∼
bmsm + . . . b1s+ b0
alsl + . . . a1s+ a0

, (9)

for some m, l > 0, where b0, · · · , bm, a0, · · · , al are ran-
dom variables.

To formalize the setting, we first define the random
transfer function to be sampled. Let Ω = Rd be the
sample space, F the Borel σ-field of Ω, and P a prob-
ability measure on Ω. A sample w ∈ Ω thus represents
a d-dimensional vector of coefficients. We then define a
random rational transfer function g(s, w) on (Ω,F ,P)
such that all or part of the coefficients of g(s, w) are
random variables. Then for any w0 ∈ Ω, g(s, w0) is a
rational transfer function.

Now consider the probability space (Ω∞,F∞,P∞). Ev-
ery w ∈ Ω∞ gives an instance of samples drawn from
our random transfer function:

gi(s, wi) := g(s, wi), i ∈ N+ ,

where wi is the i-th element of w. By construction,
gi(s, wi), i ∈ N+ are i.i.d. random transfer functions.
Moreover, for every s0 ∈ C, gi(s0, wi), i ∈ N+ are i.i.d.
random complex variables taking values in the extended
complex plane (presumably taking value ∞).

Now given {Ln, n ∈ N+} a sequence of n × n real sym-
metric Laplacian matrices, consider the random network
of size n whose nodes are associated with the dynamics
gi(s, wi), i = 1, 2, · · · , n and coupled through Ln. The
transfer matrix of such a network is given by

Tn(s,w) = (In +Gn(s,w)Ln)
−1Gn(s,w) , (10)

where Gn(s,w) = diag{g1(s, w1), · · · , gn(s, wn)}. Then
under this setting, the coherent dynamics of the network
are given by

ḡ(s,w) =

(
1

n

n∑
i=1

g−1
i (s, wi)

)−1

. (11)

Now given a compact set S ⊂ C of interest, and assuming
suitable conditions on the distribution of g(s, w), we ex-
pect that the random coherent dynamics ḡ(s,w) would
converge uniformly in probability to its expectation

ĝ(s) =
(
Eg−1(s, w))

)−1
:=

(∫
Ω

g−1(s, w)dP(w)

)−1

,

(12)
for all s ∈ S, as n → ∞. The following Lemma provides
a sufficient condition for this to hold.

Lemma 14 Consider the probability space (Ω∞,F∞,P∞).
Let ḡn(s,w) and ĝ(s) be defined as in (11) and (12),
respectively, and given a compact set S ⊂ C, let the
following conditions hold:

(1) g−1(s, w) is uniformly bounded on S × Ω;
(2) {ḡn(s,w), n ∈ N+} are uniformly bounded on S ×

Ω∞;
(3) ∃Clip > 0 s.t. |g−1

i (s1, w)− g−1
i (s2, w)| ≤ Clip|s1 −

s2|, ∀w ∈ Ω,∀s1, s2 ∈ S, ∀i;
(4) ĝ(s) is uniformly continuous on S.

Then, ∀ϵ > 0, we have

lim
n→∞

P

(
sup
s∈S

∥∥∥∥ 1nḡn(s,w)11⊤ − 1

n
ĝ(s)11⊤

∥∥∥∥ ≥ ϵ

)
= 0 .

This lemma suggests that our coherent dynamics
ḡn(s,w), as n increases, converges uniformly on S to its
expected version ĝ(s). Then provided that the coher-
ence is obtained as the network size grows, we would
expect that the random transfer matrix Tn(s,w) to
concentrate to a deterministic one 1

n ĝ(s)11⊤, as the
following theorem shows.
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Theorem 15 Given probability space (Ω∞,F∞,P∞).
Let Tn(s,w) and ĝ(s) be defined as in (10) and (12),
respectively. Suppose λ2(Ln) → +∞ as n → +∞. Given
a compact set S ⊂ C, if all the conditions in Lemma 14
hold, then ∀ϵ > 0, we have

lim
n→∞

P

(
sup
s∈S

∥∥∥∥Tn(s,w)− 1

n
ĝ(s)11⊤

∥∥∥∥ ≥ ϵ

)
= 0 .

