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Abstract

The physical and cyber domains with which we interact are filled with high-

dimensional dynamical systems. In machine learning, for instance, the evolution

of overparametrized neural networks can be seen as a dynamical system. In net-

worked systems, numerous agents or nodes dynamically interact with each other.

A deep understanding of these systems can enable us to predict their behavior,

identify potential pitfalls, and devise effective solutions for optimal outcomes. In

this dissertation, we will discuss two classes of high-dimensional dynamical sys-

tems with specific structural properties that aid in understanding their dynamic

behavior.

In the first scenario, we consider the training dynamics of multi-layer neural

networks. The high dimensionality comes from overparametrization: a typical net-

work has a large depth and hidden layer width. We are interested in the following

question regarding convergence: Do network weights converge to an equilibrium

point corresponding to a global minimum of our training loss, and how fast is the

convergence rate? The key to those questions is the symmetry of the weights, a

critical property induced by the multi-layer architecture. Such symmetry leads to a

set of time-invariant quantities, called weight imbalance, that restrict the training

trajectory to a low-dimensional manifold defined by the weight initialization. A

tailored convergence analysis is developed over this low-dimensional manifold,

showing improved rate bounds for several multi-layer network models studied in

the literature, leading to novel characterizations of the effect of weight imbalance
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on the convergence rate.

In the second scenario, we consider large-scale networked systems with multi-

ple weakly-connected groups. Such a multi-cluster structure leads to a time-scale

separation between the fast intra-group interaction due to high intra-group connec-

tivity, and the slow inter-group oscillation, due to the weak inter-group connection.

We develop a novel frequency-domain network coherence analysis that captures

both the coherent behavior within each group, and the dynamical interaction be-

tween groups, leading to a structure-preserving model-reduction methodology for

large-scale dynamic networks with multiple clusters under general node dynamics

assumptions.
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Chapter 1

Introduction

The physical and cyber domains with which we interact are filled with high-

dimensional dynamical systems. In machine learning, for instance, the evolution

of overparametrized neural networks can be seen as a dynamical system. In net-

worked systems, numerous agents or nodes dynamically interact with each other.

A deep understanding of these systems can enable us to predict their behavior,

identify potential pitfalls, and devise effective solutions for optimal outcomes. In

this dissertation, we will discuss two classes of high-dimensional dynamical sys-

tems with specific structural properties that aid in understanding their dynamic

behavior.

One is the autonomous behavior: starting from some initial state, how does the

system evolve under no exogenous disturbance? In the long term, does it con-

verge to some stable equilibrium point or exhibit some periodic behavior that

corresponds to the desired operation of the system? The dynamical behavior of a

low-dimensional system, if non-chaotic, can be generally inferred by first finding all

of its stationary points, where time derivatives of all states are zero, then analyzing

the stability around those points. However, when the number of states is large,

there are generally infinitely many stationary points. One does not have an explicit

characterization of those points, not to mention the difficulties in analyzing the

system stability around those points. Without a generally applicable approach, un-
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derstanding a given high-dimensional system heavily relies on its special properties,

but what intrinsic properties could be useful in the analysis?

Another is the input-output response: upon reaching some stable equilibrium,

which corresponds to a normal operation point for physical systems, the system

is generally subject to exogenous disturbances. How does the system respond to

those disturbances? and will the states leave the designated safe operation region?

Those questions can be mostly answered by studying the linearized system around

the stable equilibrium (normal operation point). However, for a high-dimensional

dynamical system, its linearized system has the same number of states as the

original one, and usually, there are as many sources of disturbance. Hence one

needs to analyze a multi-input multi-output linear system with many internal states.

Given a high-dimensional system, is there a way to approximate the linearized

system by one with a much smaller scale? What properties of the system would

allow such an approximation?

In my dissertation, I study two classes of high-dimensional dynamical systems

with special structural properties that can be used to understand their dynamical

behavior.

• The first scenario considers the training dynamics of multi-layer linear networks

under some optimization algorithm. The system is high-dimensional due to the

overparametrization: a typical neural network has a large depth and hidden layer

width. Hence, there is an extremely large number of trainable weights evolving

as the training iteration proceeds. We are interested in the following question

regarding convergence: Do those network weights converge to an equilibrium

point corresponding to a global minimum of our training loss, and if so, how

fast is the convergence rate? The key to those questions about autonomous

behavior is the symmetry of the weights, an important property induced by the

multi-layer architecture: A class of transformations of the weights exists under
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which the corresponding input-output map remains the same. Such symmetry

leads to a set of time-invariant quantities that depend on the differences between

the weight matrices of adjacent layers, called weight imbalance. Such invariance

restricts the training trajectory to a low-dimensional manifold defined by the

weights initialization. A tailored convergence analysis is developed over this

low-dimensional manifold, showing improved rate bounds for several multi-

layer network models studied in the literature, leading to novel characterizations

of the effect of weight imbalance on convergence.

• The second scenario considers large-scale networked systems with multiple

weakly-connected groups. Upon reaching some equilibrium point, the network

is often subject to exogenous but small disturbances at the individual node level.

Understanding how some disturbance to a subset of nodes would affect all other

nodes amounts to studying the transfer matrix of the entire network, making

the analysis generally challenging due to the large scale of the system. However,

the systems’ multi-cluster structure leads to a time-scale separation between the

fast intra-group interaction–due to high intra-group connectivity–and the slow

inter-group coupling–due to the weak inter-group connection. As a result, the

transfer matrix of the network has a low-rank structure. Building on my recent

work on network coherence analysis in the Laplace domain, the input-output

response can be well characterized by a structure-preserving reduced network

model with the same size as the number of clusters.

1.1 Training Dynamics of Neural Networks

Training a neural network using a gradient descent algorithm with a small step size

can be understood by studying a continuous-time gradient system θ̇ = −∇L(θ),

called gradient flow (GF) dynamics, where θ contains all trainable weights and L is
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the empirical loss defined under certain training data. Due to overparametrization,

there are generally infinitely many global minimums ofL as well as local minimums,

which are all stable equilibria of the GF. For what initializations do trajectories

converge to global minimums? If so, at what rate?

1.1.1 Prior work

A vast body of work has tried to theoretically understand this phenomenon by ana-

lyzing either the loss landscape or the training dynamics of the network parameters

from a specific initialization.

The landscape-based analysis is motivated by the empirical observation that deep

neural networks used in practice often have a benign landscape [1], which can

facilitate convergence. Existing theoretical analysis [2, 3, 4] shows that gradient

descent converges when the loss function satisfies the following properties: 1) all of

its local minimums are global minimums; and 2) every saddle point has a Hessian

with at least one strict negative eigenvalue. Prior work suggests that the matrix

factorization model [5], shallow networks [6], and certain positively homogeneous

networks [7, 8] have such a landscape property, but unfortunately condition 2) does

not hold for networks with multiple hidden layers [6]. Moreover, the landscape-

based analysis generally fails to provide a good characterization of the convergence

rate, except for a local rate around the equilibrium [2, 5]. In fact, during early stages

of training, gradient descent could take exponential time to escape some saddle

points if not initialized properly [9].

The trajectory-based analyses study the training dynamics of the weights given a

specific initialization. For example, the case of small initialization has been studied

for various models [10, 11, 12, 13, 14, 15, 16, 17]. Under this type of initialization,

the trained model is implicitly biased towards low-rank [10, 11, 12, 13, 14, 17], or

sparse [15] models. While the analysis for small initialization gives rich insights
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on the generalization of neural networks, the number of iterations required for

gradient descent to find a good model often increases as the initialization scale

decreases. Such dependence proves to be logarithmic on the reciprocal of the

initialization scale for symmetric matrix factorization model [12, 13, 14], but for

deep networks, existing analysis at best shows a polynomial dependency [15].

Therefore, the analysis for small initialization, while insightful in understanding

the implicit bias of neural network training, is not suitable for understanding the

training efficiency in practice since small initialization is rarely implemented due

to its slow convergence. Another line of work studies the initialization in the

kernel regime, where a randomly initialized sufficiently wide neural network can

be well approximated by its linearization at initialization [18, 19, 20]. In this regime,

gradient descent enjoys a linear rate of convergence toward the global minimum [21,

22, 23]. However, the width requirement in the analysis is often unrealistic, and

empirical evidence has shown that practical neural networks generally do not

operate in the kernel regime [19].

The study of non-small and non-kernel-regime initialization has been mostly

centered around linear models. For matrix factorization models, spectral initial-

ization [24, 11, 25] allows for decoupling the training dynamics into several scalar

dynamics. For non-spectral initialization, the notion of weight imbalance, a quantity

that depends on the differences between the weights matrices of adjacent layers,

is crucial in most analyses. When the initialization is balanced, i.e., when the im-

balance matrices are zero, it is sufficient for convergence when initial end-to-end

linear model is close to its optimum [26, 27]. The effect of weight imbalance on the

convergence has been only studied in the case where all imbalance matrices are

positive semi-definite [28], which is often unrealistic in practice. Therefore, a con-

vergence analysis that applies to deep linear networks under general initialization

is still missing.
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1.1.2 Thesis contribution

The contribution of this thesis to the understanding of the training dynamics of

neural networks is twofold: convergence and implicit bias. Regarding convergence,

we show that [29] the convergence of gradient flow for linear networks explicitly

depends on two trajectory-specific quantities: 1) the imbalance matrices, which

measure the difference between the weights of adjacent layers, and 2) a lower bound

on the least singular values of weight product W = W1W2 · · ·WL. The former is time-

invariant under gradient flow, thus determined at initialization, while the latter can

be controlled by initializing the product sufficiently close to its optimum. With such

observation, we provide two conditions on the initialization, sufficient imbalance and

sufficient margin, with either of them being sufficient for guaranteeing convergence.

Our results apply to various loss functions commonly used in regression tasks as

well as those in classification tasks.

Specifically, for two-layer linear networks [30, 31], our convergence rate bound

depends on two important quantities, imbalance spectrum spread and spectral gap,

whose trade-off leads to a different rate characterization that applies to randomly

initialized networks with varying width. Moreover, we provide a rate bound that

applies to three-layer networks under general initialization. For deep networks,

we study a broader class of initialization that covers most initialization schemes

used in prior work [24, 25, 26, 27, 30, 28] for both multi-layer linear networks and

diagonal linear networks while providing an improved rate bound. In addition, the

analysis can be applied to late-stage training dynamics of two-layer ReLU networks

under small initialization.

Regarding implicit bias, we study gradient flow for overparametrized two-

layer linear networks [30, 31]. We show the existence of a subset of the parameter

space defined by an orthogonality condition, which is invariant under gradient
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flow. All trajectories within this invariant set converge to a unique minimizer

(w.r.t. the end-to-end function), which corresponds to the min-norm solution. As a

result, initializing the network within this invariant set always yields the min-norm

solution upon convergence. Next, we show that if we initialize each network weight

as a sample from the distribution N (0, 1/h2α) (where h is the hidden layer width

and 1/4 < α ≤ 1/2), then it holds with high probability that 1) the weight imbalance

has sufficient spectral gap for exponential convergence; and 2) the aforementioned

orthogonality condition is approximately satisfied throughout training. This results

in a O(h2α− 1
2 ) upper bound on the operator norm distance between the trained

network and the min-norm solution.

Finally, we provide a complete analysis [32] of the dynamics of gradient flow for

the problem of training a two-layer ReLU network on well-separated data under

the assumption of small initialization. Specifically, we show that if the initialization

is sufficiently small, during the early phase of training the neurons in the first layer

try to align with either the positive data or the negative data, depending on its

corresponding weight on the second layer. Moreover, through a careful analysis of

the neuron’s directional dynamics we show that the time it takes for all neurons to

achieve good alignment with the input data is upper bounded by O( logn√
µ
), where n

is the number of data points and µ measures how well the data are separated. We

also show that after the early alignment phase the loss converges to zero at a O(1
t
)

rate and that the weight matrix on the first layer is approximately low-rank.

1.2 Network Coherence

Networked systems are formed by large group of agents/nodes dynamically in-

teracting with each other through a communication network. Examples include

social networks [33], power networks [34], and transportation networks [35]. The
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simplest but arguably the most important coordinated behavior in those networks

is consensus [36, 37, 33]: each agent keeps updating its own state based on the

neighboring state information until agreement among all the nodes is achieved.

More interestingly, upon reaching a consensus, the agents have the ability to collec-

tively respond to some exogenous disturbance while still maintaining some level of

agreement on the state, which is often referred to as coherence.

1.2.1 Prior work

Classic slow coherence analyses [38, 39, 40, 41, 42] (with applications mostly to

power networks) usually consider the second-order electro-mechanical model with-

out damping: ẍ = −M−1Lx, where M is the diagonal matrix of machine inertias,

and L is the Laplacian matrix whose elements are synchronizing coefficients be-

tween pair of machines. The coherency or synchrony [39] (a generalized notion of

coherency) is identified by studying the first few slowest eigenmodes (eigenvectors

with small eigenvalues) of M−1L. The analysis can be carried over to the case of

uniform [38] and non-uniform [40] damping. For a group of nodes that exhibit co-

herent behavior, one can construct dynamic equivalents [38, 39] that characterize the

slow (coherent) behavior. Finding the dynamic equivalent, or an aggregate model,

for interconnected power generators is a long-standing research subject in power

system literature. Previously proposed aggregation model [43, 44, 45, 46, 47, 48, 40]

mostly assume first- or second-order generator dynamics. As such, these state-

space-based analyses are limited to very specific node dynamics and do not account

for more complex dynamics or controllers that are usually present at a node level;

e.g., in the power systems literature [49, 50, 51]. There is, therefore, the need for

coherence identification and aggregation procedures that work for more general

network systems. Moreover, it is widely known that such coherence is related to

strong interconnection among the nodes, such relation is not formally justified in

8



the aforementioned slow coherency analyses.

A vast body of work, triggered by the seminal paper [35], has quantitatively

studied the role of the network topology in the emergence of coherence. Exam-

ples include, directed [52] and undirected [53] consensus networks, transportation

networks [35], and power networks [48, 54, 55, 56]. The key technical approach

amounts to quantify the level of coherence by computing theH2-norm of the sys-

tem for appropriately defined nodal disturbance and performance signals. Broadly

speaking, the analysis shows a reciprocal dependence between the performance

metrics and the non-zero eigenvalues of the network graph Laplacian, validating the

fact that strong network coherence (lowH2-norm) results from the high connectivity

of the network (large Laplacian eigenvalues). Unfortunately, the analysis strongly

relies on a homogeneity [35, 52, 53, 54, 55, 56] or proportionality [48] assumption of

the nodal transfer functions, and thus fails to characterize how individual hetero-

geneous node dynamics affect the overall coherent network response. Moreover,

those analyses have not been generalized to multi-cluster networks. Therefore, a

theoretical analysis that connects the network topology to the emergence of coher-

ence in multi-cluster network systems with heterogeneous node dynamics is still

missing.

1.2.2 Thesis contribution

In this thesis, we make the following contribution to the understanding of network

coherence in large-scale systems:

We present a general framework in the frequency domain to analyze the coher-

ence of heterogeneous networks [57, 58]. We show that network coherence emerges

as a low-rank structure of the system transfer matrix as we increase the effective

algebraic connectivity–a frequency-varying quantity that depends on the network

coupling strength and dynamics. Unlike prior work [38, 39, 40, 41, 42], our analysis
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applies to networks with heterogeneous nodal dynamics, and further provides

an explicit characterization in the frequency domain of the coherent response to

disturbances as the harmonic mean of individual nodal dynamics. Thus, in this way,

our results highlight the contribution of individual nodal dynamics to the network’s

coherent behavior. We also propose a balanced-truncation-based model reduction

algorithm in order to reduce the complexity of obtained coherent dynamics.

We formally connect our frequency-domain results with explicit time-domain

L∞ bounds on the difference between individual nodal responses and the coherent

dynamic response to certain classes of input signals, suggesting that network

coherence is a frequency-dependent phenomenon. That is, the ability of nodes to

respond coherently depends on the frequency composition of the input disturbance.

We extend our frequency-domain analysis to the case of multi-cluster network

systems [59, 60]. We propose a structure-preserving model-reduction methodology

for large-scale dynamic networks. Our analysis shows that networks with multiple

coherent groups can be well approximated by a reduced network of the same

size as the number of coherent groups, and we provide an upper bound on the

approximation error when the network graph is randomly generated from a weight

stochastic block model.
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Chapter 2

Learning Dynamics of
Overparametrized Neural Networks

In this chapter, we study the problem of training overparametrized neural networks.

Consider a training dataset D, a neural network parametrized by θ, and a loss

function L(θ;D)1, one seeks an optimal θ∗ that solves

min
θ
L(θ;D) . (2.1)

Generally, there is no closed-form solution to (2.1), and in practice, people use

gradient-based algorithms to find an optimal θ∗. Arguably the simplest algorithm

is the gradient descent (GD) algorithm:

θ(k+1) = θ(k) − η∇θL(θ(k);D), θ(0) = θ0 , (2.2)

where ∇θL(θ;D) is the gradient of L w.r.t. θ (for simplicity, here we assume L is

differentiable). That is, the GD algorithm begins with some initialization θ0, and at

every iteration, moves the parameter θ along the direction of the negative gradient

of L(θ;D) with a step size η.

In typical deep learning applications, the neural networks are highly over-

parametrized: they consist of a large number of hidden layers, and there are many

hidden neurons within each layer, resulting in millions to billions of trainable

1Exact definitions for D, θ, and L are problem-dependent, which will be clear in later sections
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weights. Such overparametrization makes the loss L highly non-convex with re-

spect to the training parameters and leaves no theoretical guarantee that the GD

algorithm would find a global minimum θ∗. However, in practice, it is generally the

case that the GD algorithm converges to some θ∗ that achieves zero loss.

One major part of the efforts in theoretically explaining such a phenomenon has

been focused on studying the following gradient flow (GF) dynamics:

θ̇ = −∇θL(θ;D), θ(0) = θ0 , (2.3)

whose trajectory approximates those from GD with a small step size. Despite being

easier to analyze than the discrete-time GD algorithm, the question of convergence

largely remains the same for the GF dynamics: given some initialization θ0, how

do we know whether θ converges to a stationary point that corresponds to a global

minimum of the loss? If so, is the convergence exponential? Additionally, there are

many global minimums of the loss due to overparametrization, and they generally

have different test errors, i.e., their performance varies in predicting a new data

point that is different from those in the training data. How do we know if θ

converges to a global minimum that achieves low test error?

The first question mostly concerns convergence, i.e., finding a good initialization

that achieves zero loss asymptotically. The second question concerns the implicit

bias of GF dynamics, i.e., understanding the special property of θ∗ to which the

training parameter θ converges. We will address these aforementioned questions

mostly in the case of linear networks, with some discussion on nonlinear networks

such as ReLU networks.

Chapter outline

This chapter is organized as follows: In Section 2.1, we study the problem of train-

ing two-layer linear networks under the l2 loss, showing that the convergence of
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gradient flow for linear networks explicitly depends on two factors: 1) a weight

imbalance matrix; and 2) the weight product matrix. With such observations, we

provide two conditions on the initialization, namely sufficient imbalance and suf-

ficient margin, either of which is sufficient to guarantee exponential convergence.

Additionally, we demonstrate that an orthogonal condition on the initialization

results in an implicit bias towards the min-norm solution for the underlying re-

gression problem. In Section 2.2, we extend the convergence analysis of two-layer

linear networks to multi-layer networks, showing that the convergence rate still

depends on an imbalance matrix and the weight product. The general analysis

considers a wide range of loss functions used for both regression and classification

problems. Finally, in Section 2.3, we investigate the problem of training two-layer

ReLU networks under small initialization. This problem involves two training

phases: the first phase relies on our novel analysis of the directional dynamics of

the neuron, while the second phase is related to training linear networks. Here, one

can apply the convergence analysis of linear networks to demonstrate convergence

and characterize the implicit bias of the weights.

Notation

For a matrix A, we denote its transpose as A⊤, its trace as tr(A), and its i-th eigen-

value and singular value as λi(A) and σi(A), respectively, in decreasing order (when

adequate). For an n×m matrix A, we write σmin(A) = σmin{n,m}(A), and we conven-

tionally let λi(A) = 0 and σi(A) = 0, ∀i > min{m,n}. Also, we let [A]ij , [A]i,:, and

[A]:,j denote the (i, j)-th element, the i-th row and the j-th column of A, respectively,

and we let ∥A∥2 and ∥A∥F denote the spectral norm and the Frobenius norm of A,

respectively. For a symmetric matrix A, we write A ≻ 0, A ⪰ 0, A ≺ 0 or A ⪯ 0

when A is positive definite, positive semi-definite, negative definite or negative

semi-definite, respectively, and we write A ≻ B, A ⪰ B, A ≺ B and A ⪯ B to
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denote A − B ≻ 0, A − B ⪰ 0, A − B ≺ 0 and A − B ⪯ 0, respectively. For a

scalar-valued or matrix-valued function of time, F (t), we let Ḟ = Ḟ (t) = d
dt
F (t)

denote its time derivative. Additionally, we let In denote the identity matrix of

order n and N (µ, σ2) denote the normal distribution with mean µ and variance σ2.

2.1 Two-layer linear networks

This section presents a novel analysis of the gradient flow dynamics of over-

parametrized two-layer linear networks, which provides a common set of con-

ditions on initialization that lead to convergence and implicit bias. Specifically, this

section makes the following contributions:

1. In Section 2.1.2, we show that the convergence of gradient flow for linear

networks explicitly depends on: 1) a weight imbalance matrix; and 2) the

weight product matrix. With such observation, we provide two conditions

on the initialization, sufficient imbalance and sufficient margin, with either of

them being sufficient for guaranteeing exponential convergence. Moreover,

our convergence rate bound depends on two important quantities, imbalance

spectrum spread and spectral gap, whose trade-off leads to a different rate

characterization that applies to randomly initialized networks with varying

width.

2. In Section 2.1.3 we study the implicit bias of gradient flow for overparametrized

two-layer linear networks. We show the existence of a subset of the param-

eter space defined by an orthogonality condition, which is invariant under

gradient flow. All trajectories within this invariant set converge to a unique

minimizer (w.r.t. the end-to-end function), which corresponds to the min-

norm solution. As a result, initializing the network within this invariant set

always yields the min-norm solution upon convergence.
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3. In Section 2.1.4, we show that if we initialize each network weight as a sample

from the distributionN (0, 1/h2α) (where h is the hidden layer width and 1/4 <

α ≤ 1/2), then it holds with high probability that 1) the weight imbalance has

sufficient spectral gap for exponential convergence; and 2) the aforementioned

orthogonality condition is approximately satisfied throughout training. This

results in aO(h2α− 1
2 ) upper bound on the operator norm distance between the

trained network and the min-norm solution.

Our analysis requires neither infinite width nor specific initializations such as

spectral, balanced or random. Instead, we reveal general properties of initialization

that facilitate the convergence and implicit bias, and show how prior work is related

to these general properties in various ways. Moreover, our results provide new

insights on how the network width and the level of overparametrization affect both

the convergence and implicit bias. Hence, this analysis formally connects initializa-

tion, exponential convergence of the optimization task, overparametrization and

implicit bias.

2.1.1 Problem setup

We study the dynamics of gradient flow for two-layer linear networks trained with

the squared l2-loss. More specifically, given N training samples {x(i), y(i)}Ni=1, where

x(i) ∈ Rn and y(i) ∈ Rm, we aim to solve the following linear regression problem

min
Θ∈Rn×m

L =
1

2

N∑︂
i=1

∥y(i) −Θ⊤x(i)∥22 =
1

2
∥Y −XΘ∥2F , (2.4)

where Y = [y(1), · · · , y(N)]⊤ ∈ RN×m and X = [x(1), · · · , x(N)]⊤ ∈ RN×n. We do

so by training a two-layer linear network y = f(x;V, U) = V U⊤x, where V =

Rm×h, U ∈ Rn×h and h is the hidden layer width, with gradient flow, i.e., gradient

descent with “infinitesimal step size”. In particular, we consider an overparametrized
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model [27, 25] such that h ≥ min{n,m}, i.e. there is no rank constraint on the linear

model Θ obtained from the linear network UV ⊤.

After rewriting the loss with respect to the parameters V and U ,

L(V, U) = 1

2

N∑︂
i=1

∥y(i) − V U⊤x(i)∥22 =
1

2
∥Y −XUV ⊤∥2F , (2.5)

the gradient flow dynamics are given by

V̇ (t) = −∂L
∂V

(V (t), U(t)) = (Y −XU(t)V ⊤(t))⊤XU(t) , (2.6a)

U̇(t) = −∂L
∂U

(V (t), U(t)) = X⊤(Y −XU(t)V ⊤(t))V (t) . (2.6b)

Remark 1. For the remainder of this chapter, we drop the explicit dependence of scalar/ma-

trix functions of time on the time parameter t whenever such dependence is clear from the

context. For example, we will mostly write U and U̇ instead of U(t) and U̇(t), respectively.

Our analysis requires reparametrization of the gradient flow dynamics. We let

r = rank(X) and first consider the case n > r. The singular value decomposition

(SVD) of X can be written as

X = W
[︂
Σ

1/2
x 0

]︂ [︃Φ⊤
1

Φ⊤
2

]︃
= WΣ1/2

x Φ⊤
1 , (2.7)

where W ∈ RN×r, Φ1 ∈ Rn×r, and Φ2 ∈ Rn×(n−r). Since Φ1Φ
⊤
1 + Φ2Φ

⊤
2 = In, we have

U = InU = (Φ1Φ
⊤
1 + Φ2Φ

⊤
2 )U = Φ1Φ

⊤
1 U + Φ2Φ

⊤
2 U , (2.8)

and hence we can parametrize U as (U1, U2) using the bijection U = Φ1U1 + Φ2U2,

with inverse (U1, U2) = (Φ⊤
1 U,Φ

⊤
2 U).

With this parametrization, we can rewrite the gradient flow in (2.6a)-(2.6b)

explicitly as

V̇ =
(︁
Y −XUV ⊤)︁⊤XU = E⊤Σ1/2

x Φ⊤
1 U , (2.9a)

U̇ = X⊤ (︁Y −XUV ⊤)︁V = Φ1Σ
1/2
x EV , (2.9b)
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where

E = E(V, U1) := W⊤(Y −XUV ⊤) = W⊤Y − Σ1/2
x U1V

⊤ , (2.10)

is defined to be the error. Then from (2.9a)-(2.9b) we obtain the dynamics in the

parameter space (V, U1, U2) as

V̇ = E⊤Σ1/2
x U1 , U̇1 = Σ1/2

x EV , U̇2 = 0 . (2.11)

Moreover, since W has orthonormal columns, we notice that

L(V, U) = 1

2
∥Y −XUV ⊤∥2F

=
1

2
∥(I −WW⊤)(Y −XUV ⊤) +WW⊤(Y −XUV ⊤)∥2F

=
1

2
∥(I −WW⊤)Y +WE∥2F =

1

2
∥WE∥2F +

1

2
∥(I −WW⊤)Y ∥2F

=
1

2
∥E∥2F +

1

2
∥(I −WW⊤)Y ∥2F . (2.12)

Here the last term in (2.12) does not depend on V, U , and it is the residual

L∗ =
1

2
∥(I −WW⊤)Y ∥2F , (2.13)

which is also the optimal value of (2.4). Therefore, for convergence, it suffices to

analyze the convergence of the error E under the dynamics of (V, U1) in (2.11). The

remaining parameters U2 are constant, i.e., U2(t) ≡ U2(0) throughout the training

trajectory, and the role of U2 will be discussed when we study the implicit bias in

Section 2.1.3.

Remark 2. In the case of n = r, the SVD of X is WΣ
1/2
x Φ⊤

1 with Φ1 ∈ Rn×n, i.e., Φ2 is an

empty matrix, and so is U2. The convergence analysis follows exactly the same as those to be

presented in Section 2.1.2. However, all global minimizer (U∗, V ∗) of L(U, V ) corresponds

to the unique minimizer Φ∗ of (2.4), and thus there is no need to study the implicit bias for

this case.
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2.1.2 Convergence analysis

In this section, we study the convergence of gradient flow for the reparametrized

dynamics

V̇ = E⊤Σ1/2
x U1 , U̇1 = Σ1/2

x EV , (2.14)

which is exactly the gradient flow dynamics of

1

2
∥E∥2F =

1

2
∥W⊤Y − Σ1/2

x U1V
⊤∥2F . (2.15)

In particular, when Σ
1/2
x = Ir, (2.15) reduces to 1

2
∥W⊤Y − U1V

⊤∥2F , which is the loss

function for a matrix factorization problem. To motivate our main result, we start

with the simplest scalar version of this factorization problem.

Warm-up: scalar dynamics

Consider the gradient flow dynamics of the loss function Ls(u, v) =
1
2
|y−uv|2 given

by

u̇ = (y − uv)v, v̇ = (y − uv)u . (2.16)

One important feature of (2.16), is that the imbalance d := u2 − v2 is invariant under

the gradient flow, namely

ḋ = 2uu̇− 2vv̇ = 2(uv − vu)(y − uv) ≡ 0 =⇒ d(t) ≡ d(0). (2.17)

One sufficient condition for exponential convergence of the loss Ls is a lower

bound on the instantaneous rate − L̇s

Ls
. To see this, notice that if there exist a constant

c > 0 such that for all t ≥ 0 we have − L̇s

Ls
≥ c > 0, then∫︂ t

0

L̇s(τ)

Ls(τ)
dτ ≤

∫︂ t

0

−cdτ =⇒ log
Ls(t)

Ls(0)
≤ −ct =⇒ Ls(t) ≤ exp(−ct)Ls(0) .

(2.18)

Thus, a lower bound c > 0 on the instantaneous rate implies the loss converges to

0 exponentially at a rate at least c. Now under the scalar dynamics (2.16), one can
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verify that

−L̇s

Ls

= 2(u2 + v2) = 2
√︁

(u2 + v2)2 = 2
√︁

(u2 − v2)2 + 4u2v2 . (2.19)

Therefore, we have

−L̇s

Ls

= 2(u2 + v2) = 2
√︁
d2 + 4(uv)2 , (2.20)

i.e. the instantaneous rate can be explicitly written as a function of the imbalance d

and the product uv. More importantly, with proper initialization, we can control

the value of d and uv throughout the entire trajectory to obtain the desired lower

bound on (2.20). Specifically,

• Since the imbalance d is time-invariant, we have d(t) = d(0). When |d(0)| > 0,

there is sufficient imbalance at initialization, and

−L̇s

Ls

= 2
√︁
d2 + 4(uv)2 ≥ 2|d| = 2|d(0)| . (2.21)

• The product is tied to the loss function Ls = |y − uv|2/2, which is non-

increasing since L̇s ≤ 0. This implies that |y − uv| ≤ |y − u(0)v(0)|, from

which it follows that y − |y − u(0)v(0)| ≤ uv ≤ y + |y − u(0)v(0)|, i.e. uv stays

within a closed ball with radius |y − u(0)v(0)| centered at y. Therefore, when

|y| − |y − u(0)v(0)| > 0, there is sufficient margin at initialization such that this

ball is strictly bounded away from zero, and then so is |uv|:

|uv| ≥ |y| − |y − uv| ≥ |y| − |y − u(0)v(0)| , (2.22)

we have

−L̇s

Ls

= 2
√︁
d2 + 4(uv)2 ≥ 4|uv| = 4(|y| − |y − u(0)v(0)|) . (2.23)

Combining the two observations above, we have

−L̇s

Ls

= 2
√︁
d2 + 4(uv)2 ≥ 2

√︁
d2(0) + 4(max{|y| − |y − u(0)v(0)|, 0})2 . (2.24)
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That is, Ls converges to zero exponentially when either |d(0)| > 0 (sufficient imbal-

ance) or |y| − |y − u(0)v(0)| > 0 (sufficient margin). One can carry out the analysis

starting from any time epoch t0 > 0: The convergence rate after time t0 is lower

bounded by

−L̇s

Ls

= 2
√︁
d2 + 4(uv)2 ≥ 2

√︁
d2(0) + 4(max{|y| − |y − u(t0)v(t0)|, 0})2 . (2.25)

In particular, for an large time epoch t0 (late-stage of the training), u(t0)v(t0) ≃ y

thus − L̇s

Ls
≃ 2

√︁
d2 + 4y2, and the margin term max{|y| − |y − u(t0)v(t0)|, 0} ≃ y

well captures the effect of target y in determining the asymptotic rate. Moreover,

similar computations can be done for the case where input data is considered, which

corresponds to having a loss function L̃s(u, v) =
1
2
|y − xuv|2. The instantaneous

rate is given by − d
dt

L̃s

L̃s
= 2x

√︁
d2 + 4(uv)2, showing the effect of input data on the

convergence rate.

Our main results in the next section show that such observation can be com-

pletely generalized to the matrix factorization problem, allowing us to derive expo-

nential convergence guarantees for gradient flow on two-layer linear networks.

Main results

Now we turn to study the gradient dynamics in (2.11). Similar to the scalar dynam-

ics, we define the imbalance of the two-layer linear network under input data X

as

Imbalance : D = U⊤
1 U1 − V ⊤V ∈ Rh×h . (2.26)

This imbalance matrix, as expected, is time-invariant under gradient flow dynamics

(2.11). To see this, we compute the time derivative of U⊤
1 U1 and V ⊤V as

d

dt
U⊤
1 U1 = U̇

⊤
1 U1 + U⊤

1 U̇1 = V ⊤E⊤Σ1/2
x U1 + U⊤

1 Σ
1/2
x EV, (2.27)

d

dt
V ⊤V = V ⊤V̇ + V̇

⊤
V = V ⊤E⊤Σ1/2

x U1 + U⊤
1 Σ

1/2
x EV . (2.28)
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Therefore, d
dt
U⊤
1 U1 ≡ d

dt
V ⊤V , which implies that Ḋ = d

dt
[U⊤

1 U1 − V ⊤V ] ≡ 0. This

time-invariant imbalance matrix has also been discussed in [26, 61].

Our first result is the lower bound on the instantaneous rate:

Proposition 2.1 (Bound on the instantaneous rate). Consider the continuous-time

dynamics in (2.11). Let L̃ := L − L∗ and D = U⊤
1 U1 − V ⊤V , then we have

− d

dt

L̃
L̃
≥ λr(Σx)

(︂
−∆+ +

√︁
(∆+ +∆)2 + 4σ2

m(U1V ⊤)

−∆− +
√︁
(∆− +∆)2 + 4σ2

r(U1V ⊤)
)︂
, (2.29)

where we define the following imbalance quantities:

(Positive imbalance spectrum spread) ∆+ = max{λ1(D), 0} −max{λr(D), 0} ,
(2.30)

(Negative imbalance spectrum spread) ∆− = max{λ1(−D), 0} −max{λm(−D), 0} ,
(2.31)

(Imbalance spectral gap) ∆ = max{λr(D), 0}+max{λm(−D), 0} .
(2.32)

Imbalance quantities: First of all, the imbalance quantities ∆+,∆− and ∆ are time-

invariant because they are fully determined by the time-invariant imbalance matrix

D. Therefore, we will always use ∆+,∆− and ∆ to represent the values ∆+(0),∆−(0)

and ∆(0) at initialization. Then, these imbalance quantities can be easily visualized

when h ≥ r +m. In this case, the imbalance matrix D = U⊤
1 U1 − V ⊤V has at least

r non-negative eigenvalues and m non-positive eigenvalues, and the imbalance

quantities are precisely the difference between some specific eigenvalues of the

imbalance matrix, as shown in Figure 2-1. We will discuss how imbalance quantities

affect convergence in the following remarks and in our numerical section.

Effect of imbalance and product: Our rate bound (2.29) reveals how weight im-

balance D and weight product U1V
⊤ explicitly affect the convergence rate (the

following assumes λr(Σx) = 1):
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Figure 2-1. Illustration of imbalance quantities when h ≥ r +m. The imbalance
matrix D has rank at most r +m, we plot all its potentially non-zero eigenvalues.

1. (Effect of imbalance): Since

−∆+ +
√︁

(∆+ +∆)2 + 4σ2
m(U1V ⊤) ≥ −∆+ +

√︁
(∆+ +∆)2 = ∆ , (2.33)

it follows from (2.29) that − d
dt

L̃
L̃ ≥ 2∆. Therefore, 2∆ is always a lower bound

on the convergence rate. This means that, for initialization with an imbal-

ance matrix bounded away from zero (characterized by ∆ > 0), exponential

convergence is guaranteed.

2. (Effect of product): The role of the product in (2.29) is more nuanced: Assume

n = m for simplicity so that σn(U1V
⊤) = σm(U1V

⊤) = σmin(U1V
⊤). We see that

the non-negative quantities ∆+ and ∆− control how much the product affects

the convergence. More precisely, the lower bound in (2.29) is a decreasing

function of both ∆+ and ∆−. When ∆+ = ∆− = 0, the lower bound reduces

to
√︂

∆2 + 4σ2
min(U1V ⊤), showing a joint contribution from both imbalance

and product, which resembles (2.20) for the scalar case. However, as ∆+ and

∆− increase, the bound decreases towards ∆, which means that the effect of

imbalance always exists, but the effect of the product diminishes for large ∆+

and ∆−.
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The experiments in Section 2.1.5 show that, under random initialization, net-

works with large width fall into the first regime (∆+ and ∆− are small), while

networks with small width fall into the second regime (∆+ and ∆− are large), and

the loss trajectories behave differently in these two regimes.

Towards exponential convergence: As we illustrated with the scalar dynamics, the

lower bound in Proposition 2.1, which depends explicitly on imbalance and product,

is useful because one can control the two factors for the entire trajectory with proper

initialization. This allows us to derive exponential convergence guarantees for the

gradient flow, as stated in our main theorem next.

Theorem 2.1 (Exponential Convergence Guarantee). Consider the continuous dynam-

ics in (2.11). Let Ỹ := W⊤Y and define

c(t)=−∆+ +

√︂
(∆+ +∆)2 + 4(max{σm(Ỹ )− ∥Ỹ − Σ

1/2
x U1(t)V (t)⊤∥F , 0})2/λ1(Σx)

−∆− +

√︂
(∆− +∆)2 + 4(max{σr(Ỹ )− ∥Ỹ − Σ

1/2
x U1(t)V (t)⊤∥F , 0})2/λ1(Σx) ,

(2.34)

where ∆+,∆−, and ∆ are defined as in (2.30), (2.31) and (2.32), respectively. c(t) ≥

0,∀t ≥ 0, and we have

(L(t)− L∗) ≤ exp (−λr(Σx)c(0)t) (L(0)− L∗), ∀t ≥ 0 . (2.35)

That is, if c(0) > 0, then the loss converges to its global minimum exponentially with a rate

at least λr(Σx)c(0).

Theorem 2.1 unifies several previously discovered sufficient conditions for

exponential convergence of the gradient flow on two-layer linear networks:

Corollary 2.1 (Sufficient imbalance [30]). If at initialization, ∆ > 0, then c(0) > 0 and

the loss converges to zero exponentially with a rate at least λr(Σx)c(0) ≥ 2λr(Σx)∆.

Proof. In (2.34), if we lower bound the term (max{σm(Ỹ ) − ∥Ỹ − Σ
1/2
x U1V

⊤∥F , 0})

by 0, we have c ≥ 2∆ > 0.
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Previous work [30] identifies the role of the spectral gap ∆ and proves the con-

vergence result in Corollary 2.1. Our result generalizes it by showing the combined

contribution of both the spectral gap and the margin to the convergence of the loss.

Corollary 2.2 (Sufficient margin). If at initialization, σmin(Ỹ )−∥Ỹ −Σ
1/2
x U1V

⊤∥F > 0,

then c(0) > 0 and the loss converges to zero exponentially with a rate at least λr(Σx)c(0).

Previous work [26] showed that when the initialization has a positive margin,

i.e., σmin(Ỹ )−∥Ỹ −Σ
1/2
x U1V

⊤∥F > 0 and the imbalance has sufficiently small Frobe-

nius norm (approximately balanced), then gradient flow converges exponentially.

Corollary 2.2 improves upon it by showing that a positive margin is sufficient,

regardless of the imbalance.

Corollary 2.3 (Characterizing local convergence rate). If at some t0 > 0, we have

c(t0) > 0, then

(L(t)− L∗) ≤ exp (−λr(Σx)c(t0)t) (L(t0)− L∗), ∀t ≥ t0 . (2.36)

That is, after t0, the loss converges to zero exponentially with a rate of at least λr(Σx)c(t0).

Notably, given any trajectory that eventually converges to a global minimum for L, for

sufficiently large t0, we have

c(t0) ≃ −∆+ +

√︂
(∆+ +∆)2 + 4σ2

m(Ỹ )/λ1(Σx)

−∆− +

√︂
(∆− +∆)2 + 4σ2

r(Ỹ )/λ1(Σx) . (2.37)

For any trajectory that eventually converges, (2.37) is due to the fact that

∥Ỹ − Σ1/2
x U1(t0)V

⊤(t0)∥F ≃ 0 , (2.38)

at sufficiently large t0. This corollary suggests that the asymptotic convergence rate

around the equilibrium depends on the imbalanceD and on the training data (X, Y ).

Previous work [25] has shown that when Σx = Ir, h = r = m and D = λIh for
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some λ ̸= 0, the asymptotic convergence rate of gradient flow is lower bounded by

2
√︂
λ2 + 4σ2

min(Ỹ ), and this can be exactly recovered from (2.37) with ∆+ = ∆− = 0

and ∆ = λ. Our result has no additional assumption on the dimension nor on the

imbalance structure.

The major limitation of previous analyses of convergence is the requirement that

the initialization be exactly balanced [27] or homogeneously imbalanced [25]. These

strong assumptions are made so that the dynamics of the product U1V
⊤ (the end-to-

end function) can be solved for explicitly, from which the convergence results are

derived. As illustrated in Figure 2-2, such analyses consider specific configurations

in the parameter space and only allow for small variations [26]. Our analysis breaks

such limitation by revealing fundamental relations between the convergence and

the weight configuration (imbalance and product) , which provides convergence

guarantees for a wide range of initializations.

Figure 2-2. Illustration of non-spectral initialization studied for convergence of linear
networks. Note: the conditions are presented for the gradient flow on 1

2
∥Y −UV ⊤∥2,

which is the special case of ours when X = In.
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2.1.3 Implicit bias

In the previous section, we studied two-layer linear networks trained with gradient

flow and showed that the squared loss converges exponentially to the optimal

loss with a rate that is determined by the imbalance and margin of the initializa-

tion. However, convergence of the loss does not necessarily imply convergence

of the network weights. Moreover, since the end-to-end model UV ⊤ does not

uniquely determine the network weights U and V , what we actually care about is

the convergence of UV ⊤.

When n = r = rank(X) there is a unique end-to-end model Θ∗ = X⊤(XX⊤)−1Y ,

thus we expect UV ⊤ to converge to that model. However, when n > r = rank(X),

the regression problem (2.4) has infinitely many solutions Θ∗ that achieve the

optimal loss. Therefore, it is important to understand which solution UV ⊤ gradient

flow converges to. Among all possible solutions, one that is of particular interest

in high-dimensional linear regression is the minimum norm solution (min-norm

solution)

Θ̂ = arg min
Θ∈Rn×m

{∥Θ∥F : ∥Y −XΘ∥2F = min
Θ
∥Y −XΘ∥2F} = X⊤(XX⊤)†Y, (2.39)

because it has near-optimal generalization error for suitable data models [62, 63].

We are interested in conditions under which our trained network corresponds to an

end-to-end model UV ⊤ that is equal or close to the min-norm solution Θ̂.

In standard linear regression, where Θ follows the gradient flow on L(Θ) =

1
2
∥Y −XΘ∥2F , it is well-known that one should decompose Θ into two parts: compo-

nents Φ1Φ
⊤
1 Θ within the subspace spanned by the data X and components Φ2Φ

⊤
2 Θ

orthogonal to the data subspace. Then Φ⊤
1 Θ converges to the min-norm solution

Θ̂, and Φ2Φ
⊤
2 Θ ≡ Φ2Φ

⊤
2 Θ(0) remains constant. Therefore, by decomposing the

end-to-end model Θ into different components according to the data subspace

and analyzing their dynamics separately, one derives the condition on Θ(0) for
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obtaining min-norm solution: Φ2Φ
⊤
2 Θ(0) = 0.

Although we are analyzing the dynamics of U, V instead of Θ, our approach

is similar: We decompose the end-to-end model UV ⊤ into Φ1U1V
⊤ and Φ2U2V

⊤

according to the SVD of data X , then showing that Φ1U1V
⊤ converges to Θ̂. The

end-to-end model UV ⊤ would converge to Θ̂ if Φ2U2V
⊤ ≡ 0, for which we derive a

sufficient condition that requires some orthogonality among U1(0), U2(0), V (0) at

initialization.

Decomposition of the end-to-end model: Notice that the end-to-end matrix UV ⊤ ∈

Rn×m associated with the two-layer linear network can be decomposed according

to the SVD of the data matrix X , (2.7), as

UV ⊤ = (Φ1Φ
⊤
1 + Φ2Φ

⊤
2 )UV

⊤ = Φ1U1V
⊤ + Φ2U2V

⊤ , (2.40)

where Φ1, Φ2, U1, and U2 are defined in Section 2.1.2. The j-th column of UV ⊤,

[UV ⊤]:,j , is the linear predictor for the j-th output yj , and is decomposed into two

components within complementary subspaces span(Φ1) and span(Φ2). Moreover

[U1V
⊤]:,j is the coordinate of [UV ⊤]:,j w.r.t. the orthonormal basis consisting of

the columns of Φ1, and similarly [U2V
⊤]:,j is the coordinate w.r.t. basis Φ2. Under

gradient flow (2.11), the trajectory U(t)V (t)⊤, t ≥ 0, is fully determined by the

trajectories U1(t)V
⊤(t) and U2(t)V

⊤(t), t ≥ 0.

Convergence of training parameters: First of all, we need to show that our end-

to-end model UV ⊤ converges to some Û V̂
⊤

before even analyzing how close Û V̂
⊤

is to Θ̂, which amounts to showing both U1V
⊤ and U2V

⊤ converges. We have

shown in Section 2.1.2 that the error E = W⊤Y − Σ
1/2
x U1V

⊤ converges to zero

(and the loss converges exponentially to L∗) if c(0) > 0. This already shows

limt→∞ U1V
⊤ = Σ

−1/2
x W⊤Y . To show that U2V

⊤ converges to some U2(0)V̂
T

(U2

part is time-invariant), we need to show that limt→∞ V = V̂ for some V̂ . Yet, it is

not immediate that from convergence of U1V
⊤ we know whether (U1, V ) would
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converge to some stationary point (Û , V̂ ). Generally speaking, parameters in gradi-

ent flow dynamics either converge to some stationary point or diverge to infinity

(their norms grow to infinity). Then to show (U1, V ) converges to some stationary

point, one only needs to ensure the latter does not happen, as formally stated in the

following proposition.

Proposition 2.2. Consider the continuous dynamics in (2.11). If c(0), defined in The-

orem 2.1, is positive, then there exist some V̂ and Û1 such that limt→∞ V (t) = V̂ and

limt→∞ U1(t) = Û1. Moreover, E(V̂ , Û1) = W⊤Y − Σ
1/2
x Û1V̂

⊤
= 0.

In addition, notice that U̇2(t) = 0 in dynamics (2.11), hence U2(t) = U2(0), ∀t > 0.

Therefore, when c(0) > 0, we know U1 and V converge to Û1 and V̂ , respectively,

and U2 = U2(0) remains constant. Having established the convergence of training

parameters, together with the decomposition in (2.40), we know that the end-to-end

model U(t)V ⊤(t) converges to

Û V̂
⊤
= Φ1Û1V̂

⊤
+ Φ2U2(0)V̂

⊤
= Θ̂ + Φ2U2(0)V̂

⊤
, (2.41)

where the second equality is from

Φ1Û1V̂
⊤
= Φ1Σ

−1/2
x W⊤Y = X⊤(XX⊤)†Y = Θ̂ . (2.42)

Constrained training via orthogonal initialization: Based on our analysis above,

initializing U2(0) such that U2(0)V̂
⊤
= 0 in the limit, guarantees convergence to the

min-norm solution via (2.41). However, this is not easily achievable, as one needs

to know a priori V̂ . Instead, we can show that by choosing a proper initialization,

one can constrain the trajectory of the matrix U(t)V ⊤(t) to lie identically in the

set Φ⊤
2 U(t)V

⊤(t) ≡ 0 for all t ≥ 0, thus the min-norm solution is obtained upon

convergence, as suggested by the following proposition.

Proposition 2.3. Let V (t), U1(t) and U2(t), t > 0, be the solution of (2.11) starting from

some V (0), U1(0) and U2(0). We assume V (t) and U1(t), t > 0, converge to some V̂ and
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Û1 with E(V̂ , Û1) = 0. If the initialization satisfies

V (0)U⊤
2 (0) = 0, U1(0)U

⊤
2 (0) = 0 , (2.43)

then we have

Û V̂
⊤
= Θ̂ . (2.44)

Proof. From (2.11) we have

d

dt

[︃
V U⊤

2

U1U
⊤
2

]︃
=

[︄
0 E⊤Σ

1/2
x

Σ
1/2
x E 0

]︄ [︃
V U⊤

2

U1U
⊤
2

]︃
. (2.45)

Since V U⊤
2 = 0, U1U

⊤
2 = 0 is an equilibrium point of (2.45), we have V (t)U⊤

2 (0) =

0, ∀t ≥ 0 under the initialization in (2.43), hence V̂ U⊤
2 (0) = 0. From (2.41) we

conclude that Û V̂
⊤
= Θ̂.

In the standard linear regression problem we described at the beginning of this

subsection, where Θ follows the gradient flow on L(Θ) = 1
2
∥Y −XΘ∥2F , it is well-

known that if the columns of Θ(0) are initialized in span(Φ1), namely Θ⊤(0)Φ2 =

0, then Θ(t) converges to Θ̂. Proposition 2.3 is the extension of such results to

the overparameterized setting. It is worth-noting that initializing the columns of

U(0)V ⊤(0) in span(Φ1), namely V (0)U⊤
2 (0) = 0 is no longer sufficient for obtaining

Θ̂ as the trained network, and additional condition U1(0)U
⊤
2 (0) = 0 is required.