The proof of Lemma 14 follows the standard procedure
for showing the uniform stochastic convergence of a ran-
dom function, then Theorem 15 is its direct application.
We refer interested readers to the technical note [40] for
the proofs. In summary, because the coherent dynam-
ics is given by the harmonic mean of all node dynamics
gi(s), it concentrates around its harmonic expectation
ĝ(s) as the network size grows. As a result, in practice,
the coherent behavior of large-scale networks depends
on the empirical distribution of gi(s), i.e. a collective ef-
fect of all node dynamics rather than every individual
node dynamics. For example, two different realizations
of large-scale networks with dynamics Tn(s,w) exhibit
similar coherent behavior with high probability, in spite
of the possible substantial differences in individual node
dynamics.

Remark 16 With Theorem 15, one can adopt the anal-
ysis in Section 4 to derive a time-domain result similar
to the one in Theorem 7. In this case, the network stabil-
ity again relies on node passivity as required in Theorem
8. Nonetheless, for the low-order rational transfer func-
tion, the condition of being passive is equivalent to its
coefficients satisfying certain algebraic inequalities [49];
hence there exists probability measure P on the coeffi-
cients such that the resulting transfer function is passive
almost surely, under which the time-domain response of
the network Tn(s,w) can be inferred.

6 Application: Aggregate Dynamics of Syn-
chronous Generator Networks

In this section, we apply our analysis to investigate
coherence in power networks. For coherent generator
groups, we find that 1

n ḡ(s) generalizes typical aggregate
generator models, which are often used for model re-
duction in power networks [14]. Moreover, we show that
heterogeneity in generator dynamics usually leads to
high-order aggregate dynamics, making it challenging
to find a reasonably low-order approximation. Consider
the transfer matrix of power generator networks [7]
linearized around its steady-state point, given by the
following block diagram: This is exactly the block struc-
ture shown in Fig. 1 with f(s) = 1

s . Here, the network
output, i.e., the frequency deviation of each generator,
is denoted by ω. Generally, the gi(s) are modeled as
strictly positive real transfer functions, and we assume

L is connected. Such interconnection is stable [42],
regardless of the network connectivity.

6.1 Numerical verification

We verify our theoretical results, Theorem 7 and The-
orem 10, with numerical simulations on the Icelandic
power grid [50]. Specifically, the generator models are
either modeled as a first-order gi(s) = 1

mis+di
or a

second-order gi(s) = τis+1

(τis+1)(mis+di)+r−1
i

. The order of

the generator model and the coefficients are all pro-
vided in [50], except for damping ratio di, which we set
to 1

2πω0
times the rating of the ith generator (w0 is the

nominal frequency 60Hz). The Laplacian L is given by

Lij = ∂
∂θj

∑n
k=1 |Vi||Vk|bik sin(θi − θk)

∣∣∣
θ=θ0

, where θ0

are angle deviations at steady state, |Vi| is the voltage
magnitude at bus i and bij is the line susceptance. All
these line/bus information is available in [50].

The connectivity Lij between two generator buses
(nodes) critically, and inversely, depends on their phys-
ical distance (longer transmission line means smaller
bij , the line susceptance). Since the Icelandic power
grid has all its generator buses relatively close to each
other, the grid naturally has sufficiently high connectiv-
ity to exhibit coherent behavior, as we will verify now.
We plot in Fig. 2 the frequency response of the power
network model subject to various input disturbances.
The network step response is already highly coherent,
i.e. response of every single node (generator) is close to
the one of the coherent dynamics ḡ(s), in the original
network and even more coherent when the network con-
nectivity is scaled up, as suggested by Theorem 7. We
note that scaling up the network Laplacian means bring-
ing generators closer geographically, which is generally
unrealistic. We do so mostly for illustration purposes,
highlighting how the level of network coherence depends
on connectivity. In addition, the network responds more
coherently when subject to lower-frequency signals (See
the second and fourth column in Fig. 2), as suggested
by Theorem 10. But most importantly, the coherent
dynamics ḡ(s) provides a good characterization of the
coherent response. We also plot the Center-of-Inertia
frequency of the grid yCOI = (

∑n
i=1 miyi)/(

∑n
i=1 mi),

which is generally used for frequency response assess-
ment, and we see that it is well approximated by the
response of ḡ(s).

6.2 Aggregate dynamics of generator networks

The numerical simulations above suggest that the coher-
ent dynamics ḡ(s) characterize well the overall frequency
response of generators in a grid. This leads to a general
methodology to analyze the aggregate dynamics of such
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Fig. 2. Coherent response of Icelandic Grid. Each column corresponds to a different input signal (from left to right: step,
exponential approach, high-frequency sinusoidal, and low-frequency sinusoidal signal. Here we use χ(t) = 1t≥0 to denote step
signal); The input signal has a shape u0 = −e2, i.e., only the second node is subject to disturbance. The top row shows the
responses of the original Icelandic grid, and the bottom row shows the responses of the network with increased connectivity.
The red dashed line shows the response of ḡ(s) subject to the averaged input ū(t) = 1⊤u(t)/n. Blue solid line shows the
Center-of-Inertia frequency of the grid yCOI = (

∑n
i=1 miyi)/(

∑n
i=1 mi).

diag{gi(s)}

1
sL

u ω

−

Fig. 3. Block Diagram of Linearized Power Networks

networks. Let

gaggr(s) :=
1

n
ḡ(s) =

(
n∑

i=1

g−1
i (s)

)−1

.

Our analysis suggests that the transfer function T (s)
representing a network of generators is close gaggr(s)11⊤

within the low-frequency range, for sufficiently high net-
work connectivity λ2(L). We can also view gaggr(s) as
the aggregate generator dynamics, in the sense that it
takes the sum of disturbances 1⊤u =

∑n
i=1 ui as its in-

put, and its output represents the coherent response of
all generators.

Such a notion of aggregate dynamics is important in
modeling large-scale power networks [14]. Generally
speaking, one seeks to find an aggregate dynamic model
for a group of generators using the same structure (trans-
fer function) as individual generator dynamics, i.e. when
generator dynamics are modeled as gi(s) = g(s; θi),
where θi is a vector of parameters representing physical
properties of each generator, existing works [28,38] pro-
pose methods to find aggregate dynamics of the form
g(s; θaggr) for certain structures of g(s; θ). Our gaggr(s)
justifies their choices of θaggr, as shown in the following

example.

Example 17 For generators given by the swing model
gi(s) =

1
mis+di

, wheremi, di are the inertia and damping
of generator i, respectively. The aggregate dynamics are

gaggr(s) =
1

maggrs+ daggr
, (13)

where maggr =
∑n

i=1 mi and daggr =
∑n

i=1 di.

Here the parameters are θ = {m, d}. The aggregate
model given by (13) is consistent with the existing ap-
proach of choosing inertia m and damping d as the re-
spective sums over all the coherent generators.

However, as we show in the next example when one con-
siders more involved models, it is challenging to find pa-
rameters that accurately fit the aggregate dynamics.

Example 18 For generators given by the swing model
with turbine droop gi(s) =

1

mis+di+
r
−1
i

τis+1

, where r−1
i and

τi are the droop coefficient and turbine time constant
of generator i, respectively. The aggregate dynamics are
given by

gaggr(s) =
1

maggrs+ daggr +
∑n

i=1
r−1
i

τis+1

. (14)

Here the parameters are θ = {m, d, r−1, τ}. This exam-
ple illustrates, in particular, the difficulty in aggregating
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generators with heterogeneous turbine time constants.
If the τi are heterogeneous, then gaggr(s) is a high-order
transfer function and cannot be accurately represented
by a single generator model parametrized by θ. The ag-
gregation of generators essentially asks for a low-order
approximation of gaggr(s). Our analysis reveals the fun-
damental limitation of using conventional approaches
seeking aggregate dynamics with the same structure of
individual generators. Furthermore, by characterizing
the aggregate dynamics in the explicit form gaggr(s), one
can developmore accurate low-order approximation [51].
Lastly, we emphasize that our analysis does not depend
on a specific model of generator dynamics gi(s). Hence,
it provides a general methodology to aggregate coherent
generator networks.