Moreover, we note that while the zero initialization Θ(0) = 0 works for the standard

linear regression case, the initialization V (0) = 0 and U(0) = 0 is bad in the

overparametrized case because it is an equilibrium point of the gradient flow, even

though it satisfies the orthogonal condition V (0)U⊤
2 (0) = 0 and U1(0)U

⊤
2 (0) = 0.

Here the orthogonality constraints (2.43) defines an invariant subset of the

parameter space {V, U : V U⊤Φ2 = 0,Φ⊤
1 UU

⊤Φ2 = 0} under the gradient flow.

Proposition 2.3 shows that given an initialization within the invariant set, the

trained network (after convergence) is exactly the min-norm solution, the only
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minimizer in the invariant set. While in practice we can initialize the weights

exactly as in (2.43), or one can directly initialize U2(0) = 0, such choices are data-

dependent and require the SVD of the data matrix X . Nonetheless, we show in the

next section that under (properly scaled) random initialization and sufficiently large

hidden layer width h, the orthogonal condition in (2.43) is approximately satisfied,

which is one of the key ingredients for studying the implicit bias of wide two-layer

networks.

2.1.4 Wide two-layer linear networks

In the previous two sections, we provided deterministic conditions for convergence

and minimum-norm implicit bias of two-layer linear networks. Specifically, we

showed that (1) the loss converges exponentially to its optimal value if the ini-

tialization, (U(0), V (0)), satisfies c(0) > 0 (Theorem 2.1), and that the end-to-end

model UV ⊤ converges to the min-norm solution Θ̂ if the initialization satisfies

the orthogonality condition (Proposition 2.3). Finding initialization that satisfies

these conditions seems non-trivial. For example, one could achieve exponential

convergence by having either sufficient imbalance ∆ > 0 or sufficient margin

σm(Ỹ ) − ∥Ỹ − Σ
1/2
x U1V

⊤∥F > 0, but both the spectral gap and the margin are de-

fined based on the SVD of X . Similarly, the orthogonality conditions in (2.43) are

stated for U1(0), U2(0), V (0), which also depend on the SVD ofX . On the other hand,

practical training algorithms often succeed with random initialization, which is

data-agnostic. Thus, we are still left with the mystery of why random initialization

leads to exponential convergence of the loss and minimum-norm implicit bias on

the end-to-end model.

In this section, we show that if the hidden layer network width h is sufficiently
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large and the network weights are initialized as i.i.d. zero-mean Gaussians, i.e.,

[U(0)]ij ∼ N
(︃
0,

1

h2α

)︃
, 1 ≤ i ≤ n, 1 ≤ j ≤ h , (2.46)

[V (0)]ij ∼ N
(︃
0,

1

h2α

)︃
, 1 ≤ i ≤ m, 1 ≤ j ≤ h , (2.47)

then both conditions on initialization for convergence (in Theorem 2.1) and for

implicit bias towards the min-norm solution (in Proposition 2.3) are satisfied with

high probability.

Concentration results at initialization: Recall form the last section, one can obtain

exactly min-norm solution via proper initialization of the two-layer network. In

particular, it requires 1) convergence of the error E to zero; and 2) the orthogonality

conditions V (0)U⊤
2 (0) = 0 and U1(0)U

⊤
2 (0) = 0. Under random initialization and

sufficiently large hidden layer width h, these two conditions are approximately

satisfied. More specifically, the following lemma can be shown using basic random

matrix theory.

Lemma 2.1. Let 1
4
< α ≤ 1

2
. Given data matrix X whose SVD defines ∆, U1(0), U2(0),

∀δ ∈ (0, 1), ∀h > h0 = 16
(︁√

m+ n+ 1
2
log 2

δ

)︁2, with probability at least 1 − δ over

random initialization with [U(0)]ij, [V (0)]ij ∼ N (0, h−2α), the following conditions hold:

1. (Sufficient spectral gap ∆, defined in (2.32))

∆ > h1−2α , (2.48)

2. (Approximate orthogonality)⃦⃦⃦⃦[︃
V (0)U⊤

2 (0)
U1(0)U

⊤
2 (0)

]︃⃦⃦⃦⃦
F

≤ 2
√
m+ r

√
m+ n+ 1

2
log 2

δ

h2α−
1
2

, (2.49)

⃦⃦
U1(0)V

⊤(0)
⃦⃦
F
≤ 2
√
m

√
m+ n+ 1

2
log 2

δ

h2α−
1
2

. (2.50)

Maintain approximate orthogonality: From (2.49), we know that the parameters

are initialized close to the invariant set of our interest, with the proximity measured
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by P = ∥V U⊤
2 ∥F + ∥U1U

⊤
2 ∥F . As long as the gradient flow dynamics keeps P

small throughout the training trajectory, one can show that the end-to-end model

converges to some Û V̂
⊤

that is close to the min-norm solution Θ̂, i.e.,

∥Û V̂ ⊤ − Θ̂∥2 = ∥U2V̂
⊤∥2 ≤ sup

t≥0
P (t) . (2.51)

However, As the training proceeds, the parameters may drift too much away from

the invariant set so that P grows large, leaving us no guarantee of proximity to the

min-norm solution upon convergence. Fortunately, The dynamics (2.45) quantify at

time t how fast P can maximally increase given that its current value is non-zero:

Ṗ ≤ λ1(Σ
1/2
x )∥E∥P , (2.52)

It is clear that the smaller norm the current error E has, the lower the rate at which

this measure could increase, and the Grönwall bound gives

P (t) ≤ exp

(︃
λ1(Σ

1/2
x )

∫︂ t

0

∥E(τ)∥dτ
)︃
P (0) . (2.53)

This suggests that as long as
∫︁ t

0
∥E(τ)∥dτ is upper bounded by some constant,

∥V U⊤
2 ∥F + ∥U1U

⊤
2 ∥F will not increase too much from its initial value, thus the ap-

proximate orthogonality is maintained throughout the trajectory. A constant upper

bound on
∫︁ t

0
∥E(τ)∥dτ is derived from the constant rate of exponential convergence

of the error (given by (2.48)), and an initial error E(0) that is bounded by some

constant (derived from (2.50)).

Implicit bias of wide two-layer linear network: Knowing that, with high prob-

ability, the network weights converge to a global optimum of the loss (given by

(2.48)) and they remain close to the invariant set of our interest(given by (2.53)), we

expect the trained network to represent an end-to-end model that is close to the

min-norm solution, as formalized in the following Theorem regarding the implicit

bias of wide linear networks (We let X† be the pseudoinverse of X).
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Theorem 2.2. Let 1
4
< α ≤ 1

2
. Let V (t), U(t), t > 0 be the trajectory of the continuous

dynamics (2.11) starting from some V (0), U(0). Then, ∀δ ∈ (0, 1), and ∀h > h
1/(4α−1)
0

with h0 = max
{︂
16, 4

λ2
1(Σx)

λ2
r(Σx)

}︂
m
(︁√

m+ n+ 1
2
log 2

δ

)︁2, with probability 1− δ over random

initializations with [U(0)]ij, [V (0)]ij ∼ N (0, h−2α), we have the end-to-end model UV ⊤ to

converge to some Û V̂
⊤

with

∥Û V̂ ⊤ − Θ̂∥2 ≤ 2C1/h1−2α√
m+ r

√
m+ n+ 1

2
log 2

δ

h2α−
1
2

. (2.54)

Here C = exp
(︂
1 + λ1(Σx)

λr(Σx)
∥X†Y ∥F

)︂
, which depends on the data X, Y .

Previous works [20] show non-asymptotic results on bounding the difference of

predictions between the trained network and the kernel predictor of the NTK over

a finite number of testing point (non-global result) using more general network

structure and activation functions. As we work with a simpler model, we are

able to study it without going through non-asymptotic NTK analysis, which is

considerably more complicated. We believe this theorem is a clear illustration of

how overparametrization, in particular, in the hidden layer width, together with

random initialization affects the convergence and implicit bias.

Notably, although our initialization is related to the NTK analysis [18, 20] and the

kernel regime [19], we significantly simplify the non-asymptotic analysis with the

exact charaterization of an invariant set tied to the regularized solution. Specifically,

our analysis does not rely on approximating the training flow to one in the infinite

width limit, or one from the linearized network at initialization. Instead, we have

the exact characterization of the properties required to reach min-norm solution

and show how such properties are approximately preserved during training.

2.1.5 Numerical experiments

In this section, we first illustrate how the imbalance quantities ∆+,∆−,∆ are ob-

tained from the spectrum of the imbalance matrix, as well as the role of width
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in shaping the imbalance quantities under random initialization. Then we run

gradient descent (with small step size) on linear regression problem to validate our

lower bounds for the convergence rate. We also conduct numerical verification of

our Theorem 2.2 on implicit bias of wide linear networks.

Imbalance Quantities

For simplicity, we consider the matrix factorization problem L = 1
2
∥Y − 1√

mh
UV ⊤∥2F ,

U ∈ Rr×h, V ∈ Rm×h under random initialization [23]. The scaling factor 1√
mh

ensures that at initialization, the product UV ⊤ keeps the same scale as we vary

the hidden layer width h. Our convergence results Proposition 2.1 and Theorem

2.1 apply to this case and the imbalance quantities ∆+,∆−,∆ are defined from the

imbalance matrix D = U⊤U − V ⊤V at initialization.

When h ≥ n+m, then with probability 1 under random initialization, the im-

balance matrix D has rank(D) = n + m and it has n positive eigenvalues and

m negative ones. Our experiment sets n = 20,m = 5 and consider the case

of h = 30 (small width) and h = 1000 (large width). For initialization, we use

[U(0)]ij, [V (0)]ij ∼ N (0, 1).

Since the end-to-end model in L is scaled by 1√
mh

, the instantaneous rate is scaled

by 1
mh

, hence we consider the scaled imbalance quantities. We plot in Figure 2-3 all

the non-zero eigenvalues of imbalance D and the imbalance quantities, scaled by

1
mh

. As illustrated by the plot, the imbalance quantities can be understood as the

gaps between certain eigenvalues. It is clear that, compare to small width h = 50,

large width h = 1000 leads to a larger spectral gap and smaller spectrum spread.

Moreover, as the width varies, the loss curve behaves differently:

(Small width): When h = 30, spectrum spreads ∆−,∆+ are larger compared to the

spectral gap ∆. As we discussed in Section 2.1.2 after Proposition 2.1, the lower

bound on the rate is approximately 2∆, which is not a good global bound for the
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Figure 2-3. (Left): Scaled eigenvalues of the imbalance matrix D and the corre-
sponding scaled imbalance quantities 1

mh
∆+,

1
mh

∆−,
1

mh
∆ under random initializa-

tion, the scaling factor is omitted in the plot annotation for simplicity.

(Right): Gradient descent on L = 1
2

⃦⃦⃦
Y − 1√

mh
UV ⊤

⃦⃦⃦2
F

for different network width.
The dashed lines represent the bound provided by our results (Proposition 2.1 and
Theorem 2.1).

convergence rate (see the top right plot in Figure 2-3). However, interestingly, the

instantaneous rate (see the bottom right plot in Figure 2-3) starts off at large value

and decreases as training proceeds. At the late stage of the training, our lower

bound for the instantaneous rate is reasonably good.

(Large width): When h = 1000, the spectral gap ∆ is larger compared to spectrum

spreads ∆−,∆+. In this case 2∆ is a good global bound on the convergence rate

(see the top right plot in Figure 2-3). As for the instantaneous rate, there is no

significant variation in the rate and our bound Proposition 2.1 is reasonably good

during training.

Convergence via imbalanced initialization

We train the linear network using gradient descent with a fixed small step size

on the averaged loss L(U, V ) = ∥Y −XUV ∥2F/n. We use the initialization U(0) =

σUU0, V (0) = σV V0 for some randomly sampled U0, V0 with i.i.d. standard normal
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entries, and scalars σU , σV . Under this setting, we can change the relative scales of

σU , σV but keep their product fixed, so that we obtain initializations with different

spectral gap ∆ while keeping the initial end-to-end matrix U(0)V ⊤(0) fixed. To

eliminate the effect of ill-conditioned Σx on the convergence, we have Σx = Ir in

this experiment.

For comparison, we also consider the balanced initialization that corresponds to

the same end-to-end matrix. For a given Θ(0) = U(0)V ⊤(0), we choose an arbitrary

Q ∈ Rh×m with Q⊤Q = Im, then a balanced initialization is given by

Ubalanced(0) = Θ(0)
[︁
Θ⊤(0)Φ1Φ

⊤
1 Θ(0)

]︁−1/4
Q⊤,

Vbalanced(0) =
[︁
Θ⊤(0)Φ1Φ

⊤
1 Θ(0)

]︁1/4
Q .

Such initialization ensures the imbalanced is the zero matrix while keeping the

end-to-end matrix as Θ(0). We note here the choice of Q does not affect the error

trajectory E(t), hence the loss L(t).

Figure 2-4. Convergence of gradient descent on linear networks with different initial
imbalance matrices. We plot the loss function L on the left (regular scale) and the
middle(log scale) figure. The instantaneous rate −L̇/L is shown on the right figure.
The dashed line on the middle plot shows the bound on loss function by Theorem
2.1. Lastly, the dashed line on the right plot shows the lower bound by Proposition
2.1.

From Figure 2-4, we see that given fixed step size, the convergence rate is im-

proved as we increase the level of the imbalance at initialization and the balanced
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initialization is the slowest among all cases. Notably, our lower bound on instan-

taneous rate is reasonably good for all cases except for case 2 at early training

stage.

Moreover, the randomly initialized end-to-end function σUσV U0V
⊤
0 has zero

margin, as there is no bound provided for the balance case (Middle plot in Figure 2-

4). Therefore, the margin-based convergence analysis [27] relies on carefully chosen

initial end-to-end function and fail on the case of random initialization. On the

contrary, random initialization almost surely yields a non-zero imbalance matrix,

and our bound accounts for the effect of imbalance in convergence, resulting a

much tighter bound on the rate.

Note that the goal of this experiment is to verify the improved convergence

rate achieved by gradient flow initialized with a high spectral gap. To this end, we

approximate the continuous dynamics using gradient descent with a fixed small

step size. However, this does not imply that one can always accelerate gradient

descent by increasing the spectral gap at initialization. This is because the step

size for gradient descent is sometimes chosen to be close to the largest possible for

convergence, but it is unknown how the spectral gap affects such choice. Analyzing

the effect of large step size on convergence is subject of current research.

Implicit bias of wide linear networks

For the case of wide linear networks with random initialization considered in

Section 2.1.4, when we set α = 1/2, Theorem 2.2 suggests that ∥U(∞)V ⊤(∞) −

Θ̂∥F ∼ O(h−1/2) We verify it by training linear networks with varying hidden layer

width. We randomly initialize the network as in Section 2.1.4 and train it using

gradient descent with a fixed small step size. The algorithm stops when the loss

is below some fixed tolerance. We only vary the width h (from 500 to 10000) for

different experiments and repeat 5 runs for each h.
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Figure 2-5. Implicit bias of wide two-layer linear network under random initialization.
The line is plotting the average over 5 runs for each h, and the error bar shows the
standard deviation. The gradient descent stops at iteration tf .

Figure 2-5 clearly shows that the distance between the trained network and the

min-norm solution, ∥U(tf )V ⊤(tf )− Θ̂∥F , decreases as the width h increases and the

middle plot verifies the asymptotic rate O(h−1/2). Besides, we also plot the initial

distance in span(Φ2) between the network and the min-norm solution as

∥U2(0)V
⊤(0)∥F = ∥Φ2Φ

⊤
2 (U(0)V

⊤(0)− Θ̂)∥F .

A small ∥U2V
⊤∥F is the exact property we want for a solution to be close to the min-

norm solution. We see that the large width together with random initialization guar-

antees ∥U2(0)V (0)∥F ∼ O(h−1/2), and more importantly, since the initialization does

not exactly fall into the invariant set defined by (2.43), ∥U2V ∥F will deviate from

its initial value. However, the deviation is well-controlled by the fast convergence

of the error, i.e. as shown in the plot, ∥U2(tf )V
⊤(tf )∥F ≃ ∥U(tf )V ⊤(tf ) − Θ̂∥F ∼

O(h−1/2).

Proofs of Proposition 2.1 and Theorem 2.1

The proof of our main results (Proposition 2.1 and Theorem 2.1) follows exactly the

same procedure used for the scalar dynamics in our warm-up example, which is

described in Section 2.1.2. First of all, we lower bound the instantaneous rate with
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singular values of U1 and V as stated in the next lemma.

Lemma 2.2. Consider the continuous dynamics in (2.11). Let L̃ := L − L∗. Then,

− d

dt

L̃
L̃
≥ 2λr(Σx)(λr(U1U

⊤
1 ) + λm(V V

⊤)) . (2.55)

Next, we derive lower bounds on λr(U1U
⊤
1 ) and of λm(V V ⊤) by exploiting the

fact that they satisfy a set of quadratic inequalities. The lower bounds are stated in

the next lemma.

Lemma 2.3. Suppose h ≥ min{r,m}. If A ∈ Rr×h and B ∈ Rh×m satisfy A⊤A−BB⊤ =

D for some D ∈ Rh×h, then

λm(B
⊤B) ≥ −λ̄+ λ+

√︁
(λ̄+ λ)2 + 4σ2

m(AB)

2
, (2.56)

where λ̄ = max{λ1(D), 0} and λ = max{λm(−D), 0}.

We defer the proofs of these lemmas to the end of this section. Combining

Lemmas 2.2 and 2.3, we have the desired bound on the instantaneous rate:

Proof of Proposition 2.1. From Lemma 2.3, let A = U1, B = V ⊤, we have A⊤A −

BB⊤ = D, thus

λm(V V
⊤) ≥

−λ̄+ + λ− +
√︂

(λ̄+ + λ−)
2 + 4σ2

m(U1V ⊤)

2
, (2.57)

λ̄+ = max{λ1(D), 0}, λ− = max{λm(−D), 0} ,

then let A = V,B = U⊤
1 , we have A⊤A− BB⊤ = −D, thus

λr(U1U
⊤
1 ) ≥

−λ̄− + λ+ +
√︂

(λ̄− + λ+)
2 + 4σ2

r(V U
⊤
1 )

2
.

λ̄− = max{λ1(−D), 0}, λ+ = max{λr(D), 0}
(2.58)

Now rewrite the lowerbounds (2.57)(2.58) in terms of

∆+ := λ̄+ − λ+, ∆− := λ̄− − λ−, ∆ := λ+ + λ− , (2.59)
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we have

λm(V V
⊤) ≥ −∆̄+ + λ− − λ+ +

√︁
(∆+ +∆)2 + 4σ2

m(U1V ⊤)

2
,

λr(U1U
⊤
1 ) ≥

−∆̄− + λ+ − λ− +
√︁

(∆− +∆)2 + 4σ2
r(V U

⊤
1 )

2
.

(2.60)

Then (2.29) follows immediately from Lemma 2.2.

Similar to the warm-up example in Section 2.1.2, one can control the imbalance

quantities and the singular value σ2
m(U1V

⊤) in the bound from Proposition 2.1

throughout the entire training trajectory: ∆+, ∆− and ∆ are time-invariant because

the imbalance D is so, and the singular value σ2
m(U1V

⊤) can be controlled via a

positive margin σmin(Ỹ )− ∥Ỹ − Σ
1/2
x U1V

⊤∥F . This proves Theorem 2.1.

Proof of Theorem 2.1. When m = r, we have σm(U1V
⊤) = σr(U1V

⊤) = σmin(U1V
⊤).

When m > r, we only need to lower bound σm(U1V
⊤) since σr(U1V

⊤) = 0, and vice

versa when r > m.

Therefore, without loss of generality, we assume m ≤ r and derive the lower

bound on σm(U1V
⊤). By ∥A∥F ≥ ∥A∥2 and Weyl’s inequality [64, 7.3.P16], one has

∥Ỹ −Σ1/2
x U1V

⊤∥F + σm(Σ
1/2
x U1V

⊤) ≥ ∥Ỹ −Σ1/2
x U1V

⊤∥2 + σm(Σ
1/2
x U1V

⊤) ≥ σm(Ỹ ) ,

(2.61)

from which one obtain the lower bound

σm(U1V
⊤) ≥ σm(Σ

1/2
x U1V

⊤)/λ
1/2
1 (Σx) ≥ (σm(Ỹ )− ∥Ỹ − Σ1/2

x U1V
⊤∥F )/λ1/21 (Σx) .

(2.62)

The lower bound is trivial when σm(Ỹ ) − ∥Ỹ − Σ
1/2
x U1V

⊤∥F < 0, thus we could

write

σm(U1V
⊤) ≥ max{σm(Ỹ )− ∥Ỹ − Σ1/2

x U1V
⊤∥F , 0}/λ1/21 (Σx) . (2.63)

Now because ∥Ỹ − Σ
1/2
x U1V

⊤∥F =
√︁
2L̃ is non-decreasing under gradient flow, we

40



have ∀t ≥ 0,

σ2
m(U1(t)V

⊤(t)) ≥ (max{σm(Ỹ )− ∥Ỹ − Σ1/2
x U1(t)V

⊤(t)∥F , 0})2/λ1(Σx)

≥ (max{σm(Ỹ )− ∥Ỹ − Σ1/2
x U1(0)V

⊤(0)∥F , 0})2/λ1(Σx) .
(2.64)

Finally using (2.64) to further lower bound (2.29) in Proposition 2.1, we have our

desired lower bound on the instantaneous rate

− d

dt

L̃
L̃
≥ λr(Σx)c(0) . (2.65)

The result L̃(t) ≤ exp(−λr(Σx)c(0)t)L̃(0) follows from Grönwall’s inequality [65].

Proofs of Auxiliary Lemmas

Proof of Lemma 2.2. Under (2.11), the time derivative of error is given by

Ė = −Σ1/2
x U1U

⊤
1 Σ

1/2
x E − ΣxEV V

⊤ .

Consider the time derivative of ∥E∥2F ,

d

dt
∥E∥2F =

d

dt
tr(E⊤E) = −2tr

(︁
E⊤Σ1/2

x U1U
⊤
1 Σ

1/2
x E + E⊤ΣxEV V

⊤)︁ . (2.66)

Use the trace inequality [66, Lemma 1] to get the lower bound the trace of two

matrices respectively as

tr
(︁
E⊤Σ1/2

x U1U
⊤
1 Σ

1/2
x E

)︁
= tr

(︁
Σ1/2

x EE⊤Σ1/2
x U1U

⊤
1

)︁
≥ λr(U1U

⊤
1 )tr

(︁
Σ1/2

x EE⊤Σ1/2
x

)︁
= λr(U1U

⊤
1 )tr

(︁
ΣxEE

⊤)︁
≥ λr(U1U

⊤
1 )λr(Σx)tr(EE

⊤)

= λr(U1U
⊤
1 )λr(Σx)∥E∥2F , (2.67)
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and

tr
(︁
E⊤ΣxEV V

⊤)︁ ≥ λm(V V
⊤)tr

(︁
E⊤ΣxE

)︁
= λm(V V

⊤)tr
(︁
ΣxEE

⊤)︁
≥ λm(V V

⊤)λr(Σx)tr(EE
⊤)

= λm(V V
⊤)λr(Σx)∥E∥2F . (2.68)

Combine (2.66) with (2.67)(2.68), we have

d

dt
∥E∥2F ≤ −2λr(Σx)

(︁
λr(U1U

⊤
1 ) + λm(V V

⊤)
)︁
∥E∥2F (2.69)

Notice that 1
2
∥E∥2F is exactly L̃ = L − L∗. It follows from (2.69) that

− d

dt

L̃
L̃
≥ 2λr(Σx)

(︁
λr(U1U

⊤
1 ) + λm(V V

⊤)
)︁
.

Proof of Lemma 2.3. From the imbalance equation A⊤A− BB⊤ = D, we have

(B⊤B)2 = B⊤(BB⊤)B = B⊤(A⊤A−D)B = B⊤A⊤AB − B⊤DB .

Let zm ∈ Sm−1 be the eigenvector of (B⊤B)2 (or B⊤B) associated with eigenvalue

λ2m(B
⊤B) (or λm(B⊤B)). The one have

λ2m(B
⊤B) = z⊤m(B

⊤B)2zm = z⊤mB
⊤A⊤ABzm − z⊤mB⊤DBzm

≥ λm(B
⊤A⊤AB)− z⊤mB⊤DBzm ,

= σ2
m(AB)− z⊤mB⊤DBzm (2.70)

and the rest of proof is to find a lower bound for −z⊤mB⊤DBzm.

First of all, we know that D has at most m negative eigenvalues: If D has

more than m negative eigenvalues, then the subspace spanned by the all negative

eigenvectors has dimension at least m+ 1, which must have non-trivial intersection
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with ker(B⊤), then there exists a nonzero vector z ∈ ker(B⊤) such that z⊤Dz < 0,

which would imply z⊤A⊤Az = z⊤Dz < 0, a contradiction.

When D has less than m negative eigenvalues, then λ = 0 and we simply lower

bound −z⊤mB⊤DBzm as

λ2m(B
⊤B) ≥ σ2

m(AB)− z⊤mB⊤DBzm

≥ σ2
m(AB)− λ̄z⊤mB⊤Bzm

= σ2
m(AB)− λ̄λm(B⊤B) .

This quadratic inequality w.r.t. λm(B⊤B) has nonnegative solutions

λm(B
⊤B) ≥

−λ̄+

√︂
λ̄
2
+ 4σ2

m(AB)

2
,

which is exactly (2.56) when λ = 0.

When D has exactly m negative eigenvalues, the easy case is one with h = m,

i.e. all eigenvalues of D are negative. We simply lower bound −z⊤mB⊤DBzm as

λ2m(B
⊤B) ≥ σ2

m(AB)− z⊤mB⊤DBzm

≥ σ2
m(AB)− (−λz⊤mB⊤Bzm)

= σ2
m(AB) + λλm(B

⊤B) .

This quadratic inequality w.r.t. λm(B⊤B) has nonnegative solutions

λm(B
⊤B) ≥

λ+
√︂
λ2 + 4σ2

m(AB)

2
,

which is exactly (2.56) when λ̄ = 0.

Now we only left to prove the bound for the case h > m. We first consider any

orthogonal matrix Q ∈ O(h), we have Q⊤A⊤AQ−Q⊤BB⊤Q = Q⊤DQ, AQQ⊤B =

AB, and λm(B
⊤Q⊤QB) = λm(B

⊤B). Then it suffices to study the orthogonally

transformed matrices Ã = AQ, B̃ = Q⊤B, with Ã
⊤
Ã − B̃B̃⊤

= Q⊤DQ, ÃB̃ = AB
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and find a lower bound on λm(B̃
⊤
B̃). We can pick Q that diagonalize D, thus with

out loss of generality, we assume D is diagonal and the eigenvalues are in decreasing order.

Since h > m, we write the diagonalD as a block matrixD =

[︃
Λ+ 0
0 −Λ−

]︃
,where

Λ+ = diag{λ1(D), · · · , λh−m(D)}

Λ− = diag{−λh−m+1(D), · · · ,−λh(D)} = diag{λm(−D), · · · , λ1(−D)} .

Here, notice that Λ+ is positive semi-definite and Λ− positive definite with

Λ+ ⪯ λ̄Ih−m, Λ− ⪰ λIm . (2.71)

Now we write A,B as block matrices as well

A =
[︁
A+ A−

]︁
, B =

[︃
B+

B−

]︃
,

A+ ∈ Rr×(h−m), A− ∈ Rr×m, B+ ∈ R(h−m)×m, B− ∈ Rm×m ,

from which we can rewrite equations A⊤A− BB⊤ = D as[︃
A⊤

+

A⊤
−

]︃ [︁
A+ A−

]︁
−
[︃
B+

B−

]︃ [︁
B⊤

+ B⊤
−
]︁
=

[︃
Λ+ 0
0 −Λ−

]︃
.

By inspection, the equality for each block gives us

A⊤
+A+ = B+B

⊤
+ + Λ+ , (2.72)

A⊤
−A− = B−B

⊤
− − Λ− , (2.73)

A⊤
+A− = B+B

⊤
− . (2.74)

With these equalities, we know the following matrix is p.s.d., for any λ̂ > λ̄ ≥ 0,[︃
B+B

⊤
+ + λ̂Ih−m B+B

⊤
−

B−B
⊤
+ B−B

⊤
− − λIm

]︃
(2.71)
⪰

[︃
B+B

⊤
+ + Λ+ B+B

⊤
−

B−B
⊤
+ B−B

⊤
− − Λ−

]︃
=

[︃
A⊤

+

A⊤
−

]︃ [︁
A+ A−

]︁
⪰ 0 . (2.75)

Since B+B
⊤
+ + λ̂Ih−m ≻ 0, positive semi-definiteness (2.75) is equivalent to

B−B
⊤
− − λIm − B−B

⊤
+(B+B

⊤
+ + λ̂Ih−m)

−1B+B
⊤
− ⪰ 0 . (2.76)
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Now we use Woodbury’s Identity [64, 0.7.4], which says for matrices M,N,P with

appropriate dimensions, we have

(M + P⊤NP )−1 =M−1 −M−1P⊤(PM−1P⊤ +N−1)−1PM−1 ,

if all inverses exist. Let M = Im, N = λ̂
−1
Ih−m, P = B+, we have

(Im + λ̂
−1
B⊤

+B+)
−1 = Im − B⊤

+(λ̂Ih−m +B+B
⊤
+)

−1B+ ,

which leads to

B−(Im + λ̂
−1
B⊤

+B+)
−1B⊤

− = B−B
⊤
− − B−B

⊤
+(λ̂Ih−m +B+B

⊤
+)

−1B+B
⊤
− . (2.77)

Using (2.77), we can rewrite (2.76) as

λIm − B−(Im + λ̂
−1
B⊤

+B+)
−1B⊤

− ⪯ 0 . (2.78)

Consider the following matrix congruence[︄
λIm B−

B⊤
− Im + λ̂

−1
B⊤

+B+

]︄

= S1

[︄
λIm − B−(Im + λ̂

−1
B⊤

+B+)
−1B⊤

− 0

0 Im + λ̂
−1
B⊤

+B+

]︄
S⊤
1 (2.79)

= S2

[︄
λIm 0

0 Im + λ̂
−1
B⊤

+B+ − λ−1B⊤
−B−

]︄
S⊤
2 (2.80)

where

S1 =

[︄
Im B−(Im + λ̂

−1
B⊤

+B+)
−1

0 Im

]︄
, S2 =

[︃
Im 0

λ−1B⊤
− Im

]︃
,

and S1, S2 are non-singular. By Sylvester’s Intertia Theorem [64, Theorem 4.5.8],

the block diagonal matrix shown in (2.79) has exactly the same number of positive

eigenvalues as the one shown in (2.80), and the number of positive eigenvalues is

m, according to (2.78). Then for the block diagonal matrix in (2.80), we must have

Im + λ̂
−1
B⊤

+B+ − λ−1B⊤
−B− ⪯ 0 ,
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hence

0 ⪯ −Im − λ̂
−1
B⊤

+B+ + λ−1B⊤
−B−

0 ⪯ −λ̂λIm − λB⊤
+B+ + λ̂B⊤

−B−

λ̂B⊤
+B+ − λB⊤

−B− ⪯ −λ̂λIm − λB⊤
+B+ + λ̂B⊤

−B−

+ λ̂B⊤
+B+ − λB⊤

−B−

λ̂B⊤
+B+ − λB⊤

−B− ⪯ −λ̂λIm + (λ̂− λ)(B⊤
+B+ +B⊤

−B−)

λ̂B⊤
+B+ − λB⊤

−B− ⪯ −λ̂λIm + (λ̂− λ)B⊤B , (2.81)

where the last equivalence uses the fact B⊤B = B⊤
+B+ +B⊤

−B−. This suggests that

B⊤DB = B⊤
+Λ+B+ − B⊤

−Λ−B− ⪯ λ̂B⊤
+B+ − λB⊤

−B−

(2.81)
⪯ −λ̂λIm + (λ̂− λ)B⊤B (2.82)

Lastly, from (2.70) we have

λ2m(B
⊤B) = z⊤m(B

⊤B)2zm ≥ σ2
m(AB)− z⊤mB⊤DBzm

(2.82)
≥ σ2

m(AB) + λ̂λ− (λ̂− λ)z⊤mB⊤Bzm

= σ2
m(AB) + λ̂λ− (λ̂− λ)λm(B⊤B) .

This quadratic inequality w.r.t. λm(B⊤B) has nonnegative solutions

λm(B
⊤B) ≥

λ− λ̂+

√︂
(λ− λ̂)2 + 4λ̂λ+ 4σ2

m(AB)

2
=
−λ̂+ λ+

√︂
(λ̂+ λ)2 + 4σ2

m(AB)

2
.

Since we can choose any λ̂ > λ̄ ≥ 0, we have

λm(B
⊤B) ≥ lim

λ̂→λ̄

−λ̂+ λ+

√︂
(λ̂+ λ)2 + 4σ2

m(AB)

2
=
−λ̄+ λ+

√︁
(λ̄+ λ)2 + 4σ2

m(AB)

2
.

This is exactly (2.56).

(Note that when λ̄ > 0, one can pick λ̂ = λ̄ and obtain the desired bound directly.

Taking the limit λ̂→ λ̄ is necessary only when λ̄ = 0).
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Proofs of Proposition 2.2, Lemma 2.1, and Theorem 2.2

Proof of Proposition 2.2. Since c(0) > 0, for the gradient system (2.11), the states

(parameters) (U1, V ) converge either to an equilibrium point which minimizes the

potential 1
2
∥E∥2F = L − L∗ or have its l2-norm grow to infinity [67].

Consider the following dynamics

d

dt

[︃
V
U1

]︃
=

[︄
0 E⊤Σ

1/2
x

Σ
1/2
x E 0

]︄
⏞ ⏟⏟ ⏞

:=AZ

[︃
V
U1

]︃
⏞ ⏟⏟ ⏞
:=Z

, (2.83)

which can be viewed as a time-variant linear system. Notice that by [64, Theorem

7.3.3], we have ∥AZ∥2 = ∥Σ1/2
x E∥2.

From (2.83), we have

d

dt
∥Z∥2F = 2tr

(︁
Z⊤AZZ

)︁
= 2tr

(︁
ZZ⊤AZ

)︁
≤ 2∥AZ∥2tr

(︁
ZZ⊤)︁

= 2∥Σ1/2
x E∥2∥Z∥2F

≤ 2λ
1/2
1 (Σx)∥E∥2∥Z∥2F

≤ 2λ
1/2
1 (Σx)∥E∥F∥Z∥2F .

By Grönwall’s inequality [65], we have

∥Z(t)∥2F ≤ exp

(︃∫︂ t

0

2λ
1/2
1 (Σx)∥E(τ)∥Fdτ

)︃
∥Z(0)∥2F .

Finally, by Theorem 2.1, we have ∥E(t)∥F ≤ exp (−λr(Σx)c(0)t/2) ∥E(0)∥F , ∀t > 0,
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since ∥E∥F =
√︁

2(L − L∗), which leads to

exp

(︃∫︂ t

0

2λ
1/2
1 (Σx)∥E(τ)∥Fdτ

)︃
≤ exp

(︃
2λ

1/2
1 (Σx)∥E(0)∥F

(︃∫︂ t

0

exp (−λr(Σx)c(0)τ/2) dτ

)︃)︃
≤ exp

(︃
2λ

1/2
1 (Σx)∥E(0)∥F

(︃∫︂ ∞

0

exp (−λr(Σx)c(0)τ/2) dτ

)︃)︃
= exp

(︄
4λ

1/2
1 (Σx)

c(0)λr(Σx)
∥E(0)∥F

)︄
.

Therefore we have

∥Z(t)∥2F ≤ exp

(︄
4λ

1/2
1 (Σx)

c(0)λr(Σx)
∥E(0)∥F

)︄
∥Z(0)∥2F ,

which implies that the trajectory V (t), U1(t), t > 0 is bounded, i.e. its l2-norm can

not grow to infinity, then it has to converge to some equilibrium point (V̂ , Û1) such

that its potential is zero, i.e., E(V̂ , Û1) = 0.

Now we turn to prove Lemma 2.1 and Theorem 2.2. We need a basic result in

random matrix theory

Lemma 2.4. Given m,n ∈ N with m ≤ n. Let A be an n×m random matrix with i.i.d.

standard normal entriesAij ∼ N (0, 1). For δ > 0, with probability at least 1−2 exp(−δ2),

we have
√
n− (

√
m+ δ) ≤ σm(A) ≤ σ1(A) ≤

√
n+ (

√
m+ δ) .

The proof can be found in [68, Theorem 2.13]. We also need the following

inequality.

Lemma 2.5. Let A ∈ Rk×n, B ∈ Rn×m. Suppose n ≤ m, then

σi(A)σn(B) ≤ σi(AB) ,

for 1 ≤ i ≤ min{k, n}.
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Proof. We start with the case where k = n. When σn(B
⊤) = 0, the result is trivial.

When σn(B⊤) ̸= 0, we have BB† = I , where B† is the Moore–Penrose inverse of B.

By Weyl’s inequality [64, 7.3.P16], it follows that

σi(A) ≤ σi(AB)σ1(B
†), ∀1 ≤ i ≤ n .

Since σ1(B†) = σ−1
n (B), we get the desired inequality.

When k > n, we have ∀1 ≤ i ≤ n,

σi(A) = σi
(︁[︁
A 0k×(k−n)

]︁)︁
≤ σi (AB) σ1(

[︁
B† 0m×(k−n)

]︁
) = σi(AB)σ1(B

†) ,

which still leads to the desired result.

When k < n, consider replacing A with
[︃

A
0(n−k)×n

]︃
, we have ∀1 ≤ i ≤ k,

σi(A)σn(B) = σi

(︃[︃
A

0(n−k)×n

]︃)︃
σn(B) ≤ σi

(︃[︃
AB

0(n−k)×m

]︃)︃
= σi(AB) .

Now we are ready to prove Lemma 2.1.

Proof of Lemma 2.1. For readability we simply write U(0), U1(0), U2(0), V (0), D(0) as

U,U1, U2, V,D.

Consider the matrix
[︁
V ⊤ U⊤]︁which is h× (m+n). Apply Lemma 2.4 to matrix

A = hα
[︁
V ⊤ U⊤]︁, with probability at least 1− δ, we have

σm+n(h
α
[︁
V ⊤ U⊤]︁) ≥ √h− (︁√m+ n+ δ

)︁
,

which leads to

σm+n(
[︁
V ⊤ U⊤]︁) ≥ h

1
2
−α −

√
m+ n+ 1

2
log 2

δ

hα
. (2.84)

Regarding the first inequality, we write the imbalance as

U⊤
1 U1 − V ⊤V =

[︁
V ⊤ U⊤

1

]︁ [︃−V
U1

]︃
=
[︁
V ⊤ U⊤]︁ [︃−Im 0

0 Φ1Φ
⊤
1

]︃ [︃
V
U

]︃
.
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For h >
(︁√

m+ n+ 1
2
log 2

δ

)︁2, assume event (2.84) happens, then

σm+n

(︁[︁
V ⊤ U⊤]︁)︁ ≥ h

1
2
−α −

√
m+ n+ 1

2
log 2

δ

hα
> 0 ,

hence we have

σr+m(D) = σr+m(U
⊤
1 U1 − V ⊤V )

= σr+m

(︃[︁
V ⊤ U⊤]︁ [︃−Im 0

0 Φ1Φ
⊤
1

]︃ [︃
V
U

]︃)︃
(Lemma 2.5) ≥ σr+m

(︃[︁
V ⊤ U⊤]︁ [︃−Im 0

0 Φ1Φ
⊤
1

]︃)︃
σm+n

(︃[︃
V
U

]︃)︃
= σr+m

(︃[︃
−Im 0
0 Φ1Φ

⊤
1

]︃ [︃
V
U

]︃)︃
σm+n

(︃[︃
V
U

]︃)︃
(Lemma 2.5) ≥ σr+m

(︃[︃
−Im 0
0 Φ1Φ

⊤
1

]︃)︃
σ2
m+n

(︃[︃
V
U

]︃)︃
= σr+m

(︃[︃
−Im 0
0 Φ1Φ

⊤
1

]︃)︃
σ2
m+n

(︁[︁
V ⊤ U⊤]︁)︁

= σ2
m+n

(︁[︁
V ⊤ U⊤]︁)︁ ,

where the last equality is due to the fact that
[︃
−Im 0
0 Φ1Φ

⊤
1

]︃
has exactly r + m

non-zero singular value and all of them are 1.

We further assume h > 16
(︁√

m+ n+ 1
2
log 2

δ

)︁2, conditioned on event (2.84), with

probability 1 we have

σr+m(D) ≥ σ2
m+n

(︁[︁
V ⊤ U⊤]︁)︁

≥
(︃
h

1
2
−α −

√
m+ n+ 1

2
log 2

δ

hα

)︃2

= h1−2α − 2

√
m+ n+ 1

2
log 2

δ

h2α−
1
2

+

(︃√
m+ n+ 1

2
log 2

δ

hα

)︃2

> h1−2α − 2

√
m+ n+ 1

2
log 2

δ

h2α−
1
2

≥ 1

2
h1−2α . (2.85)

Lastly, due to the minimax property of symmetric matrix [64, Theorem 4.2.6],
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we have

λr+1(D) = min
dim(S)=h−r

max
0̸=x∈S

x⊤Dx

x⊤x

(dim(ker(U1)) ≥ h− r) ≤ min
S⊆ker(U1)

dim(S)=h−r

max
0̸=x∈S

x⊤Dx

x⊤x

= min
S⊂ker(U1)
dim(S)=r

max
0̸=x∈S

x⊤(−V ⊤V )x

x⊤x
≤ 0 ,

and

λr(D) = max
dim(S)=r

min
0̸=x∈S

x⊤Dx

x⊤x

(dim(ker(V (0))) ≥ h−m ≥ r) ≥ max
S⊆ker(V (0))
dim(S)=r

min
0̸=x∈S

x⊤Dx

x⊤x

= max
S⊂ker(V (0))
dim(S)=r

min
0̸=x∈S

x⊤U⊤
1 U1x

x⊤x
≥ 0 .

Similarly, we have

λm+1(−D) ≤ min
S⊆ker(V )

dim(S)=h−m

max
0̸=x∈S

x⊤(−U⊤
1 U1)x

x⊤x
≤ 0 ,

and

λm(−D) ≥ max
S⊆ker(U1(0))
dim(S)=m

min
0̸=x∈S

x⊤V ⊤V x

x⊤x
≥ 0 .

These inequalities together imply

min{λr(D), λm(−D)} = σr+m(D) .

Here we also use the fact that D is symmetric. Now by (2.85), we immediately

obtain that conditioned on event (2.84), with probability 1, the following holds,

λ+ + λ− = λr(D) + λm(−D) ≥ 2σr+m(D) ≥ h1−2α ,

which is exactly a lower bound on the spectral gap ∆.
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Regarding the second and third inequality, using the fact that

∥A∥F ≤
√︁

min{n,m}∥A∥2, ∀A ∈ Rn×m ,

we have

1√
m

⃦⃦
U1V

⊤⃦⃦
F
≤
⃦⃦
U1V

⊤⃦⃦
2
=

⃦⃦⃦⃦[︁
0 Φ⊤

1

]︁ [︃V
U

]︃ [︁
V ⊤ U⊤]︁ [︃Im

0

]︃⃦⃦⃦⃦
2

=

⃦⃦⃦⃦[︁
0 Φ⊤

1

]︁(︃[︃V
U

]︃ [︁
V ⊤ U⊤]︁− ηIm+n

)︃[︃
Im
0

]︃⃦⃦⃦⃦
2

≤
⃦⃦⃦⃦[︃
V
U

]︃ [︁
V ⊤ U⊤]︁− ηIm+n

⃦⃦⃦⃦
2

, for any η ∈ R ,

where the second equality is due to the fact that
[︁
0 Φ⊤

1

]︁ [︃Im
0

]︃
= 0. And

1√
m+ r

⃦⃦⃦⃦[︃
V U⊤

2

U1U
⊤
2

]︃⃦⃦⃦⃦
F

≤
⃦⃦⃦⃦[︃
V U⊤

2

U1U
⊤
2

]︃⃦⃦⃦⃦
2

=

⃦⃦⃦⃦[︃
Im 0
0 Φ⊤

1

]︃ [︃
V
U

]︃ [︁
V ⊤ U⊤]︁ [︃ 0

Φ2

]︃⃦⃦⃦⃦
2

=

⃦⃦⃦⃦[︃
Im 0
0 Φ⊤

1

]︃(︃[︃
V
U

]︃ [︁
V ⊤ U⊤]︁− ηIm+n

)︃[︃
0
Φ2

]︃⃦⃦⃦⃦
2

≤
⃦⃦⃦⃦[︃
V
U

]︃ [︁
V ⊤ U⊤]︁− ηIm+n

⃦⃦⃦⃦
2

, for any η ∈ R ,

where the second equality is due to the fact that
[︃
Im 0
0 Φ⊤

1

]︃ [︃
0
Φ2

]︃
= 0. Notice that

⃦⃦⃦⃦[︃
V
U

]︃ [︁
V ⊤ U⊤]︁− ηIm+n

⃦⃦⃦⃦
2

= max
i

⃓⃓
σ2
i (
[︁
V ⊤ U⊤]︁)− η⃓⃓ .

Again we let h >
(︁√

m+ n+ 1
2
log 2

δ

)︁2. When event (2.84) happens, σ2
i (
[︁
V ⊤ U⊤]︁)

are within the interval
[︃(︂
h

1
2
−α −

√
m+n+ 1

2
log 2

δ

hα

)︂2
,
(︂
h

1
2
−α −

√
m+n+ 1

2
log 2

δ

hα

)︂2]︃
. Since the

choice of η is arbitrary, we pick

η = h1−2α +

(︃√
m+ n+ 1

2
log 2

δ

hα

)︃2

, (2.86)
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which is the mid-point of this interval, then we have

max
i

⃓⃓
σ2
i (
[︁
V ⊤ U⊤]︁)− η⃓⃓

≤ max

{︄⃓⃓⃓⃓
⃓
(︃
h

1
2
−α −

√
m+ n+ 1

2
log 2

δ

hα

)︃2

− η
⃓⃓⃓⃓
⃓ ,
⃓⃓⃓⃓
⃓
(︃
h

1
2
−α +

√
m+ n+ 1

2
log 2

δ

hα

)︃2

− η
⃓⃓⃓⃓
⃓
}︄

(η is the mid-point)

≤
⃓⃓⃓⃓
⃓
(︃
h

1
2
−α −

√
m+ n+ 1

2
log 2

δ

hα

)︃2

− h1−2α −
(︃√

m+ n+ 1
2
log 2

δ

hα

)︃2
⃓⃓⃓⃓
⃓

= 2

√
m+ n+ 1

2
log 2

δ

h2α−
1
2

.

Therefore, when h >
(︁√

m+ n+ 1
2
log 2

δ

)︁2, conditioned on event (2.84), with proba-

bility 1, we have

⃦⃦
U1V

⊤⃦⃦
F
≤ √m

⃦⃦⃦⃦[︃
V
U

]︃ [︁
V ⊤ U⊤]︁− ηIm+n

⃦⃦⃦⃦
2

≤ 2
√
m

√
m+ n+ 1

2
log 2

δ

h2α−
1
2

,⃦⃦⃦⃦[︃
V U⊤

2

U1U
⊤
2

]︃⃦⃦⃦⃦
F

≤
√
m+ r

⃦⃦⃦⃦[︃
V
U

]︃ [︁
V ⊤ U⊤]︁− ηIm+n

⃦⃦⃦⃦
2

≤ 2
√
m+ r

√
m+ n+ 1

2
log 2

δ

h2α−
1
2

,

(2.87)

where we choose η as in (2.86).

When h > h0 = 16
(︁√

m+ n+ 1
2
log 2

δ

)︁2 and conditioned on event (2.84), events

(2.85) and (2.87) happen with probability 1, hence the probability that both (2.85)

and (2.87) happen is at least the probability of event (2.84), which is at least 1−δ.

With Lemma 2.1, we can prove Theorem 2.2.

Proof of Theorem 2.2. From Corollary 2.1 and Proposition 2.2, the stationary point

Û , V̂ satisfy

Û1V̂
⊤
= Φ⊤

1 Θ̂, U2(∞) = U2(0) ,

provided that spectral gap λ+ + λ− is non-zero, which is guaranteed with high
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probability by Lemma 2.1. Hence we have

∥Û V̂ ⊤ − Θ̂∥2 = ∥Φ1Û1V̂
⊤
+ Φ2U2(∞)V̂

⊤ − Θ̂∥2

= ∥Φ1Φ
⊤
1 Θ̂ + Φ2U2(∞)V̂

⊤ − Θ̂∥2

= ∥Φ2U2(∞)V̂
⊤∥F

= ∥Φ2U2(0)V̂
⊤∥F = ∥U2(0)V̂

⊤∥2 ≤ ∥U2(0)V̂
⊤∥F .

Consider the following dynamics

d

dt

[︃
V U⊤

2

U1U
⊤
2

]︃
=

[︄
0 E⊤Σ

1/2
x

Σ
1/2
x E 0

]︄
⏞ ⏟⏟ ⏞

:=AZ

[︃
V U⊤

2

U1U
⊤
2

]︃
⏞ ⏟⏟ ⏞

:=Z

, (2.88)

which can be viewed as a time-variant linear system, and in particular, by [64,

Theorem 7.3.3], we have ∥AZ∥2 = ∥Σ1/2
x E∥2. Notice that here the Z is different from

the one in the proof for Proposition 2.2.

From (2.88), we have

d

dt
∥Z∥2F = 2tr

(︁
Z⊤AZZ

)︁
= 2tr

(︁
ZZ⊤AZ

)︁
≤ 2∥AZ∥2tr

(︁
ZZ⊤)︁

= 2∥Σ1/2
x E∥2∥Z∥2F

≤ 2λ
1/2
1 (Σx)∥E∥2∥Z∥2F ≤ 2λ

1/2
1 (Σx)∥E∥F∥Z∥2F .

By Grönwall’s inequality [65], we have ∀t ≥ 0,

∥Z(t)∥2F ≤ exp

(︃∫︂ t

0

2λ
1/2
1 (Σx)∥E(τ)∥Fdτ

)︃
∥Z(0)∥2F

⇒ ∥Z(t)∥F ≤ exp

(︃∫︂ t

0

λ
1/2
1 (Σx)∥E(τ)∥Fdτ

)︃
∥Z(0)∥F (2.89)

Using Lemma 2.1, for h > h′0 := 16
(︁√

m+ n+ 1
2
log 2

δ

)︁2, with probability at least
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1− δ we have all the following.

∆ > h1−2α . (2.90)⃦⃦
U1(0)V

⊤(0)
⃦⃦
≤ 2
√
m

√
m+ n+ 1

2
log 2

δ

h2α−
1
2

, (2.91)

∥Z(0)∥F =

⃦⃦⃦⃦[︃
V (0)U⊤

2 (0)
U1(0)U

⊤
2 (0)

]︃⃦⃦⃦⃦
F

≤ 2
√
m+ r

√
m+ n+ 1

2
log 2

δ

h2α−
1
2

(2.92)

By Corollary 2.1, we have

∥E(t)∥2F ≤ exp (−λr(Σx)∆t) ∥E(0)∥2F ,

then by (2.90), we have

∥E(t)∥2F ≤ exp
(︁
−2h1−2αλr(Σx)t

)︁
∥E(0)∥2F

⇒ ∥E(t)∥F ≤ exp
(︁
−h1−2αλr(Σx)t

)︁
∥E(0)∥F .

Finally, from (2.89), we have

∥Z(t)∥F ≤ exp

(︃∫︂ t

0

λ
1/2
1 (Σx)∥E(τ)∥Fdτ

)︃
∥Z(0)∥F

≤ exp

(︃
λ
1/2
1 (Σx)∥E(0)∥F

(︃∫︂ t

0

exp
(︁
−h1−2αλr(Σx)τ

)︁
dτ

)︃)︃
∥Z(0)∥F

≤ exp

(︃
λ
1/2
1 (Σx)∥E(0)∥F

(︃∫︂ ∞

0

exp
(︁
−h1−2αλr(Σx)τ

)︁
dτ

)︃)︃
∥Z(0)∥F

= exp

(︄
λ
1/2
1 (Σx)

h1−2αλr(Σx)
∥E(0)∥F

)︄
∥Z(0)∥F . (2.93)

The initial error depends on the initialization but can be upper bounded as

∥E(0)∥F = ∥W⊤Y − Σ1/2
x U1(0)V

⊤(0)∥F

= ∥Σ1/2
x (Σ−1/2

x W⊤Y − U1(0)V
⊤(0))∥F

≤ λ
1/2
1 (Σx)∥Φ⊤

1X
†Y − U1(0)V

⊤(0)∥F

≤ λ
1/2
1 (Σx)∥X†Y ∥F + λ

1/2
1 (Σx)∥U1(0)V

⊤(0)∥F ,
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then we can write (2.93) as

∥Z(t)∥F ≤ exp

(︃
λ1(Σx)

h1−2αλr(Σx)
∥X†Y ∥F

)︃
exp

(︃
λ1(Σx)

h1−2αλr(Σx)
∥U1(0)V

⊤(0)∥F
)︃
∥Z(0)∥F

=

[︃
exp

(︃
λ1(Σx)

λr(Σx)
∥Y ∥F

)︃
exp

(︃
λ1(Σx)

λr(Σx)
∥U1(0)V

⊤(0)∥F
)︃]︃1/h1−2α

∥Z(0)∥F .
(2.94)

For the second exponential, we let h0 := max
{︂
h′0, 4

λ2
1(Σx)

λ2
r(Σx)

m
(︁√

m+ n+ 1
2
log 2

δ

)︁2}︂,

then ∀h > h
1/(4α−1)
0 , by (2.91) we have

exp

(︃
λ1(Σx)

λr(Σx)
∥U1(0)V

⊤(0)∥F
)︃
≤ exp

(︃
2
λ1(Σx)

λr(Σx)

√
m

√
m+ n+ 1

2
log 2

δ

h2α−
1
2

)︃
≤ e . (2.95)

Notice that h > h
1/(4α−1)
0 also ensures h > h

1/(4α−1)
0 ≥ h0 ≥ h′0, hence the width

condition for (2.90)(2.92)(2.91) to hold is satisfied.

Finally by (2.92)(2.95), we write (2.94) as

∥Z(t)∥F ≤
[︃
exp

(︃
1 +

λ1(Σx)

λr(Σx)
∥X†Y ∥F

)︃]︃1/h1−2α

∥Z(0)∥F

≤
[︃
exp

(︃
1 +

λ1(Σx)

λr(Σx)
∥X†Y ∥F

)︃]︃1/h1−2α

⏞ ⏟⏟ ⏞
:=C1/h1−2α

2
√
m+ r

√
m+ n+ 1

2
log 2

δ

h2α−
1
2

= 2C1/h1−2α√
m+ r

√
m+ n+ 1

2
log 2

δ

h2α−
1
2

.

Therefore for some C > 0 that depends on the data (X, Y ), given any 0 < δ < 1,

when h > h
1/(4α−1)
0 as defined above, with at least probability 1− δ, we have

∥Û V̂ ⊤ − Θ̂∥2 ≤ ∥U2(0)V̂
⊤∥F

≤ sup
t>0
∥U2(0)V

⊤(t)∥F

≤ sup
t>0
∥Z(t)∥F ≤ 2C1/h1−2α√

m+ r

√
m+ n+ 1

2
log 2

δ

h2α−
1
2

.
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2.2 Multi-layer linear networks

This section aims to provide a general framework for analyzing the convergence of

gradient flow on multi-layer linear models, that generalizes the convergence analy-

sis for two-layer linear networks in Section 2.1. We consider a loss function of the

form L = f(W1W2 · · ·WL), where f satisfies the gradient dominance property. Our

analysis relies on a novel characterization of the gradient of the overparameterized

loss as the composition of the non-overparametrized gradient with a time-varying

(weight-dependent) linear operator whose smallest eigenvalue controls the conver-

gence rate. The convergence analysis reduces to finding a uniform lower bound

on the least eigenvalue of this time-varying linear operator over the entire training

trajectory. However, finding such a uniform lower bound for general networks is

extremely difficult even in the case of linear networks because the linear operator

depends nontrivially on the weight matrix trajectories. As a consequence, in this

work we focus on two- and three-layer neural networks as well as some classes

of deep networks for which bounds are possible to obtain despite the complex

dependency of the operator on the weight matrix trajectories. More specifically:

• Our analysis shows that the convergence rate depends on two trajectory-

specific quantities: 1) the imbalance matrices, which measure the difference

between the weights of adjacent layers, and 2) a lower bound on the least

singular values of weight product W = W1W2 · · ·WL. The former is time-

invariant under gradient flow, thus determined at initialization, while the

latter can be controlled by initializing the product sufficiently close to its

optimum.

• We provide a rate bound that applies to three-layer networks under general

initialization. For deep networks, we study a broader class of initialization that

covers most initialization schemes used in prior work [24, 25, 26, 27, 30, 28]
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for both multi-layer linear networks and diagonal linear networks while

providing an improved rate bound.

• Our results directly apply to loss functions commonly used in regression tasks,

and extend to loss functions used in classification tasks with an alternative

assumption on f , under which we show O(1/t) convergence of the loss.

2.2.1 Problem setup

This section considers finding a matrix W that solves

min
W∈Rn×m

f(W ) , (2.96)

with the following assumption on f .

Assumption 2.1. f is differentiable and satisfies2:

A1: f satisfies the Polyak-Łojasiewicz (PL) condition, i.e. ∥∇f(W )∥2F ≥ γ(f(W ) −

f ∗), ∀W . This condition is also known as gradient dominance.

A2: f is K-smooth and µ-strongly convex.

While classic work [69] has shown that the gradient descent update on W with

proper step size ensures a linear rate of convergence of f(W ) towards its optimal

value f ∗, the recent surge of research on the convergence and implicit bias of

gradient-based methods for deep neural networks has led to a great amount of

work on the overparametrized problem:

min
{Wl}Ll=1

L
(︁
{Wl}Ll=1

)︁
= f(W1W2 · · ·WL) , (2.97)

where L ≥ 2, Wl ∈ Rhl−1×hl , i = 1, · · · , L, with h0 = n, hL = m and a width

constraint min{h1, · · · , hL−1} ≥ min{n,m}. This assumption on min{h1, · · · , hL−1}
2Note that A2 assumes µ-strong convexity, which implies A1 with γ = 2µ. However, we list A1

and A2 separately since they have different roles in our analysis.
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is necessary to ensure that the optimal value of (2.97) is also f ∗, and in this case, the

product
∏︁L

l=1Wl can represent an overparametrized linear network/model [27, 25].

Convergence via gradient dominance

For problem (2.97), consider the gradient flow dynamics on the loss function

L
(︁
{Wl}Ll=1

)︁
:

Ẇ l = −
∂

∂Wl

L
(︁
{Wl}Ll=1

)︁
, l = 1, · · · , L . (2.98)

The gradient flow dynamics can be viewed as gradient descent with “infinitesimal”

step size and convergence results for gradient flow can be used to understand the

corresponding gradient descent algorithm with sufficiently small step size [70]. We

have the following result regarding the time-derivative of L under gradient flow.

Lemma 2.6. Under continuous dynamics in (2.98), we have

L̇ = −∥∇L
(︁
{Wl}Ll=1

)︁
∥2F

= −
⟨︂
T{Wl}Ll=1

∇f(W ),∇f(W )
⟩︂
F
, (2.99)

where W =
∏︁L

l=1Wl, and T{Wl}Ll=1
=
∑︁L

l=1 Tl is a sum of L positive semi-definite linear

operator on Rn×m:

TlE =

(︄
l−1∏︂
i=0

Wi

)︄(︄
l−1∏︂
i=0

Wi

)︄⊤

E

(︄
L+1∏︂
i=l+1

Wi

)︄⊤(︄ L+1∏︂
i=l+1

Wi

)︄
.

Proof. The gradient flow dynamics (2.98) satisfies

d

dt
Wl = −

∂

∂Wl

L
(︁
{Wl}Ll=1

)︁
= −

(︄
l−1∏︂
i=1

Wi

)︄⊤

∇f(W )

(︄
L+1∏︂
i=l+1

Wi

)︄⊤

, (2.100)

where W =
∏︁L

l=1Wi and W0 = In,WL+1 = Im.
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Therefore

L̇ =
L∑︂
l=1

⟨︃
∂

∂Wl

L
(︁
{Wl}Ll=1

)︁
,
d

dt
Wl

⟩︃
F

= −
L∑︂
l=1

⃦⃦⃦⃦
∂

∂Wl

L
(︁
{Wl}Ll=1

)︁⃦⃦⃦⃦2
F

= −
L∑︂
l=1

⟨︄(︄
l−1∏︂
i=1

Wi

)︄⊤

∇f(W )

(︄
L+1∏︂
i=l+1

Wi

)︄⊤

,

(︄
l−1∏︂
i=1

Wi

)︄⊤

∇f(W )

(︄
L+1∏︂
i=l+1

Wi

)︄⊤⟩︄
F

= −
L∑︂
l=1

⟨︄(︄
l−1∏︂
i=1

Wi

)︄(︄
l−1∏︂
i=1

Wi

)︄⊤

∇f(W )

(︄
L+1∏︂
i=l+1

Wi

)︄⊤(︄ L+1∏︂
i=l+1

Wi

)︄
,∇f(W )

⟩︄
F

= −
⟨︄

L∑︂
l=1

(︄
l−1∏︂
i=1

Wi

)︄(︄
l−1∏︂
i=1

Wi

)︄⊤

∇f(W )

(︄
L+1∏︂
i=l+1

Wi

)︄⊤(︄ L+1∏︂
i=l+1

Wi

)︄
,∇f(W )

⟩︄
F

= −
⟨︂
T{Wl}Ll=1

∇f(W ),∇f(W )
⟩︂
F
.

With Lemma 2.6, our convergence analysis is as follows: For this overparam-

eterized problem, the minimum L∗ of (2.97) is f ∗. Then from Lemma 2.6 and

Assumption A1, we have

L̇ = −
⟨︂
T{Wl}Ll=1

∇f(W ),∇f(W )
⟩︂
F

≤ −λmin(T{Wl}Ll=1
)∥∇f(W )∥2F (2.101)

(A1)
≤ −λmin(T{Wl}Ll=1

)γ(f(W )− f ∗) (2.102)

= −λmin(T{Wl}Ll=1
)γ(L − L∗).

If we find an α > 0 such that λmin(T{Wl(t)}Ll=1
) ≥ α, ∀t, then the following inequality

holds on the entire training trajectory d
dt
(L − L∗) ≤ −αγ (L − L∗). Therefore, by

using Grönwall’s inequality [65], we can show that the loss function L converges

exponential to its minimum:

L(t)− L∗ ≤ exp (−αγt) (L(0)− L∗) , ∀t ≥ 0 . (2.103)
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Therefore, to show exponential convergence of the loss, we need to lower bound

λmin(T{Wl(t)}Ll=1
).

Key challenge: Most existing work on the convergence of gradient flow/descent

on linear networks implicitly provides a lower bound on λmin(T{Wl(t)}Ll=1
) through-

out the training trajectory, under particular assumptions on the initialization and

network structure: For extremely wide networks under NTK initialization [23],

the weights do not deviate too much from their initialization, from which one has

T{Wl(t)}Ll=1
≃ T{Wl(0)}Ll=1

, then the analysis reduces to finding eigenvalue bound for

a fixed operator, rather than a time-varying one. Outside the kernel regime, one

requires a uniform lower bound on λmin(T{Wl(t)}Ll=1
) that accounts for the evolution

of the weights. What has been facilitating the analysis are special initialization

schemes that induce persistent structural properties on the weights, from which

the operator can be simplified. For example, under balanced initialization [26],

the linear operator would only depend on the product of the weights, instead of

individual ones. To show convergence for general initialization without any struc-

tural property on the weights, one not only requires some analysis of the evolution

of weights but, most importantly, also a careful eigenvalue analysis on T{Wl(t)}Ll=1
.

However, the operator T{Wl(t)}Ll=1
is a polynomial on the weight matrices whose

degree depends on the network depth L, and the higher the degree of T{Wl(t)}Ll=1
, the

harder it is to bound its least eigenvalue.

We first revisit our convergence analysis developed for two-layer networks from

the last section, then we show that much of its ingredients hint at possible ways

to lower bound λmin(T{Wl(t)}Ll=1
) for deep networks, then present our convergence

results regarding deep networks.
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Revisit two-layer linear networks

We revisit our convergence analysis developed for two-layer networks from the last

section through the lens of our general convergence analysis. For L = 2, we have

λmin(T{W1,W2}) = λn(W1W
⊤
1 ) + λm(W

⊤
2 W2) . (2.104)

In the proof of Proposition 2.1, there is already a lower bound on λmin(T{W1,W2})

with the knowledge of the imbalance and the product.

Lemma 2.7. When L = 2, given weights {W1,W2} with imbalance matrix D = W⊤
1 W1−

W2W
⊤
2 and product W = W1W2, define ∆+, ∆−, and ∆ as in Proposition 2.1, then for the

linear operator T{W1,W2}, we have

2λmin

(︁
T{W1,W2}

)︁
≥−∆+ +

√︁
(∆+ +∆)2 + 4σ2

n (W )

−∆− +
√︁

(∆− +∆)2 + 4σ2
m (W ) . (2.105)

Implication on convergence: Note that (2.105) is almost a lower bound for the

eigenvalue λmin

(︁
T{W1(t),W2(t)}

)︁
, t ≥ 0, as the imbalance matrix D is time-invariant

(so are ∆+,∆−,∆), except the right-hand side of (2.105) also depends on σmin(W (t)).

If f satisfies A2, then f has a unique minimizer W ∗. Moreover, one can show that

given a initial product W (0), W (t) is constrained to lie within a closed ball{︄
W : ∥W −W ∗∥F ≤

√︄
K

µ
∥W (0)−W ∗∥F

}︄
,

i.e., W (t) does not get too far away from W ∗ during training. We can use this to

derive the following lower bound on σmin(W (t)):

σmin(W (t)) ≥
[︄
σmin(W

∗)−
√︄
K

µ
∥W (0)−W ∗∥F

]︄
+

. (2.106)

This margin term being positive guarantees that the closed ball excludes anyW with

σmin(W ) = 0. With this observation, we find a lower bound λmin

(︁
T{W1(t),W2(t)}

)︁
, t ≥

0 that depends on both the weight imbalance and margin, and the exponential

convergence of loss L follows:
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Theorem 2.3. Let D be the imbalance matrix for L = 2. The continuous dynamics in

(2.98) satisfy

L(t)− L∗ ≤ exp (−α2γt) (L(0)− L∗), ∀t ≥ 0 , (2.107)

1. If f satisfies only A1, then α2 = ∆ ;

2. If f satisfies both A1 and A2, then

α2 = −∆+ +
√︁

(∆+ +∆)2 + 4ν2n −∆− +
√︁

(∆− +∆)2 + 4ν2m , (2.108)

where

νn =
[︂
σn (W

∗)−
√︁
K/µ∥W (0)−W ∗∥F

]︂
+
,

νm =
[︂
σm (W ∗)−

√︁
K/µ∥W (0)−W ∗∥F

]︂
+
,

W (0) =
∏︁L

l=1Wl(0), and W ∗ equal to the unique optimizer of f .

Theorem 2.3 is new as it generalizes the result in Section 2.1.2, which is only

for l2 loss in linear regression. We consider a general loss function defined by f ,

including the losses for matrix factorization [26], linear regression [31], and matrix

sensing [10]. Additionally, [26] first introduced the notion of margin for f in matrix

factorization problems (K = 1, µ = 1), and we extend it to any f that is smooth and

strongly convex.

Towards deep Networks: So far, we revisited our results on two-layer networks,

showing how λmin(TW1,W2) can be lower bounded by weight imbalance and product,

from which the convergence result is derived. Can we generalize the analysis

to deep networks? The challenge is that even computing λmin(T{Wl}Ll=1
) given the

weights {Wl}Ll=1 is complicated: For L = 2, λmin(TW1,W2) = λn(W1W
⊤
1 )+λm(W

⊤
2 W2),

but such nice relation does not exist for L > 3, which makes the search for a tight

lower bound potentially difficult. On the other hand, the findings in (2.105) shed

light on what can be potentially shown for the deep layer case:
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1. For two-layer networks, we always have the bound λmin

(︁
T{W1,W2}

)︁
≥ ∆,

which depends only on the imbalance. Can we find a lower bound on the conver-

gence rate of a deep network that depends only on an imbalance quantity analogous

to ∆? If yes, how does such a quantity depend on network depth?

2. For two-layer networks, the bound reduces to
√︂

∆2 + 4σ2
min(W ) when the

imbalance is “well-conditioned" (∆+,∆− are small). For deep networks, can we

characterize such joint contribution from the imbalance and product, given a similar

assumption?

We will answer these questions as we present our convergence results for deep

networks.

2.2.2 Three-layer linear networks

To answer the first question of how weight imbalance effect convergence, we derive

a novel rate bound for three-layer models showing the general effect of imbalance.

For ease of presentation, we denote the two imbalance matrices for three-layer

models, D1 and D2, as

−D1 = W2W
⊤
2 −W⊤

1 W1 := D21 , (2.109)

D2 = W⊤
2 W2 −W3W

⊤
3 := D23. (2.110)

Our lower bound comes after a few definitions.

Definition 2.1. Given two real symmetric matrices A,B of order n, we define a non-

commutative binary operation ∧r as A ∧r B := diag{min{λi(A), λi+1−r(B)}}ni=1 , where

λj(·) = +∞, ∀j ≤ 0.
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Definition 2.2. Given (D21, D23) ∈ Rh1×h1 × Rh2×h2 , define

D̄h1 =diag{max{λi(D21), λi(D23), 0}}h1
i=1, D̄h2 =diag{max{λi(D21), λi(D23), 0}}h2

i=1,

∆21=tr(D̄h1)− tr(D̄h1 ∧n D21), ∆
(2)
21 =tr(D̄

2
h1
)− tr

(︁
(D̄h1 ∧n D21)

2
)︁
,

∆23=tr(D̄h2)− tr(D̄h2 ∧m D23), ∆
(2)
23 =tr(D̄

2
h2
)− tr

(︁
(D̄h2 ∧m D23)

2
)︁
.

Theorem 2.4. When L = 3, given weights {W1,W2,W3} with imbalance matrices

(D21, D23) as defined in (2.109)(2.110), then for the linear operator T{W1,W2,W3}, we have

λmin

(︁
T{W1,W2,W3}

)︁
≥ 1

2
(∆

(2)
21 +∆2

21) + ∆21∆23 +
1

2
(∆

(2)
23 +∆2

23) := ∆∗(D21, D23) .

(2.111)

With the theorem, we have the following corollary.

Corollary 2.4. When L = 3, given initialization with imbalance matrices (D21, D23) and

f satisfying A1, the continuous dynamics in (2.98) satisfy

L(t)− L∗ ≤ exp (−α3γt) (L(0)− L∗), ∀t ≥ 0 , (2.112)

where α3 =
1
2
(∆

(2)
21 +∆2

21) + ∆21∆23 +
1
2
(∆

(2)
23 +∆2

23).

We make the following remarks regarding the contribution.

Optimal bound via imbalance: First of all, our bound should be considered as the

best lower bound on λmin(T{W1(t),W2(t),W3(t)}) one can obtain given knowledge of the

imbalance matrices only. More importantly, the bound works for ANY initialization

and has the same role as ∆ does in two-layer networks, i.e., (2.111) quantifies the

general effect imbalance on the convergence. Finding an improved bound that takes

the effect of σmin(W ) into account is an interesting future research direction.

Implication on convergence: Corollary 2.4 suggests that the gradient flow starting

at any initialization with positive ∆∗(D21, D23) converges exponentially. However,

due to its complicated expression, it is less clear under what initialization the bound

is positive. We conjecture that most random initialization schemes would have a
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positive ∆∗, and through some numerical experiments in Section 2.2.5, we show

that random initialization (outside NTK regime) is most likely to have a positive

∆∗, thus exponential convergence is guaranteed by our theorem.

Technical contribution: We highlight in Section 2.2.1 the challenge in bounding

λmin(T{Wl(t)}Ll=1
) for deep networks. One needs to develop new mathematical tools

for the eigenanalysis: The way we find the lower bound in (2.111) is by studying

the generalized eigenvalue interlacing relation imposed by the imbalance con-

straints. Specifically, W2W
⊤
2 −W⊤

1 W1 = D21 suggests that λi+n(W2W
⊤
2 ) ≤ λi(D21) ≤

λi(W2W
⊤
2 ), ∀i because W2W

⊤
2 −D21 is a matrix of at most rank-n. We derive, from

such interlacing relation, novel eigenvalue bounds (See Lemma 2.13) on λn(W⊤
1 W1)

and λn(W1W2W
⊤
2 W1) that depends on eigenvalues of both W2W

⊤
2 and D21. Then

the eigenvalues of W2W
⊤
2 can also be controlled by the fact that W2 must satisfy

both imbalance equations in (2.109)(2.110). Since imbalance equations like those

in (2.109)(2.110) appear in deep networks and certain nonlinear networks [61, 71],

we believe our mathematical results are potentially useful for understanding those

networks.

Comparison with prior work: The convergence of multi-layer linear networks

under balanced initialization (Dl = 0, ∀l) has been studied in [26, 27], and our

result is complementary as we study the effect of non-zero imbalance on the conver-

gence of three-layer networks. Some settings with imbalanced weights have been

studied: [28] studies a special initialization scheme (Dl ⪰ 0, l = 1, · · · , L− 2, and

DL−1 ⪰ λIhL−1
) that forces the partial ordering of the weights, and [72] uses similar

initialization to study the linear residual networks. Our bound works for such

initialization and also show such partial ordering is not necessary for convergence.
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2.2.3 Deep linear networks

The lower bound we derived for three-layer networks applies to any initialization.

However, the bound is a fairly complicated function of all the imbalance matrices

that is hard to interpret. Searching for such a general bound is even more chal-

lenging for models with arbitrary depth (L ≥ 3). Therefore, our results for deep

networks will rely on extra assumptions on the weights that simplify the lower

bound to facilitate interpretability. Specifically, we consider the following properties

of the weights:

Definition 2.3. A set of weights {Wl}Ll=1 with imbalance matrices {Dl := W⊤
l Wl −

Wl+1W
⊤
l+1}L−1

l=1 is said to be unimodal with index l∗ if there exists l∗ ∈ [L] such that

Dl ⪰ 0, for l < l∗ and Dl ⪯ 0, for l ≥ l∗ .

We define its cumulative imbalances {d̃(i)}L−1
i=1 as

d̃(i) =

{︄∑︁i
l=l∗ λm(−Dl), i ≥ l∗∑︁l∗−1
l=i λn(Dl), i < l∗

.

Furthermore, for weights with unimodality index l∗, if additionally, Dl = dlIhl
, l =

1, · · · , L− 1 for

dl ≥ 0, for l < l∗ and dl ≤ 0, for l ≥ l∗ ,

those weights are said to have homogeneous imbalance.

The unimodality assumption enforces an ordering of the weights w.r.t. the

positive semi-definite cone. This is more clear when considering scalar weights

{wl}Ll=1, in which case unimodality requires w2
l to be descending until index l∗ and

ascending afterward. Under this unimodality assumption, we show that imbalance

contributes to the convergence of the loss via a product of cumulative imbalanaces.

Furthermore, we also show the combined effects of imbalance and weight product

when the imbalance matrices are “well-conditioned" (in this case, homogeneous).

67



Table 2-I. Compare our rate bound with prior work on deep networks.

Assumptions [26] [28] Ours
Unimodal weights N/A λL−1

∏︁L−1
l=1 d̃(i)

Homogeneous imbalance N/A λL−1 √︂
(
∏︁L−1

l=1 d̃(i))
2 + (Lσ

2−2/L
min (W ))2Balanced (Dl = 0, ∀l) Lσ

2−2/L
min (W ) N/A

Theorem 2.5. For weights {Wl}Ll=1 with unimodality index l∗ and product W =
∏︁L

l=1Wl,

we have

λmin

(︂
T{Wl}Ll=1

)︂
≥
∏︂L−1

l=1
d̃(i) . (2.113)

Furthermore, if the weights have homogeneous imbalance,

λmin(T{Wl}Ll=1
) ≥

√︃(︂∏︂L−1

l=1
d̃(i)

)︂2
+
(︂
Lσ

2− 2
L

min (W )
)︂2
, (2.114)

We make the following remarks:

Connection to results for three-layer: For three-layer networks, we present an

optimal bound given some imbalance. Interestingly, when comparing the three-

layer bound (2.111) with our bound in (2.113), we have:

Claim 1. When L = 3, for weights {W1,W2,W3} with unimodality index l∗,

1. If l∗ = 1, then 1
2
(∆

(2)
23 +∆2

23) =
∏︁L−1

l=1 d̃(i) and 1
2
(∆

(2)
21 +∆2

21) = ∆21∆23 = 0;

2. If l∗ = 2, then ∆21∆23 =
∏︁L−1

l=1 d̃(i) and 1
2
(∆

(2)
21 +∆2

21) =
1
2
(∆

(2)
23 +∆2

23) = 0;

3. If l∗ = 3, then 1
2
(∆

(2)
21 +∆2

21) =
∏︁L−1

l=1 d̃(i) and 1
2
(∆

(2)
23 +∆2

23) = ∆21∆23 = 0.

The claim shows that the bound in (2.113) is optimal for three-layer unimodal

weights as it coincides with the one in Theorem 2.4. We conjecture that (2.113)

is also optimal for multi-layer unimodal weights and leave the proof for future

research. Interestingly, while the bound for three-layer models is complicated, the

three terms 1
2
(∆

(2)
23 +∆2

23), ∆21∆23, 1
2
(∆

(2)
21 +∆2

21), seem to roughly capture how close

the weights are to unimodality. This hints at potential generalization of Theorem

2.4 to the deep case where the bound should have L terms capturing how close the

weights are to those with different unimodality (l∗ = 1, · · · , L).
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Effect of imbalance under unimodality: For simplicity, we assume unimodality

index l∗ = L. The bound
∏︁L−1

i=1 d̃(i), as a product of cumulative imbalances, generally

grows exponentially with the depth L. Prior work [28] studies the case Dl ⪰

0, l = 1, · · · , L − 2, and DL−1 ⪰ λIhL−1
, in which case

∏︁L−1
i=1 d̃(i) ≥ λL−1. Our

bound
∏︁L−1

i=1 d̃(i) suggests the dependence on L could be super-exponential: When

λn(Dl) ≥ ϵ > 0, for l = 1, · · · , L − 1, we have
∏︁L−1

i=1 d̃(i) =
∏︁L−1

i=1

∑︁L−1
l=i λn(Dl) ≥∏︁L−1

l=1 lϵ = ϵL−1(L − 1)!, which grows faster in L than λL−1 for any λ. Therefore,

for gradient flow dynamics, the depth L could greatly improve convergence in

the presence of weight imbalance. One should note, however, that such analysis

can not be directly translated into fast convergence guarantees of gradient descent

algorithm as one requires careful tuning of the step size for the discrete updates to

follow the trajectory of the continuous dynamics [70].

Convergence under unimodality: Regarding exponential convergence, the follow-

ing immediately comes from Theorem 2.5:

Corollary 2.5. If the initialization weights {Wl(0)}Ll=1 are unimodal, then the continuous

dynamics in (2.98) satisfy

L(t)− L∗ ≤ exp (−αLγt) (L(0)− L∗), ∀t ≥ 0, (2.115)

1. If f satisfies A1 only, then αL = ΠL−1
i=1 d̃(i) ;

2. If f satisfies both A1, A2, and the weights additionally have homogeneous imbalance,

then αL =

√︃(︂∏︁L−1
i=1 d̃(i)

)︂2
+ (Lνmin)

2, where

νmin =
[︂
σmin (W

∗)−
√︁
K/µ∥W (0)−W ∗∥F

]︂
+
,

W (0) =
∏︁L

l=1Wl(0) and W ∗ equal to the unique optimizer of f .

Spectral initialization under l2 loss: Suppose f = 1
2
∥Y −W∥2F and W =

∏︁L
l=1Wl.

We write the SVD of Y ∈ Rn×m as Y = P

[︃
ΣY 0
0 0

]︃ [︃
Q
0

]︃
:= P Σ̃Y Q̃, where P ∈
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O(n), Q ∈ O(m) . Consider the spectral initialization W1(0) = RΣ1V
⊤
1 , Wl(0) =

Vl−1ΣlV
⊤
l , l = 2, · · · , L− 1, WL(0) = VL−1ΣLQ̃, where Σl, l = 1, · · · , L are diagonal

matrices of our choice and Vl ∈ Rn×hl , l = 1, · · · , L − 1 with V ⊤
l Vl = Ihl

. It can be

shown that [25]

W1(t) = RΣ1(t)V
⊤
1 , WL(t) = VL−1ΣL(t)Q̃,

Wl(t) = Vl−1Σl(t)V
⊤
l , l = 2, · · · , L− 1.

Moreover, only the first m diagonal entries of Σl are changing. Let σi,l, σi,y denote

the i-th diagonal entry of Σl, and Σ̃Y respectively, then the dynamics of {σi,l}Ll=1

follow the gradient flow on Li({σi,l}Ll=1) =
1
2
|σi,y−

∏︁L
l=1 σi,l|2 for i = 1, · · · ,m, which

is exactly a multi-layer model with scalar weights: f(w) = |σi,y−w|2/2, w =
∏︁L

l=1wl.

Therefore, spectral initialization under l2 loss can be decomposed into m deep linear

models with scalar weights, whose convergence is shown by Corollary 2.5. Note

that networks with scalar weights are always unimodal, because the gradient flow

dynamics remain the same under any reordering of the weights, and always have

homogeneous imbalance, because the imbalances are scalars.

Diagonal linear networks: Consider f a function on Rn satisfying A1 and L =

f(w1 ⊙ · · · ⊙ wL), where wl ∈ Rn and ⊙ denote the entrywise product. We can

show that L̇ = −∥∇L∥2F ≤ −(min1≤i≤n λmin(T{wl,i}Ll=1
))γ(L − L∗) , where wl,i is the

i-th entry of wl. Then Theorem 2.5 gives lower bound on each λmin(T{wl,i}Ll=1
).

Comparison with prior work: Regarding unimodality, [28] studies the initialization

scheme Dl ⪰ 0, l = 1, · · · , L− 2 and DL−1 ⪰ λIhL−1
, which is a special case (l∗ = L)

of ours. The homogeneous imbalance assumption was first shown in [25] for two-

layer networks, and we generalize it to the deep case. We compare, in Table 2-I, our

bound to existing work [26, 28] on convergence of deep linear networks outside

the kernel regime. Note that [28] only studies a special case of unimodal weights

(l∗ = L with d̃(i) ≥ λ > 0, ∀i). For homogeneous imbalance, [28] studied spectral
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initialization and diagonal linear networks, which necessarily have homogeneous

imbalance, but the result does not generalize to the case of matrix weights. Our

results for homogeneous imbalance works also for networks with matrix weights,

and our rate also shown the effect of the product Lσ2−2/L
min (W ), thus covers the

balanced initialization [26] as well.

2.2.4 Convergence results for classification tasks

Note that the loss functions used in [73, 28] are classification losses, such as the ex-

ponential loss, which do not satisfy A1. However, we can showO (1/t) convergence

with an alternative assumption.

Theorem 2.6. Suppose f satisfies (A1’) ∥∇f(W )∥F ≥ γ(f(W ) − f ∗), ∀W ∈ Rn×m.

Given initialization {Wl(0)}Ll=1 such that λmin(T{Wl(t)}Ll=1
) ≥ α, ∀t , then

L(t)− L∗ ≤ L(0)− L∗

(L(0)− L∗)αγ2t+ 1
. (2.116)

The lower bound on λmin(T{Wl(t)}Ll=1
) can be obtained for different networks by

our results in previous sections.

2.2.5 Numerical experiments

In Section 2.2.2, we have shown a rate bound for three-layer networks under general

initialization in Theorem 2.4. However, due to its complicated expression, it is less

clear under what initialization the bound is positive. Through some numerical

experiments, we show that our bound is very likely to be positive under various

random initialization schemes. In Figure 2-6, we show a box plot of our bound ∆ =

∆∗(D21, D23) in Theorem 2.4 under: NTK initialization [23], Xavier initialization [74],

and Fanout initialization. These initialization schemes all randomly sample the

network weights with Gaussian distribution, but with different variances for each

layer. Shown from the box plot, our bound is non-vacuous for random initialization:
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Figure 2-6. Three-layer network under random initialization most likely converges
exponentially. Left: Box plot of our bound ∆ = ∆∗(D21, D23) for different initialization
schemes on a three-layer network with n = 5,m = 1, h1 = h2 = 200, each box
is generated with 100 random samples of the weights; Middle: Gradient descent
on three-layer network with n = 1,m = 1. Right: Gradient descent on three-layer
network with n = 5,m = 1. For different network widths, we compare the actual loss
with our theoretical bound.

All the sampled instances of random initialization, we have ∆∗(D21, D23) > 0, i.e.,

exponential convergence is guaranteed for all cases, while no existing work provide

exponential convergence guarantee for this experiment because the initialization

has a non-zero imbalance ([26] requires balancedness), and the network has only a

moderate width ([23] requires extremely large width).

Next, we run gradient descent on three-layer networks under Fanout initialization

with a loss function L = ∥Y −W1W2W3∥2F/2, and compare our theoretical bound

from Corollary 2.4 with the actual loss curve. We see that for certain cases n =

1,m = 1 (Middle plot in Figure 2-6), our bound provides a good characterization

of the actual convergence rate, but appears less tight for problems with higher

dimensions n = 5,m = 1 (Right plot in Figure 2-6). However, we note that even

in the latter case, initialization with a large value of the bound ∆ does converge

faster, hence there exists some correlation between the bound ∆ and the actual

convergence rate, and formally justify such correlation is an interesting future

research. Moreover, we view the fact that ∆ fails to provide a tight bound for

problems with larger scales as some evidence showing that imbalance constraint is

relatively weaker in characterizing the eigenmodes of T{Wl(t)}Ll=1
for deep networks,
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despite its usefulness in shallow networks [25, 30]. This suggests that we should

be searching for new structural properties on the weights to fully understand the

convergence of deep networks.

Proof of Theorem 2.3

The following Lemma will be used in the proof of Theorem 2.3.

Lemma 2.8. If f satisfies A2, then the gradient flow dynamics (2.98) satisfies

σmin (W (t)) ≥ σmin (W
∗)−

√︄
K

µ
∥W (0)−W ∗∥F , ∀t ≥ 0

where W (t) =
∏︁L

l=1Wl(t) and W ∗ is the unique minimizer of f .

Proof. From [69], we know if f is µ-strongly convex, then it has unique minimizer

W ∗ and

f(W )− f ∗ ≥ µ

2
∥W −W ∗∥2F .

Additionally, if f is K-smooth, then

f(W )− f ∗ ≤ K

2
∥W −W ∗∥2F .

This suggests that for any t ≥ 0,

K

2
∥W (t)−W ∗∥2F ≥ L(t)− L∗ ≥ µ

2
∥W −W ∗∥2F .

73



Therefore we have the following

σmin (W (t)) = σmin (W (t)−W ∗ +W ∗)

(Weyl’s inequality [64, 7.3.P16]) ≥ σmin(W
∗)− ∥W (t)−W ∗∥2

≥ σmin(W
∗)− ∥W (t)−W ∗∥F

(f is µ-strongly convex) ≥ σmin(W
∗)−

√︃
2

µ
(L(t)− L∗)

(L(t) non-decreasing under (2.98)) ≥ σmin(W
∗)−

√︃
2

µ
(L(0)− L∗)

(f is K-smooth) ≥ σmin(W
∗)−

√︄
K

µ
∥W (0)−W ∗∥2F

= σmin (W
∗)−

√︄
K

µ
∥W (0)−W ∗∥F .

Proof of Theorem 2.3. As shown in (2.101) in Section 2.2.1. We have

d

dt
(L(t)− L∗) ≤ −λminT{W1(t),W2(t)}γ(L(t)− L∗) .

Consider any {W1(t),W2(t)} on the trajectory, we have, by Lemma 2.7,

λminT{W1(t),W2(t)}
Lemma 2.7
≥ 1

2

(︂
−∆+ +

√︁
(∆+ +∆)2 + 4σ2

n (W (t))

−∆− +
√︁
(∆− +∆)2 + 4σ2

m (W (t))
)︂

≥ 1

2

(︂
−∆+ +

√︁
(∆+ +∆)2 −∆− +

√︁
(∆− +∆)2

)︂
= ∆ := α2 .

When f also satisfies A2: we need to prove

σn (W (t)) ≥
[︂
σn (W

∗)−
√︁
K/µ∥W (0)−W ∗∥F

]︂
+
, (2.117)

σm (W (t)) ≥
[︂
σm (W ∗)−

√︁
K/µ∥W (0)−W ∗∥F

]︂
+
. (2.118)

When n = m, both inequalities are equivalent to

σmin(W (t)) ≥
[︂
σmin(W

∗)−
√︁
K/µ∥W (0)−W ∗∥F

]︂
+
,
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which is true by Lemma 2.8.

When n ̸= m, one of the two inequalities become trivial. For example, if n > m,

then (2.117) is trivially 0 ≥ 0, and (2.118) is equivalent to

σmin(W (t)) ≥
[︂
σmin(W

∗)−
√︁
K/µ∥W (0)−W ∗∥F

]︂
+
,

which is true by Lemma 2.8.

Overall, we have

λminT{W1(t),W2(t)}

Lemma 2.7
≥ 1

2

(︂
−∆+ +

√︁
(∆+ +∆)2 + 4σ2

n (W (t))

−∆− +
√︁

(∆− +∆)2 + 4σ2
m (W (t))

)︂
≥ 1

2

⎛⎝−∆+ +

√︄
(∆+ +∆)2 + 4

(︃[︂
σn (W ∗)−

√︁
K/µ∥W (0)−W ∗∥F

]︂
+

)︃2

−∆− +

√︄
(∆− +∆)2 + 4

(︃[︂
σm (W ∗)−

√︁
K/µ∥W (0)−W ∗∥F

]︂
+

)︃2
⎞⎠

:= α2 .

Either case, we have d
dt
(L(t)−L∗) ≤ −α2γ(L(t)−L∗), and by Grönwall’s inequality,

we have

L(t)− L∗ ≤ exp(−α2γt)(L(0)− L∗) .

Proof of Theorem 2.4

Theorem 2.4 is the direct consequence of the following two results.

Lemma 2.9. Given any set of weights {W1,W2,W3} ∈ Rn×h1 × Rh1×h2 × Rh2×m, we have

λminT{W1,W2,W3} ≥ λn(W1W2W
⊤
2 W

⊤
1 ) + λn(W1W

⊤
1 )λm(W

⊤
3 W3) + λm(W

⊤
3 W

⊤
2 W2W3) .
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Theorem 2.7. Given imbalance matrices pair (D21, D23) ∈ Rh1×h1 × Rh2×h2 , then the

optimal value of

min
W1,W2,W3

2
(︁
λn(W1W2W

⊤
2 W

⊤
1 ) + λn(W1W

⊤
1 )λm(W

⊤
3 W3) + λm(W

⊤
3 W

⊤
2 W2W3)

)︁
s.t. W2W

⊤
2 −W⊤

1 W1 = D21

W⊤
2 W2 −W3W

⊤
3 = D23

is

∆∗(D21, D23) = ∆
(2)
21 +∆2

21 + 2∆21∆23 +∆
(2)
23 +∆2

23 .

Combining those two results gets λminT{W1,W2,W3} ≥ ∆∗(D21, D23)/2, as stated in

Theorem 2.4. Lemma 2.9 is intuitive and easy to prove:

Proof of Lemma 2.9. Notice that T{W1,W2,W3} is the summation of three positive semi-

definite linear operators on Rn×m, i.e.

T{W1,W2,W3} = T12 + T13 + T23 ,

where

T12E = W1W2W
⊤
2 W

⊤
1 E, T13E = W1W

⊤
1 EW

⊤
3 W3, T23E = EW⊤

3 W
⊤
2 W2W3 ,

and λminT12 = λn(W1W2W
⊤
2 W

⊤
1 ), λminT13 = λn(W1W

⊤
1 )λm(W

⊤
3 W3), λminT23 =

λm(W
⊤
3 W

⊤
2 W2W3).Therefore, let Emin with ∥Emin∥F = 1 be the eigenmatrix as-

sociated with λminT{W1,W2,W3}, we have

λminT{W1,W2,W3} =
⟨︁
T{W1,W2,W3}, Emin

⟩︁
F

= ⟨T12, Emin⟩F + ⟨T13, Emin⟩F + ⟨T23, Emin⟩F

≥ λminT12 + λminT13 + λminT23 .
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The rest of this section is dedicated to proving Theorem 2.7

We will first state a few Lemmas that will be used in the proof, then show the

proof for Theorem 2.7, and present the long proofs for the auxiliary Lemmas in the

end.

Auxiliary lemmas

The main ingredient used in proving Theorem 2.7 is the notion of r-interlacing

relation between the spectrum of two matrices, which is a natural generalization of

the interlacing relation as seen in classical Cauchy Interlacing Theorem [64, Theorem

4.3.17].

Definition 2.4. Given real symmetric matrices A,B of order n, write A ⪰r B, if

λi+r(A) ≤ λi(B) ≤ λi(A) , ∀i

where λj(·) = +∞, j ≤ 0 and λj(·) = −∞, j > n. The case r = 1 gives the interlacing

relation.

Claim 2. We only need to check

λi+r(A) ≤ λi(B) ≤ λi(A) , ∀i ∈ [n] ,

for showing A ⪰r B.

Proof. Any inequality regarding index outside [n] is trivial.

The following Lemma is a direct concequence of Weyl’s inequality [64, Theorem

4.3.1], and stated as a special case of [64, Corollary 4.3.3]

Lemma 2.10. Given real symmetric matrices A,B of order n, if A − B is positive semi-

definite and rank(A− B) ≤ r, then A ⪰r B

The converse is also true
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Lemma 2.11. Given real symmetric matrices A,B of order n, if A ⪰r B, then there exists

a positive semi-definite matrix XX⊤ with rank(XX⊤) ≤ r and a real orthogonal matrix

V such that A−XX⊤ = V BV ⊤.

Proof. The case r = 1 is proved in [64, Theorem 4.3.26]. The case r > 1 is proved

in [75, Theorem 1.3] by induction.

Specifically for our problem, we also need the following (D̄h1 and D̄h2 are defined

in Section 2.2.2)

Lemma 2.12. Given imbalance matrices pair (D21, D23) ∈ Rh1×h1 × Rh2×h2 , we have

D̄h1 ⪰n D21 and D̄h2 ⪰m D23.

In our analysis, the weights W1,W2,W3 are “constrained” by the imbalance

D21, D23, such constraints leads to some special eigenvalue bounds (The operation

∧r was defined in Section 2.2.2):

Lemma 2.13. Given an positive semi-definite matrix A of order n, and Z ∈ Rr×n with

r ≤ n, when

A− Z⊤Z = B ,

we have

λr(ZZ
⊤) ≥ tr(A)− tr(A ∧r B) ,

and

2λr(ZAZ
⊤) ≥ tr

(︁
A2
)︁
− tr

(︁
(A ∧r B)2

)︁
+ (tr(A)− tr(A ∧r B))2

and this bound is actually tight

Lemma 2.14. Given two real symmetric matrices A,B of order n, if A ⪰r B (r ≤ n), then

there exist Z ∈ Rr×n and some orthogonal matrix V ∈ O(n), such that

A− Z⊤Z = V BV ⊤ ,
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and

λr(ZZ
⊤) = tr(A)− tr(A ∧r B) ,

2λr(ZAZ
⊤) = tr

(︁
A2
)︁
− tr

(︁
(A ∧r B)2

)︁
+ (tr(A)− tr(A ∧r B))2 .

Proof of Theorem 2.7

With these Lemmas, we are ready to prove Theorem 2.7.

Proof of Theorem 2.7. The proof is presented in two parts: First, we show ∆∗(D21, D23)

is a lower bound on the optimal value; Then we construct an optimal solution

(W ∗
1 ,W

∗
2 ,W

∗
3 ) that attains ∆∗(D21, D23) as the objective value.

Showing ∆∗(D21, D23) is a lower bound: Given any feasible triple (W1,W2,W3),

the imbalance equations

W2W
⊤
2 −W⊤

1 W1 = D21 , (2.119)

W⊤
2 W2 −W3W

⊤
3 = D23 , (2.120)

implies W2W
⊤
2 ⪰n D21 and W⊤

2 W2 ⪰m D23 by Lemma 2.10. These interlacing

relation shows

λi(W2W
⊤
2 ) ≥ λi(D21), λi(W

⊤
2 W2) ≥ λi(D23), ∀i ,

which is

λi(W2W
⊤
2 ) = λi(W

⊤
2 W2) ≥ max{λi(D21), λi(D21), 0} = λi(D̄h1) ≥ 0 , ∀i ∈ [h1]

(2.121)

Now by Lemma 2.13, imbalance equation (2.119) suggests

λn(W1W
⊤
1 ) ≥ tr(W2W

⊤
2 )− tr(W2W

⊤
2 ∧n D21) ,

and

2λn(W1W2W
⊤
2 W

⊤
1 )

≥ tr
(︁
(W2W

⊤
2 )2
)︁
− tr

(︁
(W2W

⊤
2 ∧n D21)

2
)︁
+
(︁
tr(W2W

⊤
2 )− tr(W2W

⊤
2 ∧n D21)

)︁2
.
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Notice that

λr(W1W
⊤
1 ) ≥ tr(W2W

⊤
2 )− tr(W2W

⊤
2 ∧n D21)

=

h1∑︂
i=1

λi(W2W
⊤
2 )−min{λi(W2W

⊤
2 ), λi+1−n(D21)}

=

h1∑︂
i=1

max{λi(W2W
⊤
2 )− λi+1−n(D21), 0}

≥
h1∑︂
i=1

max{λi(D̄h1)− λi+1−n(D21), 0}

= tr(D̄h1)− tr(D̄h1 ∧n D21) = ∆21 , (2.122)

where the inequality holds because (2.121) and the fact that ReLU function f(x) =

max{x, 0} is a monotonically non-decreasing function.

Since ∆21 can be viewed as summation of ReLU outputs, it has to be non-

negative, then (2.122) also suggests

(︁
tr(W2W

⊤
2 )− tr(W2W

⊤
2 ∧n D21)

)︁2 ≥ ∆2
21 . (2.123)

Next we have

2λn(W1W2W
⊤
2 W

⊤
1 )

≥ tr
(︁
(W2W

⊤
2 )2
)︁
− tr

(︁
(W2W

⊤
2 ∧n D21)

2
)︁
+
(︁
tr(W2W

⊤
2 )− tr(W2W

⊤
2 ∧n D21)

)︁2
(2.123)
≥ ∆2

21 + tr
(︁
(W2W

⊤
2 )2
)︁
− tr

(︁
(W2W

⊤
2 ∧n D21)

2
)︁

= ∆2
21 +

h1∑︂
i=1

λ2i (W2W
⊤
2 )−

(︁
min{λi(W2W

⊤
2 ), λi+1−n(D21)}

)︁2
≥ ∆2

21 +

h1∑︂
i=1

λ2i (D̄h1)−
(︁
min{λi(D̄h1), λi+1−n(D21)}

)︁2
= ∆2

21 + tr
(︂
D̄

2
h1

)︂
− tr

(︁
(D̄h1 ∧n D21)

2
)︁
= ∆2

21 +∆
(2)
21 ,

where the last inequality is because (2.121) and the fact that the function

g(x) = x2 − (min{x, a})2 =
{︄
0, x ≤ a

x2 − a2, x > a
,
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is monotonically non-decreasing on R≥0 for any constant a ∈ R.

At this point, we have shown

λn(W1W
⊤
1 ) ≥ ∆21 , 2λn(W1W2W

⊤
2 W

⊤
1 ) ≥ ∆2

21 +∆
(2)
21 . (2.124)

We can repeat the proofs above with the following replacement

W2 → W⊤
2 ,W1 → W⊤

3 , D21 → D23, D̄h1 → D̄h2 ,

and obtain

λm(W
⊤
3 W3) ≥ ∆23 , 2λm(W

⊤
3 W

⊤
2 W2W3) ≥ ∆2

23 +∆
(2)
23 . (2.125)

These inequalities (2.124)(2.125) show that

∆∗(D21, D23) = ∆
(2)
21 +∆2

21 + 2∆21∆23 +∆
(2)
23 +∆2

23 .

is a lower bound on the optimal value of our optimization problem. Now we

proceed to show tightness.