7 Conclusions

In this paper, we study network coherence as a low-rank
property of the transfer matrix T (s) in the frequency do-
main. The analysis leads to useful characterizations of
coordinated behavior and justifies the relation between
network coherence and network frequency-dependent al-
gebraic connectivity. Our results suggest that network
coherence is a frequency-dependent phenomenon, which
is numerically illustrated in generator networks. Lastly,
concentration results for large-scale networks are pre-
sented, revealing the exclusive role of the statistical dis-
tribution of node dynamics in determining the coher-
ent dynamics of such networks. One interesting future
work is to study the dynamic behavior of large-scale net-
works with multiple coherent groups. One could model
the inter-community interactions by replacing the dy-
namics of each community with its coherent one, or more
generally, a reduced one. Although clustering, i.e. find-
ing communities, for homogeneous networks can be effi-
ciently done by various graph-based methods, it is still
open for research to find multiple coherent groups in het-
erogeneous dynamical networks.

A Proof of Lemma 2

PROOF. Let H = V ⊤diag{g−1
i (s0)}V + f(s0)Λ, such

that (2) becomes T (s) = V H−1V ⊤. Then it is easy to
see that∥∥∥∥T (s0)− 1

n
ḡ(s0)11⊤

∥∥∥∥ = ∥T (s0)− ḡ(s0)V e1e
⊤
1 V

⊤∥

=
∥∥V (H−1 − ḡ(s0)e1e

⊤
1

)
V ⊤∥∥

=
∥∥H−1 − ḡ(s0)e1e

⊤
1

∥∥ , (A.1)

where e1 is the first column of identity matrix In. The
first equality holds by noticing that 1√

n
is the first col-

umn of V .

With V =
[

1√
n

V⊥

]
, we write H in block matrix form:

H =

 1⊤
√
n

V ⊤
⊥

 diag{g−1
i (s0)}

[
1√
n

V⊥

]
+ f(s0)Λ

:=

[
ḡ−1(s0) h⊤

21

h21 H22

]
,

where

h21 = V ⊤
⊥ diag{g−1

i (s0)}
1√
n
,

H22 = V ⊤
⊥ diag{g−1

i (s0)}V⊥ + f(s0)Λ̃ ,

Λ̃ = diag{λ2(L), · · · , λn(L)} .

Inverting H in its block form, we have

H−1 =

[
a −ah⊤

21H
−1
22

−aH−1
22 h21 H−1

22 + aH−1
22 h21h

⊤
21H

−1
22

]
,

where a = 1
ḡ−1(s0)−h⊤

21H
−1
22 h21

.

By our assumption, we have ∥diag{g−1
i (s0)}∥ =

max1≤i≤n |g−1
i (s0)| ≤ M2 , then

∥h21∥ =

∥∥∥∥V ⊤
⊥ diag{g−1

i (s0)}
1√
n

∥∥∥∥
≤ ∥V⊥∥∥diag{g−1

i (s0)}∥
∥1∥√
n

≤ M2 , (A.2)

and

∥H−1
22 ∥ = ∥(f(s0)Λ̃ + V ⊤

⊥ diag{g−1
i (s0)}V⊥)

−1∥

=
1

σmin

(
f(s0)Λ̃ + V ⊤

⊥ diag{g−1
i (s0)}V⊥

)
≤ 1

σmin(f(s0)Λ̃)− ∥V ⊤
⊥ diag{g−1

i (s0)}V⊥∥
≤ 1

σmin(f(s0)Λ̃)−M2

≤ 1

|f(s0)|λ2(L)−M2
,

(A.3)

whenever |f(s0)|λ2(L) > M2.

Lastly, when |f(s0)|λ2(L) > M2+M2
2M1, a similar rea-

soning as above, using (A.2) (A.3), and our assumption
|ḡ(s0)| ≤ M1, gives

|a| ≤ 1

|ḡ−1(s0)| − ∥h21∥2∥H−1
22 ∥

=
(|f(s0)|λ2(L)−M2)M1

|f(s0)|λ2(L)−M2 −M1M2
2

. (A.4)
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Now we bound the norm of H−1− ḡ(s0)e1e
⊤
1 by the sum

of norms of all its blocks:

∥H−1 − ḡ(s0)e1e
⊤
1 ∥

≤ |aḡ(s0)h⊤
21H

−1
22 h21|+ 2∥aH−1

22 h21∥
+ ∥H−1

22 + aH−1
22 h21h

⊤
21H

−1
22 ∥

≤ |a|∥H−1
22 ∥(|ḡ(s0)|∥h21∥2 + 2∥h21∥+ ∥h21∥2∥H−1

22 ∥)
+ ∥H−1

22 ∥ , (A.5)

Using (A.2)(A.3)(A.4), we can further upper bound
(A.5) as

∥H−1 − ḡ(s0)e1e
⊤
1 ∥ ≤ (M1M2 + 1)

2

|f(s0)|λ2(L)−M2 −M1M2
2

.

(A.6)
This bound holds as long as |f(s0)|λ2(L) > M2+M2

2M1.
Combining (A.1) and (A.6) gives the desired inequality.

B Proof of Theorem 7 and 10

When the input to the network is U(s), the output re-
sponse of the i-th node is

Yi(s) = e⊤i T (s)U(s) ,

where ei is the i-th column of the identity matrix In.

Using Mellin’s inverse formula [41, Theorem 3.20], we
have

|yi(t)− ȳ(t)|

=

∣∣∣∣ 1

2πj
lim

ω→∞

∫ σ+jω

σ−jω

est
(
Yi(s)− e⊤i ḡ(s)1

1⊤

n
U(s)

)
ds

∣∣∣∣
≤ eσt

2π
lim

ω→∞

∫ σ+jω

σ−jω

∣∣∣∣e⊤i T (s)U(s)− e⊤i ḡ(s)1
1⊤

n
U(s)

∣∣∣∣ ds
≤ eσt

2π
lim

ω→∞

∫ σ+jω

σ−jω

∥∥∥∥T (s)− 1

n
ḡ(s)11⊤

∥∥∥∥ ∥U(s)∥ds

=
eσt

2π
((A) + (B) + (C)) ,

where

(A) =

∫ σ+jω0

σ−jω0

∥∥∥∥T (s)− 1

n
ḡ(s)11⊤

∥∥∥∥ ∥U(s)∥ds ,

(B) = lim
ω→∞

∫ σ+jω

σ+jω0

∥∥∥∥T (s)− 1

n
ḡ(s)11⊤

∥∥∥∥ ∥U(s)∥ds ,

(C) = lim
ω→∞

∫ σ−jω0

σ−jω

∥∥∥∥T (s)− 1

n
ḡ(s)11⊤

∥∥∥∥ ∥U(s)∥ds .

Both proofs use such a decomposition. By our assump-
tion,

(B) = lim
ω→∞

∫ σ+jω

σ+jω0

∥∥∥∥T (s)− 1

n
ḡ(s)11⊤

∥∥∥∥ ∥U(s)∥ds

≤ lim
ω→∞

∫ σ+jω

σ+jω0

(∥T (s)∥+ ∥ḡ(s)∥) ∥U(s)∥ds

≤ 2γ lim
ω→∞

∫ σ+jω

σ+jω0

∥U(s)∥ds ,

where the last inequality uses the fact that ḡ(s) and
T (s) are stable: ∥ḡ(s)∥H∞ , ∥T (s)∥H∞ ≤ γ. Because for
the real input signals, we have U(s∗) = U∗(s), hence∫ σ−jω0

σ−jω
∥U(s)∥ds =

∫ σ+jω

σ+jω0
∥U(s)∥ds , which leads to

(C) ≤ 2γ lim
ω→∞

∫ σ+jω

σ+jω0

∥U(s)∥ds .