Constructing optimal solution: By Lemma 2.12, we know D̄h1 ⪰n D21, and by

Lemma 2.14, there exists Z1 ∈ Rn×h1 and orthogonal V1 ∈ O(h1) such that

D̄h1 − Z⊤
1 Z1 = V1D21V

⊤
1 , (2.126)

and most importantly,

λn(Z1Z
⊤
1 ) = ∆21, 2λn(Z1D̄h1Z

⊤
1 ) = ∆

(2)
21 +∆2

21 . (2.127)

Similarly, by Lemma Lemma 2.12, we know D̄h2 ⪰m D23, and by Lemma 2.14, there

exists Z3 ∈ Rm×h2 and orthogonal V3 ∈ O(h2) such that

D̄h2 − Z⊤
3 Z3 = V3D23V

⊤
3 , (2.128)

and most importantly,

λm(Z3Z
⊤
3 ) = ∆23, 2λm

(︁
Z3D̄h2Z

⊤
3

)︁
= ∆

(2)
23 +∆2

23 . (2.129)
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Let

W ∗
2 =

⎧⎪⎪⎨⎪⎪⎩
V ⊤
1

[︂
D̄

1
2 0h1×(h2−h1)

]︂
V3, h2 ≥ h1

V ⊤
1

[︄
D̄

1
2

0(h1−h2)×h2

]︄
V3, h2 < h1

,

where D̄ = diag{max{λi(D21), λi(D21), 0}}min{h1,h2}
i=1 , and

W ∗
1 = Z1V1, W ∗

3 = V ⊤
3 Z

⊤
3 ,

we have

W ∗
2 (W

∗
2 )

⊤ − (W ∗
1 )

⊤W ∗
1 = V ⊤

1 D̄h1V1 − V ⊤
1 Z

⊤
1 Z1V1 = D21

(W ∗
2 )

⊤W ∗
2 −W ∗

3 (W
∗
3 )

⊤ = V ⊤
3 D̄h2V3 − V ⊤

3 Z3Z
⊤
3 V3 = D23 ,

and

λr(W
∗
1 (W

∗
1 )

⊤) = λr(Z1Z
⊤
1 ) = ∆21 ,

λm((W
∗
3 )

⊤W ∗
3 ) = λm(Z

⊤
3 Z3) = ∆23 ,

2λr(W
∗
1W

∗
2 (W

∗
2 )

⊤(W ∗
1 )

⊤) = λr(Z1D̄h1Z
⊤
1 ) = ∆

(2)
21 +∆2

21 ,

2λm((W
∗
3 )

⊤(W ∗
2 )

⊤W ∗
2W

∗
3 ) = λm(Z

⊤
3 D̄h2Z3) = ∆

(2)
23 +∆2

23 ,

Therefore the lower bound ∆∗(D21, D23) is tight.

Proofs of auxiliary lemmas

We finish this section by providing the proofs of auxiliary lemmas we used in the

last section.

Proof of Lemma 2.12. Since (D21, D23) is a pair of imbalance matrices, there exists

W2W
⊤
2 , such that

W2W
⊤
2 ⪰n D21,W

⊤
2 W2 ⪰m D23 , (2.130)

because at least our weight initialization W1(0),W2(0),W3(0) have to satisfy the im-

balance constraintsW2(0)W2(0)
⊤−W⊤

1 (0)W1(0) = D21,W
⊤
2 (0)W2(0)−W3(0)W

⊤
3 (0) =

D23.
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Therefore, for 0 < i ≤ h1 − n,

λi+n(D̄h1) = max{λi+n(D21), λi+n(D23), 0} ≤ λi+n(W2W
⊤
2 ) ≤ λi(D21) ≤ λi(D̄h1) ,

where the first two inequalities uses (2.130) and the fact that λi+n(W2W
⊤
2 ) =

λi+n(W
⊤
2 W2). Also the last inequality is from the fact that

λi(D̄h1) = max{λi(D21), λi(D23), 0}, ∀i ∈ [h1] .

For h1 ≥ i > h1 − n, we still have

−∞ = λi+n(D̄h1) ≤ λi(D21) ≤ λi(D̄h1) ,

Overall, we have

λi+n(D̄h1) ≤ λi(D21) ≤ λi(D̄h1) , ∀i ,

which is exactly D̄h1 ⪰n D21.

Similarly, for 0 < i ≤ h2 −m,

λi+m(D̄h2) = max{λi+m(D21), λi+m(D23), 0} ≤ λi+m(W
⊤
2 W2) ≤ λi(D23) ≤ λi(D̄h2) ,

where the first two inequalities uses (2.130) and the fact that λi+m(W2W
⊤
2 ) =

λi+m(W
⊤
2 W2). Also the last inequality is from the fact that

λi(D̄h2) = max{λi(D21), λi(D23), 0}, ∀i ∈ [h2] .

For h2 ≥ i > h2 −m, we still have

−∞ = λi+m(D̄h2) ≤ λi(D23) ≤ λi(D̄h2) ,

Overall, we have

λi+m(D̄h2) ≤ λi(D23) ≤ λi(D̄h2) , ∀i ,

which is exactly D̄h2 ⪰m D23.
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Proof of Lemma 2.13. Notice that rank(Z⊤Z) ≤ r, hence we consider the eigende-

composition

Z⊤Z =
r∑︂

i=1

λi(Z
⊤Z)viv

⊤
i ,

where vi are unit eigenvectors of Z⊤Z. Then we can write

A− λr(Z⊤Z)viv
⊤
i −

r−1∑︂
i=1

λi(Z
⊤Z)viv

⊤
i = B

We letD = A−λr(Z⊤Z)viv
⊤
i , then by Lemma 2.10, we knowA ⪰1 D, andD ⪰r−1 B,

which suggests that ∀i,

λi+1(A) ≤ λi(D) ≤ λi(A) (2.131)

λi+r−1(D) ≤ λi(B) ≤ λi(D) . (2.132)

In particular, we have λi(D) ≤ λi(A) from (2.131) and λi(D) ≤ λi+1−r(B) from

(2.132), which suggests

λi(D) ≤ min{λi(A), λi+1−r(B)} = λi (A ∧r B) , ∀i .

Hence

tr(A ∧r B) ≥ tr(D) = tr(A)− λr(Z⊤Z)tr(viv
⊤
i ) = tr(A)− λr(Z⊤Z) .

This proves the first inequality.

For the second the inequality, let x be the unit eigenvector associated with

λr(ZAZ
⊤), then λr(ZAZ⊤) = x⊤ZAZ⊤x. Now write

A− Zxx⊤Z⊤ − Z(I − xx⊤)Z⊤ = B .

Let D̃ = A− Zxx⊤Z⊤, then again by Lemma 2.10 we have A ⪰1 D̃, and D̃ ⪰r−1 B.

Notice that

D̃
2
= (A− Zxx⊤Z⊤)2

= A2 + (Zxx⊤Z⊤)2 − AZxx⊤Z⊤ − Zxx⊤Z⊤A .
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Taking trace on both side of this equation and using the cyclic property of trace

operation lead to

tr(D̃
2
) = tr

(︁
A2
)︁
+ ∥Zx∥4 − 2λr(ZAZ

⊤) . (2.133)

We only need to lower bound ∥Zx∥4 − tr(D̃
2
), for which we write the eigendecom-

position D̃ using eigenpairs {(λi(D̃), ui)}ni=1 as

D̃ =
n∑︂

i=1

λi(D̃)uiu
⊤
i =

n−1∑︂
j=1

λi(D̃)uiu
⊤
i + λn(D̃)unu

⊤
n .

Then we have

∥Zx∥2 = tr(Zxx⊤Z⊤) = tr(A)− tr(D̃)

= tr(A)−
n−1∑︂
j=1

λj(D̃)− λn(D̃)

≥ tr(A)−
n−1∑︂
j=1

λj(A ∧r B)− λn(D̃)

= tr(A)− tr(A ∧r B) + λn(A ∧r B)− λn(D̃) ,

where the inequality follows similar argument in the previous part of the proof and

uses

λi(D̃) ≤ min{λi(A), λi+1−r(B)} = λi (A ∧r B) , (2.134)

from the fact that A ⪰1 D̃, and D̃ ⪰r−1 B.

Now examine the right-hand side carefully: The first component tr(A)− tr(A∧r
B) is non-negative because λi(A) ≥ λi(A ∧r B), ∀i. The second component λn(A ∧r
B) − λn(D̃) is non-negative as well by (2.134). Therefore the right-hand side is

non-negative and we can take square on both sides of the inequality, namely,

∥W1x∥4 ≥
(︂
tr(A)− tr(A ∧r B) + λn(A ∧r B)− λn(D̃)

)︂2
. (2.135)
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We also have

tr(D̃
2
) =

n−1∑︂
i=1

λ2i (D̃) + λ2n(D̃)

≤
n−1∑︂
i=1

λ2i (A ∧r B) + λ2n(D̃)

= tr
(︁
(A ∧r B)2

)︁
− λ2n(A ∧r B) + λ2n(D̃) , (2.136)

The inequality holds because for i = 1, · · · , n− 1,

0 ≤ λi+1(A) ≤ λi(D̃) ≤ λi(A ∧r B) ,

where the inequality on the left is from A ⪰1 D̃ and the inequality on the right is

due to (2.134).

With those two inequalities (2.135)(2.136), we have (For simplicity, denote λ∧ :=

λn(A ∧r B), λ̃ := λn(D̃))

∥W1x∥4 − tr(D̃
2
)−

[︁
(tr(A)− tr(A ∧r B))2 − tr

(︁
(A ∧r B)2

)︁]︁
≥ λ2∧ + λ̃

2 − 2λ∧λ̃+ 2(λ∧ − λ̃)(tr(A)− tr(A ∧r B)) + λ2∧ − λ̃
2

= 2λ2∧ − 2λ∧λ̃+ 2(λ∧ − λ̃)(tr(A)− tr(A ∧r B))

= 2(λ∧ − λ̃)(tr(A)− tr(A ∧r B) + λ∧) ≥ 0 ,

where the last inequality is due to the facts that λ∧ ≥ λ̃ by (2.134) and

tr(A)− tr(A ∧r B) + λ∧

=
n−1∑︂
i=1

(λi(A)− λi(A ∧r B)) + λn(A) ≥ 0 .

This shows

∥Zx∥4 − tr(D̃
2
) ≥ (tr(A)− tr(A ∧r B))2 − tr

(︁
(A ∧r B)2

)︁
.

Finally from (2.133) we have

2λr(ZAZ
⊤) = tr

(︁
(A)2

)︁
+ ∥Zx∥4 − tr(D̃

2
)

≥ tr
(︁
(A)2

)︁
− tr

(︁
(A ∧r B)2

)︁
+ (tr(A)− tr(A ∧r B))2 .
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To proof Lemma 2.14, we need one final lemma

Lemma 2.15. Given two real symmetric matricesA,B of order n, for any r ≤ n, ifA ⪰r B,

then A ⪰1 (A ∧r B) and (A ∧r B) ⪰r−1 B.

Proof. Denote D := A ∧r B, we show A ⪰1 D and D ⪰r−1 B. The following

statements holds for any index i ∈ [n].

First of all, we have

λi(D) = min{λi(A), λi+1−r(B)} ≤ λi(A) , (2.137)

and

λi+1(A) ≤ min{λi(A), λi+1−r(B)} = λi(D) , (2.138)

where λi+1(A) ≤ λi+1−r(B) is from A ⪰r B. (2.137)(2.138) together show A ⪰1 D.

Next, notice that

λi(B) ≤ min{λi(A), λi+1−r(B)} = λi(D) , (2.139)

where λi(B) ≤ λi(A) is from A ⪰r B, and

λi+r−1(D) = min{λi+r−1(A), λi(B)} ≤ λi(B) (2.140)

(2.139)(2.140) together show D ⪰r−1 B.

Then we are ready to prove Lemma 2.14

Proof of Lemma 2.14. Denote D := A ∧r B. We have shown in Lemma 2.15 that

A ⪰1 D and D ⪰r−1 B.

With the two interlacing relations, we know there exist x ∈ Rn×1, X ∈ Rn×(r−1)

and some orthogonal matrices V1, V2 ∈ O(n) such that

A− xx⊤ = V1DV
⊤
1 , D −XX⊤ = V2BV

⊤
2 , (2.141)
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then let V := V1V2, we have

A− xx⊤ − V1XX⊤V ⊤
1 = V1V2BV

⊤
2 V

⊤
1 = V BV ⊤ . (2.142)

Notice that

xx⊤ + V1XX
⊤V ⊤

1 =
[︁
x V1X

]︁ [︃ x⊤

X⊤V ⊤
1

]︃
,

then with Z⊤ :=
[︁
x V1X

]︁
∈ Rn×r, we can write

A− Z⊤Z = V1V2BV
⊤
2 V

⊤
1 = V BV ⊤ .

It remains to show λr(ZZ
⊤) and 2λr(ZAZ

⊤) have the exact expressions as stated.

Notice that A− xx⊤ = V1DV
⊤
1 , then we have

∥x∥2 = tr(xx⊤) = tr(A− V1DV ⊤
1 ) = tr(A)− tr(D) . (2.143)

Moreover, taking trace on both sides of (A− xx⊤)2 = (V1DV
⊤
1 )2 yields

tr
(︁
(A)2

)︁
− 2x⊤Ax+ ∥x∥4 = tr(D2) ,

from which we have

2x⊤Ax = tr(A)− tr(D2) + ∥x∥4 = tr(A)− tr(D2) + (tr(A)− tr(D))2 . (2.144)

Finally, notice that the first diagonal entry of

ZZ⊤ =

[︃
x⊤

X⊤V ⊤
1

]︃ [︁
x V1X

]︁
=

[︃
∥x∥2 x⊤X
X⊤x X⊤X

]︃
is ∥x∥2, we have, by [64, Corollary 4.3.34],

λr(ZZ
⊤) ≤ ∥x∥2 = tr(A)− tr(D) = tr(A)− tr(A ∧r B) .

Since we have already shown in Lemma 2.13 that

λr(ZZ
⊤) ≥ tr(A)− tr(A ∧r B) ,

we must have the exact equality λr(ZZ⊤) = tr(A)− tr(A ∧r B).
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Similarly, the first diagonal entry of

ZAZ⊤ =

[︃
x⊤

X⊤V ⊤
1

]︃
A
[︁
x V1X

]︁
=

[︃
x⊤Ax x⊤AX
X⊤Ax X⊤AX

]︃
is x⊤Ax, then we have, by [64, Corollary 4.3.34],

2λr(ZAZ
⊤) ≤ 2x⊤Ax = tr

(︁
A2
)︁
− tr

(︁
(A ∧r B)2

)︁
+ (tr(A)− tr(A ∧r B))2 .

Again, Lemma 2.13 shows the inequality in the opposite direction, hence one must

take the equality

2λr(ZAZ
⊤) = x⊤Ax = tr

(︁
A2
)︁
− tr

(︁
(A ∧r B)2

)︁
+ (tr(A)− tr(A ∧r B))2 .

Proof of Theorem 2.5

We prove Theorem 2.5 in two parts: First, we prove the lower bound under the uni-

modality assumption. Then we show the bound for the weights with homogeneous

imbalance.

Lower bound on λmin(T{Wl}Ll=1
) under unimodality

We need the following two Lemmas:

Lemma 2.16. Given A ∈ Rn×h, B ∈ Rh×m, and D = A⊤A−BB⊤ ∈ Rh×h. If rank(A) ≤

r and D ⪰ 0, then

1. rank(B) ≤ r, and rank(D) ≤ r.

2. There exists Q ∈ Rh×r with Q⊤Q = Ir, such that

AQQ⊤B = AB, AQQ⊤A⊤ = AA⊤, B⊤QQ⊤B = B⊤B ,

and λi(Q⊤DQ) = λi(D), i = 1, · · · , r.
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Lemma 2.17. For W1 ∈ Rn×h1 ,W2 ∈ Rh1×h2 · · · ,WL−1 ∈ RhL−2×hL−1 and WL ∈

RhL−1×hL such that

Dl = W⊤
l Wl −Wl+1W

⊤
l+1 ⪰ 0 , l = 1, · · · , L− 1

we have

λn(W1W2 · · ·WL−1W
⊤
L−1 · · ·W⊤

2 W
⊤
1 ) ≥

L−1∏︂
i=1

L−1∑︂
l=i

λn(Dl) .

Then we can prove the following:

Theorem 2.8. For weights {Wl}Ll=1 with unimodality index l∗, we have

λmin

(︂
T{Wl}Ll=1

)︂
≥

L−1∏︂
l=1

d̃(i) . (2.145)

Proof. Recall that

T{Wl}Ll=1
E =

L∑︂
l=1

(︄
l−1∏︂
i=1

Wi

)︄(︄
l−1∏︂
i=1

Wi

)︄⊤

E

(︄
L+1∏︂
i=l+1

Wi

)︄⊤(︄ L+1∏︂
i=l+1

Wi

)︄
.

For simplicity, define p.s.d. operators

TlE :=

(︄
l−1∏︂
i=1

Wi

)︄(︄
l−1∏︂
i=1

Wi

)︄⊤

E

(︄
L+1∏︂
i=l+1

Wi

)︄⊤(︄ L+1∏︂
i=l+1

Wi

)︄
, l = 1, · · · , L

Then T{Wl}Ll=1
=
∑︁L

l=1 Tl.

When l∗ = L, we have, by Lemma 2.17,

λmin(T{Wl}Ll=1
) ≥ λmin(TL) = λn(W1 · · ·WL−1W

⊤
L−1 · · ·W⊤

1 ) ≥
L−1∏︂
i=1

L−1∑︂
l=i

λn(Dl) =
L−1∏︂
l=1

d̃(i) .

When l∗ = 1, we have, again by Lemma 2.17,

λmin(T{Wl}Ll=1
) ≥ λmin(T1) = λm(W

⊤
L · · ·W⊤

2 W2 · · ·WL) ≥
L−1∏︂
i=1

L−1∑︂
l=i

λm(−DL−l)

=
L−1∏︂
i=1

L−i∑︂
l=1

λm(−Dl)

=
L−1∏︂
i=1

i∑︂
l=1

λm(−Dl) =
L−1∏︂
l=1

d̃(i) .
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(To see Lemma 2.17 applies to the case l∗ = 1, consider the following

W⊤
L → W1, · · · ,W⊤

L−l+1 → Wl, · · · ,W⊤
1 → WL ,

and this naturally leads to −DL−l → Dl. The expressions on the right-hand side of

the arrow are those appearing in Lemma 2.17.)

Now for unimodality index 1 < l∗ < L, we have

λmin(T{Wl}Ll=1
) ≥ λmin(Tl∗) = λn(W1 · · ·Wl∗−1W

⊤
l∗−1 · · ·W1)λm(W

⊤
L · · ·W⊤

l∗+1Wl∗+1 · · ·WL) .

Now apply Lemma 2.17 to both {W1, · · · ,Wl∗−1,Wl∗} and {W⊤
L , · · · ,W⊤

l∗+1,W
⊤
l∗ },

we have

λn(W1 · · ·Wl∗−1W
⊤
l∗−1 · · ·W1) ≥

l∗−1∏︂
i=1

l∗−1∑︂
l=i

λn(Dl) =
l∗−1∏︂
i=1

d̃(i) , (2.146)

and

λm(W
⊤
L · · ·W⊤

l∗+1Wl∗+1 · · ·WL) ≥
L−l∗∏︂
i=1

L−l∗∑︂
l=i

λm(−DL−l)

=
L−l∗∏︂
i=1

L−i∑︂
l=l∗

λm(−Dl)

=
L−1∏︂
i=l∗

i∑︂
l=l∗

λm(−Dl) =
L−1∏︂
i=l∗

d̃(i) . (2.147)

Combining (2.146) and (2.147), we have

λn(W1 · · ·Wl∗−1W
⊤
l∗−1 · · ·W1)λm(W

⊤
L · · ·W⊤

l∗+1Wl∗+1 · · ·WL) ≥
L−1∏︂
i=1

d̃(i) , (2.148)

which leads to λmin(T{Wl}Ll=1
) ≥∏︁L−1

i=1 d̃(i). The proof is complete as we have shown

λmin(T{Wl}Ll=1
) ≥∏︁L−1

i=1 d̃(i) for any unimodality index l∗ ∈ [L].

Lower bound on λmin(T{Wl}Ll=1
) under homogeneous imbalance

We need the following Lemma:
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Lemma 2.18. Given any set of scalars {wl}Ll=1 such that d(i) := w2
i − w2

L ≥ 0, i =

1, · · · , L− 1, we have

L∑︂
l=1

∏︂
i ̸=l

w2
i =

L∑︂
l=1

w2

w2
l

≥

⌜⃓⃓⎷(︄L−1∏︂
i=1

d(i)

)︄2

+ (Lw2−2/L)
2
, (2.149)

where w =
∏︁L

l=1wl.

Then we can prove the following:

Theorem 2.9. For weights {Wl}Ll=1 with homogeneous imbalance, we have

λmin

(︂
T{Wl}Ll=1

)︂
≥

⌜⃓⃓⎷(︄L−1∏︂
l=1

d̃(i)

)︄2

+
(︂
Lσ

2−2/L
min (W )

)︂2
, W =

L∏︂
l=1

Wl . (2.150)

Proof. When all imbalance matrices are zero matrices, this is the balanced case [27]

and λmin

(︂
T{Wl}Ll=1

)︂
= Lσ

2−2/L
min (W ). Here we only prove the case when some dl ̸= 0.

Notice that given the homogeneous imbalance constraint

W⊤
l Wl −Wl+1W

⊤
l+1 = dlI ,

W⊤
l Wl and Wl+1W

⊤
l+1 must be co-diagonalizable: If we have Q⊤Q = I such that

Q⊤W⊤
l WlQ is diagonal, then Q⊤Wl+1W

⊤
l+1Q must be diagonal as well from the fact

that Q⊤W⊤
l WlQ−Q⊤Wl+1W

⊤
l+1Q = dlI .

Moreover, if the diagonal entries of Q⊤W⊤
l WlQ are in decreasing order, then so

are those of Q⊤Wl+1W
⊤
l+1Q because the latter is the shifted version of the former by

dl.

This suggests that all Wl, l = 1, · · · , L have the same rank and one has the

following decomposition of the weights:

Wl = Ql−1ΣlQ
⊤
l , (2.151)

Here, Σl, l = 1, · · · , L are diagonal matrix of size k = min{n,m}whose entries are

in decreasing order. And Ql ∈ Rhl×min{n,m} with Q⊤
l Ql = I . (h0 = n, hL = m). From
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such decomposition, we have

W = W1 · · ·WL = Q0Σ1Q
⊤
1 Q1Σ2Q

⊤
2 · · ·QL−1ΣLQ

⊤
L = Q0

(︄
L∏︂
l=1

Σl

)︄
Q⊤

L , (2.152)

thus

σmin(W ) =
L∏︂
l=1

λmin(Σl) . (2.153)

Regarding the imbalance, we have

Q⊤
l (W

⊤
l Wl −Wl+1W

⊤
l+1)Ql = dlI ⇒ Σ2

l − Σ2
l+1 = dlI , (2.154)

which suggests that

λ2min(Σl)− λ2min(Σl+1) = dl, l = 1, · · · , L− 1 . (2.155)

Now consider the set of scalars {wl}Ll=1:

wl = λmin(Σl), l = 1, · · · , l∗ − 1

wl = λmin(Σl+1), l = l∗, · · · , L− 1

wL = λmin(Σl∗) .

Then {wl}Ll=1 satisfy the assumption in Lemma 2.18:

w2
i − w2

L = d̃(i) ≥ 0, i = 1, · · · , L− 1 , (2.156)

where d̃(i) is precisely the cumulative imbalance. Then Lemma 2.18 gives ((2.153) is

also used here)

L∑︂
l=1

∏︂
i ̸=l

w2
i ≥

⌜⃓⃓⎷(︄L−1∏︂
i=1

d̃(i)

)︄2

+
(︂
Lσ

2−2/L
min (W )

)︂2
(2.157)

Recall that

T{Wl}Ll=1
E =

L∑︂
l=1

(︄
l−1∏︂
i=0

Wi

)︄(︄
l−1∏︂
i=0

Wi

)︄⊤

E

(︄
L+1∏︂
i=l+1

Wi

)︄⊤(︄ L+1∏︂
i=l+1

Wi

)︄
.
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For simplicity, define p.s.d. operators

TlE :=

(︄
l−1∏︂
i=0

Wi

)︄(︄
l−1∏︂
i=0

Wi

)︄⊤

E

(︄
L+1∏︂
i=l+1

Wi

)︄⊤(︄ L+1∏︂
i=l+1

Wi

)︄
, l = 1, · · · , L

Then T{Wl}Ll=1
=
∑︁L

l=1 Tl.

Notice that the summand
∏︁

i ̸=l w
2
i exactly corresponds to one of λmin(Tl). For

example,

λmin(T1) = λmin(W
⊤
L · · ·W⊤

2 W2 · · ·WL) = λmin

(︄
Q⊤

L

(︄
L∏︂
l=2

Σ2
l

)︄
QL

)︄
=
∏︂
i ̸=1

w2
i .

(2.158)

More precisely, we have

λmin(Tl) =
∏︂
i ̸=l

w2
i , l < l∗

λmin(Tl) =
∏︂
i ̸=l−1

w2
i , l > l∗

λmin(Tl) =
∏︂
i ̸=L

w2
i , l = l∗ .

Therefore, we finally have

λmin(T{Wl}Ll=1
) ≥

L∑︂
l=1

λmin(Tl) =
L∑︂
l=1

∏︂
i ̸=l

w2
i ≥

⌜⃓⃓⎷(︄L−1∏︂
i=1

d̃(i)

)︄2

+
(︂
Lσ

2−2/L
min (W )

)︂2
.

(2.159)
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Proofs of auxiliary lemmas

Proof of Lemma 2.17. The proof is rather simple when n = h1 = h2 = · · · = hL−1:

Notice that

λn(W1W2 · · ·WL−1W
⊤
L−1 · · ·W⊤

2 W
⊤
1 )

≥ λn(WL−1W
⊤
L−1) · λn(W1W2 · · ·WL−2W

⊤
L−2 · · ·W⊤

2 W
⊤
1 )

≥ λn(WL−1W
⊤
L−1) · λn(WL−2W

⊤
L−2) · λn(W1W2 · · ·WL−3W

⊤
L−3 · · ·W⊤

2 W
⊤
1 )

· · ·

≥
L−1∏︂
i=1

λn(WiW
⊤
i ) .

Then it remains to show that λn(WiW
⊤
i ) ≥∑︁L−1

l=i λn(Dl) for i = 1, · · · , L− 1.

Suppose λn(WkW
⊤
k ) ≥∑︁L−1

l=k λl(D) for some k ∈ [L− 1], then we have

λn(Wk−1W
⊤
k−1) = λn(W

⊤
k−1Wk−1)

= λn(WkW
⊤
k +Dk−1)

≥ λn(WkW
⊤
k ) + λn(Dk−1)

≥
L−1∑︂
l=k

λn(Dl) + λn(Dk−1) =
L−1∑︂

l=k−1

λn(Dl) .

Therefore, we only need to show λn(WL−1W
⊤
L−1) ≥ λn(DL−1) then the rest follows

by the induction above. Indeed

λn(WL−1W
⊤
L−1) = λn(W

⊤
L−1WL−1) = λn(WLW

⊤
L +DL−1) ≥ λn(DL−1) ,

which finishes the proof for the case of n = h1 = h2 = · · · = hL−1.

When the above assumptions does not hold, Lemma 2.16 allows us to related

the set of weights {Wl}Ll=1 to the one {W̃ l}Ll=1 that satisfy the equal dimension

assumption. More specifically, apply Lemma 2.16 using each imbalance constraint

Dl = W⊤
l Wl −Wl+1W

⊤
l+1 ⪰ 0 , l = 1, · · · , L− 1 ,
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to obtain a Ql ∈ Rhl×n that has all the property in Lemma (2.16). Use these Ql, l =

1, · · · , L− 1 to define

W̃ l = Q⊤
l−1WlQl , l = 1, · · · , L,

D̃l = W̃
⊤
l W̃ l − W̃

⊤
l+1W̃ l+1 , l = 1, · · · , L− 1 ,

where Q0 = I,QL = I . Now {W̃ l}Ll=1 satisfies the assumption that n = h1 = · · · =

hL−1, then

λn(W̃ 1W̃ 2 · · · W̃L−1W̃
⊤
L−1 · · · W̃

⊤
2 W̃

⊤
1 ) ≥

L−1∏︂
i=1

L−1∑︂
l=i

λn(D̃l) . (2.160)

Using the properties of Ql ∈ Rhl×n, l = 1, · · · , L− 1, we have

λn(W̃ 1W̃ 2 · · · W̃L−1W̃
⊤
L−1 · · · W̃

⊤
2 W̃

⊤
1 )

= λn(W1Q1Q
⊤
1W2Q2 · · ·Q⊤

L−2WL−1QL−1Q
⊤
L−1W

⊤
L−1Q

⊤
L−2 · · ·Q⊤

2W
⊤
2 Q1Q

⊤
1W

⊤
1 )

= λn(W1W2 · · ·WL−1W
⊤
L−1 · · ·W⊤

2 W
⊤
1 ) ,

and
L−1∏︂
i=1

L−1∑︂
l=i

λn(D̃l) =
L−1∏︂
i=1

L−1∑︂
l=i

λn(Q
⊤
l DlQl) =

L−1∏︂
i=1

L−1∑︂
l=i

λn(Dl) .

Therefore, (2.160) is exactly

λn(W1W2 · · ·WL−1W
⊤
L−1 · · ·W⊤

2 W
⊤
1 ) ≥

L−1∏︂
i=1

L−1∑︂
l=i

λn(Dl) . (2.161)

Proof of Lemma 2.16. Since rank(A) ≤ r, A has a compact SVD A = PΣAQ
⊤ such

that Q ∈ Rh×r and Q⊤Q = Ir.

This is exactly Q we are looking for. Let Q⊥Q
⊤
⊥ = Ih − QQ⊤ be the projection

onto the subspace orthogonal to the columns of Q. Then

D = A⊤A− BB⊤ ⇒ Q⊤
⊥DQ⊥ = Q⊤

⊥A
⊤AQ⊥ −Q⊤

⊥BB
⊤Q⊥

⇒ Q⊤
⊥DQ⊥ +Q⊤

⊥BB
⊤Q⊥ = 0 .
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Q⊤
⊥DQ⊥ and Q⊤

⊥BB
⊤Q⊥ are two p.s.d. matrices whose sum is zero, which implies

Q⊤
⊥DQ⊥ = 0, DQ⊥ = 0, Q⊤

⊥BB
⊤Q⊥ = 0, B⊤Q⊥ = 0 .

Q⊤
⊥DQ⊥ = 0 shows that the nullspace of D has at least dimension h − r, i.e.,

rank(D) ≤ r.

Moreover

AQQ⊤B = A(Ih −Q⊥Q
⊤
⊥)B = AB

AQQ⊤A⊤ = A(Ih −Q⊥Q
⊤
⊥)A

⊤ = AA⊤

B⊤QQ⊤B = B⊤(Ih −Q⊥Q
⊤
⊥)B = B⊤B

The last equality B⊤B = B⊤QQ⊤B shows that rank(B) ≤ r.

Lastly, we have, for i = 1, · · · , r,

λi(Q
⊤DQ) = λi(QQ

⊤D) = λi((Ih −Q⊥Q
⊤
⊥)D) = λi(D) .

Before proving Lemma 2.18, we state a Lemma that will be used in the proof.

Lemma 2.19. Given positive xi, i = 1, · · · , n, we have

n∑︂
i=1

xi ≥ n

(︄
n∏︂

i=1

xi

)︄1/n

.

Proof. This is from the fact that arithmetic mean of {xi}ni=1 is greater than the geo-

metric mean of {xi}ni=1.

We are ready to prove Lemma 2.18.

Proof of Lemma 2.18. We denote

τ{wl}Li=1
:=

L∑︂
l=1

∏︂
i ̸=l

w2
i (2.162)
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Notice that w2
i = w2

L +
∑︁L−1

j=i (w
2
j − w2

j+1) = w2
L + d(i). Let d(L) = 0, we write the

expression for τ as

τ{wl}Li=1
=

L∑︂
l=1

∏︂
i ̸=l

w2
i =

L∑︂
l=1

∏︂
i ̸=l

(︁
w2

L + d(i)
)︁
:= τ(w2

L; {d(i)}L−1
i=1 ) .

Therefore, when fixing {d(i)}L−1
i=1 , τ can be viewed as a function of w2

L.

When w = 0: one of wl must be zero, and because w2
L has the least value among

all the weights, we know w2
L = 0. Then

τ{wl}Li=1
= τ(0; {d(i)}L−1

i=1 ) =
L−1∏︂
i=1

d(i) ,

i.e. we actually have equality when w = 0.

When w ̸= 0: then w2 ̸= 0 and we write

w2 =
L∏︂
l=1

w2
l = w2

L

L−1∏︂
l=1

(︁
w2

L + d(l)
)︁
:= p(w2

L; {d(i)}L−1
i=1 ) ,

which shows w2 is a function of w2
L when {d(i)}L−1

i=1 are fixed. Here we use p to

denote w2 for simplicity. Moreover, function p: R≥0 → R≥0 has differentiable inverse

p−1 as long as p > 0, because

dp

dw2
L

=
L∑︂
l=1

∏︂
i ̸=l

(︁
w2

L + d(i)
)︁
=

L∑︂
l=1

∏︂
i ̸=l

w2
i

(Lemma 2.19)
≥ L

(︁
pL−1

)︁1/L
> 0 ,

and inverse function theorem [76] shows the existence of differentiable inverse.

Whenever, p−1 exists, it derivative is

dw2
L

dp
=

(︄
L∑︂
l=1

∏︂
i ̸=l

(︁
w2

L + d(i)
)︁)︄−1

= τ−1 .

Now pick any 0 < p0 ≤ w2 we have, by Fundamental Theorem of Calculus,

τ 2{wl}Ll=1
= τ 2(p−1(w2); {d(i)}L−1

i=1 )

= τ 2(p−1(p0); {d(i)}L−1
i=1 ) +

∫︂ p−1(w2)

p−1(p0)

d

dw2
L

τ 2(w2
L; {d(i)}L−1

i=1 )dw
2
L
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For the first part, we have

τ 2(p−1(p0); {d(i)}L−1
i=1 )

=

(︄
L∑︂
l=1

∏︂
i ̸=l

(︁
p−1(p0) + d(i)

)︁)︄2

≥
(︄∏︂

i ̸=L

(︁
p−1(p0) + d(i)

)︁)︄2

≥
(︄

L−1∏︂
i=1

d(i)

)︄2

,

and for the second part, we have∫︂ p−1(w2)

p−1(p0)

d

dw2
L

τ 2dw2
L

=

∫︂ p−1(w2)

p−1(p0)

2τ
d

dw2
L

τdw2
L

=

∫︂ p−1(w2)

p−1(p0)

2τ
L∑︂
l=1

∑︂
i ̸=l

∏︂
j ̸=i,j ̸=l

(w2
L + d(j))dw

2
L

=

∫︂ p−1(w2)

p−1(p0)

2τ
L∑︂
l=1

∑︂
i ̸=l

p

w2
iw

2
l

dw2
L

(Lemma 2.19) ≥
∫︂ p−1(w2)

p−1(p0)

2τL(L− 1)

(︄
L∏︂
l=1

∏︂
i ̸=l

p

w2
iw

2
l

)︄ 1
L(L−1)

dw2
L

=

∫︂ p−1(w2)

p−1(p0)

2τL(L− 1)

(︃
pL(L−1)

p2L−2

)︃ 1
L(L−1)

dw2
L

=

∫︂ p−1(w2)

p−1(p0)

2τL(L− 1)p1−2/Ldw2
L

(dw2
L = τ−1dp) =

∫︂ w2

p0

2L(L− 1)p1−2/Ldp = L2p2−2/L
⃓⃓w2

p0
=
(︁
Lw2−2/L

)︁2 − L2p
2−2/L
0 .

Overall, for any 0 < p0 ≤ w2, we have

τ 2{wl}Ll=1
≥
(︄

L−1∏︂
i=1

d(i)

)︄2

+
(︁
Lw2−2/L

)︁2 − L2p
2−2/L
0 .

Let p0 → 0, we have τ 2 ≥
(︂∏︁L−1

i=1 d(i)

)︂2
+
(︁
Lw2−2/L

)︁2, i.e.

τ ≥

⌜⃓⃓⎷(︄L−1∏︂
i=1

d(i)

)︄2

+ (Lw2−2/L)
2
.
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2.3 Two-layer ReLU networks

In this section, we provide a complete analysis of the dynamics of gradient flow for

the problem of training a two-layer ReLU network on well-separated data under

the assumption of small initialization. Specifically, we show that if the initialization

is sufficiently small, during the early phase of training the neurons in the first layer

try to align with either the positive data or the negative data, depending on its

corresponding weight on the second layer. Moreover, through a careful analysis of

the neuron’s directional dynamics we show that the time it takes for all neurons to

achieve good alignment with the input data is upper bounded by O( logn√
µ
), where n

is the number of data points and µ measures how well the data are separated. We

also show that after the early alignment phase the loss converges to zero at a O(1
t
)

rate and that the weight matrix on the first layer is approximately low-rank.

2.3.1 Preliminaries

We first discuss the problem setup. We then present some key ingredients for

analyzing the training dynamics of ReLU networks under small initialization, and

discuss some of the weaknesses/issues from prior work.

Problem setting

We are interested in a binary classification problem with dataset [x1, · · · , xn] ∈ RD×n

(input data) and [y1, · · · , yn]⊤ ∈ {−1,+1}n (labels). For the classifier, f : RD → R,

we consider a two-layer ReLU network:

f(x;W, v) = v⊤σ(W⊤x) =
∑︂h

j=1
vjσ(w

⊤
j x) , (2.163)

parametrized by network weights W := [w1, · · · , wh] ∈ RD×h, v := [v1, · · · , vh]⊤ ∈

Rh×1, where σ(·) = max{·, 0} is the ReLU activation function. We aim to find the

network weights that minimize the training loss L(W, v) = ∑︁n
i=1 ℓ(yi, f(xi;W, v)),
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where ℓ : R× R → R≥0 is the exponential loss ℓ(y, ŷ) = exp(−yŷ). The network is

trained via the gradient flow (GF) dynamics

Ẇ ∈ ∂WL(W, v), v̇ ∈ ∂vL(W, v), (2.164)

where ∂WL, ∂vL are Clark sub-differentials of L. Therefore, (2.164) is a differential

inclusion [77]. The work of [16] shows that there exist global solutions to (2.164) if

one uses σ′(x) = 1x>0 as the ReLU subgradient. Therefore, we follow this choice of

subgradient for our analysis.

To initialize the weights, we consider the following initialization scheme. First,

we start from a weight matrix W0 ∈ RD×h, and then and then initialize the weights

as

W (0) = ϵW0, vj(0) ∈ {∥wj(0)∥,−∥wj(0)∥}, ∀j ∈ [h] . (2.165)

That is, the weight matrix W0 determines the initial shape of the first-layer weights

W (0) and we use ϵ to control the initialization scale and we are interested in the

regime where ϵ is sufficiently small. For the second layer weights v(0), each vj(0)

has magnitude ∥wj(0)∥ and we only need to decide its sign. Our results in later

sections are stated for a deterministic choice of ϵ,W0, and v(0), then we comment

on the case where W0 is chosen randomly via some distribution.

The resulting weights in (2.165) are always "balanced", i.e., v2j (0)− ∥wj(0)∥2 =

0, ∀j ∈ [h], because vj(0) can only take two values: either ∥wj(0)∥ or−∥wj(0)∥. More

importantly, under GF (2.164), this balancedness is preserved [61]: v2j (t)−∥wj(t)∥2 =

0, ∀t ≥ 0, ∀j ∈ [h]. In addition, it is shown in [16] that sign(vj(t)) = sign(vj(0)), ∀t ≥

0, ∀j ∈ [h], and the dynamical behaviors of neurons will be divided into two types,

depending on sign(vj(0)).

Remark 3. For our theoretical results, the balancedness condition is assumed for technical

purposes: it simplifies the dynamics of GF and thus the analysis. It is a common assumption

for many existing works on both linear [27] and nonlinear [78, 16] neural networks. For the
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experiments in Section 2.3.3, we use a standard Gaussian initialization with small variance,

which is not balanced.

Remark 4. Without loss of generality, we consider the case where all columns of W0

are nonzero, i.e., ∥wj(0)∥ > 0, ∀j ∈ [h]. We make this assumption because whenever

wj(0) = 0, we also have vj(0) = 0 from the balancedness, which together would imply

v̇j ≡ 0, ẇj ≡ 0 under gradient flow. As a result, wj and vj would remain zero and thus

they could be ignored in the convergence analysis.

Remark 5. Our main results will depend on both maxj ∥wj(0)∥ and minj ∥wj(0)∥, as

shown in our proofs in Appendices 2.3.3 and 2.3.3. Therefore, whenever we speak of small

initialization, we will say that ϵ is small without worrying about the scale of W0, which is

already considered in our results.

Neural alignment with small initialization: an overview

Prior work argues that the gradient flow dynamics (2.164) under small initializa-

tion (2.165), i.e., when ϵ is sufficiently small, can be roughly described as "align then

fit" [79, 16]: During the early phase of training, every neuron wj, j ∈ [h] keeps a

small norm ∥wj∥2 ≪ 1 while changing their directions wj

∥wj∥ significantly in order to

locally maximize a "signed coverage" [79] of itself w.r.t. the training data. After the

alignment phase, part of the neurons (potentially all neurons) start to grow their

norms in order to fit the training data, and the loss decreases significantly. The

analysis for the fitting phase generally depends on the resulting neuron directions

at the end of the alignment phase [78, 16]. However, prior analysis of the alignment

phase either is based on a vanishing initialization argument that can not be directly

translated into the case finite but small initialization [79] or assumes some stringent

assumption on the data [16]. In this section, we provide a brief overview of the

existing analysis for neural alignment and then point out several weaknesses in

prior work.
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Figure 2-7. Illustration of d
dt

wj

∥wj∥ dur-
ing the early alignment phase. x1
has +1 label, and x2, x3 have −1 la-
bels, x1, x2 lie inside the halfspace
⟨x, wj⟩ > 0 (gray shaded), thus
xa(wj) = x1 − x2. Since sign(vj(0)) >
0, GF pushes wj towards xa(wj).

Prior analysis of the alignment phase:

Since during the alignment phase all neu-

rons have small norm, prior work mainly

focuses on the directional dynamics, i.e.,

d
dt

wj

∥wj∥ , of the neurons. The analysis relies

on the following approximation of the dy-

namics of every neuron wj, j ∈ [h]:

d

dt

wj

∥wj∥
≃ sign(vj(0))Pwj(t)xa(wj) , (2.166)

where Pw = I − ww⊤

∥w∥2 is the projection onto

the subspace orthogonal to w and

xa(w) :=
∑︂

i:⟨xi,w⟩>0
yixi (2.167)

denotes the signed combination of the data points activated by w.

First of all, (2.166) implies that the dynamics wj

∥wj∥ are approximately decoupled,

and thus one can study each wj

∥wj∥ separately. Moreover, as illustrated in Figure 2-7,

if sign(vj(0)) > 0, the flow (2.166) pushes wj towards xa(wj), since wj is attracted by

its currently activated positive data and repelled by its currently activated negative

data. Intuitively, during the alignment phase, a neuron wj with sign(vj(0)) > 0

would try to find a direction where it can activate as much positive data and as less

negative data as possible. If sign(vj(0)) < 0, the opposite holds.

Indeed, [79] claims that the neuron wj would be aligned with some "extreme

vectors," defined as vector w ∈ SD−1 that locally maximizes
∑︁

i∈[n] yiσ(⟨xi, w⟩) (simi-

larly, wj with sign(vj(0)) < 0 would be aligned with the local minimizer), and there

are only finitely many such vectors; thus the neurons are expected to converge to

one of these extreme vectors in direction. The analysis is done by taking the limit

ϵ→ 0 on the initialization scale, under which the approximation in (2.166) is exact.
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Weakness in prior analyses: Although [79] provides great insights into the dynam-

ical behavior of the neurons in the alignment phase, the validity of the aforemen-

tioned approximation for finite but small ϵ remains in question. First, one needs to

make sure that the error
⃦⃦⃦

d
dt

wj

∥wj∥ − sign(vj(0))Pwj
xa(wj)

⃦⃦⃦
is sufficiently small when ϵ

is finite in order to justify (2.166) as a good approximation. Second, the error bound

needs to hold for the entire alignment phase. [79] assumes ϵ → 0; hence there is

no formal error bound. In addition, prior analyses on small initialization [13, 16]

suggest the alignment phase only holds for Θ(log 1
ϵ
) time. Thus, the claim in [79]

would only hold if good alignment is achieved before the alignment phase ends.

However, [79] provides no upper bound on the time it takes to achieve good align-

ment. Therefore, without a finite ϵ analysis, [79] fails to fully explain the training

dynamics under small initialization. Understanding the alignment phase with finite

ϵ requires additional analytical tools from dynamical systems theory. To the best of

our knowledge, this has only been studied under a stringent assumption that all

data points are orthogonal to each other [16].

Goal of this section: In this section, we want to address some of the aforementioned

issues by developing a formal analysis for the early alignment phase with a finite

but small initialization scale ϵ. We first discuss our main theorem that shows

that a directional convergence can be achieved within bounded time under data

assumptions that are less restrictive and have more practical relevance. Then,

we discuss the error bound for justifying (2.166) in the proof sketch for the main

theorem.

2.3.2 Convergence with small initialization

In this section, we present our main results, which require the following assumption

on the training data (we will compare our assumption with those in prior work

after the main theorem):
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Assumption 2.2. Any pair of input data with the same label are positively correlated, and

any pair of inputs with different labels are negatively correlated, i.e.,

min
i,j

⟨xiyi, xjyj⟩
∥xi∥∥xj∥

:= µ > 0. (2.168)

Figure 2-8. Neuron alignment un-
der data that satisfies Assumption 2.2.
For neurons in V+, 1⃝ if it lies inside
S−, then it gets repelled by x− and
eventually escapes S−; Once it is out-
side S−, it may 2⃝ get continuously
repelled by some negative data and
eventually enters Sdead. or 3⃝ gain
some activation on positive data and
eventually enter S+, after which it gets
constantly attracted by x+.

Given a training dataset, we define S+ :=

{z ∈ RD : 1⟨xi,z⟩>0 = 1yi>0, ∀i} to be the cone

in Rn such that whenever neuron w ∈ S+,

w is activated exclusively by every xi with

a positive label (see Figure 2-8). Similarly,

for xi with negative labels, we define S− :=

{z ∈ RD : 1⟨xi,z⟩>0 = 1yi<0, ∀i}. Finally, we

define Sdead := {z ∈ RD : ⟨z, xi⟩ ≤ 0, ∀i} to

be the cone such that whenever w ∈ Sdead,

no data activates w. Given Assumption 2.2,

it can be shown (see Appendix 2.3.3) that S+
(S−) is a non-empty, convex cone that con-

tains all positive data xi, i ∈ I+ (negative

data xi, i ∈ I−). Sdead is a convex cone as

well, but not necessarily non-empty. We il-

lustrate these cones in Figure 2-8 given some

training data (red solid arrow denotes positive data and blue denotes negative ones).

Moreover, given some initialization from (2.165), we define I+ := {i ∈ [n] : yi >

0} to be the set of indices of positive data, and I− := {i ∈ [n] : yi < 0} for negative

data. We also define V+ := {j ∈ [h] : sign(vj(t)) > 0} to be the set of indices of

neurons with positive second-layer entry and V− := {j ∈ [h] : sign(vj(t)) < 0}

for neurons with negative second-layer entry. Note that, as discussed in previous

section, sign(vj(t)) does not change under balanced initialization, thus V+,V− are
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time invariant. Further, as we discussed in Section 2.3.1 about the early alignment

phase, we expect that every neuron in V+ will drift toward the region where positive

data concentrate and thus eventually reach S+ or Sdead, as visualized in Figure 2-8

(x+, x− shown in the figure are defined in Assumption 2.3). Similarly, all neurons

in V− would chase after negative data and thus reach S− or Sdead. Our theorem

precisely characterizes this behavior.

Main results

Before we present our main theorem, we need the following assumption on the

initialization, mostly for technical reasons.

Assumption 2.3. The initialization from (2.165) satisfies that maxj∈V+⟨ wj(0)

∥wj(0)∥ ,
x−

∥x−∥⟩ < 1,

and maxj∈V−⟨ wj(0)

∥wj(0)∥ ,
x+

∥x+∥⟩ < 1, where x+ =
∑︁

i∈I+ xi and x− =
∑︁

i∈I− xi.

Assumption (2.3) essentially asks the neuron wj(0), j ∈ V+ (or wj(0), j ∈ V−,

resp.) to not be completely aligned with x+ (or x−, resp.). We are now ready to

present our main result (given Assumption 2.2 and Assumption 2.3):

Theorem 2.10. Given some initialization from (2.165), if ϵ = O( 1√
h
exp(− n√

µ
log n)),

then any solution to the gradient flow dynamics (2.164) satisfies

1. (Directional convergence in early alignment phase) ∃t1 = O( logn√
µ
), such that

• ∀j ∈ V+, either wj(t1) ∈ S+ or wj(t1) ∈ Sdead. Moreover, if maxi∈I+ ⟨wj(0), xi⟩ > 0,

then wj(t1) ∈ S+.

• ∀j ∈ V−, either wj(t1) ∈ S− or wj(t1) ∈ Sdead. Moreover, if maxi∈I− ⟨wj(0), xi⟩ > 0,

then wj(t1) ∈ S−.

2. (Final convergence and low-rank bias) ∀t ≥ t1 and ∀j ∈ [h], neuron wj(t) stays within

S+ (S−, or Sdead) if wj(t1) ∈ S+ (S−, or Sdead resp.). Moreover, if both S+ and S−
contains at least one neuron at time t1, then
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• ∃α > 0 and ∃t2 with t1 ≤ t2 = Θ( 1
n
log 1√

hϵ
), such that L(t) ≤ L(t2)

L(t2)α(t−t2)+1
, ∀t ≥ t2.

• As t→∞, ∥W (t)∥ → ∞ and ∥W (t)∥2F ≤ 2∥W (t)∥22 +O(ϵ). Thus, the stable rank of

W (t) satisfies lim supt→∞ ∥W (t)∥2F/∥W (t)∥22 ≤ 2.

We make the following remarks:

Early neuron alignment: The first part of the Theorem 2.10 describes the configura-

tion of all neurons at the end of the alignment phase. Every neuron in V+ reaches

either S+ or Sdead by t1, and stays there for the remainder of training. Obviously, we

care about those neurons reaching S+ as any neuron in Sdead does not contribute to

the final convergence at all. Luckily, Theorem 2.10 suggests that any neuron in V+
that starts with some activation on the positive data, i.e., it is initialized in the union

of halfspaces ∪i∈I+{w : ⟨w, xi⟩ > 0}, will eventually reach S+. A similar discussion

holds for neurons in V−. We argue that randomly initializing W0 ensures that with

high probability, there will be at least a pair of neurons reaching S+ and S− by time

t1 (please see the next remark). Lastly, we note that it is possible that Sdead = ∅, in

which case every neuron reaches either S+ or S−.

Merits of random initialization: Our theorem is stated for a deterministic ini-

tialization (2.165) given an initial shape W0. In practice, one would use random

initialization to find a W0, for example, [W0]ij
i.i.d.∼ N (0, 1/D). First, our Theorem

2.10 applies to this Gaussian initialization: Assumption 2.3 is satisfied with probabil-

ity one because the events ⟨ wj(0)

∥wj(0)∥ ,
x−

∥x−∥⟩ = 1 and ⟨ wj(0)

∥wj(0)∥ ,
x+

∥x+∥⟩ = 1 have probability

zero. Moreover, any neuron in V+ has at least probability 1/2 of being initialized

within the union of halfspaces ∪i∈I+{w : ⟨w, xi⟩ > 0}, which ensures that this neu-

ron reaches S+. Thus when there are m neurons in V+, the probability that S+ has

at least one neuron at time t1 is lower bounded by 1− 2−m (same argument holds

for S−), Therefore, with only very mild overparametrization on the network width

h, one can make sure that with high probability there is at least one neuron in both
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S+ and S−, leading to final convergence.

Duration of alignment phase: Our theorem shows that for sufficiently small ϵ,

directional convergence, i.e., all neurons reaching either S+,S−,Sdead, is achieved

within O( logn√
µ
) time (notably, independent of ϵ). Our bound quantitatively reveals

the non-trivial dependency on the "data separation" µ for such directional conver-

gence to occur. To the best of our knowledge, this is the first non-asymptotic bound

on the time it takes for all neurons to achieve a desired configuration. [79] only

shows such t1 > 0 exists using an ϵ→ 0 argument, without analyzing how large t1

can be. [16] studies a different data assumption (we compare it with ours in later

remarks) under which the alignment is studied only for neurons that has a specific

activation pattern at initialization. Lastly, we note that µ→ 0 leads to t1 →∞, this

is because when µ = 0, there are more limiting directions to which neurons can

converge, hence not all of them are "attracted" by S+,S−,Sdead.

Refined alignment within S+,S−: Once a neuron in V+ reaches S+, it never leaves

S+. Moreover, it always gets attracted by x+. Therefore, every neuron gets well

aligned with x+, i.e., cos(wj, x+) ≃ 1, ∀wj ∈ S+. A similar argument shows neurons

in S− get attracted by x−. We opt not to formally state it in Theorem 2.10 as the

result would be similar to that in [16], and alignment with x+, x− is not necessary

to guarantee convergence. Instead, we show this refined alignment through our

numerical experiment in Section 2.3.3.

Final convergence and low-rank bias: The convergence analysis after t1 is simple:

All neurons in Sdead have small norm and do not move thus they can be ignored

from the analysis. More interestingly, GF after t1 can be viewed as fitting positive

data xi, i ∈ I+, with a subnetwork consisting of all neurons in S+, and fitting

negative data with neurons in S−. By the fact that all neurons in S+ activate all

xi, i ∈ I+, the resulting subnetwork is linear, and so is the subnetwork for fitting

xi, i ∈ I−. The convergence analysis reduces to establishing O(1/t) convergence
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for two linear networks [26, 30, 28]. As for the stable rank, our result follows the

analysis in [71], but in a simpler form since ours is for linear networks.

Comparison with [78]: Prior work [78] considers a similar data assumption to ours.

However, [78] assumes that there exists a time t1 such that at t1, the neurons are

in either S+,S− or Sdead and their main contribution is the analysis of the implicit

bias for the later stage of the training. [78] justifies their assumption by the analysis

in [79], which does not necessarily apply to the case of finite ϵ, as we discussed

in Section 2.3.1. Our work precisely establishes such directional convergence for

finite but small ϵ, showing indeed the neurons achieve some good alignment with

x+, x− within O( logn√
µ
) time before they start to grow in norm. Moreover, [78] has no

characterization on the convergence rate of the loss after the alignment phase, while

we provide a O(1/t) bound on the loss. In addition, [78] considers the case where

input data xi, i ∈ [n], spans the entire RD, which leads to Sdead = ∅. This implicitly

imposes the constraint that the number of data points n must be larger than the

input dimension D. Our analysis allows for the case Sdead ̸= ∅ as we provide a

sufficient condition for preventing a neuron from reaching Sdead.

Comparison with [16]: In [16], the neuron alignment is carefully analyzed for the

case all data points are orthogonal to each other, i.e., ⟨xi, xj⟩ = 0, ∀i ̸= j ∈ [n]. Such

an assumption restricts the number of data points n to be smaller than the input

dimension D and is often unrealistic. Our assumption does not restrict the size of

the dataset and thus has more practical relevance (see our numerical experiments

in Section 2.3.3).

Proof sketch for the alignment phase

We sketch the proof for our Theorem 2.10. First of all, it can be shown that S+,Sdead

are trapping regions for all wj(t), j ∈ V+, that is, whenever wj(t) gets inside S+
(or Sdead), it never leaves S+ (or Sdead). Similarly, S−,Sdead are trapping regions for
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all wj(t), j ∈ V−. The alignment phase analysis concerns how long it takes for all

neurons to reach one of the trapping regions, followed by the final convergence

analysis on fitting data with +1 label by neurons in S+ and fitting data with −1

label by those in S−. We have discussed the final convergence analysis in the remark

"Final convergence and low-rank bias", thus we focus on the proof sketch for the

early alignment phase here, which is considered as our main technical contribution.

Approximating d
dt

wj

∥wj∥ : Our analysis for the neural alignment is rooted in the

following Lemma:

Lemma 2.20. Given some initialization from (2.165), if ϵ = O( 1√
h
), then there exists

T = Θ( 1
n
log 1√

hϵ
) such that any solution to the gradient flow dynamics (2.164) satisfies

that ∀t ≤ T ,

max
j

⃦⃦⃦⃦
d

dt

wj(t)

∥wj(t)∥
− sign(vj(0))Pwj(t)xa(wj(t))

⃦⃦⃦⃦
= O

(︂
ϵn
√
h
)︂
. (2.169)

This Lemma shows that the error between d
dt

wj(t)

∥wj(t)∥ and sign(vj(0))Pwj(t)xa(wj(t))

can be arbitrarily small with some appropriate choice of ϵ (to be determined later).

This allows one to analyze the true directional dynamics wj(t)

∥wj(t)∥ using some property

of Pwj(t)xa(wj(t)), which leads to a t1 = O( logn√
µ
) upper bound on the time it takes

for the neuron direction to converge to the sets S+, S−, or Sdead. Moreover, it

also suggests ϵ can be made sufficiently small so that the error bound holds until

the directional convergence is achieved, i.e. T ≥ t1. We will first illustrate the

analysis for directional convergence, then close the proof sketch with the choice of

a sufficiently small ϵ.

Activation pattern evolution: Given a sufficiently small ϵ, one can show that under

Assumption 2.2, for every neuron wj that is not in Sdead we have:

d

dt

⟨︃
wj

∥wj∥
,
xiyi
∥xi∥

⟩︃⃓⃓⃓⃓
⟨wi,xi⟩=0

> 0, ∀i ∈ [n], if j ∈ V+ , (2.170)

d

dt

⟨︃
wj

∥wj∥
,
xiyi
∥xi∥

⟩︃⃓⃓⃓⃓
⟨wi,xi⟩=0

< 0, ∀i ∈ [n], if j ∈ V− . (2.171)
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This is because whenever a neuron satisfies ⟨xi, wj⟩ = 0 for some i, and has

activation on some other data, GF moves wj towards xa(wj) =
∑︁

i:⟨xi,wj⟩>0 xiyi.

Interestingly, Assumption 2.2 implies ⟨xiyi, xa(wj)⟩ > 0, ∀i ∈ [n], which makes

d
dt

wj

∥wj∥ ≃ sign(vj(0))Pwj
xa(wj) point inward (or outward) the halfspace ⟨xiyi, wj⟩ > 0,

if sign(vj(0)) > 0 (or sign(vj(0)) < 0, respectively). See Figure 2-9 for illustration.

Figure 2-9. For j ∈
V+, Assumption 2.2 enforces
⟨xiyi, xa(wj)⟩ > 0, thus GF
pushes wj inward the half-
space ⟨xiyi, wj⟩ > 0 at
⟨xi, wj⟩ = 0 (i.e. towards
gaining activation on xi, if
yi = +1, or losing activation
on xi, if yi = −1.). S⊥

xi
and

S⊥
wj

denotes the subspace or-
thogonal to xi and wj, respec-
tively.

Figure 2-10. Illustration of the activation pattern
evolution. The epochs on the time axis denote the
time wj changes its activation pattern by either los-
ing one negative data (denoted by "+") or gaining
one positive data (denoted by "−"). The markers
are colored if it currently activates wj. During the
alignment phase 0 ≤ t ≤ t1, a neuron wj, j ∈ V+
starts with activation on all negative data and no
positive data, every O (1/na) time, it must change
its activation, unless either 1⃝ it reaches Sdead, or
2⃝ it activates some positive data at some epoch
then eventually reaches S+.

As a consequence, a neuron can only change its activation pattern in a particular

manner: a neuron in V+, whenever it is activated by some xi with yi = +1, never

loses the activation on xi thereafter, because (2.170) implies that GF pushes wj

∥wj∥

towards xi at the boundary ⟨wj, xi⟩ = 0. Moreover, (2.170) also shows that a neuron

in V+ will never regain activation on a xi with yi = −1 once it loses the activation

because GF pushes wj

∥wj∥ against xi at the boundary ⟨wi, xi⟩ = 0. Similarly, a neuron

in V− never loses activation on negative data and never gains activation on positive

data.

Bound on activation transitions and duration: Equations (2.170) and (2.171) are

key in the analysis of alignment because they limit how many times a neuron can
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change its activation pattern: a neuron in V+ can only gain activation on positive

data and lose activation on negative data, thus at maximum, a neuron wj, j ∈ V+,

can start with full activation on all negative data and no activation on any positive

one (which implies wj(0) ∈ S−) then lose activation on every negative data and

gain activation on every positive data as GF training proceeds (which implies

wj(t1) ∈ S+), taking at most n changes on its activation pattern. See Figure 2-10 for

an illustration. Then, since it is possible to show that a neuron wj with j ∈ V+ that

has cos(wj, x−) < 1 (guaranteed by Assumption 2.3) and is not in S+ or Sdead, must

change its activation pattern after O( 1
na

√
µ
) time (that does not depend on ϵ), where

na is the number of data that currently activates wj , one can upper bound the time

for wj to reach S+ or Sdead by some t1 = O( logn√
µ
) constant independent of ϵ.

Moreover, wj must reach S+ if it initially has activation on at least one positive

data, i.e., maxi∈I+ ⟨wj(0), xi⟩ > 0 since it cannot lose this activation. A similar

argument holds for wj, j ∈ V− that they reaches either S− or Sdead before t1.

Choice of ϵ: All the aforementioned analyses rely on the assumption that the

approximation in equation (2.166) holds with some specific error bound. We show

in Appendix 2.3.3 that the desired bound is
⃦⃦⃦

d
dt

wj(t)

∥wj(t)∥ − sign(vj(0))Pwj(t)xa(wj(t))
⃦⃦⃦
≤

O(√µ), which, by Lemma 2.20, can be achieved by a sufficiently small initialization

scale ϵ1 = O(
√
µ√
hn
). Moreover, the directional convergence (which takes O( logn√

µ
)

time) should be achieved before the alignment phase ends, which happens at T =

Θ( 1
n
log 1√

hϵ
). This is ensured by choosing another sufficiently small initialization

scale ϵ2 = O( 1√
h
exp(− n√

µ
log n)). Overall, the initialization scale should satisfy

ϵ ≤ min{ϵ1, ϵ2}. We opt to present ϵ2 in our main theorem because ϵ2 beats ϵ1 when

n is large.
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Figure 2-11. Illustration of gradient descent on two-layer ReLU network with small
initialization. The marker represents either a data point or a neuron. Solid lines
represent the directions of neurons. (a) at initialization, all neurons have small norm
and are pointing in different directions; (b) around the end of the alignment phase,
all neurons are in S+,S−, or Sdead. Moreover, neurons in S+ (S−) are well aligned
with x+ (x−); (c) With good alignment, neurons in S−,S+ start to grow in norm and
the loss decreases. When the loss is close to zero, the resulting network has its
first-layer weight approximately low-rank.

2.3.3 Numerical experiments

Illustrative example

We first illustrate our theorem using a toy example: we train a two-layer ReLU

network with h = 50 neurons under a toy dataset in R2 (See Figure 2-11) that

satisfies our Assumption 2.2, and initialize all entries of the weights as [W ]ij
i.i.d.∼

N (0, α) , vj
i.i.d.∼ N (0, α) , ∀i ∈ [n], j ∈ [h] with α = 10−6. Then we run gradient

descent on both W and v with step size η = 2 × 10−3. Our theorem well predicts

the dynamics of neurons at the early stage of the training: aside from neurons that

ended up in Sdead, neurons in V+ reach S+ and achieve good alignment with x+,

and neurons in V− are well aligned with x− in S−. Note that after alignment, the

loss experiences two sharp decreases before it gets close to zero, which is studied

and explained in [16].

Binary classification on two MNIST digits

Next, we consider a binary classification task for two MNIST digits. Such training

data do not satisfy Assumption 2.2 since every data vector is a grayscale image
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with non-negative entries, making the inner product between any pair of data

non-negative, regardless of their labels. However, we can preprocess the training

data by centering: xi ← xi − x̄, where x̄ =
∑︁

i∈[n] xi/n. The preprocessed data,

then, approximately satisfies our assumption (see the left-most plot in Figure 2-12):

a pair of data points is very likely to have a positive correlation if they have the

same label and to have a negative correlation if they have different labels. Thus

we expect our theorem to make reasonable predictions on the training dynamics

with preprocessed data. For the remaining part of this section, we use xi, i ∈ [n],

Figure 2-12. Training two-layer ReLU network under small initialization for binary
classification on MNIST digits 0 and 1. The training data is preprocessed to be
centered. (First Plot) Data correlation [⟨xi, xj⟩]ij as a heatmap, where the data are
reordered by their label (digit 1 first, then digit 0); (Second Plot) Alignment between
neurons and the aggregate positive/negative data x+ =

∑︁
i∈I+ xi, x− =

∑︁
i∈I− xi.

In the top figure, the solid line shows cos(w̄+, x+) during training, and the shaded
region defines the range between minj∈V+ cos(wi, x+) and maxj∈V+ cos(wi, x+). Sim-
ilarly, in the bottom figure, the solid line shows cos(w̄−, x−) during training, and
the shaded region lies between minj∈V− cos(wi, x−) and maxj∈V− cos(wi, x−); (Third
Plot) The loss L, the stable rank and the squared spectral norm of W during training;
(Fourth Plot) Visualizing neuron centers w̄+, w̄− and data centers x̄+, x̄− (at iteration
15000) as grayscale images. x̄ is the mean of the original training data, prior to
preprocessing.

to denote the preprocessed (centered) data and use x̄ to denote the mean of the

original data.

We build a two-layer ReLU network with h = 50 neurons and initialize all entries

of the weights as [W ]ij
i.i.d.∼ N (0, α) , vj

i.i.d.∼ N (0, α) , ∀i ∈ [n], j ∈ [h] with α = 10−5.

Then we run gradient descent on both W and v with step size η = 2× 10−3. Notice

that here the weights are not initialized to be balanced as in (2.165). The numerical
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results are shown in Figure 2-12.

Alignment phase: Without balancedness, one no longer has sign(vj(t)) = sign(vj(0)).

With a little abuse of notation, we denote V+(t) = {j ∈ [h] : sign(vj(t)) > 0} and

V+(t) = {j ∈ [h] : sign(vj(t)) > 0}, and we expect that at the end of the alignment

phase, neurons in V+ are aligned with x+ =
∑︁

i∈I+ xi, and neurons in V− with

x− =
∑︁

i∈I− xi. The second plot in Figure 2-12 shows such an alignment between

neurons and x+, x−. In the top part, the red solid line shows cos(w̄+, x+) during train-

ing, where w̄+ =
∑︁

j∈V+
wj/|V+|, and the shaded region defines the range between

minj∈V+ cos(wi, x+) and maxj∈V+ cos(wi, x+). Similarly, in the bottom part, the green

solid line shows cos(w̄−, x−) during training, where w̄− =
∑︁

j∈V−
wj/|V−|, and the

shaded region shows the range between minj∈V− cos(wi, x−) and maxj∈V− cos(wi, x−).

Initially, every neuron is approximately orthogonal to x+, x− due to random ini-

tialization. Then all neurons in V+ (V−) start to move towards x+ (x−) and achieve

good alignment after∼2000 iterations. When the loss starts to decrease (after∼ 3000

iterations), the alignment drops a little. We conjecture that this is because the dataset

does not exactly satisfy our Assumption 2.2, and the neurons in V+ have to fit some

negative data, for which x+ is not the best direction.

Final convergence: After ∼ 3000 iterations, the norm ∥W∥22 starts to grow and the

loss decreases, as shown in the third plot in Figure 2-12. Moreover, the stable rank

∥W∥2F/∥W∥22 decreases below 2. For this experiment, we almost have cos(x+, x−) ≃

−1, thus the neurons in V+ (aligned with x+) and those in V− (aligned with x−)

are almost co-linear. Therefore, the stable rank ∥W∥2F/∥W∥22 is almost 1, as seen

from the plot. Finally, at iteration 15000, we visualize the mean neuron w̄+ =∑︁
j∈V+

wj/|V+|, w̄− =
∑︁

j∈V−
wj/|V−| as grayscale images, and compare them with

x̄+ = x+/|I+|, x− = x−/|I−|, showing good alignment. We also show the images

when the original data center x̄ is added back.
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Proof of Lemma 2.20

The following property of the exponential loss ℓ will be used throughout the Ap-

pendix for proofs of several results:

Lemma 2.21. For exponential loss ℓ, we have

| − ∇ŷℓ(y, ŷ)− y| ≤ 2|ŷ|, ∀y ∈ {+1,−1}, ∀|ŷ| ≤ 1 . (2.172)

Proof.

| − ∇ŷℓ(y, ŷ)− y| = |y exp(−yŷ)− y|

≤ |y|| exp(−yŷ)− 1|

≤ | exp(−yŷ)− 1| ≤ 2|ŷ| ,

where the last inequality is due to the fact that 2x ≥ max{1 − exp(−x), exp(x) −

1}, ∀x ∈ [0, 1].

Formal statement

Denote: Xmax = maxi ∥xi∥,Wmax = maxj ∥[W0]:,j∥. The formal statement of Lemma

2.20 is as follow:

Lemma 2.20. Given some initialization from (2.165), for any ϵ ≤ 1
4
√
hXmaxW 2

max
, then any

solution to the gradient flow dynamics (2.164) satisfies that ∀t ≤ T = 1
4nXmax

log 1√
hϵ

,

max
j

⃦⃦⃦⃦
d

dt

wj(t)

∥wj(t)∥
− sign(vj(0))Pwj(t)xa(wj(t))

⃦⃦⃦⃦
≤ 4ϵn

√
hX2

maxW
2
max .

Lemma 2.20 is a direct result of the following two lemmas.

Lemma 2.22. Given some initialization in (2.165), then for any ϵ ≤ 1
4
√
hXmaxW 2

max
, any

solution to the gradient flow dynamics (2.164) satisfies

max
j
∥wj(t)∥2 ≤

2ϵW 2
max√
h

, max
i
|f(xi;W (t), v(t))| ≤ 2ϵ

√
hXmaxW

2
max , (2.173)

∀t ≤ 1
4nXmax

log 1√
hϵ

.
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Lemma 2.23. Consider any solution to the gradient flow dynamic (2.164) starting from

initialization (2.165). Whenever maxi |f(xi;W, v)| ≤ 1, we have, ∀i ∈ [n],⃦⃦⃦⃦
⃦⃦ ddt wj

∥wj∥
− sign(vj(0))

(︄
I − wjw

⊤
j

∥wj∥2

)︄⎛⎝ ∑︂
i:⟨xi,wj⟩>0

yixi

⎞⎠⃦⃦⃦⃦⃦⃦ ≤ 2nXmax max
i
|f(xi;W, v)| .

(2.174)

Proof of Lemma 2.22 and Lemma 2.23

Proof of Lemma 2.22. Under gradient flow, we have

d

dt
wj = −

n∑︂
i=1

1⟨xi,wj⟩≥0∇ŷℓ(yi, f(xi;W, v))xivj . (2.175)

Balanced initialization enforces vj = sign(vj(0))∥wj∥, hence

d

dt
wj = −

n∑︂
i=1

1⟨xi,wj⟩≥0∇ŷℓ(yi, f(xi;W, v))xisign(vj(0))∥wj∥ . (2.176)

Let T := inf{t : maxi |f(xi;W (t), v(t))| > 2ϵ
√
hXmaxW

2
max}, then ∀t ≤ T, j ∈ [h], we

have

d

dt
∥wj∥2 =

⟨︃
wj,

d

dt
wj

⟩︃
= −2

n∑︂
i=1

1⟨xi,wj⟩≥0∇ŷℓ(yi, f(xi;W, v)) ⟨xi, wj⟩ sign(vj(0))∥wj∥

≤ 2
n∑︂

i=1

|∇ŷℓ(yi, f(xi;W, v))| |⟨xi, wj⟩| ∥wj∥

≤ 2
n∑︂

i=1

(|yi|+ 2|f(xi;W, v)|) |⟨xi, wj⟩| ∥wj∥ (by Lemma 2.21)

≤ 2
n∑︂

i=1

(1 + 4ϵ
√
hXmaxW

2
max) |⟨xi, wj⟩| ∥wj∥ (Since t ≤ T )

≤ 2
n∑︂

i=1

(1 + 4ϵ
√
hXmaxW

2
max)∥xi∥∥wj∥2

≤ 2n(Xmax + 4ϵ
√
hX2

maxW
2
max)∥wj∥2 . (2.177)

117



Let τj := inf{t : ∥wj(t)∥2 > 2ϵW 2
max√
h
}, and let j∗ := argminj τj , then τj∗ = minj τj ≤ T

due to the fact that

|f(xi;W, v)| =

⃓⃓⃓⃓
⃓⃓∑︂
j∈[h]

1⟨wj ,xi⟩>0vj ⟨wj, xi⟩

⃓⃓⃓⃓
⃓⃓ ≤∑︂

j∈[h]

∥wj∥2∥xi∥ ≤ hXmax max
j∈[h]
∥wj∥2 ,

which implies "|f(xi;W (t), v(t))| > 2ϵ
√
hXmaxW

2
max ⇒ ∃j, s.t.∥wj(t)∥2 > 2ϵW 2

max√
h

".

Then for t ≤ τj∗ , we have

d

dt
∥wj∗∥2 ≤ 2n(Xmax + 4ϵ

√
hX2

maxW
2
max)∥wj∗∥2 . (2.178)

By Grönwall’s inequality, we have ∀t ≤ τj∗

∥wj∗(t)∥2 ≤ exp
(︂
2n(Xmax + 4ϵ

√
hX2

maxW
2
max)t

)︂
∥wj∗(0)∥2 ,

= exp
(︂
2n(Xmax + 4ϵ

√
hX2

maxW
2
max)t

)︂
ϵ2∥[W0]:,j∗∥2

≤ exp
(︂
2n(Xmax + 4ϵ

√
hX2

maxW
2
max)t

)︂
ϵ2W 2

max .

Suppose τj∗ < 1
4nXmax

log
(︂

1√
hϵ

)︂
, then by the continuity of ∥wj∗(t)∥2, we have

2ϵW 2
max√
h
≤ ∥wj∗(τj∗)∥2

≤ exp
(︂
2n(Xmax + 4ϵ

√
hX2

maxW
2
max)τj∗

)︂
ϵ2W 2

max

≤ exp

(︃
2n(Xmax + 4ϵ

√
hX2

maxW
2
max)

1

4nXmax

log

(︃
1√
hϵ

)︃)︃
ϵ2W 2

max

≤ exp

(︄
1 + 4ϵ

√
hXmaxW

2
max

2
log

(︃
1√
hϵ

)︃)︄
ϵ2W 2

max

≤ exp

(︃
log

(︃
1√
hϵ

)︃)︃
ϵ2W 2

max =
ϵW 2

max√
h

,

which leads to a contradiction 2ϵ ≤ ϵ. Therefore, one must have T ≥ τj∗ ≥
1

4nXmax
log
(︂

1√
hϵ

)︂
. This finishes the proof.

Proof of Lemma 2.23. As we showed in the proof for Lemma 2.22, under balanced

initialization,

d

dt
wj = −

n∑︂
i=1

1⟨xi,wj⟩≥0∇ŷℓ(yi, f(xi;W, v))xisign(vj(0))∥wj∥ . (2.179)
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Then for any i ∈ [n],

d

dt

wj

∥wj∥
= −sign(vj(0))

n∑︂
i=1

1⟨xi,wj⟩>0∇ŷℓ(yi, f(xi;W, v))

(︃
xi −

⟨xi, wj⟩
∥wj∥2

wj

)︃
= −sign(vj(0))

∑︂
i:⟨xi,wj⟩>0

∇ŷℓ(yi, f(xi;W, v))

(︃
xi −

⟨xi, wj⟩
∥wj∥2

wj

)︃

= −sign(vj(0))
(︄
I − wjw

⊤
j

∥wj∥2

)︄⎛⎝ ∑︂
i:⟨xi,wj⟩>0

∇ŷℓ(yi, f(xi;W, v))xi

⎞⎠ .

Therefore, whenever maxi |f(xi;W, v)| ≤ 1,⃦⃦⃦⃦
⃦⃦ ddt wj

∥wj∥
− sign(vj(0))

(︄
I − wjw

⊤
j

∥wj∥2

)︄⎛⎝ ∑︂
i:⟨xi,wj⟩>0

yixi

⎞⎠⃦⃦⃦⃦⃦⃦
=

⃦⃦⃦⃦
⃦⃦sign(vj(0))

⎛⎝ ∑︂
i:⟨xi,wj⟩>0

(∇ŷℓ(yi, f(xi;W, v)) + yi) xi

⎞⎠⃦⃦⃦⃦⃦⃦
≤

n∑︂
i=1

|∇ŷℓ(yi, f(xi;W, v)) + yi| · ∥xi∥

≤
n∑︂

i=1

2|f(xi;W, v)| · ∥xi∥ ≤ 2nMx max
i
|f(xi;W, v)| . (2.180)

Proof for Theorem 2.10 (part one): early alignment phase

We break the proof of Theorem 2.10 into two parts: In Appendix 2.3.3 we prove the

first part regarding directional convergence. Then in Appendix 2.3.3 we prove the

remaining statement on final convergence and low-rank bias.

Auxiliary lemmas

The first several Lemmas concern mostly some conic geometry given the data

assumption:

Consider the following conic hull

K = CH({xiyi, i ∈ [n]}) =
{︄

n∑︂
i=1

aixiyi : ai ≥ 0, i ∈ [n]

}︄
. (2.181)

119



It is clear that xiyi ∈ K, ∀i, and xa(w) ∈ K, ∀w. The following lemma shows any

pair of vectors in K is µ-coherent.

Lemma 2.24. cos(z1, z2) ≥ µ, ∀0 ̸= z1, z2 ∈ K.

Proof. Since z1, z2 ∈ K, we let z1 =
∑︁n

i=1 xiyia1i, andz2 =
∑︁n

j=1 xjyja2j , where

a1i, a2j ≥ 0 but not all of them.

cos(z1, z2) =
1

∥z1∥∥z2∥
⟨z1, z2⟩ =

1

∥z1∥∥z2∥
∑︂
i,j∈[n]

a1ia2j ⟨xiyi, xjyj⟩

=

∑︁
i,j∈[n] ∥xi∥∥xj∥a1ia2jµ

∥z1∥∥z2∥
≥ µ ,

where the last inequality is due to

∥z1∥∥z2∥ ≤
(︄

n∑︂
i=1

∥xi∥a1i
)︄(︄

n∑︂
j=1

∥xj∥a2j
)︄

=
∑︂
i,j∈[n]

∥xi∥∥xj∥a1ia2j .

The following lemma is some basic results regarding S+ and S−:

Lemma 2.25. S+ and S− are convex cones(excluding the origin).

Proof. Since 1⟨xi,z⟩ = 1⟨xi,az⟩, ∀i ∈ [n], a > 0, S+,S− are cones. Moreover, ⟨xi, z1⟩ > 0

and ⟨xi, z2⟩ > 0 implies ⟨xi, a1z1 + a2z2⟩ > 0, ∀a1, a2 > 0, thus S+,S− are convex

cones.

Now we consider the complete metric space SD−1 (w.r.t. arccos(⟨·, ·⟩)) and we

are interested in its subsets K ∩ SD−1, S+ ∩ SD−1, and S− ∩ SD−1. First, we have (we

use Int(S) to denote the interior of S)

Lemma 2.26. K ∩ SD−1 ⊂ Int(S+ ∩ SD−1), and −K ∩ SD−1 ⊂ Int(S− ∩ SD−1)
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Proof. Consider any xc =
∑︁n

j=1 ajxjyj ∈ K ∩ SD−1, For any xi, yi, i ∈ [n], we have

⟨xc, xi⟩ =
n∑︂

i=j

aj∥xj∥
⟨︃
xjyj
∥xj∥

,
xiyi
∥xi∥

⟩︃ ∥xi∥
yi

≥ µyi∥xi∥
n∑︂

i=j

aj∥xj∥
{︄
≥ µXmin > 0, yi > 0

≤ −µXmin < 0, yi < 0
,

where we use the fact that 1 = ∥xc∥ = ∥
∑︁n

j=1 ajxjyj∥ ≤
∑︁n

j=1 aj∥xj∥. This already

tells us xc ∈ S+ ∩ SD−1.

Since fi(z) = ⟨z, xi⟩ is a continuous function of z ∈ SD−1. There exists an open

ball B (xc, δi) centered at xc with some radius δi > 0, such that ∀z ∈ B (xc, δi), one

have |fi(z)− fi (xc)| ≤ µXmin

2
, which implies

⟨z, xi⟩
{︄
≥ µXmin/2 > 0, yi > 0

≤ −µXmin/2 < 0, yi < 0
.

Hence ∩n
i=1B

(︂
xc

∥xc∥ , δi

)︂
∈ S+ ∩ SD−1. Therefore, xc ∈ Int(S+ ∩ SD−1). This suffices to

show K ∩SD−1 ⊂ Int(S+ ∩SD−1). The other statement −K ∩SD−1 ⊂ Int(S− ∩SD−1)

is proved similarly.

The following two lemmas are some direct results of Lemma 2.26.

Lemma 2.27. ∃ζ1 > 0 such that

Sζ1
x+
⊂ S+, Sζ1

x− ⊂ S− , (2.182)

where Sζ
x := {z ∈ RD : cos(z, x) ≥ √1− ζ}.

Proof. By Lemma 2.26, x+

∥x+∥ ∈ K ⊂ Int(S+). Since SD−1 is a complete metric

space (w.r.t arccos ⟨·, ·⟩), there exists a open ball centered at x+

∥x+∥ of some radius

arccos(
√
1− ζ1) that is a subset of S+, from which one can show Sζ1

x+
⊂ S+. The

other statement Sζ1
x− ⊂ S− simply comes from the fact that x+ = −x− and Int(S+) =

−Int(S−).
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Lemma 2.28. ∃ξ > 0, such that

sup
x1∈K∩SD−1,x2∈(S+∩SD−1)c∩(S−∩SD−1)c

| cos(x1, x2)| ≤
√︁
1− ξ . (2.183)

(Sc here is defined to be SD−1 − S, the set complement w.r.t. complete space SD−1)

Proof. Notice that

sup
x1∈K∩SD−1,x2∈(Int(S+∩SD−1))c

⟨x1, x2⟩ = inf
x1∈K∩SD−1,x2∈(Int(S+∩SD−1))c

arccos ⟨x1, x2⟩ .

Since SD−1 is a complete metric space (w.r.t arccos ⟨·, ·⟩) and K ∩ SD−1 and x2 ∈

(Int(S+ ∩ SD−1))c are two of its compact subsets. Suppose

inf
x1∈K∩SD−1,x2∈x2∈(Int(S+∩SD−1))c

arccos ⟨x1, x2⟩ = 0 ,

then ∃x1 ∈ K∩SD−1, x2 ∈ (Int(S+∩SD−1))c such that arccos ⟨x1, x2⟩ = 0, i.e., x1 = x2,

which contradicts the fact that K ∩ SD−1 ⊆ Int(S+ ∩ SD−1) (Lemma 2.26). Therefore,

we have the infimum strictly larger than zero, then

sup
x1∈K∩SD−1,x2∈(S+∩SD−1)c

⟨x1, x2⟩ ≤ sup
x1∈K∩SD−1,x2∈(Int(S+∩SD−1))c

⟨x1, x2⟩ < 1 . (2.184)

Similarly, one can show that

sup
x1∈−K∩SD−1,x2∈(S−∩SD−1)c

⟨x1, x2⟩ < 1 . (2.185)

Finally, find ξ < 1 such that

max

{︄
sup

x1∈K∩SD−1,x2∈(S+∩SD−1)c
⟨x1, x2⟩ , sup

x1∈−K∩SD−1,x2∈(S−∩SD−1)c
⟨x1, x2⟩

}︄
=
√︁
1− ξ ,

then for any x1 ∈ K ∩ SD−1 and x2 ∈ (S+ ∩ SD−1)c ∩ (S− ∩ SD−1)c, we have

−
√︁
1− ξ ≤ ⟨x1, x2⟩ ≤

√︁
1− ξ ,

which is the desired result.

The remaining two lemmas are technical but extensively used in the main proof.
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Lemma 2.29. Consider any solution to the gradient flow dynamic (2.164) starting from

initialization (2.165). Let xr ∈ Sn−1 be some reference direction, we define

ψrj =

⟨︃
xr,

wj

∥wj∥

⟩︃
, ψra =

⟨︃
xr,

xa(wj)

∥xa(wj)∥

⟩︃
, ψaj =

⟨︃
wj

∥wj∥
,
xa(wj)

∥xa(wj)∥

⟩︃
, (2.186)

where xa(wj) =
∑︁

i:⟨xi,wj⟩>0 yixi.

Whenever maxi |f(xi;W, v)| ≤ 1, we have⃓⃓⃓⃓
d

dt
ψrj − sign(vj(0)) (ψra − ψrjψaj) ∥xa(wj)∥

⃓⃓⃓⃓
≤ 2nXmax max

i
|f(xi;W, v)| . (2.187)

Proof. A simple application of Lemma 2.23, together with Cauchy-Schwartz:⃓⃓⃓⃓
d

dt
ψrj − sign(vj(0)) (ψra − ψrjψaj) ∥xa(wj)∥

⃓⃓⃓⃓

=

⃓⃓⃓⃓
⃓⃓x⊤r

⎛⎝ d

dt

wj

∥wj∥
− sign(vj(0))

(︄
I − wjw

⊤
j

∥wj∥2

)︄⎛⎝ ∑︂
i:⟨xi,wj⟩>0

yixi

⎞⎠⎞⎠⃓⃓⃓⃓⃓⃓
≤ 2nXmax max

i
|f(xi;W, v)| .

Lemma 2.30.

∥xa(w)∥ ≥
√
µna(w)Xmin , (2.188)

where na(w) = |{i ∈ [n] : ⟨xi, w⟩ > 0}|.

Proof. Let Ia(w) denote {i ∈ [n] : ⟨xi, w⟩ > 0}, then

∥xa(w)∥ =

⃦⃦⃦⃦
⃦⃦ ∑︂
i:⟨xi,w⟩>0

xiyi

⃦⃦⃦⃦
⃦⃦ =

⌜⃓⃓⎷ ∑︂
i∈Ia(w)

∥xi∥2y2i +
∑︂

i,j∈Ia(w),i<j

∥xi∥∥xj∥
⟨︃
xiyi
∥xi∥

,
xjyj
∥xj∥

⟩︃

≥
√︄ ∑︂

i∈Ia(w)

∥xi∥2y2i +
∑︂

i,j∈Ia(w),i<j

∥xi∥∥xj∥|yi||yj|µ

≥
√︂
na(w)X2

min + µna(w) (na(w)− 1)X2
min

≥
√︁
na(w)(1 + µ(na(w)− 1))Xmin

≥ √µna(w)Xmin .
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Proof for early alignment phase

Proof of Theorem 2.10: First Part. Given some initialization in (2.165), by Assumption

2.3, ∃ζ2 > 0, such that

max
j∈V+

cos(wj(0), x−) <
√︁

1− ζ2, max
j∈V−

cos(wj(0), x+) <
√︁

1− ζ2 . (2.189)

We define ζ := max{ζ1, ζ2}, where ζ1 is from Lemma 2.27. In addition, by Lemma

2.28, ∃ξ > 0, such that

sup
x1∈K∩SD−1,x2∈Sc

−∩Sc
+∩SD−1

| cos(x1, x2)| ≤
√︁

1− ξ . (2.190)

We pick a initialization scale ϵ that satisfies:

ϵ ≤ min

{︃
min{µ, ζ, ξ}√µXmin

4
√
hnX2

maxW
2
max

,
1√
h
exp

(︃
− 64nXmax

min{ζ, ξ}√µXmin

log n

)︃}︃
≤ 1

4
√
hXmaxW 2

max

. (2.191)

By Lemma 2.22, ∀t ≤ T = 1
4nXmax

log 1√
hϵ

, we have

max
i
|f(xi;W, v)| ≤

min{µ, ζ, ξ}√µXmin

4nXmax

, (2.192)

which is the key to analyzing the alignment phase. For the sake of simplicity, we

only discuss the analysis of neurons in V+ here, the proof for neurons in V− is almost

identical.

Activation pattern evolution: Pick any wj in V+ and pick xr = xiyi for some i ∈ [n],

and consider the case when ⟨wj, xi⟩ = 0. From Lemma 2.29,we have⃓⃓⃓⃓
d

dt
ψrj − (ψra − ψrjψaj) ∥xa(wj)∥

⃓⃓⃓⃓
≤ 2nXmax max

i
|f(xi;W, v)| .

⟨wj, xi⟩ = 0 implies ψrj =
⟨︂

xiyi
∥xi∥ ,

wj

∥wj∥

⟩︂
= 0, thus we have⃓⃓⃓⃓

d

dt
ψrj|⟨wj ,xi⟩=0 − ψra∥xa(wj)∥

⃓⃓⃓⃓
≤ 2nXmax max

i
|f(xi;W, v)| .
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Then whenever wj /∈ Sdead, we have

d

dt
ψrj|⟨wj ,xi⟩=0 ≥ ψra∥xa(wj)∥ − 2nXmax max

i
|f(xi;W, v)|

≥ µ∥xa(wj)∥ − 2nXmax max
i
|f(xi;W, v)| (by Lemma 2.24)

≥ µ3/2Xmin − 2nXmax max
i
|f(xi;W, v)| (by Lemma 2.30)

≥ µ3/2Xmin/2 > 0 . (by (2.192))

This is precisely (2.170) in our proof sketch.

Bound on activation transitions and duration: Next we show that if at time

t0 < T , wj(t0) /∈ S+ ∪ Sdead, and the activation pattern of wj is 1⟨xi,wj(t0)⟩>0, then

1⟨xi,wj(t0+∆t))⟩>0 ̸= 1⟨xi,wj(t0)⟩>0, where ∆t = 4
min{ζ,ξ}√µXminna(wj(t0))

and na(wj(t0)) is

defined in Lemma 2.30 as long as t0 +∆t < T as well. That is, during the alignment

phase [0, T ], wj must change its activation pattern within ∆t time. There are two

cases:

• The first case is when wj(t0) ∈ Sc
+ ∩ Sc

− ∩ Sc
dead. In this case, suppose that

1⟨xi,wj(t0+τ))⟩>0 = 1⟨xi,wj(t0)⟩>0, ∀0 ≤ τ ≤ ∆t, i.e. wj fixes its activation during

[t0, t0 + ∆t], then we have xa(wj(t0 + τ)) = xa(wj(t0)), ∀0 ≤ τ ≤ ∆t. Let us pick

xr = xa(wj(t0)), then Lemma 2.29 leads to⃓⃓⃓⃓
d

dt
cos(wj, xa(wj))−

(︁
1− cos2(wj, xa(wj))

)︁
∥xa(wj)∥

⃓⃓⃓⃓
≤ 2nXmax max

i
|f(xi;W, v)| .

Since xa(wj) is fixed, we have ∀t ∈ [t0, t0 +∆t],⃓⃓⃓⃓
d

dt
cos(wj, xa(wj(t0)))−

(︁
1− cos2(wj, xa(wj(t0)))

)︁
∥xa(wj(t0))∥

⃓⃓⃓⃓
≤ 2nXmax max

i
|f(xi;W, v)| ,
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d

dt
cos(wj, xa(wj(t0)))

≥
(︁
1− cos2(wj, xa(wj(t0)))

)︁
∥xa(wj(t0))∥

− 2nXmax max
i
|f(xi;W, v)|

≥ ξ∥xa(wj(t0))∥ − 2nXmax max
i
|f(xi;W, v)| (by (2.190))

≥ ξ
√
µna(wj(t0))Xmin − 2nXmax max

i
|f(xi;W, v)| (by Lemma 2.30)

≥ ξ
√
µna(wj(t0))Xmin/2 . (by (2.192))

≥ min{ξ, ζ}√µna(wj(t0))Xmin/2 ,

which implies that, by the Fundamental Theorem of Calculus,

cos(wj(t0 +∆t), xa(wj(t0)))

= cos(wj(t0), xa(wj(t0))) +

∫︂ ∆t

0

d

dt
cos(wj(t0 + τ), xa(wj(t0)))dτ

≥ cos(wj(t0), xa(wj(t0))) + ∆t ·min{ξ, ζ}√µna(wj(t0))Xmin/2

= cos(wj(t0), xa(wj(t0))) + 2 ≥ 1 ,

which leads to cos(wj(t0+∆t), xa(wj(t0))) = 1. This would imply wj(t0+∆t) ∈ S+
because xa(wj(t0)) ∈ S+, which contradicts our original assumption that wj

fixes the activation pattern. Therefore, ∃0 < τ0 ≤ ∆t such that 1⟨xi,wj(t0+τ0))⟩ ̸=

1⟨xi,wj(t0)⟩>0, due to the restriction on how wj can change its activation pat-

tern, it cannot return to its previous activation pattern, then one must have

1⟨xi,wj(t0+∆t))⟩ ̸= 1⟨xi,wj(t0)⟩>0.

• The other case is when wj(t0) ∈ S−. For this case, we need first show that

wj(t0 + τ) /∈ Sζ
x− , ∀0 ≤ τ ≤ ∆t, or more generally, Sζ

x− does not contain any wj in

V+ during [0, T ]. To see this, let us pick xr = x−, then Lemma 2.29 suggests that⃓⃓⃓⃓
d

dt
ψrj − (ψra − ψrjψaj) ∥xa(wj)∥

⃓⃓⃓⃓
≤ 2nXmax max

i
|f(xi;W, v)| .

Consider the case when cos(wj, x−) =
√
1− ζ, i.e. wj is at the boundary of Sζ

x− .
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We know that in this case, wj ∈ Sζ
x− ⊆ S− thus xa(wj) = −x−, and⃓⃓⃓⃓

⃓ ddt cos(wj, x−)

⃓⃓⃓⃓
cos(wj ,x−)=

√
1−ζ

+
(︁
1− cos2(wj, x−)

)︁
∥x−∥

⃓⃓⃓⃓
⃓

≤ 2nXmax max
i
|f(xi;W, v)| ,

which is⃓⃓⃓⃓
⃓ ddt cos(wj, x−)

⃓⃓⃓⃓
cos(wj ,x−)=

√
1−ζ

+ ζ∥x−∥
⃓⃓⃓⃓
⃓ ≤ 2nXmax max

i
|f(xi;W, v)|

⇒ d

dt
cos(wj, x−)

⃓⃓⃓⃓
cos(wj ,x−)=

√
1−ζ

≤ −ζ∥x−∥+ 2nXmax max
i
|f(xi;W, v)|

≤ −ζ√µXmin + 2nXmax max
i
|f(xi;W, v)| (by Lemma 2.30)

≤ −ζ√µXmin/2 < 0 . (by (2.192))

Therefore, during [0, T ], neuron wj in V+ cannot enter Sζ
x− if at initialization,

wj(0) /∈ Sζ
x− , which is guaranteed by (2.189).

With the argument above, we know that wj(t0 + τ) /∈ Sζ
x− , ∀0 ≤ τ ≤ ∆t. Again we

suppose that wj(t) ∈ S− − Sζ
x− , ∀t ∈ [t0, t0 +∆t], i.e.,wj fixes its activation during

[t0, t0 +∆t]. Let us pick xr = x−, then Lemma 2.29 suggests that⃓⃓⃓⃓
d

dt
cos(wj, x−) +

(︁
1− cos2(wj, x−)

)︁
∥x−∥

⃓⃓⃓⃓
≤ 2nXmax max

i
|f(xi;W, v)| ,

which leads to ∀t ∈ [t0, t0 +∆t],

d

dt
cos(wj, x−)

≤ −
(︁
1− cos2(wj, x−)

)︁
∥x−∥+ 2nXmax max

i
|f(xi;W, v)|

≤ −ζ∥x−∥+ 2nXmax max
i
|f(xi;W, v)| (wj /∈ Sζ

x−)

≤ −ζ√µna(wj(t0))Xmin + 2nXmax max
i
|f(xi;W, v)| (by Lemma 2.30)

≤ −ζ√µna(wj(t0))Xmin/2 . (by (2.192))

≤ −min{ξ, ζ}√µna(wj(t0))Xmin/2 ,
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Similarly, by FTC, we have

cos(wj(t0 +∆t), x−) ≤ −1 .

This would imply wj(t0 + ∆t) ∈ S+ because −x− = xa(wj(t0)) ∈ S+, which

contradicts our original assumption that wj fixes its activation pattern. Therefore,

one must have 1⟨xi,wj(t0+∆t))⟩ ̸= 1⟨xi,wj(t0)⟩>0.

In summary, we have shown that, during [0, T ], a neuron in V+ can not keep a

fixed activation pattern for a time longer than ∆t = 4
min{ζ,ξ}√µXminna

, where na is the

number of data points that activate wj under the fixed activation pattern.

Bound on total travel time until directional convergence: As we have discussed in

the proof sketch and also formally proved here, during alignment phase [0, T ], a

neuron in V+ must change its activation pattern within ∆t = 4
min{ζ,ξ}√µXminna

time

unless it is in either S+ or Sdead. And the new activation it is transitioning into

must contain no new activation on negative data points and must keep all existing

activation on positive data points, together it shows that a neuron must reach either

S+ or Sdead within a fixed amount of time, which is the remaining thing we need to

formally show here.

For simplicity of the argument, we first assume T =∞, i.e., the alignment phase

lasts indefinitely, and we show that a neuron in V+ must reach S+ or Sdead before

t1 =
16 logn

min{ζ,ξ}√µXmin
. Lastly, such directional convergence can be achieved if t1 ≤ T ,

which is guaranteed by our choice of ϵ in (2.191).

• For a neuron in V+ that reaches Sdead, the analysis is easy: It must start with no

activation on positive data and then lose activation on negative data one by one
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until losing all of its activation. Therefore, it must reach Sdead before

na(wj(0))∑︂
k=1

4

min{ζ, ξ}√µXmink
≤ 4

min{ζ, ξ}√µXmin

(︄
n∑︂

k=1

1

k

)︄

≤ 16 log n

min{ζ, ξ}√µXmin

= t1 .

• For a neuron in V+ that reaches S+, there is no difference conceptually, but it

can switch its activation pattern in many ways before reaching S+, so it is not

straightforward to see its travel time until S+ is upper bounded by t1.

To formally show the upper bound on the travel time, we need some definition

of a path that keeps a record of the activation patterns of a neuron wj(t) before it

reaches S+.

Let n+ = |I+|, n− = |I−| be the number of positive, negative data respectively,

then we call P(k(0),k(1),··· ,k(L)) a path of length-L, if

1. ∀0 ≤ l ≤ L, we have k(l) = (k
(l)
+ , k

(l)
− ) ∈ N× N with 0 ≤ k

(l)
+ ≤ n+, 0 ≤ k

(l)
− ≤ n−;

2. For k(l1), k(l2) with l1 < l2, we have either k(l1)+ > k
(l2)
+ or k(l1)− < k

(l2)
− ;

3. k(L) = (n+, 0);

4. k(l) ̸= (0, 0), ∀0 ≤ l ≤ L.

Given all our analysis on how a neuron wj(t) can switch its activation pattern in

previous parts, we know that for any wj(t) that reaches S+, there is an associated

P(k(0),k(1),··· ,k(L)) that keeps an ordered record of encountered values of

(|{i ∈ I+ : ⟨xi, wj(t)⟩ > 0}|, |{i ∈ I− : ⟨xi, wj(t)⟩ > 0}|) ,

before wj reaches S+. That is, a neuron wj starts with some activation pattern that

activates k+(0) positive data and k−(0) negative data, then switch its activation

pattern (by either losing negative data or gaining positive data) to one that acti-

vates k+(1) positive data and k−(1) negative data. By keep doing so, it reaches S+
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Figure 2-13. Illustration of a path of
length-10. Each dot on the grid repre-
sents one k(l).