Now we are ready to prove Theorem 7 and 10.

PROOF. [Proof of Theorem 7] First of all, Mellin’s
inverse formula requires that the vertical line Re(s) = σ
is on the right of all poles of the signal. This is the case
from our assumption that supRe(s)>σ ∥U(s)∥ < +∞ and

that T (s), ḡ(s) being stable.

Given any t ≥ 0, since limω→∞
∫ σ+jω

σ+j0
∥U(s)∥ds is finite,

one can pick an ω0 > 0, such that

lim
ω→∞

∫ σ+jω

σ+jω0

∥U(s)∥ds ≤ 2πϵ

6eσtγ
,

which leads to

(B) ≤ 2γ lim
ω→∞

∫ σ+jω

σ+jω0

∥U(s)∥ds ≤ 2πϵ

3eσt
.

Similarly, we have (C) ≤ 2πϵ
3eσt . Notably, the choice of ω0

depends on σt. For the remaining term, we have

(A) =

∫ σ+jω0

σ−jω0

∥∥∥∥T (s)− 1

n
ḡ(s)11⊤

∥∥∥∥ ∥U(s)∥ds

≤ sup
w∈[−w0,w0]

∥∥∥∥T (σ + jw)− 1

n
ḡ(σ + jw)11⊤

∥∥∥∥
×
∫ σ+jω0

σ−jω0

∥U(s)∥ds

Since [σ − jω0, σ + jω0] is a compact set that satisfies
the assumption in Theorem 3, we have

lim
λ2(L)→∞

sup
w∈[−w0,w0]

∥∥∥∥T (σ + jw)− 1

n
ḡ(σ + jw)11⊤

∥∥∥∥ = 0 .
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Therefore, for a sufficiently large λ2(L), we have (A) ≤
2πϵ
3eσt . Combining the upperbounds for (A), (B), (C), we
have

|yi(t)− ȳ(t)| ≤ ϵ .

When σ = 0, notice that the choice of w0 now does not
depend on time t, thus neither does the lower bound on
λ2(L), hence this inequality holds uniformly for all t > 0
with a sufficiently large λ2(L).

When σ > 0, the time domain bound can no longer be
extended to {t : t > 0}. Nonetheless, given a T > 0,
we have a sufficiently large λ2(L) such that (A)+ (B)+
(C) ≤ 2πϵ

eσT , and this suffices to show that ∀t ≤ T ,

|yi(t)− ȳ(t)| ≤ eσt

2π
((A) + (B) + (C)) ≤ eσt

eσT
ϵ ≤ ϵ .

PROOF. [Proof of Theorem 10] For the first scenario,
the input is a sinusoidal signal U(s) = α

s2+α2u0, u0 ∈
Sn−1 (We discuss the second scenario at the end of the
proof). Mellin’s inverse formula requires that the verti-
cal line Re(s) = σ is on the right of all poles of the sig-
nal, which is satisfied under any choice σ > 0. For our
purpose, we pick

σ = α, ω0 = Kα ,

for some K > 0 (to be determined later). By our as-
sumption,

(B) ≤ 2γ lim
ω→∞

∫ σ+jω

σ+jω0

∣∣∣∣ α

s2 + α2

∣∣∣∣ ∥u0∥ds

= 2γ

∫ +∞

ω0

α

|(σ + jω)2 + α2|dω

= 2γ

∫ +∞

Kα

α

|(α+ jω)2 + α2|dω

= 2γ

∫ +∞

Kα

α√
4α4 + ω4

dω

≤ 2
√
2γ

∫ +∞

Kα

α

2α2 + ω2
dω

= γ

(
π − 2 arctan

(
K√
2

))
, (B.1)

where the last inequality use the fact that for a, b > 0,
we have √

a2 + b2 ≥ (a+ b)/
√
2 .