Figure 2-14. Illustration of a path and
the maximal path

that activates k+(L) = n+ positive data and k−(L) = 0 negative data. Please see

Figure 2-13 for an illustration of a path.

Given a path P(k(0),k(1),··· ,k(L)) of neuron wj , we define the travel time of this path as

T (P(k(0),k(1),··· ,k(L))) =
L−1∑︂
l=0

4

min{ζ, ξ}√µXmin(k
(l)
+ + k

(l)
− )

,

which is the traveling time from k(0) to k(L) if one spends 4

min{ζ,ξ}√µXmin(k
(l)
+ +k

(l)
− )

on

the edge between k(l) and k(l+1).

Our analysis shows that if wj reaches S+, then

inf{t : wj(t) ∈ S+} ≤ T (P(k(0),k(1),··· ,k(L))) .

Now we define the maximal path Pmax as a path that has the maximum length

n = n+ + n−, which is uniquely determined by the following trajectory of k(l)

(0, n−), (0, n− − 1), (0, n− − 2), · · · , (0, 1), (1, 1), (1, 0), · · · , (n+ − 1, 0), (n+, 0) .

Please see Figure 2-14 for an illustration.
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The traveling time for Pmax is

T (Pmax) =
4

min{ζ, ξ}√µXmin

(︄
n−∑︂
k=1

1

k
+

1

2
+

n+−1∑︂
k=1

1

k

)︄

≤ 4

min{ζ, ξ}√µXmin

(︄
2

n∑︂
k=1

1

k
+

1

2

)︄

≤ 16 log n

min{ζ, ξ}√µXmin

= t1 .

The proof is complete by the fact that any path satisfies

T (P(k(0),k(1),··· ,k(L))) ≤ T (Pmax) .

This is because there is a one-to-one correspondence between the edges (k(l), k(l+1))

in P(k(0),k(1),··· ,k(L)) and a subset of edges in Pmax, and the travel time from of edge

(k(l), k(l+1)) is shorter than the corresponding edge in Pmax. Formally stating such

correspondence is tedious and a visual illustration in Figure 2-15 and 2-16 is more

effective (Putting all correspondence makes a clustered plot thus we split them

into two figures):

Figure 2-15. Correspondence be-
tween edges in P(k(0),k(1),··· ,k(L)) and
Pmax. (Part 1)

Figure 2-16. Correspondence be-
tween edges in P(k(0),k(1),··· ,k(L)) and
Pmax. (Part 2)

Therefore, if wj reaches S+, then it reaches S+ within t1:

inf{t : wj(t) ∈ S+} ≤ T (P(k(0),k(1),··· ,k(L))) ≤ T (Pmax) ≤ t1 .
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So far we have shown when the alignment phase lasts long enough, i.e., T large

enough, the directional convergence is achieved by t1. We simply pick ϵ such that

T =
1

4nXmax

log
1√
hϵ
≥ t1 =

16 log n

min{ζ, ξ}√µXmin

,

and (2.191) suffices.

Proof for Theorem 2.10 (part two): final convergence

Since we have proved the first part of Theorem 2.10 in Section 2.3.3, we will use it

as a fact, then prove the remaining part of Theorem 2.10.

Auxiliary lemmas

First, we show that S+,S−,Sdead are trapping regions.

Lemma 2.31. Consider any solution to the gradient flow dynamic (2.164), we have the

following:

• If at some time t1 ≥ 0, we have wj(t1) ∈ Sdead, then wj(t1 + τ) ∈ Sdead, ∀τ ≥ 0;

• If at some time t1 ≥ 0, we havewj(t1) ∈ S+ for some j ∈ V+, thenwj(t1+τ) ∈ S+, ∀τ ≥

0;

• If at some time t1 ≥ 0, we havewj(t1) ∈ S− for some j ∈ V−, thenwj(t1+τ) ∈ S−, ∀τ ≥

0;

Proof. The first statement is simple, if wj ∈ Sdead, then one have ẇj = 0, thus wj

remains in Sdead.

For the second statement, we have, since j ∈ V+,

d

dt
wj = −

n∑︂
i=1

1⟨xi,wj⟩≥0∇ŷℓ(yi, f(xi;W, v))xi∥wj∥ .
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By the Fundamental Theorem of Calculus, one writes, ∀τ ≥ 0,

wj(t1 + τ) = wj(t1) +

∫︂ τ

0

d

dt
wjdτ

= wj(t1) +

∫︂ τ

0

−
n∑︂

i=1

1⟨xi,wj⟩≥0∇ŷℓ(yi, f(xi;W, v))xi∥wj∥dτ

= wj(t1) +

∫︂ τ

0

n∑︂
i=1

1⟨xi,wj⟩≥0yi exp(−yif(xi;W, v))xi∥wj∥dτ

= wj(t1) +
∑︂
i∈I+

(︃∫︂ τ

0

exp(−yif(xi;W, v))∥wj∥dτ
)︃
xi⏞ ⏟⏟ ⏞

:=x̃+

.

Here wj(t1) ∈ S+ by our assumption, x̃+ ∈ K ⊆ S+ because x̃+ is a conical com-

bination of xi, i ∈ I+. Since S+ is a convex cone, we have wj(t1 + τ) ∈ S+ as

well.

The proof of the third statement is almost identical: when j ∈ V−, we have

d

dt
wj =

n∑︂
i=1

1⟨xi,wj⟩≥0∇ŷℓ(yi, f(xi;W, v))xi∥wj∥ ,

and

wj(t1 + τ) = wj(t1) +
∑︂
i∈I−

(︃∫︂ τ

0

exp(−yif(xi;W, v))∥wj∥dτ
)︃
xi⏞ ⏟⏟ ⏞

:=x̃−

.

Again, here wj(t1) ∈ S− by our assumption, x̃− ∈ −K ⊆ S− because x̃− is a conical

combination of xi, i ∈ I−. Since S− is a convex cone, we have wj(t1 + τ) ∈ S+ as

well.

Then the following Lemma provides a lower bound on neuron norms upon t1.

Lemma 2.32. Consider any solution to the gradient flow dynamic (2.164) starting from

initialization (2.165). Let t1 be the time when directional convergence is achieved, as defined

in Theorem 2.10, and we define Ṽ+ : {j : wj(t1) ∈ S+} and Ṽ− : {j : wj(t1) ∈ S−}. If

both Ṽ+ and Ṽ− are non-empty, we have∑︂
j∈Ṽ+

∥wj(t1)∥2 ≥ exp(−4nXmaxt1)
∑︂
j∈Ṽ+

∥wj(0)∥2,
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∑︂
j∈Ṽ−

∥wj(t1)∥2 ≥ exp(−4nXmaxt1)
∑︂
j∈Ṽ−

∥wj(0)∥2,

Proof. We have shown that

d

dt
∥wj∥2 = −2

n∑︂
i=1

1⟨xi,wj⟩≥0∇ŷℓ(yi, f(xi;W, v)) ⟨xi, wj⟩ sign(vj(0))∥wj∥ .

Then before t1, we have ∀j ∈ [h]

d

dt
∥wj∥2 = −2

n∑︂
i=1

1⟨xi,wj⟩≥0∇ŷℓ(yi, f(xi;W, v)) ⟨xi, wj⟩ sign(vj(0))∥wj∥

≥ −2
n∑︂

i=1

(|yi|+ 2max
i
|f(xi;W, v)|)∥xi∥∥wj∥2

≥ −4
n∑︂

i=1

∥xi∥∥wj∥2 ≥ −4nXmax∥wj∥2 ,

where the second last inequality is because maxi |f(xi;W, v)| ≤ 1
2

before t1. Sum-

ming over j ∈ Ṽ+, we have

d

dt

∑︂
j∈Ṽ+

∥wj∥2 ≥ −4nXmax

∑︂
j∈Ṽ+

∥wj∥2 .

Therefore, we have the following bound:

∑︂
j∈Ṽ+

∥wj(t1)∥2 ≥ exp(−4nXmaxt1)
∑︂
j∈Ṽ+

∥wj(0)∥2 .

Moreover, after t1, the neuron norms are non-decreasing, as suggested by

Lemma 2.33. Consider any solution to the gradient flow dynamic (2.164) starting from

initialization (2.165). Let t1 be the time when directional convergence is achieved, as defined

in Theorem 2.10, and we define Ṽ+ : {j : wj(t1) ∈ S+} and Ṽ− : {j : wj(t1) ∈ S−}. If

both Ṽ+ and Ṽ− are non-empty, we have ∀τ ≥ 0 and t2 ≥ t1,

∑︂
j∈Ṽ+

∥wj(t2 + τ)∥2 ≥
∑︂
j∈Ṽ+

∥wj(t2)∥,
∑︂
j∈Ṽ−

∥wj(t2 + τ)∥2 ≥
∑︂
j∈Ṽ−

∥wj(t2)∥ (2.193)
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Proof. It suffices to show that after t1, the following derivatives:

d

dt

∑︂
j∈Ṽ+

∥wj(t)∥2,
d

dt

∑︂
j∈Ṽ−

∥wj(t)∥2 ,

are non-negative.

For j ∈ Ṽ+, wj stays in S+ by Lemma 2.31, and we have

d

dt
∥wj∥2 = −2

∑︂
i∈I+

∇ŷℓ(yi, f(xi;W, v)) ⟨xi, wj⟩ ∥wj∥ .

= 2
∑︂
i∈I+

yiℓ(yi, f(xi;W, v)) ⟨xi, wj⟩ ∥wj∥ ≥ 0 .

Summing over j ∈ Ṽ+, we have d
dt

∑︁
j∈Ṽ+

∥wj(t)∥2 ≥ 0. Similarly, for neurons in Ṽ−,

one has d
dt

∑︁
j∈Ṽ−

∥wj(t)∥2 ≥ 0.

Finally, the following lemma is used for deriving the final convergence.

Lemma 2.34. Consider the following loss function

Llin(W, v) =
n∑︂

i=1

ℓ
(︁
yi, v

⊤W⊤xi)
)︁
,

if {xi, yi}, i ∈ [n] are linearly separable, i.e., ∃γ > 0 and z ∈ SD−1 such that yi ⟨z, xi⟩ ≥

γ, ∀i ∈ [n], then under the gradient flow on Llin(W, v), we have

L̇lin ≤ −∥v∥2L2γ2 . (2.194)

Proof.

L̇ = −∥∇WL∥2F − ∥∇vL∥2F ≤ −∥∇WL∥2F

= −
⃦⃦⃦⃦
⃦

n∑︂
i=1

yiℓ(yi, v
⊤W⊤xi)xiv

⊤

⃦⃦⃦⃦
⃦
2

F

= −∥v∥2
⃦⃦⃦⃦
⃦

n∑︂
i=1

yiℓ(yi, v
⊤W⊤xi)xi

⃦⃦⃦⃦
⃦
2

≤ −∥v∥2
⃓⃓⃓⃓
⃓
⟨︄
z,

n∑︂
i=1

yiℓ(yi, v
⊤W⊤xi)xi

⟩︄⃓⃓⃓⃓
⃓
2

≤ −∥v∥2
⃓⃓⃓⃓
⃓

n∑︂
i=1

ℓ(yi, v
⊤W⊤xi)γ

⃓⃓⃓⃓
⃓
2

≤ −∥v∥2L2γ2 .
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Proof of final convergence

Proof of Theorem 2.10: Second Part. By Lemma 2.31, we know that after t1, neurons

in S+ (S−) stays in S+ (S−). Thus the loss can be decomposed as

L =
∑︂
i∈I+

ℓ

⎛⎝yi,∑︂
j∈Ṽ+

vj ⟨wj, xi⟩

⎞⎠
⏞ ⏟⏟ ⏞

L+

+
∑︂
i∈I−

ℓ

⎛⎝yi,∑︂
j∈Ṽ−

vj ⟨wj, xi⟩

⎞⎠
⏞ ⏟⏟ ⏞

L−

, (2.195)

where Ṽ+ : {j : wj(t1) ∈ S+} and Ṽ− : {j : wj(t1) ∈ S−}. Therefore, the training

after t1 is decoupled into 1) using neurons in Ṽ+ to fit positive data in I+ and 2)

using neurons in Ṽ− to fit positive data in I−.

Define f+(xi;W, v) =
∑︁

j∈Ṽ+
vj ⟨wj, xi⟩ and t+2 = inf{t : maxi∈I+ |f+(xi;W, v)| >

1
4
}. Similarly, we also define f−(xi;W, v) =

∑︁
j∈Ṽ+

vj ⟨wj, xi⟩ and let t−2 = inf{t :

maxi∈I− |f−(xi;W, v)| > 1
4
}. Then t1 ≤ min{t+2 , t−2 }, by Lemma 2.22.

O (1/t) convergence after t2: We first show that when both t+2 , t
−
2 are finite, then

it implies O(1/t) convergence on the loss. Then we show that they are indeed finite

and t2 := max{t+2 , t−2 } = O( 1n log 1
ϵ
).

At t2 = max{t+2 , t−2 }, by definition, ∃i+ ∈ I+ such that

1

4
≤ f+(xi+ ;W, v) ≤

∑︂
j∈Ṽ+

vj
⟨︁
wj, xi+

⟩︁
≤
∑︂
j∈Ṽ+

∥wj∥2∥xi+∥ , (2.196)

which implies, by Lemma 2.33, ∀t ≥ t2∑︂
j∈Ṽ+

∥wj(t)∥2 ≥
∑︂
j∈Ṽ+

∥wj(t2)∥2 ≥
1

4∥xi+∥
≥ 1

4Xmax

. (2.197)

Similarly, we have ∀t ≥ t2, ∑︂
j∈Ṽ−

∥wj(t)∥2 ≥
1

4Xmax

. (2.198)

Under the gradient flow dynamics (2.164), we apply Lemma 2.34 to the decomposed

loss (2.195)

L̇ ≤ −

⎛⎝∑︂
j∈Ṽ+

v2j

⎞⎠ · L2
+ · (µXmin)

2 −

⎛⎝∑︂
j∈Ṽ+

v2j

⎞⎠ · L2
− · (µXmin)

2 .
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Here, we can pick the same γ = µXmin for both L+ and L− because {xi, yi}, i ∈ I+
is linearly separable with z = y1x1

∥x1∥ : ⟨z, xiyi⟩ ≥ µ∥xi∥ ≥ µXmin by Assumption 2.2.

And similarly, {xi, yi}, i ∈ I− is linearly separable with ⟨z, xiyi⟩ ≥ µ∥xi∥ ≥ µXmin.

Replace v2i by ∥wj∥2 from balancedness, together with (2.197)(2.198), we have

L̇ ≤ −

⎛⎝∑︂
j∈Ṽ+

∥wj∥2
⎞⎠ · L2

+ · (µXmin)
2 −

⎛⎝∑︂
j∈Ṽ+

∥wj∥2
⎞⎠ · L2

− · (µXmin)
2

≤ −(µXmin)
2

4Xmax

(L2
+ + L2

−) ≤ −
(µXmin)

2

8Xmax

(L+ + L−)
2 = −(µXmin)

2

8Xmax

L2 ,

which is
1

L2
L̇ ≤ −(µXmin)

2

8Xmax

.

Integrating both side from t2 to any t ≥ t2, we have

1

L

⃓⃓⃓⃓⊤
t2

≤ −(µXmin)
2

8Xmax

(t− t2) ,

which leads to

L(t) ≤ L(t2)
L(t2)α(t− t2) + 1

, where α =
(µXmin)

2

8Xmax

.

Showing t2 = O( 1n log 1
ϵ
): The remaining thing is to show t2 is O( 1

n
log 1

ϵ
).

Since after t1, the gradient dynamics are fully decoupled into two gradient flow

dynamics (on L+ and on L−), it suffices to show t+2 = O( 1
n
log 1

ϵ
) and t−2 = O( 1

n
log 1

ϵ
)

separately, then combine them to show t2 = max{t+2 , t−2 } = O( 1n log 1
ϵ
). The proof is

almost identical for L+ and L−, thus we only prove t+2 = O( 1
n
log 1

ϵ
) here.

Suppose

t2 ≥ t1 +
6√

µn+Xmin

+
4√

µn+Xmin

(︃
log

2

ϵ2
√
µXminW 2

min

+ 4nXmaxt1

)︃
, (2.199)

where n+ = |I+|. It takes two steps to show a contradiction: First, we show that for

some ta ≥ 0, a refined alignment cos(wj(t1 + ta), x+) ≥ 1
4
, ∀j ∈ Ṽ+ is achieved, and

such refined alignment is maintained until at least t+2 : cos(wj(t), x+) ≥ 1
4
, ∀j ∈ Ṽ+

for all t1+ ta ≤ t ≤ t+2 . Then, keeping this refined alignment leads to a contradiction.
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• For j ∈ Ṽ+, we have

d

dt

wj

∥wj∥
=

(︄
I − wjw

⊤
j

∥wj∥2

)︄⎛⎝∑︂
i∈I+

−∇ŷℓ(yi, f+(xi;W, v))xi

⎞⎠
⏞ ⏟⏟ ⏞

:=x̃a

.

Then

d

dt
cos(x+, wj) = (cos(x+, x̃a)− cos(x+, wj) cos(x̃a, wj)) ∥x̃a∥

≥ (cos(x+, x̃a)− cos(x+, wj)) ∥x̃a∥ .

We can show that cos(x+, x̃a) ≥ 1
3

and ∥x̃a∥ ≥ √µn+Xmin/2 when t1 ≤ t ≤ t+2 (we

defer the proof to the end as it breaks the flow), thus within [t1, t
+
2 ], we have

d

dt
cos(x+, wj) ≥

(︃
1

3
− cos(x+, wj)

)︃√
µn+Xmin/2 . (2.200)

We use (2.200) in two ways: First, since

d

dt
cos(x+, wj)

⃓⃓⃓⃓
cos(x+,wj)=

1
4

≥
√
µn+Xmin

24
> 0 ,

cos(x+, wj) ≥ 1
4

is a trapping region for wj during [t1, t
+
2 ]. Define ta := inf{t ≥ t1 :

minj∈Ṽ+
cos(x+, wj(t)) ≥ 1

4
}, then clearly, if ta ≤ t+2 , then cos(wj(t), x+) ≥ 1

4
, ∀j ∈

Ṽ+ for all t1 + ta ≤ t ≤ t+2 .

Now we use (2.200) again to show that ta ≤ t1 +
6√

µn+Xmin
: Suppose that ta ≥

t1 +
6√

µn+Xmin
, then ∃j∗ such that cos(x+, wj∗(t)) <

1
4
, ∀t ∈ [t1, t1 +

6√
µn+Xmin

], and

we have

d

dt
cos(x+, wj∗) ≥

(︃
1

3
− cos(x+, wj)

)︃√
µn+Xmin/2 ≥

√
µn+Xmin

24
. (2.201)

This shows

cos(x+, wj∗(t1 + 1)) ≥ cos(x+, wj∗(t1)) +
1

4
≥ 1

4
,

which contradicts that cos(x+, wj∗(t)) <
1
4
. Hence we know ta ≤ t1 +

6√
µn+Xmin

.

In summary, we have cos(wj(t), x+) ≥ 1
4
, ∀j ∈ Ṽ+ for all t1 + 6√

µn+Xmin
≤ t ≤ t+2 .
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• Now we check the dynamics of
∑︁

j∈Ṽ+
∥wj(t)∥2 during t1+ 6√

µn+Xmin
≤ t ≤ t+2 . For

simplicity, we denote t1 + 6√
µn+Xmin

:= t′1.

For j ∈ Ṽ+, we have, for t′1 ≤ t ≤ t+2 ,

d

dt
∥wj∥2 = 2

∑︂
i∈I+

−∇ŷℓ(yi, f(xi;W, v)) ⟨xi, wj⟩ ∥wj∥

≥
∑︂
i∈I+

⟨xi, wj⟩ ∥wj∥ (by (2.203))

= ⟨x+, wj⟩ ∥wj∥

= ∥x+∥∥wj∥2 cos(x+, wj)

≥ 1

4
∥x+∥∥wj∥2 (Since t ≥ t′1)

≥
√
µn+Xmin

4
∥wj∥2 , (by Lemma 2.30)

which leads to (summing over j ∈ Ṽ+)

d

dt

∑︂
j∈Ṽ+

∥wj∥2 ≥
√
µn+Xmin

4

∑︂
j∈Ṽ+

∥wj∥2 .

By Gronwall’s inequality, we have

∑︂
j∈Ṽ+

∥wj(t
+
2 )∥2

≥ exp

(︃√
µn+Xmin

4
(t+2 − t′1)

)︃ ∑︂
j∈Ṽ+

∥wj(t
′
1)∥2

≥ exp

(︃√
µn+Xmin

4
(t+2 − t′1)

)︃ ∑︂
j∈Ṽ+

∥wj(t1)∥2 (By Lemma 2.33)

≥ exp

(︃√
µn+Xmin

4
(t+2 − t′1)

)︃
exp (−4nXmaxt1)

∑︂
j∈Ṽ+

∥wj(0)∥2 (By Lemma 2.32)

≥ exp

(︃√
µn+Xmin

4
(t+2 − t′1)

)︃
exp (−4nXmaxt1) ϵ

2W 2
min . (by (2.199))

≥ 2√
µXmin

139



However, at t+2 , we have

1

4
≥ 1

n+

∑︂
i∈I+

f+(xi;W, v) =
1

n+

∑︂
i∈I+

∑︂
j∈Ṽ+

vj ⟨wj, xi⟩

=
1

n+

∑︂
j∈Ṽ+

vj ⟨wj, x+⟩ ∗

=
1

n+

∑︂
j∈Ṽ+

∥wj∥2 cos(wj, x+)∥x+∥

≥ 1

4n+

∑︂
j∈Ṽ+

∥wj∥2∥x+∥ (Since t ≥ t′1)

≥ 1

4

∑︂
j∈Ṽ+

∥wj∥2
√
µXmin , (by Lemma 2.30)

which suggests
∑︁

j∈Ṽ+
∥wj∥2 ≤ 1√

µXmin
. A contradiction.

Therefore, we must have

t+2 ≤ t1 +
6√

µn+Xmin

+
4√

µn+Xmin

(︃
log

2

ϵ2
√
µXminW 2

min

+ 4nXmaxt1

)︃
. (2.202)

Since the dominant term here is 4√
µn+Xmin

log 2
ϵ2
√
µXminW

2
min

, we have t+2 = O( 1
n
log 1

ϵ
).

A similar analysis shows t−2 = O( 1
n
log 1

ϵ
). Therefore t2 = max{t+2 , t−2 } = O( 1n log 1

ϵ
)

Complete the missing pieces: We have two claims remaining to be proved. The

first is cos(x+, x̃a) ≥ 1
2

when t1 ≤ t ≤ t+2 . Since x̃a =
∑︁

i∈I+ −∇ŷℓ(yi, f+(xi;W, v))xi

and x+ =
∑︁

i∈I+ xi, we simply use the fact that before t+2 , we have, by Lemma 2.21,

1

2
≤ −∇ŷℓ(yi, f+(xi;W, v)) =≤

3

2
, (2.203)
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to show the following

cos(x+, x̃a) =
⟨x+, x̃a⟩
∥x+∥∥x̃a∥

=

∑︁
i,j∈I+(−∇ŷℓ(yi, f+(xi;W, v))) ⟨xi, xj⟩√︂∑︁

i,j∈I+ ⟨xi, xj⟩
√︂∑︁

i,j∈I+(−∇ŷℓ(yi, f+(xi;W, v)))2 ⟨xi, xj⟩

≥
1
2

∑︁
i,j∈I+ ⟨xi, xj⟩√︂∑︁

i,j∈I+ ⟨xi, xj⟩
√︂∑︁

i,j∈I+(−∇ŷℓ(yi, f+(xi;W, v)))2 ⟨xi, xj⟩

≥
1
2

∑︁
i,j∈I+ ⟨xi, xj⟩√︂∑︁

i,j∈I+ ⟨xi, xj⟩
√︂∑︁

i,j∈I+(
3
2
)2 ⟨xi, xj⟩

≥ 1

3
,

since all ⟨xi, xj⟩ , i, j ∈ I+ are non-negative.

The second claim is ∥x̃a∥ ≥ √µn+Xmin/2 is due to that

∥x̃a∥ =

√︄∑︂
i,j∈I+

(−∇ŷℓ(yi, f+(xi;W, v)))2 ⟨xi, xj⟩

≥ 1

2

√︄∑︂
i,j∈I+

⟨xi, xj⟩ =
∥x+∥
2
≥
√
µn+Xmin

2
,

where the last inequality is from Lemma 2.30.

Proof of low-rank bias

So far we have proved the directional convergence at the early alignment phase and

final O(1/t) convergence of the loss in the later stage. The only thing that remains

to be shown is the low-rank bias. The proof is quite straightforward but we need

some additional notations.

As we proved above, after t1, neurons in S+ (S−) stays in S+ (S−). Thus the loss

can be decomposed as

L =
∑︂
i∈I+

ℓ

⎛⎝yi,∑︂
j∈Ṽ+

vj ⟨wj, xi⟩

⎞⎠
⏞ ⏟⏟ ⏞

L+

+
∑︂
i∈I−

ℓ

⎛⎝yi,∑︂
j∈Ṽ−

vj ⟨wj, xi⟩

⎞⎠
⏞ ⏟⏟ ⏞

L−

,

where Ṽ+ : {j : wj(t1) ∈ S+} and Ṽ− : {j : wj(t1) ∈ S−}. Therefore, the training

after t1 is decoupled into 1) using neurons in Ṽ+ to fit positive data in I+ and 2)
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using neurons in Ṽ− to fit positive data in I−. We use

W+ = [W ]:,Ṽ+
, W− = [W ]:,Ṽ−

to denote submatrices of W by picking only columns in Ṽ+ and Ṽ−, respectively.

Similarly, we define

v+ = [v]Ṽ+
, v− = [v]Ṽ−

for the second layer weight v. Lastly, we also define

Wdead = [W ]:,Ṽdead
, vdead = [v]Ṽdead

,

where Ṽdead := {j : wj(t1) ∈ Sdead}. Given these notations, after t1 the loss is

decomposed as

L =
∑︂
i∈I+

ℓ
(︁
yi, x

⊤
i W+v+

)︁
⏞ ⏟⏟ ⏞

L+

+
∑︂
i∈I−

ℓ
(︁
yi, x

⊤
i W−v−

)︁
⏞ ⏟⏟ ⏞

L−

,

and the GF on L is equivalent to GF on L+ and L− separately. It suffices to study

one of them. For GF on L+, we have the following important invariance [27] ∀t ≥ t1:

W⊤
+ (t)W+(t)− v+(t)v⊤+(t) = W⊤

+ (t1)W+(t1)− v+(t1)v⊤+(t1) ,

from which one has

∥W⊤
+ (t)W+(t)− v+(t)v⊤+(t)∥2 = ∥W⊤

+ (t1)W+(t1)− v+(t1)v⊤+(t1)∥2

≤ ∥W⊤
+ (t1)W+(t1)∥2 − ∥v+(t1)v⊤+(t1)∥2

≤ tr(W⊤
+ (t1)W+(t1)) + ∥v+(t1)∥2

= 2
∑︂
j∈Ṽ+

∥wj(t1)∥2 ≤
4ϵW 2

max√
h
|Ṽ+| ,

where the last inequality is by Lemma 2.22. Then one can immediately get

∥v+(t)v⊤+(t)∥2 − ∥W⊤
+ (t)W+(t)∥2 ≤ ∥W⊤

+ (t)W+(t)− v+(t)v⊤+(t)∥2 ≤
4ϵW 2

max√
h
|Ṽ+| ,
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which is precisely

∥W+(t)∥2F ≤ ∥W+(t)∥22 +
4ϵW 2

max√
h
|Ṽ+| . (2.204)

Similarly, we have

∥W−(t)∥2F ≤ ∥W−(t)∥22 +
4ϵW 2

max√
h
|Ṽ−| . (2.205)

Lastly, one has

∥Wdead∥2F =
∑︂

j∈Ṽdead

∥wj(t1)∥2 ≤
4ϵW 2

max√
h
|Ṽdead| (2.206)

Adding (2.204)(2.205)(2.206) together, we have

∥W (t)∥2F = ∥W+(t)∥2F + ∥W−(t)∥2F + ∥Wdead∥2F

≤ ∥W+(t)∥22 + ∥W−(t)∥22 +
4
√
hϵW 2

max√
h

≤ 2∥W (t)∥22 + 4
√
hϵW 2

max .

Finally, since we have shown L → 0 as t→∞, then we have ℓ(yi, f(xi;W, v))→ 0,

∀i ∈ [n]. This implies

f(xi;W, v) = −
1

yi
log ℓ(yi, f(xi;W, v))→∞ .

Because we have shown that

f(xi;W, v) ≤
∑︂
j∈[h]

∥wj∥2∥xi∥ ≤ ∥W∥2FXmax ,

f(xi;W, v)→∞ enforces ∥W∥2F →∞ as t→∞, thus ∥W∥22 →∞ as well. This gets

us

lim sup
t→∞

∥W∥2F
∥W∥22

= 2 .

2.4 Conclusion

In this chapter, we first study the explicit role of initialization on controlling the

convergence and implicit bias of single-hidden-layer linear networks trained under
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gradient flow. We first provide a lower bound on the instantaneous rate based on

the imbalance matrix and the product, from which convergence guarantees are

derived based on sufficient imbalance or sufficient margin. We then show that

proper initialization enforces the trajectory of network parameters to be exactly

(or approximately) constrained in a low-dimensional invariant set, over which

minimizing the loss yields the min-norm solution. Combining those results, we

obtain a novel non-asymptotic bound regarding the implicit bias of wide linear

networks under random initialization towards the min-norm solution. Our analysis,

although on a simple overparametrized model, connects overparametrization,

initialization, and optimization. Some concepts such as the imbalance extend

to multi-layer linear networks, and eventually to neural networks with nonlinear

activations, as shown in later sections. Next, we extend the convergence analysis to

multi-layer linear models with a loss of general form f(W1W2 · · ·WL). We show that

with proper initialization, the loss converges to its global minimum exponentially.

Our analysis applies to various types of multi-layer linear networks, and our

assumptions on f are general.

Finally, we study the problem of training a binary classifier via gradient flow on

two-layer ReLU networks under small initialization. We consider a training dataset

with well-separated input vectors. A careful analysis of the neurons’ directional

dynamics allows us to provide an upper bound on the time it takes for all neurons

to achieve good alignment with the input data. After the early alignment phase,

the loss converges to zero at a O(1
t
) rate, and the weight matrix on the first layer

is approximately low-rank. Lastly, our numerical experiment on classifying two

digits from the MNIST dataset correlates with our theoretical findings.

Future directions include extending our gradient flow results to gradient descent

algorithm [80] and to nonlinear networks. [61] shows the diagonal entries of the

imbalance are preserved, and [71] shows a stronger version of such invariance
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given additional assumptions on the training trajectory. Therefore, the weight

imbalance could be used to understand the training of nonlinear networks. More-

over, [81] shows that exploiting the symmetry that induces imbalance invariance

could lead to an accelerated gradient descent algorithm, thus our general analysis

could potentially also aid the algorithmic design.

145



Chapter 3

Coherence in Large-scale Networked
Dynamical Systems

Network coherence generally refers to the emergence of simple aggregated dy-

namical behaviors, despite heterogeneity in the dynamics of the subsystems that

constitute the network. Such a phenomenon usually results from a multi-cluster

structure in large networks: Large-scale interconnected systems generally can be

partitioned into multiple areas such that strong network coupling exists within each

area while those between the areas are relatively weaker. This leads to a time-scale

separation in the network responses to disturbances: the nodes in the same area

get synchronized on a fast time scale through strong network interaction and move

together, i.e., “coherently”, in the long term. Then the slow dynamics, often referred

to as inter-area oscillation, are characterized by the interaction between coherent

areas through the weak connection. Inter-area oscillation potentially causes high-

frequency fluctuation across the entire network, thus building an accurate and

interpretable mathematical model for the inter-area oscillation is of paramount

importance in understanding the system resilience of large-scale networks.

Network coherence has been a long-standing research problem and various

analyses [38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48] have been developed over the

last decades for identifying coherent areas, characterizing coherent dynamics, and
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modeling inter-area oscillation. Those analyses often assume simple first- or second-

order node dynamics. However, new challenges arise as many practical network

systems have changed their composition drastically. For example, in power net-

works, the increasing penetration of renewable energy sources introduces more

inverted-based resources into the grid, and synchronous generators are being re-

placed. Compared to synchronous generators, based on which the classic coherence

analyses are developed, inverted-based resources have very different dynamical

characteristics and can hardly be well captured by only first- or second-order dynam-

ics. Therefore, one requires coherence identification and aggregation procedures

that work for more general network systems.

Chapter outline

The goal of the chapter is precisely to develop new analytical tools for under-

standing network coherence and inter-area oscillation in the face of networks with

complex node dynamics. In Section 3.1, we focus on the case of a single coherent

area and introduce our novel frequency-domain analysis for network coherence that

works for networks with general node dynamics. This frequency domain analysis

provides a deeper characterization of the role of both, network topology and node

dynamics, on the coherent behavior of the network. In Section 3.2, we extend our

analysis to the case of multiple coherent areas by proposing a structure-preserving

network reduction model that captures the dominant inter-area oscillations among

different areas. Lastly, we show that for power system applications, our reduc-

tion model still renders a high-order dynamical model, and propose algorithms to

reduce the model complexity in Section 3.3.
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Notation

For a vector x, ∥x∥ =
√
x⊤x denotes the 2-norm of x, and for a matrix A, σmin(A)

denotes the minimum singular value of A, ∥A∥ denotes the spectral norm of A.

Particularly, if A is real symmetric, we let λi(A) denote the ith smallest eigenvalue

of A. We let diag{xi}ni=1 denote a n × n diagonal matrix with diagonal entries xi.

We let In denote the identity matrix of order n, 1 denote column vector [1, · · · , 1]⊤,

[n] denote the set {1, 2, · · · , n} and N+ denote the set of positive integers. Also, we

write complex numbers as a+ jb, where j =
√
−1. We denote C the field of complex

number, and define the following subsets B(s0, δ) := {s ∈ C : |s − s0| ≤ δ}. For

non-negative random variables X(n), Y (n), we write X(n) ∼ Op(Y (n)) if ∃M > 0,

s.t. limn→∞ P (X(n) ≤MY (n)) = 1. We write X(n) ∼ Ωp(Y (n)) if ∃M > 0, s.t.

limn→∞ P (X(n) ≥MY (n)) = 1. Notice that in this chapter, the eigenvalues λi(A) of

matrix A is in increasing order.

3.1 Networks with One Coherent Cluster

In this section, we introduce our frequency domain analysis of network coherence

and focus on the case when the entire network is coherent due to strong coupling

among all nodes. Our analysis formalizes network coherence through a low-rank

structure of the system transfer matrix that appears when the network feedback

gain is high. This frequency domain analysis provides a deeper characterization of

the role of both, network topology and node dynamics, on the coherent behavior of

the network. In particular, our results make substantial contributions towards the

understanding of coordinated and coherent behavior of network systems in many

ways:

• We present a general framework in the frequency domain to analyze the

coherence of heterogeneous networks. We show that network coherence
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emerges as a low-rank structure of the system transfer matrix as we increase

the effective algebraic connectivity–a frequency-varying quantity that depends

on the network coupling strength and dynamics.

• Our analysis applies to networks with heterogeneous nodal dynamics, and

further provides an explicit characterization in the frequency domain of the

coherent response to disturbances as the harmonic mean of individual nodal

dynamics. Thus, in this way, our results highlight the contribution of individ-

ual nodal dynamics to the network’s coherent behavior.

• We formally connect our frequency-domain results with explicit time-domain

L∞ bounds on the difference between individual nodal responses and the

coherent dynamic response to certain classes of input signals, suggesting that

network coherence is a frequency-dependent phenomenon. That is, the ability

of nodes to respond coherently depends on the frequency composition of the

input disturbance.

• By providing an exact characterization of the network’s coherent dynamics,

our analysis can be further applied in settings where only distributional infor-

mation of the network composition is known. More precisely, we show that

the coherent dynamics of tightly-connected networks with possibly random

nodal dynamics are well approximated by a deterministic transfer function

that only depends on the statistical distribution of node dynamics.

Notably, the problem of characterizing coherent dynamic response is unique to

heterogeneous networks since the coherent dynamics for homogeneous networks

are exactly equal to the common nodal dynamics. In real applications, however,

such as power networks, such characterization is relevant to model reduction [44]

and control design [50]. Our analysis provides, in the asymptotic sense, the ex-

act characterization of coherent dynamics that can be used in control design for
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heterogeneous networks.

3.1.1 Problem setup

Consider a network consisting of n nodes (n ≥ 2), indexed by i ∈ [n] with the block

diagram structure in Figure 3-1. L is the Laplacian matrix of the weighted graph that

describes the network interconnection. We further use f(s) to denote the transfer

function representing the dynamics of network coupling, and G(s) = diag{gi(s)}

to denote the nodal dynamics, with gi(s), i ∈ [n], being an SISO transfer function

representing the dynamics of node i. Throughout this chapter, we assume all

gi(s), i = 1, · · · , n and f(s) are rational proper transfer functions, and the Laplacian

matrix L is real symmetric.

G(s)

f(s)L

u y

−

Figure 3-1. Block diagram of networked dynamical systems

Under this setting, we can compactly express the transfer matrix from the input

signal vector u to the output signal vector y by

T (s) = (In +G(s)f(s)L)−1G(s)

= (In + diag{gi(s)}f(s)L)−1diag{gi(s)} . (3.1)

Many existing networks can be represented by this structure. For example, for

the first-order consensus network [33, 82], f(s) = 1, and the node dynamics are

given by gi(s) = 1
s
. For power networks [55, 48], f(s) = 1

s
, gi(s) are the dynamics

of the generators, and L is the Laplacian matrix representing the sensitivity of

power injection w.r.t. bus phase angles. Finally, in transportation networks [37, 82],

gi(s) represent the vehicle dynamics whereas f(s)L describes local inter-vehicle

information transfer.
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Since L has an eigendecomposition L = V ΛV ⊤ where V =
[︂

1√
n
, V⊥

]︂
, V V ⊤ =

V ⊤V = In, and Λ = diag{λi(L)} with 0 = λ1(L) ≤ λ2(L) ≤ · · · ≤ λn(L), we can

rewrite T (s) as

T (s) = (In + diag{gi(s)}f(s)L)−1diag{gi(s)}

= (diag{g−1
i (s)}+ f(s)L)−1

= (diag{g−1
i (s)}+ f(s)V ΛV ⊤)−1

= V (V ⊤diag{g−1
i (s)}V + f(s)Λ)−1V ⊤ . (3.2)

As we mentioned in the introduction, we are interested in the regime where the

closed-loop system T (s) of (3.1) has a low-rank structure. To gain some insight, we

first consider the following simplified example.

Motivating example: homogeneous network

Suppose gi(s) are homogeneous, i.e., gi(s) = g(s). Then using (3.2) one can decom-

pose T (s) as follows

T (s)=
1

n
g(s)11⊤+ V⊥diag

{︃
1

g−1(s)+f(s)λi(L)

}︃n

i=2

V ⊤
⊥ , (3.3)

where the network dynamics decouple into two terms: 1) the dynamics 1
n
g(s)11⊤

that is independent of network topology and corresponds to the coherent behavior

of the system; 2) the remaining dynamics that are dependent on the network

structure via both, the eigenvalues λi(L), i = 2, · · · , n and the eigenvectors V⊥.

Notice that |f(s)λ2(L)| ≤ |f(s)λi(L)|, i = 2, . . . , n, then 1
n
g(s)11⊤ is dominant in

T (s) as long as |f(s)λ2(L)| (later referred as effective algbraic connectivity), is large

enough to make the norm of the second term in (3.3) sufficiently small. Following

such observation, we can find two regimes where the coherent dynamics 1
n
g(s)11⊤

is dominant:

1. (High network connectivity) If a compact set S ⊂ C contains neither zeros nor

poles of g(s), then we have limλ2(L)→∞ sups∈S
⃦⃦
T (s)− 1

n
g(s)11⊤

⃦⃦
= 0 .
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2. (High gain in coupling dynamics) If s0 is a pole of f(s), and the network is

connected, i.e., λ2(L) > 0, then we have lims→s0

⃦⃦
T (s)− 1

n
g(s)11⊤

⃦⃦
= 0 .

Such convergence results suggest that if 1) the network has high algebraic connec-

tivity, or 2) our point of interest in frequency domain is close to pole of f(s), the

response of the entire system is close to one of 1
n
g(s)11⊤. We refer 1

n
g(s)11⊤ as the

coherent dynamics1 in the sense that in such system, the inputs are aggregated, and

all nodes have exactly the same response to the aggregate input. Therefore, coherence

of the network corresponds, in the frequency domain, to the property that the network’s

transfer matrix approximately having a particular rank-one structure.

The aforementioned analysis can be extended to the case with proportionality

assumption, i.e., gi(s) = pig(s) for some g(s) and pi > 0, i = 1, · · · , n, where one can

still obtain decoupled dynamics through proper coordinate transformation [48] and

the coherent dynamics are again characterized by the common dynamics g(s). How-

ever, it is challenging to analyze the transfer matrix T (s) without the proportionality

assumption: First, it is unclear whether low-rank structure would even emerge

under high network connectivity or high gain in the coupling dynamics; Then most

importantly, there is no obvious choice for coherent dynamics, hence characterizing

the coherent dynamics is a non-trivial problem unique to heterogeneous networks,

and no existing work has shown an explicit characterization.

Our work precisely aims at understanding the coherent dynamics of non-

proportional heterogeneous networks. We would like to show that even when

gi(s) are heterogeneous, similar results as in the motivating example still hold.

More precisely, we show that, in Section 3.1.2, T (s) converges to a rank-one transfer

matrix of the form 1
n
ḡ(s)11⊤, as the effective algebraic connectivity |f(s)λ2(L)| in-

creases. However, unlike the homogeneous node dynamics case where the coherent

1We also refer g(s) as the coherent dynamics since transfer matrix of the form 1
ng(s)11⊤ is

uniquely determined by its non-zero eigenvalue g(s).
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behavior is driven by ḡ(s) = g(s), the coherent dynamics ḡ(s) are given by the

harmonic mean of gi(s), i = 1, · · · , n, i.e.,

ḡ(s) =

(︄
1

n

n∑︂
i=1

g−1
i (s)

)︄−1

. (3.4)

The convergence results are presented in the aforementioned two regimes: high

network connectivity and high gain in coupling dynamics. We then discuss in

Section 3.1.3 their implications on network’s time-domain response:

1. Network with high connectivity responds coherently to a wide class of input

signals;

2. Network with coupling dynamics f(s) = 1
s

is naturally coherent with respect

to sufficiently low-frequency signals, regardless of its connectivity.

One additional feature of our analysis is that it can be further applied in settings

where the composition of the network is unknown and only distributional infor-

mation is present. More precisely, we, in Section 3.1.4, consider a network where

node dynamics are given by random transfer functions. As the network size grows,

the coherent dynamics ḡ(s), the harmonic mean of all node dynamics, converges in

probability to a deterministic transfer function. We term such a phenomenon, where

a family of uncertain large-scale systems concentrates to a common deterministic

system, dynamics concentration.

3.1.2 Coherence in frequency domain

In this section, we analyze the network coherence as the low-rank structure of

the transfer matrix in the frequency domain. We start with an important lemma

revealing how such coherence is related to the algebraic connectivity λ2(L) and the

coupling dynamics f(s).
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Lemma 3.1. Let T (s) and ḡ(s) be defined as in (3.1) and (3.4), respectively. Suppose that

for s0 ∈ C that is not a pole of f(s), we have

|ḡ(s0)| ≤M1, and max
1≤i≤n

|g−1
i (s0)| ≤M2 ,

for some M1,M2 > 0. Then the following inequality holds:⃦⃦⃦⃦
T (s0)−

1

n
ḡ(s0)11⊤

⃦⃦⃦⃦
≤ (M1M2 + 1)2

|f(s0)|λ2(L)−M2 −M1M2
2

, (3.5)

whenever |f(s0)|λ2(L) ≥M2 +M1M
2
2 .

Lemma 3.1 provides an error bound for approximating T (s) with a rank-one

transfer matrix 1
n
ḡ(s). It is a special version of Theorem 3.8 to be introduced in

Section 3.2, which concerns approximating T (s) with a rank-k transfer matrix.

Lemma 3.1 provides a non-asymptotic rate for our incoherence measure⃦⃦⃦⃦
T (s0)−

1

n
ḡ(s0)11⊤

⃦⃦⃦⃦
∼ O

(︃
M2

1M
2
2

|f(s0)|λ2(L)

)︃
. (3.6)

A large value of |f(s0)|λ2(L) is sufficient to have the incoherence measure small,

and we term this quantity as effective algebraic connectivity. We see that there are two

possible ways to achieve such point-wise coherence: Either we increase the network

algebraic connectivity λ2(L), by adding edges to the network and increasing edge

weights, etc., or we move our point of interest s0 to a pole of f(s). This point-

wise coherence via effective connectivity provides the basis of our subsequent

analysis. As we mentioned above, we can achieve such coherence by increasing

either λ2(L) or |f(s0)|, provided that the other value is fixed and non-zero. Section

3.1.2 considers the former and Section 3.1.2 the latter.

Coherence under high network connectivity

It is intuitive that a network behaves coherently under high connectivity. A formal

frequency domain characterization is stated as follow.
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Theorem 3.1. Let T (s) and ḡ(s) be defined as in (3.1) and (3.4), respectively. Given a

compact set S ⊂ C, if

1. S does not contain any zero or pole of ḡ(s);

2. infs∈S |f(s)| > 0 ,

we have limλ2(L)→+∞ sups∈S
⃦⃦
T (s)− 1

n
ḡ(s)11⊤

⃦⃦
= 0 .

Proof. On the one hand, since S does not contain any pole of ḡ(s), ḡ(s) is continuous

on the compact set S, and hence bounded [83, Theorem 4.15]. On the other hand,

because S does not contain any zero of ḡ(s), every g−1
i (s) must be continuous on S,

and hence bounded as well. It follows that max1≤i≤n |g−1
i (s)| is bounded on S, and

the conditions of Lemma 3.1 are satisfied for all s ∈ S with a uniform choice of M1

and M2. By (3.5), we have

sup
s∈S

⃦⃦⃦⃦
T (s)− 1

n
ḡ(s)11⊤

⃦⃦⃦⃦
≤ (M1M2 + 1)2

Flλ2(L)−M2 −M1M2
2

,

where Fl = infs∈S |f(s)|. We finish the proof by taking λ2(L) → +∞ on both

sides.

Theorem 3.1 formally shows that high network connectivity leads to coherence.

We emphasize that such coherence is frequency-dependent: the incoherence mea-

sure is defined over a compact set S. Roughly speaking, if we would like to see

whether the network could have coherent response under certain input signal, then

S should cover most of the frequency components of that signal, as well satisfies

the assumptions in Theorem 3.1. We discuss the proper choice of S when we use

Theorem 3.1 to infer the time-domain response in Section 3.1.3.

Coherence under high gain in coupling dynamics

However, high network connectivity is not necessary for coherence. A high gain in

the coupling dynamics effectively amplifies the network connection, leading to the
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following frequency-domain coherence.

Theorem 3.2. Let T (s) and ḡ(s) be defined as in (3.1) and (3.4), respectively. Given a pole

of f(s), if

1. s0 is neither a pole nor a zero of ḡ(s);

2. λ2(L) > 0,

then lims→s0

⃦⃦
T (s)− 1

n
ḡ(s)11⊤

⃦⃦
= 0 .

Proof. Since s0 is neither a zero nor a pole of ḡ(s), ∃δ1 > 0 such that ∀s ∈ B(s0, δ1),

we have |ḡ−1(s)| ≤M1 and max1≤i≤n |g−1
i (s)| ≤M2 for some M1,M2 > 0.

Now notice that lims→s0 |f(s)| = +∞, by the definition of the limit, we know that

∃δ2 > 0 such that ∀s ∈ B(s0, δ2), we have 1
2
|f(s)|λ2(L) ≥ M2 +M1M

2
2 . By Lemma

3.1, let δ := min{δ1, δ2}, then ∀s ∈ B(s0, δ), the following holds⃦⃦⃦⃦
T (s)− 1

n
ḡ(s)11⊤

⃦⃦⃦⃦
≤ (M1M2 + 1)2

|f(s)|λ2(L)−M2 −M1M2
2

≤ 2 (M1M2 + 1)2

|f(s)|λ2(L)
.

Taking s→ s0, the limit of right-hand side is 0.

Theorem 3.2 suggests that for any connected network, some coupling dynamics

causes coherent responses from the network under specific input signals. For

example, when f(s) = 1
s
, the network T (s) is naturally coherent around s = 0, which

implies that such network behaves coherently under sufficiently low-frequency

input signals. This is formally justified in Section 3.1.3, along with time-domain

results for other choice of coupling dynamics.

3.1.3 Implications on time-domain response

In this section, we discuss how one can infer the network’s time-domain response

using the established frequency-domain coherence in Theorem 3.1 and 3.2. Provided

156



that the network T (s) and the coherent dynamics ḡ(s) are BIBO stable, we let

y(t) = [y1(t), · · · , yi(t), · · · , yn(t)]⊤ be the response of the network when the network

input is U(s), and let ȳ(t) be the response of ḡ(s) to 1⊤

n
U(s). The inverse Laplace

transform [84] suggests that for all i = 1, · · · , n, we have

|yi(t)− ȳ(t)| =
⃓⃓⃓⃓
lim
ω→∞

∫︂ σ+jω

σ−jω

este⊤i

(︃
T (s)− 1

n
ḡ(s)11⊤

)︃
U(s)ds

⃓⃓⃓⃓
, (3.7)

with a proper choice of σ > 0. Here ei is the i-th column of identity matrix In.

This integral can be decomposed in two parts: one integral on the low-frequency

band (σ − jω0, σ + jω0); and another on the high-frequency band (σ − j∞, σ −

jω0) ∪ (σ + jω0, σ + j∞), with some choice of ω0. The former can be made small in

absolute value by controlling the incoherence measure ∥T (s)− 1
n
ḡ(s)11⊤∥ over the

set S : (σ − jω0, σ + jω0). In particular,

1. sups∈S ∥T (s) − 1
n
ḡ(s)11⊤∥ can be small under high network connectivity, as

suggested by Theorem 3.1;

2. sups∈S ∥T (s)− 1
n
ḡ(s)11⊤∥ can be small when S is confined in a neighborhood

around pole of coupling dynamics f(s), suggested by Theorem 3.2. The case

f(s) = 1
s

is of the most interest.

Moreover, when U(s) is a sufficiently low-frequency signal such that the high-

frequency band (σ − j∞, σ − jω0) ∪ (σ + jω0, σ + j∞) does not include much of

its frequency components, the latter integral can be made small. Given an upper

bound on the integral in (3.7), we show that the time-domain response of every

node in the network resembles the one from the coherent dynamics ḡ(s). Similar to

Section 3.1.2, we show such time-domain coherence in two regimes: high network

connectivity or high gain in the coupling dynamics.

Remark 6. In order to infer the time-domain response, it is necessary that both the transfer

functions T (s) and 1
n
ḡ(s)11⊤ are stable. Since our primary focus is on the interpretation of

157



the frequency domain results, we are largely working under the tacit assumption that these

transfer functions are stable whenever required. It should also be noted that there exist a

range of scalable stability criteria in the literature that can be used to guarantee internal

stability of the feedback setup in Figure 3-1. Perhaps the most well known is that if each

gi(s) is strictly positive real, and f(s) is positive real, then the transfer functions ḡ(s) and[︃
G(s)
I

]︃
(I + f(s)LG(s))−1 [︁f(s)L I

]︁
are stable (see e.g. [85]). Alternative approaches that can be easily adapted to our framework

that give criteria that allow for different classes of transfer functions include [86, 87, 88].

Coherent response under high network connectivity

Our first result considers network with high connectivity.

Theorem 3.3. Given a network with node dynamics {gi(s)}ni=1 and coupling dynamics

f(s), assume that there exists γ > 0, such that ∥ḡ(s)∥H∞ ≤ γ and ∥T (s)∥H∞ ≤ γ for any

symmetric Laplacian matrix L. Consider a network coupling f(s) and a real input signal

vector u(t) with its Laplace transform U(s) such that for some σ > 0, we have

1. infω∈R |f(σ + iω)| > 0;

2. supRe(s)>σ ∥U(s)∥ is finite;

3. limω→∞
∫︁ σ+jω

σ+j0
∥U(s)∥ds is finite .

Then for any ϵ > 0, there exists a λ > 0, such that whenever λ2(L) ≥ λ, we have

∥y(t)− ȳ(t)1∥L∞ ≤ ϵ, i.e.,

max
i∈[n]

sup
t>0
|yi(t)− ȳ(t)| ≤ ϵ .

Theorem 3.3 provide a formal explanation of coherent behavior observed in

practical networks and show its relation with network connectivity. That is, a stable
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network with high connectivity can respond coherently to a class of input signals.

More importantly, the coherently response is well approximated by ḡ(s), then it

suffices to study ḡ(s) for understanding the coherent behavior of a network with

high connectivity.

While the theorem suggests that some level of coherence can be achieved by

increasing the network connectivity, one should be cautious about the potential

network instability caused by strong interconnection. Nonetheless, some simple

passivity motivated criteria that ensure stability even as λ2(L) becomes arbitrarily

large:

Theorem 3.4. Suppose that all gi(s), i = 1, · · · , n are output strictly passive: Re(gi(s)) ≥

ϵ|gi(s)|2, ∀Re(s) > 0 , for some ϵ > 0, and f(s) is positive real: Re(f(s)) ≥ 0, ∀Re(s) >

0 , then there exists γ > 0, such that given any positive semidefinite matrix L, we have

∥ḡ(s)∥H∞ ≤ γ, and ∥T (s)∥H∞ ≤ γ .

Theorem 3.4, together with Theorem 3.3, shows that for certain passive networks,

the coherence can be achieved over a class of input signals by increasing the network

connectivity.

Remark 7. Besides network stability as a prerequisite, a few assumptions are made: infimum

on |f(s)| ensures that the network coupling does not vanish over our domain of interest;

supremum on ∥U(s)∥ is needed for utilizing inverse Laplace transform; and the last assump-

tion requires U(s) to have light tail on the high-frequency range, a low-frequency signal

with no abrupt change at t = 0, such as sinusoidal signal U(s) = α
s2+α2u0, or exponential

approach signal U(s) = α
s(s+α)

u0 of some shape u0 ∈ Rn, satisfies the assumption.

Coherent response under special coupling dynamics

As we discussed in Section 3.1.2, coherence is not all about network connectivity,

and high gain in the coupling dynamics causes coherence as well. One simple and
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practically seen coupling dynamics are f(s) = 1
s
. Due to its high gain at s = 0, we

expected the a coherent response under low-frequency signals, as formally shown

below.

Theorem 3.5. Given a network with node dynamics {gi(s)}ni=1, coupling dynamics f(s) =

1
s
, and a fixed graph Laplacian L with λ2(L) > 0, such that ∥ḡ(s)∥H∞ and ∥T (s)∥H∞ are

finite, we let the network input be a sinusoidal signal uα(t) = sin(αt)χ(t)u0 in an arbitrary

direction u0 ∈ Sn−1. Then for any ϵ > 0, there exists an α0 > 0 such that whenever

0 ≤ α ≤ α0, we have ∥y(t)− ȳ(t)1∥L∞ ≤ ϵ, i.e.,

max
i∈[n]

sup
t>0
|yi(t)− ȳ(t)| ≤ ϵ . (3.8)

Theorem 3.5 shows that a stable network with f(s) = 1
s

is naturally coherent

subject to sufficiently low-frequency signals, regardless of its connectivity. Notably,

the requirement on the node dynamics here is much weaker than one in Theorem

3.3 as we only need to establish stability for a given interconnection L, whereas

Theorem 3.3 requires stability under any interconnection.

Comparison with different notions of coordination

Our Theorem 3.3 and 3.5 shows the coherent response of network in time domain.

We compare our results to prior work that studies different forms of time-domain

coordination in network systems.

The consensus [33] and synchronization [89, 90, 91] is arguably the simplest form

of coordination in network systems, which can be viewed as a problem tracking

some reference signal ȳ(t) representing the final consensus or synchronization.

However, one only requires yi(t)→ ȳ(t) when t→∞, i.e., that the node responses

become close to ȳ(t) in steady state. The coherent response considered here is

different in that we have yi(t) ≃ ȳ(t), ∀t > 0, i.e., ȳ(t) is a good approximation for

yi(t) for all time t > 0, hence our results can be also used for transient analysis.
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The work on coherency and synchrony [92, 39, 93, 94] study a similar behavior

as us, but characterized as pairwise coherence achieved under input signal of

certain spatial shape: given a input signal vector u(t) = v(t)u0, [92, 93] shows

the condition on u0 such that the responses of some pair of nodes are similar (or

generally, proportional [39]), i.e., yi(t) ≃ yj(t) for some i, j ∈ [n] . Our results show

that certain temporal shape v(t) also causes coherence, and in a stronger form: our

coherence does not depends on the shape u0, and holds for all nodes.

3.1.4 Dynamics concentration in large-scale networks

In Section 3.1.2, we looked into convergence results of T (s) for networks with fixed

size n. However, one could easily see that such coherence depends mildly on the

network size n: In Lemma 3.1, as long as the bounds regarding gi(s), i.e. M1 and M2

do not scale with respect to n, coherence can emerge as the network size increases.

This is the topic of this section.

Coherence in large-scale networks

To start with, we revise the problem settings to account for variable network size:

Let {gi(s), i ∈ N+} be a sequence of transfer functions, and {Ln, n ∈ N+} be a

sequence of real symmetric Laplacian matrices such that Ln is a square matrix of

order n, particularly, let L1 = 0. Then we define a sequence of transfer matrix Tn(s)

as

Tn(s) = (In +Gn(s)Ln)
−1Gn(s) , (3.9)

where Gn(s) = diag{g1(s), · · · , gn(s)}. This is exactly the same transfer matrix

shown in Figure 3-1 for a network of size n. We can then define the coherent

dynamics for every Tn(s) as ḡn(s) =
(︁
1
n

∑︁n
i=1 g

−1
i (s)

)︁−1.

For certain family {Ln, n ∈ N+} of large-scale networks, the network algebraic

connectivity λ2(Ln) increases as n grows. For example, when Ln is the Laplacian of
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a complete graph of size n with all edge weights being 1, we have λ2(Ln) = n. As

a result, network coherence naturally emerges as the network size grows. Recall

that to prove the convergence of Tn(s) to 1
n
ḡn(s)11⊤ for fixed n, we essentially seek

for M1,M2 > 0, such that |ḡn(s)| ≤M1 and max1≤i≤n |g−1
i (s)| ≤M2 for s in a certain

set. If it is possible to find a universal M1,M2 > 0 for all n, then the convergence

results should be extended to arbitrarily large networks, provided that network

connectivity increases as n grows. The results follows after we state the notion of

uniform boundedness for a family of functions.

Definition 3.1. Let {gi(s), i ∈ I} be a family of complex functions indexed by I . Given

S ⊂ C, {gi(s), i ∈ I} is uniformly bounded on S if

∃M > 0 s.t. |gi(s)| ≤M, ∀i ∈ I, ∀s ∈ S .

Theorem 3.6. Suppose λ2(Ln) → +∞ as n → ∞. Given a compact set S ⊂ C, if

both {g−1
i (s), i ∈ N+} and {ḡn(s), n ∈ N+} are uniformly bounded on a set S ⊂ C, and

infs∈S|f(s)| > 0, then we have

lim
n→∞

sup
s∈S

⃦⃦⃦⃦
Tn(s)−

1

n
ḡn(s)11⊤

⃦⃦⃦⃦
= 0 .

Proof. Since both {g−1
i (s), i ∈ N+} and {ḡn(s), n ∈ N+} are uniformly bounded on

S, ∃M1,M2 > 0 s.t. |ḡn(s)| ≤ M1 and max1≤i≤n |g−1
i (s)| ≤ M2 for every n ∈ N+ and

s ∈ S. By Lemma 3.1, ∀n ∈ N+,

sup
s∈S

⃦⃦⃦⃦
Tn(s)−

1

n
ḡn(s)11⊤

⃦⃦⃦⃦
≤ (M1M2 + 1)2

Flλ2(Ln)−M2 −M1M2
2

, (3.10)

where Fl = infs∈S |f(s)|. We already assumed that λ2(Ln) → +∞ as n → +∞,

therefore the proof is finished by taking n→ +∞ on both sides of (3.10).

Interestingly, in a stochastic setting where all gi(s) are unknown transfer func-

tions independently drawn from some distribution, their harmonic mean ḡn(s)
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eventually converges in probability to a deterministic transfer function as the net-

work size increases. Consequently, a large-scale network consisting of random node

dynamics (to be formally defined later) concentrates to deterministic a system. We

term this phenomenon dynamics concentration.

Remark 8. In this section, we only discuss the coherence due to connectivity, since the

coherence from high gain in coupling dynamics shown in Theorem 3.2 can be applied to any

connected network, regardless of its size.

Dynamics concentration in large-scale networks

Now we consider the cases where the node dynamics are unknown (stochastic). For

simplicity, we constraint our analysis to the setting where the node dynamics are

independently sampled from the same random rational transfer function with all

or part of the coefficients are random variables, i.e. the nodal transfer functions are

of the form

gi(s) ∼
bms

m + . . . b1s+ b0
alsl + . . . a1s+ a0

, (3.11)

for some m, l > 0, where b0, · · · , bm, a0, · · · , al are random variables.

To formalize the setting, we firstly define the random transfer function to be

sampled. Let Ω = Rd be the sample space, F the Borel σ-field of Ω, and P a

probability measure on Ω. A samplew ∈ Ω thus represents a d-dimensional vector of

coefficients. We then define a random rational transfer function g(s, w) on (Ω,F ,P)

such that all or part of the coefficients of g(s, w) are random variables. Then for any

w0 ∈ Ω, g(s, w0) is a rational transfer function.

Now consider the probability space (Ω∞,F∞,P∞). Every w ∈ Ω∞ give an

instance of samples drawn from our random transfer function:

gi(s, wi) := g(s, wi), i ∈ N+ ,

where wi is the i-th element of w. By construction, gi(s, wi), i ∈ N+ are i.i.d. random
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transfer functions. Moreover, for every s0 ∈ C, gi(s0, wi), i ∈ N+ are i.i.d. random

complex variables taking values in the extended complex plane (presumably taking

value∞).

Now given {Ln, n ∈ N+} a sequence of n× n real symmetric Laplacian matrices,

consider the random network of size n whose nodes are associated with the dynam-

ics gi(s, wi), i = 1, 2, · · · , n and coupled through Ln. The transfer matrix of such a

network is given by

Tn(s,w) = (In +Gn(s,w)Ln)
−1Gn(s,w) , (3.12)

where Gn(s,w) = diag{g1(s, w1), · · · , gn(s, wn)}. Then under this setting, the coher-

ent dynamics of the network is given by

ḡ(s,w) =

(︄
1

n

n∑︂
i=1

g−1
i (s, wi)

)︄−1

. (3.13)

Now given a compact set S ⊂ C of interest, and assuming suitable conditions on

the distribution of g(s, w), we expect that the random coherent dynamics ḡ(s,w)

would converge uniformly in probability to its expectation

ĝ(s) =
(︁
Eg−1(s, w))

)︁−1
:=

(︃∫︂
Ω

g−1(s, w)dP(w)

)︃−1

, (3.14)

for all s ∈ S, as n→∞. The following Lemma provides a sufficient condition for

this to hold.

Lemma 3.2. Consider the probability space (Ω∞,F∞,P∞). Let ḡn(s,w) and ĝ(s) be

defined as in (3.13) and (3.14), respectively, and given a compact set S ⊂ C, let the

following conditions hold:

1. g−1(s, w) is uniformly bounded on S × Ω;

2. {ḡn(s,w), n ∈ N+} are uniformly bounded on S × Ω∞;

3. ∃L > 0 s.t. |g−1
1 (s1, w)− g−1

1 (s2, w)| ≤ L|s1 − s2|, ∀w ∈ Ω, ∀s1, s2 ∈ S;
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4. ĝ(s) is uniformly continuous.

Then, ∀ϵ > 0, we have

lim
n→∞

P

(︃
sup
s∈S

⃦⃦⃦⃦
1

n
ḡn(s,w)11⊤ − 1

n
ĝ(s)11⊤

⃦⃦⃦⃦
≥ ϵ

)︃
= 0 .

This lemma suggests that our coherent dynamics ḡn(s,w), as n increases, con-

verges uniformly on S to its expected version ĝ(s). Then provided that the coherence

is obtained as the network size grows, we would expect that the random transfer

matrix Tn(s,w) to concentrate to a deterministic one 1
n
ĝ(s)11⊤, as the following

theorem shows.

Theorem 3.7. Given probability space (Ω∞,F∞,P∞). Let Tn(s,w) and ĝ(s) be defined as

in (3.12) and (3.14), respectively. Suppose λ2(Ln)→ +∞ as n→ +∞. Given a compact

set S ⊂ C, if all the conditions in Lemma 3.2 hold, then ∀ϵ > 0, we have

lim
n→∞

P

(︃
sup
s∈S

⃦⃦⃦⃦
Tn(s,w)− 1

n
ĝ(s)11⊤

⃦⃦⃦⃦
≥ ϵ

)︃
= 0 .

Proof. Firstly, notice that

P

(︃
sup
s∈S

⃦⃦⃦⃦
Tn(s,w)− 1

n
ĝ(s)11⊤

⃦⃦⃦⃦
≥ ϵ

)︃
≤ P

(︃
sup
s∈S

⃦⃦⃦⃦
Tn(s,w)− 1

n
ḡn(s)11⊤

⃦⃦⃦⃦
+

sup
s∈S

⃦⃦⃦⃦
1

n
ḡn(s,w)11⊤ − 1

n
ĝ(s)11⊤

⃦⃦⃦⃦
≥ ϵ

)︃
≤ P

(︃
sup
s∈S

⃦⃦⃦⃦
Tn(s,w)− 1

n
ḡn(s,w)11⊤

⃦⃦⃦⃦
≥ ϵ

2

)︃
+

P

(︃
sup
s∈S

⃦⃦⃦⃦
1

n
ḡn(s,w)11⊤ − 1

n
ĝ(s)11⊤

⃦⃦⃦⃦
≥ ϵ

2

)︃
.

The second term converges to 0 as n → +∞ by Lemma 3.2. For the first term,

we show below that it becomes exactly 0 for large enough n. Still, we assume

{ḡn(s,w)} and {g−1
i (s,w)} are uniformly bounded on S by M1,M2 > 0 respectively.
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By Lemma 3.1, choosing large enough n s.t.

P

(︃
sup
s∈S

⃦⃦⃦⃦
Tn(s,w)− 1

n
ḡn(s,w)11⊤

⃦⃦⃦⃦
≥ ϵ

2

)︃
≤ P

(︄
(M1M2 + 1)2

Flλ2(Ln)−M2 −M1M2
2

≥ ϵ

2

)︄
,

then we can choose even larger n such that the probability on the right-hand side is

0 because λ2(Ln)→ +∞ as n→∞.

In summary, because the coherent dynamics is given by the harmonic mean of all

node dynamics gi(s), it concentrates to its harmonic expectation ĝ(s) as the network

size grows. As a result, in practice, the coherent behavior of large-scale networks

depends on the empirical distribution of gi(s), i.e. a collective effect of all node

dynamics rather than every individual node dynamics. For example, two different

realizations of large-scale network with dynamics Tn(s,w) exhibit similar coherent

behavior with high probability, in spite of the possible substantial differences in

individual node dynamics.

Remark 9. With Theorem 3.7, one can adopt the analysis in Section 3.1.3 to derive a

time-domain result similar to the one in Theorem 3.3. In this case, the network stability

again relies on node passivity as required in Theorem 3.4. Nonetheless, for low-order

rational transfer function, the condition of being passive is equivalent to its coefficients

satisfying certain algebraic inequalities[95], hence there exists probability measure P on the

coefficients such that the resulting transfer function is passive almost surely, under which

the time-domain response of the network Tn(s,w) can be inferred.

3.1.5 Numerical Experiments

In this section, we apply our analysis to investigate coherence in power networks.

For coherent generator groups, we find that 1
n
ḡ(s) generalizes typical aggregate

generator models which are often used for model reduction in power networks [96].
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Moreover, we show that heterogeneity in generator dynamics usually leads to high-

order aggregate dynamics, making it challenging to find a reasonably low-order

approximation.

Consider the transfer matrix of power generator networks [48] linearized around

its steady-state point, given by the following block diagram: This is exactly the

diag{gi(s)}

1
sL

u ω

−

Figure 3-2. Block Diagram of Linearized Power Networks

block structure shown in Figure 3-1 with f(s) = 1
s
. Here, the network output, i.e.,

the frequency deviation of each generator, is denoted by ω. Generally, the gi(s) are

modeled as strictly positive real transfer functions and we assume L is connected.

Such interconnection is stable [85], regardless of the network connectivity.

We verify our theoretical results, Theorem 3.3 and Theorem 3.5, with numerical

simulations on the Icelandic power grid [97] modeled as in Fig 3-2. We plot in

Fig. 3-3 the frequency response of the power network model subject to various

input disturbances. the network step response is more coherent, i.e. response of

every single node (generator) is getting closer to the one of the coherent dynamics

ḡ(s), when the network connectivity is scaled up, as suggested by Theorem 3.3. In

addition, the network responds more coherently when subject to lower-frequency

signals (See the second and forth column in Fig 3-3), as suggested by Theorem 3.5.

But most importantly, the coherent dynamics ḡ(s) provides a good characterization

of the coherent response. We also plot the Center-of-Inertia frequency of the grid

yCOI = (
∑︁n

i=1miyi)/(
∑︁n

i=1mi), which is generally used for frequency response
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Figure 3-3. Coherent response of Icelandic Grid. Each column corresponds to a
different input signal (from left to right: step, exponential approach, high-frequency
sinusoidal, and low-frequency sinusoidal signal); The input signal has a shape
u0 = −e2, i.e., only the second node is subject to disturbance. Top row shows
the responses of original icelandic grid, and the bottom row shows the responses
of network with increased connectivity. Red dashed line shows the response of
ḡ(s) subject to the averaged input ū(t) = 1⊤u(t)/n. Blue solid line shows the
Center-of-Inertia frequency of the grid yCOI = (

∑︁n
i=1miyi)/(

∑︁n
i=1mi).

assessment, and we see that it is well approximated by the response of ḡ(s).

Proof of Theorem 3.3 and 3.5

We prove our time-domain results Theorem 3.3 and 3.5 here.

When the input to the network is U(s), the output response of the i-th node is

Yi(s) = e⊤i T (s)U(s) ,

where ei is the i-th column of the identity matrix In.

Using Mellin’s inverse formula [84, Theorem 3.20], we have

|yi(t)− ȳ(t)| =
⃓⃓⃓⃓
1

2πj
lim
ω→∞

∫︂ σ+jω

σ−jω

est
(︃
Yi(s)− e⊤i ḡ(s)1

1⊤

n
U(s)

)︃
ds

⃓⃓⃓⃓
≤ eσ

2π
lim
ω→∞

∫︂ σ+jω

σ−jω

⃓⃓⃓⃓
e⊤i T (s)U(s)− e⊤i ḡ(s)1

1⊤

n
U(s)

⃓⃓⃓⃓
ds

≤ eσ

2π
lim
ω→∞

∫︂ σ+jω

σ−jω

⃦⃦⃦⃦
T (s)− 1

n
ḡ(s)11⊤

⃦⃦⃦⃦
∥U(s)∥ds

=
eσ

2π
((A) + (B) + (C)) ,
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where

(A) =

∫︂ σ+jω0

σ−jω0

⃦⃦⃦⃦
T (s)− 1

n
ḡ(s)11⊤

⃦⃦⃦⃦
∥U(s)∥ds ,

(B) = lim
ω→∞

∫︂ σ+jω

σ+jω0

⃦⃦⃦⃦
T (s)− 1

n
ḡ(s)11⊤

⃦⃦⃦⃦
∥U(s)∥ds ,

(C) = lim
ω→∞

∫︂ σ−jω0

σ−jω

⃦⃦⃦⃦
T (s)− 1

n
ḡ(s)11⊤

⃦⃦⃦⃦
∥U(s)∥ds .

Both proofs use such decomposition. By our assumption,

(B) = lim
ω→∞

∫︂ σ+jω

σ+jω0

⃦⃦⃦⃦
T (s)− 1

n
ḡ(s)11⊤

⃦⃦⃦⃦
∥U(s)∥ds

≤ lim
ω→∞

∫︂ σ+jω

σ+jω0

(∥T (s)∥+ ∥ḡ(s)∥) ∥U(s)∥ds

≤ 2γ lim
ω→∞

∫︂ σ+jω

σ+jω0

∥U(s)∥ds ,

where the last inequality uses the fact that ḡ(s) and T (s) are stable:

∥ḡ(s)∥H∞ , ∥T (s)∥H∞ ≤ γ .

Because for the real input signals, we have U(s∗) = U∗(s), hence
∫︁ σ−jω0

σ−jω
∥U(s)∥ds =∫︁ σ+jω

σ+jω0
∥U(s)∥ds , which leads to

(C) ≤ 2γ lim
ω→∞

∫︂ σ+jω

σ+jω0

∥U(s)∥ds .

Now we are ready to prove Theorem 3.3 and 3.5.

Proof of Theorem 3.3. First of all, Mellin’s inverse formula requires that the vertical

line Re(s) = σ is on the right of all poles of the signal. This is the case from our

assumption that supRe(s)>σ ∥U(s)∥ < +∞ and that T (s), ḡ(s) being stable.

By the assumption that limω→∞
∫︁ σ+jω

σ+j0
∥U(s)∥ds is finite, one can pick an ω0 > 0,

such that

lim
ω→∞

∫︂ σ+jω

σ+jω0

∥U(s)∥ds ≤ 2πϵ

6eσγ
,
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which leads to

(B) ≤ 2γ lim
ω→∞

∫︂ σ+jω

σ+jω0

∥U(s)∥ds ≤ 2πϵ

3eσ
.

Similarly, we have (C) ≤ 2πϵ
3eσ

.

For the remaining term, we have

(A) =

∫︂ σ+jω0

σ−jω0

⃦⃦⃦⃦
T (s)− 1

n
ḡ(s)11⊤

⃦⃦⃦⃦
∥U(s)∥ds

≤ sup
w∈[−w0,w0]

⃦⃦⃦⃦
T (σ + jw)− 1

n
ḡ(σ + jw)11⊤

⃦⃦⃦⃦
×
∫︂ σ+jω0

σ−jω0

∥U(s)∥ds

Since [σ − jω0, σ + jω0] is a compact set that satisfies the assumption in Theorem

3.1, we have

lim
λ2(L)→∞

sup
w∈[−w0,w0]

⃦⃦⃦⃦
T (σ + jw)− 1

n
ḡ(σ + jw)11⊤

⃦⃦⃦⃦
= 0 .

Therefore, for sufficiently large λ2(L), we have (A) ≤ 2πϵ
3eσ

. Combining the upper-

bounds for (A), (B), (C), we have

|yi(t)− ȳ(t)| ≤ ϵ .

Notice that the choice of λ2(L) does not depends on time t, hence this inequality

holds for all t > 0.

Proof of Theorem 3.5. Here, the input is a sinusoidal signal U(s) = α
s2+α2u0, u0 ∈ Sn−1.

Mellin’s inverse formula requires that the vertical line Re(s) = σ is on the right of

all poles of the signal, which is satisfied under any choice σ > 0. For our purpose,

we pick

σ = α, ω0 = Kα ,
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for some K > 0 (to be determined later). By our assumption,

(B) ≤ 2γ lim
ω→∞

∫︂ σ+jω

σ+jω0

⃓⃓⃓⃓
α

s2 + α2

⃓⃓⃓⃓
∥u0∥ds

= 2γ

∫︂ +∞

ω0

α

|(σ + jω)2 + α2|dω

= 2γ

∫︂ +∞

Kα

α

|(α + jω)2 + α2|dω

= 2γ

∫︂ +∞

Kα

α√
4α4 + ω4

dω

≤ 2
√
2γ

∫︂ +∞

Kα

α

2α2 + ω2
dω

= γ

(︃
π − 2 arctan

(︃
K√
2

)︃)︃
, (3.15)

where the last inequality use the fact that for a, b > 0, we have

√
a2 + b2 ≥ (a+ b)/

√
2 .

Similarly, we have

(C) ≤ γ

(︃
π − 2 arctan

(︃
K√
2

)︃)︃
. (3.16)

For the remaining term, we use the result in the proof of Theorem 3.2: ∃δ > 0, such

that ∀s ∈ B(0, δ) such that⃦⃦⃦⃦
T (s)− 1

n
ḡ(s)11⊤

⃦⃦⃦⃦
≤ 2 (M1M2 + 1)2

|f(s)|λ2(L)
,

for some M1,M2 > 0. Then as long as we pick α,K appropriately such that |σ +
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jω0| ≤ δ, i.e.,
√
1 +K2α ≤ δ, we have

(A) =

∫︂ σ+jω0

σ−jω0

⃦⃦⃦⃦
T (s)− 1

n
ḡ(s)11⊤

⃦⃦⃦⃦ ⃓⃓⃓⃓
α

s2 + α2

⃓⃓⃓⃓
ds

≤
∫︂ σ+jω0

σ−jω0

2 (M1M2 + 1)2

|f(s)|λ2(L)

⃓⃓⃓⃓
α

s2 + α2

⃓⃓⃓⃓
ds

=

∫︂ σ+jω0

σ−jω0

2 (M1M2 + 1)2

λ2(L)/|s|
α

|s2 + α2|ds

=
2 (M1M2 + 1)2

λ2(L)

∫︂ σ+jω0

σ−jω0

|s|α
|s2 + α2|ds

=
4 (M1M2 + 1)2

λ2(L)

∫︂ Kα

0

|α + jω|α
|(α + jω)2 + α2|dω

=
4 (M1M2 + 1)2

λ2(L)

∫︂ Kα

0

√
α2 + ω2α√
4α4 + ω4

dω

≤ 2
√
2 (M1M2 + 1)2

λ2(L)

∫︂ Kα

0

2(α + ω)α

2α2 + ω2
dω ,

where the last equality used the fact that for a, b > 0, we have

a+ b ≥
√
a2 + b2 ≥ (a+ b)/

√
2 ,

to upper and lower bound the numerator and denominator respectively. Notice

that ∫︂ Kα

0

2(α + ω)α

2α2 + ω2
dω

= α

(︃√
2 arctan

(︃
K√
2

)︃
+ log

(︃
1 +

K2

2

)︃)︃
≤ 2α log

(︃
K2

2

)︃
, (3.17)

for sufficiently large K. We have

(A) ≤ 4
√
2 (M1M2 + 1)2

λ2(L)
α log

(︃
K2

2

)︃
. (3.18)

The last step is to find the right choice of α,K. Given ϵ > 0, pick a K > 0, such that

2γ

(︃
π − 2 arctan

(︃
K√
2

)︃)︃
≤ ϵπ

2
.
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Generally such a K is sufficient for (3.17) to hold. With this choice of K, let

α0 := min

{︄
log 2,

ϵπλ2(L)

8
√
2(M1M2 + 1)2 log

(︁
K2

2

)︁ , δ√
1 +K2

}︄
.

Then, ∀α ≤ α0, combining (3.15)(3.16)(3.18), we have

|yi(t)− ȳ(t)| ≤
eσ

2π
((A) + (B) + (C))

≤ eα0

2π

(︄
2γ

(︃
π − 2 arctan

(︃
K√
2

)︃)︃
+

4
√
2 (M1M2 + 1)2

λ2(L)
α log

(︃
K2

2

)︃)︄
≤ 1

π

(︂ϵπ
2

+
ϵπ

2

)︂
= ϵ .

Notice that the choice of α0, K does not depends on time t, nor the node index i,

hence this inequality holds for all t > 0 and all i ∈ [n].

Proof of Theorem 3.4

Proof of Theorem 3.4. For each gi(s), i = 1, · · · , n, we have, by the OSP property,

Re(gi(s)) ≥ ϵ|gi(s)|2, ∀Re(s) > 0 .

That is,

Re(G(s)) ⪰ ϵG∗(s)G(s) ,

or equivalently,
[︃
G(s)
I

]︃∗ [︃−ϵI I
I 0

]︃ [︃
G(s)
I

]︃
⪰ 0 . Since gi(s) are all OSP, then gi(s) is

positive real [98]. A positive real function that is not zero function has no zero nor

pole on the left half plane. Therefore gi(s) are invertible for all Re(s) > 0, which

ensures that G(s) is invertible for all Re(s) > 0. Then

(G∗(s))−1

[︃
G(s)
I

]︃∗ [︃−ϵI I
I 0

]︃ [︃
G(s)
I

]︃
G−1(s) ⪰ 0 ,

which is [︃
I

G−1(s)

]︃∗ [︃−ϵI I
I 0

]︃ [︃
I

G−1(s)

]︃
⪰ 0 . (3.19)

Notice that

T (s) = (I +G(s)f(s)L)−1G(s) = (G−1(s) + f(s)L)−1 ,
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then from (3.19) and the fact that f(s) is PR, we have[︃
I

T−1(s)

]︃∗ [︃−ϵI I
I 0

]︃ [︃
I

T−1(s)

]︃
=

[︃
I

G−1(s) + f(s)L

]︃∗ [︃−ϵI I
I 0

]︃ [︃
I

G−1(s) + f(s)L

]︃
=

[︃
I

G−1(s)

]︃∗ [︃−ϵI I
I 0

]︃ [︃
I

G−1(s)

]︃
+ [f ∗(s) + f(s)]L

⪰
[︃

I
G−1(s)

]︃∗ [︃−ϵI I
I 0

]︃ [︃
I

G−1(s)

]︃
⪰ 0 .

Now for sufficiently large γ > 0, we have[︃
−ϵI I
I 0

]︃
+

[︃
ϵ
2
I 0
0 −γ2 ϵ

2
I

]︃
=

[︃
− ϵ

2
I I

I −γ2 ϵ
2
I

]︃
⪯ 0 ,

since its Schur complement (− ϵ
2
+ 2

ϵγ2 )I ⪯ 0 for large γ. Therefore,[︃
I

T−1(s)

]︃∗ [︃− ϵ
2
I 0

0 γ2 ϵ
2
I

]︃ [︃
I

T−1(s)

]︃
⪰
[︃

I
T−1(s)

]︃∗ [︃−ϵI I
I 0

]︃ [︃
I

T−1(s)

]︃
⪰ 0 ,

which is exactly, γ2 ϵ
2
(T−1(s))∗(T−1(s)) ⪰ ϵ

2
I . This shows that

σ2
min(T

−1(s)) ≥ 1

γ2
, ∀Re(s) > 0 , (3.20)

which is equivalent to ∥T (s)∥2 ≤ γ , ∀Re(s) > 0 . Moreover, (3.20) implies

|ḡ−1(s)| =
⃓⃓⃓⃓
1⊤
√
n
T−1(s)

1√
n

⃓⃓⃓⃓2
≥ 1

γ2
, ∀Re(s) > 0 ,

which is equivalent to ∥ḡ(s)∥2 ≤ γ, ∀Re(s) > 0.

Proof of Lemma 3.2

Lemma 3.2. It suffices to show that ∀ϵ > 0,

lim
n→+∞

P

(︃
sup
s∈S
|ḡn(s,w)− ĝ(s)| ≥ ϵ

)︃
= 0 , (3.21)

since |ḡn(s,w)− ĝ(s)| =
⃦⃦

1
n
ḡn(s,w)11⊤ − 1

n
ĝ(s)11⊤

⃦⃦
.

By the assumptions, {ḡn(s,w), n ∈ N+,w ∈ Ω∞}, and {g−1
i (s, w), i ∈ N+, w ∈ Ω}

are uniformly bounded by M1 > 0 and M2 > 0, respectively on S. Then, at any
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s ∈ S, both Re
(︁
g−1
i (s, w)

)︁
and Im

(︁
g−1
i (s, w)

)︁
are random variables bounded within

[−M2,M2]. We can simply bound their variances by

Var
(︁
Re
(︁
g−1
i (s, w)

)︁)︁
≤ (2M2)

2 = 4M2
2 , Var

(︁
Im
(︁
g−1
i (s, w)

)︁)︁
≤ (2M2)

2 = 4M2
2 .

Then it follows that

Var
(︁
Re
(︁
ḡ−1
n (s,w)

)︁)︁
= Var

(︄
Re

(︄
n−1

n∑︂
i=1

g−1
i (s, w)

)︄)︄
≤ 4M2

2/n ,

and

Var
(︁
Im
(︁
ḡ−1
n (s,w)

)︁)︁
= Var

(︄
Im

(︄
n−1

n∑︂
i=1

g−1
i (s, w)

)︄)︄
≤ 4M2

2/n .

By definition of ĝ(s) in (3.13), we have equalities ERe (ḡ−1
n (s,w)) = Re (ĝ(s)) and

also EIm (ḡ−1
n (s,w)) = Im (ĝ(s)), then by Chebyshev’s inequality, for ϵ > 0, we

have

P
(︁⃓⃓
ḡ−1
n (s,w)− ĝ−1(s)

⃓⃓
≥ ϵ
)︁

≤ P
(︁⃓⃓
Re
(︁
ḡ−1
n (s,w)

)︁
−Re

(︁
ĝ−1(s)

)︁⃓⃓
+
⃓⃓
Im
(︁
ḡ−1
n (s,w)

)︁
− Im

(︁
ĝ−1(s)

)︁⃓⃓
≥ ϵ
)︁

≤ P
(︁⃓⃓
Re
(︁
ḡ−1
n (s,w)

)︁
−Re

(︁
ĝ−1(s)

)︁⃓⃓
≥ ϵ/2

)︁
+P

(︁⃓⃓
Im
(︁
ḡ−1
n (s,w)

)︁
− Im

(︁
ĝ−1(s)

)︁⃓⃓
≥ ϵ/2

)︁
(3.22)

≤ 4Var (Re (ḡ−1
n (s,w)))

ϵ2
+

4Var (Im (ḡ−1
n (s,w)))

ϵ2

≤ 32M2
2

ϵ2n
. (3.23)

On the other hand, we have

|ḡn(s,w)| ≤M1 ⇒
⃓⃓
ḡ−1
n (s,w)

⃓⃓
≥ 1

M1

⇒
⃓⃓
ḡ−1
n (s,w)− ĝ−1(s) + ĝ−1(s)

⃓⃓
≥ 1

M1

⇒
⃓⃓
ĝ−1(s)

⃓⃓
≥ 1

M1

−
⃓⃓
ḡ−1
n (s,w)− ĝ−1(s)

⃓⃓
. (3.24)
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Then given ϵ > 0, ∀n ∈ N+, ∀s ∈ S, the following holds:

P (|ĝ(s)− ḡn(s,w)| ≥ ϵ)

= P
(︁⃓⃓
ḡn(s,w)ĝ(s)

(︁
ḡ−1
n (s,w)− ĝ−1(s)

)︁⃓⃓
≥ ϵ
)︁

≤ P
(︁
|ḡn(s,w)| |ĝ(s)|

⃓⃓
ḡ−1
n (s,w)− ĝ−1(s)

⃓⃓
≥ ϵ
)︁

≤ P
(︁
M1

⃓⃓
ḡ−1
n (s,w)− ĝ−1(s)

⃓⃓
≥ ϵ|ĝ−1(s)|

)︁
(3.24) ≤ P

(︃
M1

⃓⃓
ḡ−1
n (s,w)− ĝ−1(s)

⃓⃓
≥ ϵ

M1

− ϵ
⃓⃓
ḡ−1
n (s,w)− ĝ−1(s)

⃓⃓)︃
= P

(︃⃓⃓
ḡ−1
n (s,w)− ĝ−1(s)

⃓⃓
≥ ϵ

M1(M1 + ϵ)

)︃
(3.23) ≤ 32M2

2M
2
1 (M1 + ϵ)2

ϵ2n
.

By taking n→ +∞ on both sides, we prove that ḡn(s,w) converges point-wise to

ĝ(s) on S.

We now show that ḡn(s,w) is also stochastic equicontinuous on S. For the

definition of stochastic equicontinuity, please refer to [99]. We already assumed that

ḡn(s,w) ≤M1, ∀w ∈ Ω∞, s ∈ S. Then ∀w ∈ Ω∞, ∀s1, s2 ∈ S, we have

|ḡn(s1,w)− ḡn(s2,w)|

≤
⃓⃓
ḡn(s1,w)||ḡn(s2,w)||ḡ−1

n (s1,w)− ḡ−1
n (s2,w)

⃓⃓
≤M2

1

⃓⃓⃓⃓
⃓

n∑︂
i=1

(︁
g−1
i (s1, wi)− g−1

i (s2, w1)
)︁⃓⃓⃓⃓⃓

≤M2
1

n∑︂
i=1

⃓⃓
g−1
i (s1, wi)− g−1

i (s2, wi)
⃓⃓
≤ nM2

1L|s1 − s2| ,

where the last inequality is from our third assumption and also the fact that

g−1
i (s, w) = g−1

1 (s, w) (identically distributed as random functions). By [99, Corol-

lary 2.2], the inequality above is sufficient to establish stochatic equicontinuity of

ḡn(s,w) on S, and combining point-wise convergence and the fourth assumption

that ĝ(s) is uniform continuous, we get the uniform convergence of ḡn(s,w) to ĝ(s)

on S, which gives (3.21).
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3.2 Networks with Multiple Coherent Clusters

We have shown, in the last section, that, under mild assumptions, the following

holds2 for almost any s0 ∈ C,

lim
λ2(L)→∞

∥T (s0)− ĝ(s0)11⊤∥ = 0 , (3.25)

where

ĝ(s) =

(︄
n∑︂

i=1

g−1
i (s)

)︄−1

. (3.26)

That is, when the algebraic connectivity λ2(L) of the network is high, one can

approximate T (s) by a rank-one transfer matrix. Such a rank-one transfer matrix

ĝ(s0)11⊤ precisely describes the coherent behavior of the network: The network

takes the aggregated input û = 1⊤u =
∑︁n

i=1 ui, and responds coherently as ŷ1,

where ŷ = ĝ(s)û. Therefore, it suffices to study ĝ(s) to understand the coherent

behavior in a tightly-connected network.

However, practical networks are not necessarily tightly-connected. Instead, they

often contain multiple groups of nodes such that within each group, the nodes are

tightly-connected while between groups, the nodes are weakly-connected. Then

the network dynamics can be reduced to dynamic interactions among these groups.

To approximate such interaction, it is natural first to identify coherent groups, or

coherent clusters, in the network, then apply the aforementioned analysis to obtain

the coherent dynamics ĝ(s) for each group, and replace the entire coherent group

by an aggregate node with ĝ(s). Lastly, one needs to find a reduced network of

the same size as the number of coherent groups, which characterize the interaction

among these groups. The aggregate dynamics and the reduced network allow us

to build a network model with exactly the same structure as the one in Figure 3-1

but with a much smaller size, for which we refer to such an approach as structure-

2In Section 3.1, the transfer matrix 1
n ḡ(s)11⊤ appeared in the limit, where ḡ(s) =(︁

1
n

∑︁n
i=1 g

−1
i (s)

)︁−1
. It is easy to verify that 1

n ḡ(s)11⊤ = ĝ(s0)11⊤
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preserving model reduction and call the resulting reduction model structure-preserving.

Figure 3-4 shows our proposed reduced model in the case of three coherent groups,

for which the algorithm details are explained later.

Our algorithm

In this section, we propose a structure-preserving model reduction algorithm for

networks with an arbitrary number of groups.

Algorithm 1: Structure-Preserving Network Reduction via Spectral Clus-
tering

Data: Network Model (G(s) = diag{gi(s)}ni=1, L, f(s)); Number of clusters k
Do:

1. ({Ii}ki=1, Vk,Λk)← SpectralClustering(L); // Spectral clustering

Construct P{Ii}ki=1
as in (3.29);

2. ĝi(s)←
(︂∑︁

j∈Ii g
−1
j (s)

)︂−1

, i = 1, · · · , k; // Aggregation

Ĝ(s) = diag{ĝi(s)}ki=1;

3. S ←(Solution to (3.34));

Lk = (S−1)⊤ΛkS
−1; // Construct reduced network

Result: T̂ k(s)← P{Ii}ki=1
(Ik + Ĝk(s)Lkf(s))

−1Ĝk(s)P
⊤
{Ii}ki=1

This algorithm, whose rationale will be explained in detail in Section 3.2.1,

follows the same procedure as we discussed in the previous section: Firstly, we

utilize some spectral clustering algorithm to obtain a k-way partition {Ii}ni=1 of

[n] that encodes the clustering results. Notice that here any spectral clustering

algorithm works. For subsequent steps, we also need to keep the first k smallest

eigenvalues of L (in Λk = diag{λi(L)}ki=1) and their associated eigenvectors (in

Vk =
[︁
v1(L) v2(L) · · · vk(L)

]︁
). Then the nodes in the same group Ii are aggregated

into ĝi(s). Lastly, the Laplacian matrix of the reduced network is constructed after

solving an optimization problem (3.34) that can be viewed as a refinement process
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Figure 3-4. Functional illustration of Algorithm 1.

on the Laplacian spectral embedding Vk. This algorithm will return a transfer matrix

T̂ k(s) as an approximation model of the original transfer matrix T (s). The algorithm

is illustrated in Figure 3-4.

In the rest of the section, we first discuss how our algorithm is constructed

based on the aforementioned coherence analysis [100] in Section 3.2.1, then show

that our proposed approximation model is asymptotically accurate in a random

graph setting where the network graph is sampled from a weighted stochastic block

model [101] by showing an approximation error bound between the network T (s)

and the proposed reduced model T̂ k(s) (in Section 3.2.2). Lastly, we verify our

theoretical findings through a numerical simulation in Section 3.2.3.

3.2.1 Structure-preserving network reduction via spectral cluster-
ing

Our algorithm roots in the analysis in Section 3.1 showing that the network trans-

fer matrix T (s) is approximately low rank for networks with Laplacian matrices

satisfying some spectral property. Such a low-rank approximation is generally not
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structure-preserving, for which we use its closest structure-preserving approxima-

tion, obtained by spectral clustering on graph Laplacian L and a refinement process

on its eigenvectors Vk, as our final reduction model for the original T (s).

Low-rank approximation of network transfer matrix

Given the network Laplacian L and its first k smallest eigenvalues (in a diagonal

matrix) Λk = diag{λi(L)}ki=1 and the eigenvectors Vk =
[︁
v1(L) v2(L) · · · vk(L)

]︁
(we also refer it as Laplacian spectral embedding), we define the following rank-k

transfer matrix

Tk(s) = Vk(V
⊤
k G

−1(s)Vk + f(s)Λk)
−1V ⊤

k , (3.27)

and we have the following result:

Theorem 3.8. For s0 ∈ C that is not a pole of f(s) and has these two quantities

∥Tk(s0)∥ :=M1, and max
1≤i≤n

|g−1
i (s0)| :=M2 ,

finite. Then whenever |f(s0)|λk+1(L) > M2 +M1M
2
2 , the following inequality holds:

∥T (s0)− Tk(s0)∥ ≤
(M1M2 + 1)2

|f(s0)|λk+1(L)−M2 −M1M2
2

. (3.28)

Theorem 3.8 shows that in the large λk+1(L) regime, one can somewhat approx-

imate the original transfer matrix T (s) by a low-rank one Tk(s), but the approxi-

mation result in (3.28) is weaker than that the two transfer matrices T (s) and Tk(s)

are close in the H∞ sense. It heavily depends on the choice of s0, the frequency

of interest, as we should not expect T (s) and Tk(s) to behave similarly under in-

put of any frequency. For the case of k = 1 (In Section 3.1), we have shown that

if sups∈(−jη,+jη) ∥T (s) − Tk(s)∥ is small for some η > 0, then one can show, pro-

vided that T (s) and Tk(s) are stable, the time domain responses of the two transfer

matrices under low-frequency inputs (characterized by η) are close to each other.
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Following such observation, we consider any T̂ k(s) with sups∈(−jη,+jη) ∥T (s)−

T̂ k(s)∥ being small for some η > 0 as a good approximation for the original network.

Applying (3.28) uniformly over {s : s ∈ (−jη,+jη)}, one can show that Tk(s) is

such a good approximation when λk+1(L) is large. However, Tk(s) is, in general,

not structure-preserving, and thus may not be interpreted as a reduced network

of aggregate nodes. Therefore, we need to find a structure-preserving T̂ k(s) that is

close to Tk(s).

Structured low-rank approximation via spectral embedding refinement

We first discuss the case when Tk(s) is structure-preserving. We show that a special

property on the Laplacian spectral embedding Vk suffices. For some I ⊆ [n], we let

1I be an n× 1 vector such that [1I ]i =

{︄
1, i ∈ I
0, i /∈ I .

Definition 3.2. A Laplacian matrix L is said to be k-block-ideal with respect to a k-way

partition {I1, · · · , Ik} of [n], if there exists some invertible matrix S ∈ Rk×k such that

Vk :=
[︁
v1(L) v2(L) · · · vk(L)

]︁
=
[︁
1I1 1I2 · · · 1Ik

]︁
S .

We also say Vk is k-block-ideal in this case.

A k-block-ideal spectral embedding Vk, together with Λk containing the bottom

k eigenvalues of L, would immediately lead to a reduced network: the k coherent

groups are determined by the k-way partition {Ii}ki=1, and the invertible matrix

S, combined with Λk, characterize the interconnection in the reduced network, as

show in the following theorem:

Theorem 3.9. Given a k-block-ideal Laplacian L associated with a partition {I1, · · · , Ik}

and an invertible matrix S, and we define

P{Ii}ki=1
:=
[︁
1I1 1I2 · · · 1Ik

]︁
, (3.29)
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then

Tk(s) = P{Ii}ki=1
(Ik + Ĝk(s)Lkf(s))

−1Ĝk(s)P
⊤
{Ii}ki=1

, (3.30)

where Ĝ(s) = diag{ĝi(s)}ki=1 , ĝi(s) =
(︂∑︁

j∈Ii g
−1
j (s)

)︂−1

and Lk = (S−1)⊤ΛkS
−1.

Proof of Theorem 3.9. Since

Tk(s) = Vk(V
⊤
k G

−1(s)Vk + f(s)Λk)
−1V ⊤

k , (3.31)

and

Vk = P{Ii}ki=1
S , (3.32)

we have

Tk(s) = P{Ii}ki=1
S
(︂
S⊤P⊤

{Ii}ki=1
G−1(s)P{Ii}ki=1

S + f(s)Λk

)︂−1

S⊤P⊤
{Ii}ki=1

= P{Ii}ki=1

(︂
(S⊤)−1

(︂
S⊤P⊤

{Ii}ki=1
G−1(s)P{Ii}ki=1

S + f(s)Λk

)︂
S−1

)︂−1

P⊤
{Ii}ki=1

= P{Ii}ki=1

(︂
P⊤
{Ii}ki=1

G−1(s)P{Ii}ki=1
+ f(s)(S⊤)−1ΛkS

−1
)︂−1

P⊤
{Ii}ki=1

= P{Ii}ki=1

(︂
Ĝ

−1

k (s) + f(s)Lk

)︂−1

P⊤
{Ii}ki=1

= P{Ii}ki=1

(︂
I + Ĝ(s)Lkf(s)

)︂−1

Ĝ(s)P⊤
{Ii}ki=1

.

Theorem 3.9 shows that under k-block-ideal Vk, the dynamical behavior of

Tk is structure-preserving since it is fully characterized by a reduced network

with k nodes, with nodal dynamics Ĝ(s) and network coupling Lk. Each node

ĝi(s) represents the aggregate dynamics for nodes in Ii. Any input u to Tk(s) is

aggregated into
[︁
û1 · · · ûk

]︁⊤
= P⊤

{Ii}ki=1
u as the input to the reduced network.

Then the output
[︁
ŷ1 · · · ŷk

]︁⊤ is “broadcast” to the original nodes via P{Ii}ki=1
such

that every node in the same Ii has the same response.