Similarly, we have

(C) ≤ γ

(
π − 2 arctan

(
K√
2

))
. (B.2)

For the remaining term, we use the result in the proof

of Theorem 4: ∃δ > 0, such that ∀s ∈ B(0, δ) such that∥∥∥∥T (s)− 1

n
ḡ(s)11⊤

∥∥∥∥ ≤ 2 (M1M2 + 1)
2

|f(s)|λ2(L)
,

for some M1,M2 > 0. Then as long as we pick α,K
appropriately such that |σ+ jω0| ≤ δ, i.e.,

√
1 +K2α ≤

δ, we have

(A) =

∫ σ+jω0

σ−jω0

∥∥∥∥T (s)− 1

n
ḡ(s)11⊤

∥∥∥∥ ∣∣∣∣ α

s2 + α2

∣∣∣∣ ds
≤
∫ σ+jω0

σ−jω0

2 (M1M2 + 1)
2

|f(s)|λ2(L)

∣∣∣∣ α

s2 + α2

∣∣∣∣ ds
=

∫ σ+jω0

σ−jω0

2 (M1M2 + 1)
2

λ2(L)/|s|
α

|s2 + α2|ds

=
2 (M1M2 + 1)

2

λ2(L)

∫ σ+jω0

σ−jω0

|s|α
|s2 + α2|ds

=
4 (M1M2 + 1)

2

λ2(L)

∫ Kα

0

|α+ jω|α
|(α+ jω)2 + α2|dω

=
4 (M1M2 + 1)

2

λ2(L)

∫ Kα

0

√
α2 + ω2α√
4α4 + ω4

dω

≤ 2
√
2 (M1M2 + 1)

2

λ2(L)

∫ Kα

0

2(α+ ω)α

2α2 + ω2
dω ,

where the last equality used the fact that for a, b > 0,
we have

a+ b ≥
√

a2 + b2 ≥ (a+ b)/
√
2 ,

to upper and lower bound the numerator and denomi-
nator respectively. Notice that∫ Kα

0

2(α+ ω)α

2α2 + ω2
dω

= α

(√
2 arctan

(
K√
2

)
+ log

(
1 +

K2

2

))
≤ 2α log

(
K2

2

)
, (B.3)

for sufficiently large K. We have

(A) ≤ 4
√
2 (M1M2 + 1)

2

λ2(L)
α log

(
K2

2

)
. (B.4)

The last step is to find the right choice of α,K. Given
ϵ > 0, pick a K > 0, such that

2γ

(
π − 2 arctan

(
K√
2

))
≤ ϵπ

4
.

Generally, such a K is sufficient for (B.3) to hold. With
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this choice of K, let

α0 :=

min

{
2 log 2

T
,

ϵπλ2(L)

8
√
2(M1M2 + 1)2 log

(
K2

2

) , δ√
1 +K2

}
.

Then, ∀α ≤ α0, combining (B.1)(B.2)(B.4), we have for
any t ≤ T ,

|yi(t)− ȳ(t)| ≤ eσt

2π
((A) + (B) + (C))

≤ eα0T

2π

(
2γ

(
π − 2 arctan

(
K√
2

))
+

4
√
2 (M1M2 + 1)

2

λ2(L)
α log

(
K2

2

))
≤ 2

π

(ϵπ
4

+
ϵπ

4

)
= ϵ .

This finishes the proof for the first scenario. In the second
scenario, the input is a convex combination of inputs that
satisfies the condition in the first scenario. The results
are trivial from the linearity of the system: if we denote

the response of node i subjected to sin(αjt)uj as y
(j)
i (t),

then we have, for t ≤ T ,

|yi(t)− ȳ(t)| =

∣∣∣∣∣∣
∞∑
j

βjy
(j)
i (t)− ȳ(t)

∣∣∣∣∣∣
≤

∞∑
j

βj |y(j)i (t)− ȳ(t)| ≤ ϵ .
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