Notice that such structure-preserving property only depends on the Laplacian

spectral embedding Vk. For Vk that is not k-block-ideal, we should be able to find
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a V̂ k close to Vk and is k-block-ideal. This gives rise to the following optimization

problem:

min
S,{Ii}ki=1

∥Vk − P{Ii}ki=1
S∥2F , s.t. Se1 = 1k/

√
n, S⊤diag{|Ii|}ki=1S = Ik . (3.33)

The resulting V̂ k = P{Ii}ki=1
S is a refinement of Vk that is k-ideal, and the constraints

in (3.33) ensures that the first column of V̂ k is 1n/
√
n and that V̂

⊤
k V̂ k = Ik. Now

T̂ k(s) = V̂ k(V̂
⊤
kG

−1(s)V̂ k + f(s)Λk)
−1V̂

⊤
k

is structure-preserving by Theorem 3.9. In the optimization problem (3.33), the

need for identifying coherent groups is implicitly suggested by the fact that we

are optimizing over all possible k-way partitions of n, and the reduced network

interconnection is constructed by jointly optimizing over invertible S.

Generally, (3.33) is hard to solve. Notice, however, that given a fixed partition

{Ii}ki=1, one can find a closed-form solution (We show it at the end of this section)

to the following optimization problem

min
S
∥Vk − P{Ii}ki=1

S∥2F , s.t. Se1 = 1k/
√
n, S⊤diag{|Ii|}ki=1S = Ik . (3.34)

This suggests that a computationally efficient way to find a sub-optimal solution to

(3.33): First, we use any spectral clustering algorithm to find a good partition/clus-

tering {Ii}ki=1, then refine the spectral embedding Vk by optimizing (3.34) with the

obtained partition, resulting in our Algorithm 1.

3.2.2 Performance analysis

In this section, we provide an error bound on sups∈(−jη,jη) ∥T (s) − T̂ k(s)∥ for our

proposed approximation model T̂ k(s) from Algorithm 1. As we discussed in Section

3.2.1, such error measure is related to how close the time-domain response of T̂ k(s) is
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to the one of T (s) when subjected to low-frequency inputs. We consider a Laplacian

sampled from a stochastic weighted block model.

Weighted stochastic block model

We first discuss how we sample our Laplacian matrix from a weighted stochastic

block model ({Ii}ki=1, Q,W ). Here, {Ii}ki=1 is a k-way partition of [n], Q ∈ [0, 1]k×k,

and W ∈ Rk×k
≥0 , where Qij = Qji,Wij = Wji. We let (j) denote the block membership

of node j: when j ∈ Ii, then (j) = i. The adjacency matrix A is sampled as follows:

Aij =

{︄
W(i),(j), with probability Q(i),(j)

0, with probability 1−Q(i),(j)

, i ≥ j, Aij = Aji, i < j .

(3.35)

That is, each (undirected) edge i, j appears independently with probability Q(i),(j)

that is determined by the block membership of node i, j, and has weight W(i),(j) if it

appears. Then we have the Laplacian matrix L:

L = DA − A, DA = diag{A1} . (3.36)

Approximation error bound

Given the network model (G(s), L, f(s)) with L sampled from a weighted stochastic

block model ({Ii}ki=1, Q,W ), we show that under certain assumptions, the error

sups∈(−jη,jη) ∥T (s)− T̂ k(s)∥ is small with high probability when the network size is

sufficiently large. We start by stating our assumptions.

Assumption 3.1. For our network model (G(s), L, f(s)) with L sampled from a weighted

stochastic block model ({Ii}ki=1, Q,W ), we assume the following:

1. All gi(s), f(s) are rational. Moreover, node dynamics are output strictly passive:

There exists γ > 0, such that for i = 1, · · · , n, Re(gi(s)) ≥ 1
γ
|gi(s)|2, ∀Re(s) > 0 , and

network coupling f(s) is positive real: Re(f(s)) > 0, ∀Re(s) > 0, and Im(f(s)) =

0, ∀Re(s) = 0
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2. The node dynamics satisfies that for any η > 0, there exists M(η) such that for i =

1, · · · , n

sup
s∈(−jη,+jη)

|g−1
i (s)| ≤M(η) . (3.37)

The network coupling f(s) satisfies that Fl(η) := infs∈(−jη,+jη) |f(s)| is positive for all

η > 0.

3. The blocks are approximately balanced:

nmax

nmin

≤ ρ , (3.38)

for some ρ ≥ 1, where nmax := max1≤i≤k |Ii| and nmin := min1≤i≤k |Ii|,

4. The network has a stronger intra-block connection than the inter-block one:

min
i
Bii − 2ρmax

i

∑︂
j ̸=i

Bij ≥ ∆ , (3.39)

for some ∆ > 0, where B = Q⊙W . (⊙ is the Hadamard product)

The first assumption ensures the network T (s) and our approximation model

T̂ k(s) are stable. The second assumption ensures that our low-rank approximation

Tk(s) in Theorem 3.8 is valid on the interval of our interest (−jη,+jη). The third

assumption ensures our problem is non-degenerate: if the size of one block is too

small, the network effectively has k − 1 clusters. Such an assumption is standard

in analyzing the consistency of spectral clustering algorithms on stochastic block

models [102, 101]. Lastly, since we are interested in networks containing multiple

groups of nodes such that within each group, the nodes are tightly-connected while

between groups, the nodes are weakly-connected, the fourth assumption formally

characterizes such a property.

In our algorithm, a spectral clustering algorithm is used to find a partition

{Ii}ki=1 that is used for aggregating node dynamics and constructing the reduced

network. Ideally, we want some consistency property on the obtained partition.
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Assumption 3.2. Given L sampled from a weighted stochastic block model ({Ii}ki=1, Q,W )

satisfying Assumption 3.1, we have an asymptotically consistent spectral clustering algo-

rithm in Algorithm 1: For any δ > 0, there exists Ñ(δ) such that for network with size

n > Ñ(δ), the spectral clustering algorithm on L returns the true {Ii}ki=1 partition with

probability at least 1− δ.

Formally justifying this assumption for some spectral clustering algorithms is

an interesting future research topic. Nonetheless, such a consistency result has

been studied for spectral clustering algorithms on the adjacency matrix from the

stochastic block model [102] and the weighted stochastic block model [101].

With these assumptions, we have the following theorem regarding the error

bound.

Theorem 3.10. Consider the network model (G(s), L, f(s)) with L sampled from a

weighted stochastic block model ({Ii}ki=1, Q,W ). If Assumption 3.1 and Assumption

3.2 hold, then Algorithm 1 returns a T̂ k(s) such that

1. ∥T (s)∥H∞ ≤ γ, ∥T̂ k(s)∥H∞ ≤ γ;

2. For any η, ϵ > 0, and 0 < δ < 1, there exists N(δ, ϵ, Ñ(δ/2), γ,M(η), Fl(η), ρ, Q,W )

such that for network with size n ≥ N , with probability at least 1− δ, we have

sup
s∈(−jη,+jη)

∥T (s)− T̂ k(s)∥ ≤ ϵ . (3.40)

Proof Sketch. For the stability of T (s) and T̂ k(s), the proof is similar to the one

in [100] and uses the assumption gi(s) are output strictly passive and f(s) is positive

real. The error bound relies on that the sampled Laplacian matrix L is close to one

that is easy to analyze: LetAblk be the expected value of the adjacency matrixA from

the block model, and we can construct a Laplacian matrixLblk = DAblk−Ablk, DAblk =

diag{Ablk1}. Lblk has (by (3.38)(3.39) in Assumption 3.1) all the desired properties:
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1) λk+1(Lblk) grows linearly in network size n; 2) Lblk is k-block-ideal. [103] has

shown that under the weighted stochastic block model, ∥L− Lblk∥ ∼ Op(
√
n log n),

which is sufficient to show that 1) λk+1(L) ∼ Ωp(n) by Weyl’s inequality [64]; 2) L

is approximately k-block-ideal by Davis-Khan theorem [104]. The former shows

that the error between T (s) and Tk(s) is small w.h.p. by Theorem 1 and the latter

ensures the error between Tk(s) and T̂ k(s) is small w.h.p..

Theorem 3.10 shows that our algorithms perform well for large networks with

multiple coherent clusters, it also implies that the collective dynamic behavior of

such networks can be modeled as a structured reduced network. This suggests a

new avenue for data-driven system identification for such networks where only the

reduced network model is learned from the data collected from the network.

3.2.3 Numerical experiments

The frequency response of synchronous generator (including grid-forming inverters)

networks, linearized at its equilibrium point [34], can be modeled exactly as the

network model in Fig 3-1 with f(s) = 1
s

and second order node dynamics gi(s). We

validate our algorithm with a synthetic test case, where the coefficients of generator

dynamics are randomly sampled. The network adjacency matrix A is sampled from

our weighted stochastic block model ({Ii}ki=1, Q,W ) with k = 3, and⎡⎣|I1| 0 0
0 |I2| 0
0 0 |I3|

⎤⎦ =

⎡⎣20 0 0
0 40 0
0 0 20

⎤⎦ , Q =

⎡⎣0.8 0.1 0.1
0.1 0.8 0.1
0.1 0.1 0.8

⎤⎦ ,W =

⎡⎣20 0.4 0.8
0.4 20 0.7
0.8 0.7 20

⎤⎦ .

(3.41)

We use the spectral clustering algorithm proposed in [105]. Since the network size is

not sufficiently large for the algorithm to return a true partition with high probability,

when we run the experiments with multiple random seeds, we see a small fraction

of the runs in which the algorithm fails to cover the true partition. For the case when

the spectral clustering algorithm succeeds, we inject a step disturbance u2(t) = χ(t)
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at the second node of the network and plot the step response of T (s) in Fig 3-5,

along with the response ŷ of our approximate model T̂ 3(s) from Algorithm 1. There

is a clear difference between the dynamical response of generators from different

groups, and the aggregate responses ŷ capture such difference while providing a

good approximation to the actual node responses. Here we only present the result

of running Algorithm 1 on one instance of the randomly generated networks, but

the results are consistent across multiple runs as long as the spectral clustering

succeeds.

Figure 3-5. Left most plot shows the step response of T (s) (solid lines) and T̂ k(s)
(dashed lines) from algorithm 1. The three plots on the right show the response for
each identified group Ii. The node injected with step disturbance is in the group 2.

Solution to the Laplacian spectral embedding refinement problem
in 3.34

In this section, we derive the analytical solution to (3.34):

min
S∈Rk×k

∥Vk − P{Ii}ki=1
S∥2F

s.t. Se1 = 1k/
√
n

S⊤diag{|Ii|}ki=1S = Ik .

First of all, there is nothing to optimize in the first column of S, since S must

be of the form S =
[︂

1k√
n

S̃
]︂

for some S̃ ∈ Rk×(k−1). Since Vk =
[︂

1n√
n

Ṽ k

]︂
with
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Ṽ k =
[︁
v2(L) · · · vk(L)

]︁
, solving (3.34) is equivalent to solving

min
S̃∈Rk×(k−1)

∥Ṽ k − P{Ii}ki=1
S̃∥2F (3.42)

s.t. S̃
⊤
1k = 0

S̃
⊤
diag{|Ii|}ki=1S̃ = Ik ,

where the first constraint in (3.34) is removed by excluding the first column of S,

and the second constraint in (3.34) is rewritten as the two constraints in (3.42).

Let Õ := diag{
√︁
|Ii|}ki=1S̃ ∈ Rk×(k−1) and P̃ {Ii}ki=1

= P{Ii}ki=1
diag{(

√︁
|Ii|)−1}ki=1, it

is easy to see that (3.42) is equivalent to:

min
Õ∈Rk×(k−1)

∥Ṽ k − P̃ {Ii}ki=1
Õ∥2F (3.43)

s.t. Õ
⊤
u{Ii}ki=1

= 0

Õ
⊤
Õ = Ik ,

where u{Ii}ki=1
= diag{(

√︁
|Ii|)−1}ki=11k. Now let Q ∈ Rk×(k−1) be some matrix such

that Q⊤Q = I and QQ⊤ = I − u{Ii}ki=1
u⊤{Ii}ki=1

, then {QO : O ∈ R(k−1)×(k−1), O⊤O =

OO⊤ = Ik−1 are all the feasible solution to (3.43). Therefore (3.43) is equivalent to

min
O∈R(k−1)×(k−1)

∥Ṽ k − P̃ {Ii}ki=1
QO∥2F (3.44)

s.t. O⊤O = Ik−1 .

Given the SVD: Q⊤P̃
⊤
{Ii}ki=1

Ṽ k = UΣV ⊤, the optimal solution to (3.44) is O∗ = UV ⊤.

Then the optimal solution to the original problem (3.34) is

S∗ =
[︂

1k√
n

diag{(
√︁
|Ii|)−1}ki=1QO

∗
]︂
. (3.45)

Proof of Theorem 3.10

Before showing the proof of Theorem 3.10, we state a few lemmas that are used.
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Auxiliary lemmas

Firstly, we need the following lemma concerning the stability of the original network

T (s) and our approximation model Tk(s), T̂ k(s).

Lemma 3.3. Suppose all gi(s), f(s) satisfies Assumption 3.1, then for any Vk with V ⊤
k Vk =

I and any Λk ⪰ 0, the corresponding

T (s) = Vk(V
⊤
k diag{g−1

i (s)}Vk + f(s)Λk)V
⊤
k

has

∥T (s)∥H∞ ≤ γ .

This Lemma shows the stability of T (s), Tk(s), T̂ k(s) by choosing different Vk,Λk.

The following lemma concerns controlling the approximation error between

Tk(s) and T̂ k(s).

Lemma 3.4. Suppose all gi(s), f(s) satisfies Assumption 3.1. Given two matrices Vk, Vk̂ ∈

Rn×k with V ⊤
k Vk = V̂

⊤
k V̂ k = I and some Λk ⪰ 0. Define

Tk(s) = Vk(V
⊤
k diag{g−1

i (s)}Vk + f(s)Λk)
−1V ⊤

k ,

T̂ k(s) = V̂ k(V̂
⊤
k diag{g−1

i (s)}V̂ k + f(s)Λk)
−1V̂

⊤
k .

Given any η > 0, we have

sup
s∈(−jη,+jη)

∥Tk(s)− T̂ k(s)∥ ≤ 2(γ + γ2M(η))∥Vk − V̂ k∥F ,

where M(η) = sups∈(−jη,+jη) maxi |g−1
i (s)|.

That is, since T̂ k(s) is obtained by replace Vk in Tk(s) by T̂ k(s), the error can be

controlled by the difference ∥Vk − V̂ k∥F between Vk and V̂ k. Recall that Theorem

3.8 provides a bound on ∥T (s)− Tk(s)∥, combing it with Lemma 3.4 allows us to

control the error ∥T (s)− T̂ k(s)∥, as stated in the following lemma:
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Lemma 3.5. Consider the network model (G(s), L, f(s)) with L sampled from a weighted

stochastic block model ({Ii}ki=1, P,W ). If Assumption 3.1 holds, Then given any η > 0, we

have ∀ϵ > 0,

P

(︄
sup

s∈(−jη,+jη)

∥T (s)− T̂ k(s)∥ ≥ ϵ

)︄

≤ 2P

(︃
λk+1(L) ≤

1

Fl(η)

(︃
2

ϵ
(γM(η) + 1)2 +M(η) + γM2(η)

)︃)︃
+ P

(︃
∥Vk − V̂ k∥ ≥

ϵ

4(γ + γ2M(η))

)︃
,

where sups∈(−jη,+jη) maxi |g−1
i (s)| :=M(η) and Fl(η) := infs∈(−jη,+jη) |f(s)|.

That is, we need to lower bound λk+1(L) and upper bound ∥Vk− V̂ k∥ for control-

ling the error. All of these are possible by studying the Laplacian matrix constructed

from the expected adjacency matrix:

For a weighted stochastic block model ({Ii}ki=1, Q,W ), we denote the expected

value of adjacency matrix A as

Ablk = P{Ii}ki=1
BP⊤

{Ii}ki=1
, B = Q⊙W , (3.46)

and define

Lblk = diag{Ablk1n} − Ablk , (3.47)

and

V blk
k =

[︂
1√
n

v2(Lblk) · · · vk(Lblk)
]︂
. (3.48)

Firstly, if the spectral clustering algorithm returns the true block assignment, then

it is sufficient to control the difference between Vk and V blk
k for upper bounding

∥Vk − V̂ k∥:

Lemma 3.6. Let V blk
k =

[︂
1√
n

v2(Lblk) · · · vk(Lblk)
]︂
. Consider an L sampled from a

weighted stochastic block model ({Ii}ki=1, Q,W ), if the spectral clustering algorithm in

Algorithm 1 returns the true block assignments {Ii}ki=1, then optimizing (3.34) yields a V̂

such that

∥V̂ k − Vk∥ ≤ ∥ sinΘ(Vk, V
blk
k )∥F . (3.49)
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The term ∥ sinΘ(Vk, V
blk
k )∥F should be small given that L and Lblk are sufficiently

close to each other with high probability(to be formalized later). Moreover, λk+1(L)

and λk+1(Lblk) should be close for the same reason. We discuss the spectrum of Lblk

in detail in the next Appendix. The following Lemma is the direct consequence of

Proposition 3.1 in the next Appendix:

Lemma 3.7. Consider a weighted stochastic block model ({Ii}ki=1, Q,W ) satisfying As-

sumption 3.1. Let nmin = min1≤i≤k |Ii|, and bmin := min{[Bk1k]i : i = 1, · · · , k}. We

have

1. Lblk is k-block-ideal;

2. λk+1(Lblk) ≥ bminnmin;

3. λk+1(Lblk)− λk(Lblk) ≥ ∆nmin.

Now we are ready to proof our main theorem.

Proof of Theorem 3.10

Proof of Theorem 3.10. Define B̃ := P ⊙ W ⊙ W , and b̃max = maxi
∑︁

j Bij, b̃min =

minj

∑︁
j Bij . We also define Wmax =: maxij |Wij|. A direct application of Proposition

3 in [103] shows that for any c > 0, if

knminb̃max ≥ 16(c+ 1) log n , (3.50)

then for any 4n−c ≤ δ
6
< 1, we have

P

(︃
∥L− Lblk∥ ≥ 8

√︂
knmaxb̃max log(24n/δ)

)︃
≤ δ

6
(3.51)

If

bminnmin − 8

√︂
knmaxb̃max log(24n/δ) ≥

1

Fl(η)

(︃
2

ϵ
(γM(η) + 1)2 +M(η) + γM2(η)

)︃
,

(3.52)
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then

λk+1(L) ≤
1

Fl(η)

(︃
2

ϵ
(γM(η) + 1)2 +M(η) + γM2(η)

)︃
⇒ λk+1(L) ≤ bminnmin − 8

√︂
knmaxb̃max log(24n/δ)

(Lemma 3.7)⇒ λk+1(L) ≤ λk+1(Lblk)− 8

√︂
knmaxb̃max log(24n/δ)

⇒ 8

√︂
knmaxb̃max log(24n/δ) ≤ λk+1(Lblk)− λk+1(L)

(Weyl’s inequality [64])⇒ 8

√︂
knmaxb̃max log(24n/δ) ≤ ∥L− Lblk∥ .

That is, for a given δ ≥ 4n−c, if (3.50)(3.52) hold, then

P

(︃
λk+1(L) ≤

1

Fl(η)

(︃
2

ϵ
(γM(η) + 1)2 +M(η) + γM2(η)

)︃)︃
≤ P

(︃
∥L− Lblk∥ ≥ 8

√︂
knmaxb̃max log(24n/δ)

)︃
≤ δ

6
.

Similarly, when

ϵ

8
√
k(γ + γ2M(η))

∆nmin ≥ 8

√︂
knmaxb̃max log(24n/δ) , (3.53)

and the spectral clustering (SC) returns the true {Ii}ki=1, then

∥Vk − V̂ k∥ ≥
ϵ

4(γ + γ2M(η))

(Lemma 3.6)⇒ ∥ sinΘ(Vk, V
blk
k )∥F ≥

ϵ

4(γ + γ2M(η))

(Davis-Khan [104])⇒ 2
√
k∥L− Lblk∥

λk+1(Lblk)− λk(Lblk)
≥ ϵ

4(γ + γ2M(η))

(Lemma 3.7)⇒ ∥L− Lblk∥ ≥
ϵ

8
√
k(γ + γ2M(η))

∆nmin

⇒ ∥L− Lblk∥ ≥ 8

√︂
knmaxb̃max log(24n/δ) .

That is, for a given δ ≥ 4n−c, if (3.50)(3.53) hold, then

P

(︃
∥Vk − V̂ k∥ ≥

ϵ

4(γ + γ2M(η))
, “SC returns true {Ii}ki=1”

)︃
≤ P

(︃
∥L− Lblk∥ ≥ 8

√︂
knmaxb̃max log(24n/δ)

)︃
≤ δ

6
.
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Now by Lemma 3.5, we have

P

(︄
sup

s∈(−jη,+jη)

∥T (s)− T̂ k(s)∥ ≥ ϵ

)︄

≤ 2P

(︃
λk+1(L) ≤

1

Fl(η)

(︃
2

ϵ
(γM(η) + 1)2 +M(η) + γM2(η)

)︃)︃
+ P

(︃
∥Vk − V̂ k∥ ≥

ϵ

4(γ + γ2M(η))

)︃
≤ 2P

(︃
λk+1(L) ≤

1

Fl(η)

(︃
2

ϵ
(γM(η) + 1)2 +M(η) + γM2(η)

)︃)︃
+ P

(︃
∥Vk − V̂ k∥ ≥

ϵ

4(γ + γ2M(η))
, “SC returns true {Ii}ki=1”

)︃
+ P

(︃
∥Vk − V̂ k∥ ≥

ϵ

4(γ + γ2M(η))
, “SC does not return true {Ii}ki=1”

)︃
≤ 2P

(︃
λk+1(L) ≤

1

Fl(η)

(︃
2

ϵ
(γM(η) + 1)2 +M(η) + γM2(η)

)︃)︃
+ P

(︃
∥Vk − V̂ k∥ ≥

ϵ

4(γ + γ2M(η))
, “SC returns true {Ii}ki=1”

)︃
+ P

(︁
“SC does not return true {Ii}ki=1”

)︁
≤ 2 · δ

6
+
δ

6
+
δ

2
= δ ,

In the last inequality, we upper bound the first and the second probability by picking

a sufficiently large n such that (3.50)(3.52)(3.53) hold, and the last probability is

upper bounded by δ
2

if we pick n ≥ Ñ
(︁
δ
2

)︁
by our assumption 3.2.

Proofs of auxiliary lemmas

Proof of Lemma 3.3. For each gi(s), i = 1, · · · , n, we have, by the OSP property,

Re(gi(s)) ≥
1

γ
|gi(s)|2, ∀Re(s) > 0 .

we have, for the diagonal transfer matrix G(s) = diag{gi(s)}ni=1:

2Re(G(s)) = G∗(s) +G(s) ⪰ 2

γ
G∗(s)G(s) , ∀Re(s) > 0 . (3.54)

Since gi(s) are all OSP, then all gi(s) are positive real [106]. A positive real function

that is not a zero function has no zero nor pole on the left half plane. Therefore
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gi(s) are invertible for all Re(s) > 0, which ensures that G(s) is invertible for all

Re(s) > 0. Multiply (G−1)∗ on the left and G−1 on the right of (3.54), we have

G−1(s) + (G−1(s))∗ ⪰ 2

γ
I, ∀Re(s) > 0 . (3.55)

Multiply V ⊤
k on the left and Vk on the right of (3.55), we have

V ⊤
k G

−1(s)Vk + (V ⊤
k G

−1(s)Vk)
∗ ⪰ 2

γ
I, ∀Re(s) > 0 ,

using the fact that f(s)Λk is PR, we have

V ⊤
k G

−1(s)Vk + f(s)Λk + (V ⊤
k G

−1(s)Vk + f(s)Λk)
∗ ⪰ 2

γ
I, ∀Re(s) > 0 , (3.56)

Notice that we have defined Hk(s) = V ⊤
k G

−1(s)Vk + f(s)Λk, then we conclude that

Hk(s) + (Hk(s))
∗ ⪰ 2

γ
I , or equivalently,[︃
I

Hk(s)

]︃∗ [︃− 2
γ
I I

I 0

]︃ [︃
I

Hk(s)

]︃
⪰ 0, ∀Re(s) > 0 (3.57)

Moreover, we have[︃− 2
γ
I I

I 0

]︃
+

[︃
1
γ
I 0

0 −γ2 ϵ
2
I

]︃
=

[︃− 1
γ
I I

I −γI

]︃
⪯ 0 ,

since its Schur complement is a zero matrix.

Therefore,[︃
I

Hk(s)

]︃∗ [︃− 1
γ
I I

I −γI

]︃ [︃
I

Hk(s)

]︃
⪰
[︃

I
Hk(s)

]︃∗ [︃− 2
γ
I I

I 0

]︃ [︃
I

Hk(s)

]︃
⪰ 0 , ∀Re(s) > 0 ,

which is exactly,

γ(Hk(s))
∗(Hk(s)) ⪰

1

γ
I , ∀Re(s) > 0 .

This shows that

σ2
min(Hk(s)) ≥

1

γ2
, ∀Re(s) > 0 ,

which leads to

∥Tk(s)∥ = ∥VkH−1
k (s)V ⊤

k ∥ = ∥H−1
k (s)∥ ≤ γ , ∀Re(s) > 0 .

This is exactly ∥Tk(s)∥H∞ ≤ γ.
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Proof of Lemma 3.4. Denote Hk(s) := V ⊤
k diag{g−1

i (s)}Vk + f(s)Λk and

Ĥk(s) := V̂
⊤
k diag{g−1

i (s)}V̂ k + f(s)Λk ,

then

∥Tk(s)− T̂ k(s)∥

= ∥VkHk(s)V
⊤
k − V̂ kĤk(s)V̂

⊤
k ∥

= ∥V̂ kH
−1
k (s)(V ⊤

k − V̂
⊤
k ) + (Vk − V̂ k)H

−1
k (s)V ⊤

k + V̂ k(H
−1
k (s)− Ĥ−1

k (s))V̂
⊤
k ∥

≤ ∥V̂ kH
−1
k (s)(V ⊤

k − V̂
⊤
k )∥+ ∥(Vk − V̂ k)H

−1
k (s)V ⊤

k ∥+ ∥V̂ k(H
−1
k (s)− Ĥ−1

k (s))V̂
⊤
k ∥

Notice that for any s ∈ (−jη,+jη),

∥V̂ kH
−1
k (s)(V ⊤

k −V̂
⊤
k )∥ ≤ ∥H−1

k (s)∥∥Vk−V̂ k∥ ≤ ∥H−1
k (s)∥H∞∥Vk−V̂ k∥ ≤ γ∥Vk−V̂ k∥ ,

(3.58)

where the last inequality uses the intermediate result ∥H−1
k (s)∥ in the proof for

Lemma 3.3. Similarly,

∥(Vk − V̂ k)H
−1
k (s)V ⊤

k ∥ ≤ γ∥Vk − V̂ k∥ . (3.59)

For the last term, we have for any s ∈ (−jη,+jη),

∥V̂ k(H
−1
k (s)− Ĥ−1

k (s))V̂
⊤
k ∥

≤ ∥H−1
k (s)− Ĥ−1

k (s)∥

= ∥Ĥ−1

k (s)(Ĥk(s)−Hk(s))H
−1
k (s)∥

≤ ∥Ĥ−1

k (s)∥∥H−1
k (s)∥∥Ĥk(s)−Hk(s)∥

≤ γ2∥V ⊤
k diag{g−1

i (s)}Vk − V̂
⊤
k diag{g−1

i (s)}V̂ k∥

≤ γ2∥(V ⊤
k − V̂

⊤
k )diag{g−1

i (s)}Vk + V̂
⊤
k diag{g−1

i (s)}(Vk − V̂ k)∥

≤ 2γ2∥diag{g−1
i (s)}∥∥Vk − V̂ k∥ ≤ 2γ2M(η)∥Vk − V̂ k∥ . (3.60)
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Using the bounds in (3.58)(3.59)(3.60), we finally have

sup
s∈(−jη,+jη)

∥Tk(s)− T̂ k(s)∥

≤ sup
s∈(−jη,+jη)

(︂
∥V̂ kH

−1
k (s)(V ⊤

k − V̂
⊤
k )∥+ ∥(Vk − V̂ k)H

−1
k (s)V ⊤

k ∥

+∥V̂ k(H
−1
k (s)− Ĥ−1

k (s))V̂
⊤
k ∥
)︂

≤ 2(γ + γ2M(η))∥Vk − V̂ k∥ ≤ 2(γ + γ2M(η))∥Vk − V̂ k∥F .

Proof of Lemma 3.5. We have defined Tk(s) = Vk(V
⊤
k diag{g−1

i (s)}Vk + f(s)Λk)
−1V ⊤

k ,

then

P

(︄
sup

s∈(−jη,+jη)

∥T (s)− T̂ k(s)∥ ≥ ϵ

)︄

≤ P

(︄
sup

s∈(−jη,+jη)

∥T (s)− Tk(s)∥+ sup
s∈(−jη,+jη)

∥Tk(s)− T̂ k(s)∥ ≥ ϵ

)︄

≤ P

(︄
sup

s∈(−jη,+jη)

∥T (s)− Tk(s)∥ ≥
ϵ

2

)︄
+ P

(︄
sup

s∈(−jη,+jη)

∥Tk(s)− T̂ k(s)∥ ≥
ϵ

2

)︄
.

(3.61)

For the first term, we have

P

(︄
sup

s∈(−jη,+jη)

∥T (s)− Tk(s)∥ ≥
ϵ

2

)︄

= P

(︄
sup

s∈(−jη,+jη)

∥T (s)− Tk(s)∥ ≥
ϵ

2
, λk+1(L) ≤

M(η) + γM2(η)

Fl(η)

)︄

+ P

(︄
sup

s∈(−jη,+jη)

∥T (s)− Tk(s)∥ ≥
ϵ

2
, λk+1(L) >

M(η) + γM2(η)

Fl(η)

)︄

≤ P

(︃
λk+1(L) ≤

M(η) + γM2(η)

Fl(η)

)︃
+ P

(︄
sup

s∈(−jη,+jη)

∥T (s)− Tk(s)∥ ≥
ϵ

2
, λk+1(L) >

M(η) + γM2(η)

Fl(η)

)︄
(a)

≤ P

(︃
λk+1(L) ≤

M(η) + γM2(η)

Fl(η)

)︃
+ P

(︃
(γM(η) + 1)2

Fl(η)λk+1(L)−M(η)− γM(η)
≥ ϵ

2

)︃
(b)

≤ 2P

(︃
λk+1(L) ≤

1

Fl(η)

(︃
2

ϵ
(γM(η) + 1)2 +M(η) + γM2(η)

)︃)︃
, (3.62)
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where (a) is from the fact that when λk+1(L) >
M(η)+γM2(η)

Fl(η)
, we can apply Theorem

3.8 for any s0 ∈ (−jη,+jη), with a uniform bound

∥T (s0)− Tk(s0)∥ ≤
(γM(η) + 1)2

Fl(η)λk+1(L)−M(η)− γM(η)
,

then applying supremum gives us

sup
s∈(−jη,+jη)

∥T (s)− Tk(s)∥ ≤
(γM(η) + 1)2

Fl(η)λk+1(L)−M(η)− γM(η)
,

which implies the event (γM(η)+1)2

Fl(η)λk+1(L)−M(η)−γM(η)
≥ ϵ

2
. And the (b) is due to the fact

that the second probability is always larger than the first one.

For the second term, we have, by Lemma 3.4

P

(︄
sup

s∈(−jη,+jη)

∥Tk(s)− T̂ k(s)∥ ≥
ϵ

2

)︄
≤ P

(︂
2(γ + γ2M(η))∥Vk − V̂ k∥ ≥

ϵ

2

)︂
= P

(︃
∥Vk − V̂ k∥ ≥

ϵ

4(γ + γ2M(η))

)︃
. (3.63)

Apply (3.62)(3.63) to (3.61) gives the desired bound.

Proof of Lemma 3.6. Consider Vk =
[︂

1√
n

v2(L) · · · vk(L)
]︂

from the random Lapla-

cian matrix, and V blk
k =

[︂
1√
n

v2(Lblk) · · · vk(Lblk)
]︂

from Lblk. The singular values

of V ⊤
k V

blk
k are exactly the cosine of the principal angles between the two subspace

spanned by Vk and V blk
k . Notice that

V ⊤
k V

blk
k =

[︄
1 0

0 Ṽ
⊤
k Ṽ

blk
k

]︄
, (3.64)

where Ṽ k=
[︁
v2(L) · · · vk(L)

]︁
and Ṽ

blk
k =

[︁
v2(Lblk) · · · vk(Lblk)

]︁
. then there exists

O1, O2 ∈ O(k−1)×(k−1) such that

[︃
1 0
0 O⊤

1

]︃ [︄
1 0

0 Ṽ
⊤
k Ṽ

blk
k

]︄ [︃
1 0
0 O2

]︃
=

⎡⎢⎢⎢⎣
1

cos θ2
. . .

cos θk

⎤⎥⎥⎥⎦ , (3.65)
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where the first diagonal term corresponds to the cosine of the first principal angle

θ1 = 0. Now consider the orthogonal matrix O =

[︃
1 0
0 O2

]︃ [︃
1 0
0 O⊤

1

]︃
∈ Rk×k, we have

∥V blk
k O − Vk∥2F = tr

(︁
(V blk

k O − Vk)⊤(V blk
k O − Vk)

)︁
= 2d− 2tr(V ⊤

k V
blk
k O)

= 2d− 2tr

(︃[︃
1 0
0 O⊤

1

]︃
V ⊤
k V

blk
k

[︃
1 0
0 O2

]︃)︃
= 2d−

k∑︂
i=1

cos θi

≤ 2d−
k∑︂

i=1

cos2 θi = ∥ sinΘ(Vk, V
blk
k )∥2F .

Now consider the V̂ k = P{Ii}ki=1
S∗, where {Ii}ki=1 is the clustering result from the

spectral clustering algorithm, and S∗ from solving the optimization problem in

(3.34). Notice that if the clustering result {Ii}ki=1 is correct, i.e., Lblk is indeed k-

block-ideal w.r.t. P{Ii}ki=1
, then there exists some invertible matrix S̃ ∈ Rk×k such

that

V blk
k = P{Ii}ki=1

S̃ , (3.66)

which implicitly requires S̃e1 = 1k and S̃
⊤
diag{ni}ki=1S̃ = Ik. It is easy to show that

S = S̃O is a feasible solution to (3.34):

Se1 = S̃Oe1 = S̃e1 = 1k, S
⊤diag{ni}ki=1S = O⊤S̃

⊤
diag{ni}ki=1S̃O = Ik . (3.67)

Therefore

∥V̂ k − Vk∥F ≤ ∥P{Ii}ki=1
S − Vk∥F = ∥V blk

k O − Vk∥F ≤ ∥ sinΘ(Vk, V
blk
k )∥F . (3.68)
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Eigenvalues and eigenvectors of Lblk

Assume the network has the following adjacency matrix:

Ablk =

⎡⎢⎢⎢⎣
1n1 0 · · · 0
0 1n2 · · · 0
... . . . ...
0 0 · · · 1nk

⎤⎥⎥⎥⎦
⏞ ⏟⏟ ⏞

:=P

BkP
⊤ , (3.69)

where Ak ∈ Rk×k and

[Bk]ij =

⎧⎪⎨⎪⎩
αii, i = j

βij, i ≤ j

βij, i > j

. (3.70)

The Laplacian

Lblk = diag{Ablk1n} − Ablk . (3.71)

Proposition 3.1. Let nmin = min{ni : i = 1, · · · , k}, and nmax = max{ni : i =

1, · · · , k} Suppose

min
i
{αii} −

2nmax

nmin

max
i

∑︂
j ̸=i

βij := ∆ > 0 . (3.72)

Define

L̃k = diag{B̃k1k} − Ãk, B̃k = Bk · diag{ni}ki=1 , (3.73)

and let vi(L̃k) be the right eigenvector of L̃k associated with λi(L̃k). Then for i = 1, · · · , k,

we have

1. (Lblk is k-block-ideal)

λi(Lblk) = λi(L̃k), vi(Lblk) =

⎡⎢⎢⎢⎣
1n1 0 · · · 0
0 1n2 · · · 0
... . . . ...
0 0 · · · 1nk

⎤⎥⎥⎥⎦ vi(L̃k) . (3.74)

Moreover, let bmin := min{[Bk1k]i : i = 1, · · · , k} be the minimum row sum of Bk, then

we have
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2. (λk+1(Lblk) is large)

λk+1(Lblk) ≥ bminnmin , (3.75)

3. (there is a sufficient spectral gap λk+1(Lblk)− λk(Lblk))

λk+1(Lblk)− λk(Lblk) ≥ ∆nmin . (3.76)

Proof. The proof takes few steps: First we show that {(λi(L̃k), vi(L̃k))}ki=1 are eigen-

pairs of Lblk, then we show that {λi(L̃k)}ki=1 are indeed the first k smallest eigenval-

ues of Lblk. Lastly we provide the lower bound on both λk+1(Lblk) and λk+1(Lblk)−

λk(Lblk) .

Show eigenpairs{(λi(L̃k), vi(L̃k))}ki=1: Notice that

LblkP = (diag{Ablk1n} − Ablk)P

= (diag{PBkP
⊤1n} − PBkP

⊤)P

= diag{PBkdiag{ni}ki=11k} − PBkdiag{ni}ki=1

= Pdiag{Bkdiag{ni}ki=11k} − PBkdiag{ni}ki=1 = PL̃blk , (3.77)

where we used an equality Pdiag{x} = diag{Px} for any x ∈ Rk due to the special

structure of P . We can obtain k eigenpairs through (3.77): Given any eigenpair

(λi(L̃blk), vi(L̃k)), we have

LblkPvi(L̃k) = PL̃kvi(L̃k) = λi(L̃blk)Pvi(L̃k) , (3.78)

which suggests (λi(L̃k), Pvi(L̃k)) is an eigenpair of Lblk. This holds for every i =

1, · · · , k.

Show that {λi(L̃k)}ki=1 are the first k smallest eigenvalues: The remaining eigen-

values of Lblk are easy to find:

•

⎛⎜⎜⎜⎝λ = n1α11 +
∑︁

j ̸=1 β1jnj, v =

⎡⎢⎢⎢⎣
v1
0
...
0

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠ is an eigenpair for any v1 ∈ Sn1−1 such that

1⊤
n1
v1=0.
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•

⎛⎜⎜⎜⎝λ = n2α22 +
∑︁

j ̸=2 β2jnj, v =

⎡⎢⎢⎢⎣
0
v2
...
0

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠ is an eigenpair for any v2 ∈ Sn2−1 such that

1⊤
n2
v2=0.

• · · ·

•

⎛⎜⎜⎜⎝λ = nkαkk +
∑︁

j ̸=k βkjnj, v =

⎡⎢⎢⎢⎣
0
0
...
vk

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠ is an eigenpair for any vk ∈Snk−1 such that

1⊤
nk
vk=0.

Any choice of such (λ, v) is an eigenpair because, for example, the eigenpair associ-

ated with some v1 satisfies

Lblk

⎡⎢⎢⎢⎣
v1
0
...
0

⎤⎥⎥⎥⎦

=

⎛⎜⎝
⎡⎢⎣(n1α11 +

∑︁
j ̸=1 β1jnj)In1

. . .
(nkαkk +

∑︁
j ̸=k βkjnj)Ink

⎤⎥⎦− PBkP
⊤

⎞⎟⎠
⎡⎢⎢⎢⎣
v1
0
...
0

⎤⎥⎥⎥⎦

=

⎡⎢⎣(n1α11 +
∑︁

j ̸=1 β1jnj)In1

. . .
(nkαkk +

∑︁
j ̸=k βkjnj)Ink

⎤⎥⎦
⎡⎢⎢⎢⎣
v1
0
...
0

⎤⎥⎥⎥⎦
=

(︄
n1α11 +

∑︂
j ̸=1

β1jnj

)︄
v1 .

A similar argument can be made for other pairs. This gives us all the rest of the

eigenvalues: each eigenvalue niαii +
∑︁

j ̸=i βijnj has multiplicity ni − 1. Together

with the k eigenvalues {λi(L̃k)}ki=1 we have already found in previous derivation,

we have all the eigenvalues of Lblk.

The claim that {λi(L̃k)}ki=1 are the first k smallest eigenvalues is shown by our
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assumption:

min
i

(︄
niαii +

∑︂
j ̸=i

βijnj

)︄
≥ min

i
niαii

≥ nmin min
i
αii

≥ 2nmax max
i

∑︂
j ̸=i

βij + nmin∆

≥ max
i

(ni + nmax)
∑︂
j ̸=i

βij + nmin∆

≥ max
i

(︄
ni

∑︂
j ̸=i

βij +
∑︂
j ̸=i

βijnj

)︄
+ nmin∆

≥ max
i
λi(L̃k) + nmin∆ , (3.79)

where the last inequality is from the Gershgorin disk theorem [64] by noticing that

for i-th column of L̃k, the diagonal term is
∑︁

j ̸=i βijnj and the sum of the absolute

value of the off-diagonal terms is ni

∑︁
j ̸=i βij . (3.79) is more than enough to show

{λi(L̃k)}ki=1 are the first k smallest eigenvalues of Lblk.

Bound on the eigenvalue and spectral gap

Knowing {λi(L̃k)}ki=1 are the first k smallest eigenvalues, we have

λk+1(Lblk) = min
i

(︄
niαii +

∑︂
j ̸=i

βijnj

)︄
≥ min

i

(︄
αii +

∑︂
j=i

βij

)︄
nmin = bminnmin ,

and (3.79) already shows

λk+1(Lblk) = min
i

(︄
niαii +

∑︂
j ̸=i

βijnj

)︄
≥ max

i
λi(L̃k) + nmin∆ = λk(Lblk) + nmin∆ .

3.3 Reducing Model Complexity

In this section, we apply our analysis to investigate coherence in power networks.

For coherent generator groups, we find that 1
n
ḡ(s) = ĝ(s) generalizes typical ag-

gregate generator models which are often used for model reduction in power
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networks [96]. Moreover, we show that heterogeneity in generator dynamics usu-

ally leads to high-order aggregate dynamics. Therefore, although our previous

analyses provide a structurally interpretable reduced model for networks, the result-

ing models are still potentially of high order due to aggregation. This asks for model

reduction on the aggregate dynamics, in order to reduce the model complexity of

our approximation model in Section 3.2. We will mostly discuss model reduction

techniques for power networks, but the analyses could potentially be generalized

to other networks.

We will resort to frequency weighted balanced truncation to develop a hierarchy of

models of adjustable order and increasing accuracy. In particular, for aggregation

of n second order generator models in power networks, we find that high accuracy

can often be achieved by reducing the (n+1)-th order system to a 3rd order one. We

further compare two alternatives: providing an aggregate model for a set of turbines,

and subsequently closing the loop, versus performing the reduction directly on

the closed loop ĝ(s). The first is motivated by retaining the interpretation whereby

the aggregate is represented by one or two equivalent turbines; nonetheless, we

show how a similar interpretation may be available for the second, more accurate

method.

The rest of the section is organized as follows. In Section 3.3.1, we provide the

theoretical justification of the coherent dynamics ĝ(s). In Section 3.3.2, we propose

reduced-order models for ĝ(s) by frequency weighted balanced truncation. We then

show via numerical illustrations that the proposed models can achieve accurate

approximation (Section 3.3.3).

3.3.1 Aggregate dynamics of coherent generators

Consider a group of n generators, indexed by i = 1, · · · , n and dynamically coupled

through an AC network. Assuming the network is in steady-state, Figure 3-6 shows
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the block diagram of the linearized system around its operating point.

Figure 3-6. Block Diagram of a Linearized Power Network.

We refer to [34] for details on the linearization procedure. The signals w =

[w1, · · · , wn]
⊤, u = [u1, · · · , un]⊤, pe = [pe1, · · · , pen]⊤ are in vector form. For generator

i, the transfer function gi(s) has input (ui − pei ), the net power deviation at its

generator axis, resulting from disturbances ui in mechanical power minus variations

in electrical power pei drawn from the network, relative to their equilibrium values.

The ouptut wi is the angular frequency deviation relative to equilibrium frequency.

The network power fluctuations pe are given by a linearized (lossless) DC model

pe(s) = 1
s
Lw(s) of the power flow equation. Here L is the Laplacian matrix of an

undirected weighted graph, with its elements given by

Lij =
∂

∂θj

n∑︂
k=1

|Vi||Vk|bik sin(θi − θk)
⃓⃓⃓⃓
⃓
θ=θ0

,

where θ0 are angle deviations at steady state, |Vi| is the voltage magnitude at bus i

and bij is the line susceptance. Without loss of generality, we assume the steady state

angular difference θ0i − θ0j across each line is smaller than π
2
. Moreover, because

L is a symmetric real Laplacian, its eigenvalues are given by 0 = λ1(L) ≤ λ2(L) ≤

· · · ≤ λn(L). The overall linearized frequency dynamics of the generators is given

by

wi(s) = gi(s)(ui(s)− pei (s)), i = 1, · · · , n , (3.80a)

pe(s) =
1

s
Lw(s) . (3.80b)
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Generally, a group of generators coupled as in Figure 3-6 is considered coherent if

their response in frequency is the same/similar under a disturbance u of any shape.

We are interested in characterizing the dynamic response of coherent generators,

which we term here the coherent dynamics. With this aim, we seek conditions on

the network (3.80) under which the entire set of generators behave coherently. The

same approach can be used on subgroups of generators.

To motivate our results, we start with summing over all equations in (3.80a) to

get
n∑︂

i=1

g−1
i (s)wi(s) =

n∑︂
i=1

ui(s)−
n∑︂

i=1

pei (s) =
n∑︂

i=1

ui(s) . (3.81)

Notice that the term
∑︁n

i=1 p
e
i (s) = 1⊤L

s
w(s) = 0 since 1 = [1, · · · , 1]⊤ is a left

eigenvector of λ1(L) = 0.

A pragmatic approach to obtain a model of coherent behavior is to simply impose

the equality wi(s) = ŵ(s) between the frequency outputs. Solving from (3.81) we

obtain:

ŵ(s) =

(︄
n∑︂

i=1

g−1
i (s)

)︄−1 n∑︂
i=1

ui(s) =: ĝ(s)
n∑︂

i=1

ui(s); (3.82)

the group of generators is aggregated into a single effective machine ĝ(s), respond-

ing to the total disturbance.

Coherence in tightly connected networks

To properly justify the use of (3.82) as an accurate descriptor of the coherent dy-

namics, we state here a precise result. Our analysis will highlight the role of the

algebraic connectivity λ2(L) of the network as a direct indicator of how coherent a

group of generators is.

For the network shown in Figure 3-6, the transfer matrix from the disturbance u

to the frequency deviation w is given by

T (s) = (In + diag{gi(s)}L/s)−1 diag{gi(s)} , (3.83)
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where In is the n × n identity matrix. We establish that the transfer matrix T (s)

converges, as the algebraic connectivity λ2(L) increases, to one where all entries are

given by ĝ(s).

We make several assumptions: 1) T (s) is stable; 2) ĝ(s) in (3.82) is stable 3) all

gi(s) are minimum phase systems. All generator network models discussed here

(Section 3.3.1, 3.3.1) satisfy these assumptions. In particular, the stability of T (s) is

guaranteed by passivity of the network [98]. We state the following result.

Theorem 3.11. Given the assumptions above, the following holds for any η0 > 0:

lim
λ2(L)→+∞

sup
η∈[−η0,η0]

⃦⃦
T (jη)− ĝ(jη)11⊤⃦⃦ = 0 ,

where j =
√
−1 and 1 ∈ Rn is the vector of all ones.

Proof. ḡ(s) is stable because ĝ(s) is stable, then ḡ(s) is continuous on compact

set [−jη0, jη0]. Then by [83, Theorem 4.15] there exists M1 > 0, such that ∀s ∈

[−jη0, jη0], we have |ḡ(s)| ≤M1. Similarly, because all gi(s) are minimum-phase, all

g−1
i (s) are stable hence continuous on [−jη0, jη0]. Again there exists M2 > 0, such

that ∀s ∈ [−jη0, jη0], we have max1≤i≤n |g−1
i (s)| ≤M2.

Now we know that ∀s ∈ [−jη0, jη0], we have |ḡ(s)| ≤ M1,max1≤i≤n |g−1
i (s)| ≤

M2, i.e. the condition for Lemma 3.1 is satisfied for a common choice of M1,M2 > 0.

By Lemma 3.1, ∀s ∈ [−jη0, jη0], we have:

⃦⃦
T (s)− ĝ(s)11⊤⃦⃦ ≤ (M1M2 + 1)2

|λ2(L)/s| −M2 −M1M2
2

.

Taking sups∈[−jη0,jη0] on both sides gives:

sup
s∈[−jη0,jη0]

⃦⃦
T (s)− ĝ(s)11⊤⃦⃦ ≤ (M1M2 + 1)2

|λ2(L)/η0| −M2 −M1M2
2

.

Lastly, take λ2(L) → +∞ on both sides, the right-hand side gives 0 in the limit,

which finishes the proof.
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Figure 3-7. Step response of the Icelandic grid. Individual responses appear in
light font in the background, with a specific one highlighted in blue. We also show
the CoI frequency response, and step response of the coherent dynamics ĝ(s). The
Iceland network has Algebraic connectivity λ2(L) = 0.0915.

The transfer matrix ĝ(s)11⊤ has the property that for an arbitrary vector distur-

bance u(s), the response is w(s) = ĝ(s)11⊤u(s) = (ĝ(s)
∑︁n

i=1 ui(s)) 1; this says the

vector of bus frequencies responds in unison, with all entries equal to the response ŵ

in (3.82). Theorem 3.11 states that in the limit of large connectivity, the true response

T (s)u(s) is approximated by the one in (3.82) for disturbances in the frequency band

[−η0, η0].

The limit of high connectivity analyzed in the theorem is a good assumption for

many cases of tightly connected networks, but one may wonder about the relevance

of ĝ(s) in a less extreme case. We explore this through a numerical simulation on

the Icelandic Power Grid [97], of moderate connectivty. As shown in Figure 3-7, the

step response has incoherent oscillations from individual generators. Nevertheles,

if one looks at the Center of Inertia (CoI) frequency wcoi = (
∑︁n

i=1miwi)/(
∑︁n

i=1mi),

a commonly used system-wide metric, we see it is very closely approximated by

the coherent dynamics ĝ(s). Thus we will proceed with this model of aggregate

response. For certain generator models, however, the complexity of ĝ(s) motivates

the need for approximations.

208



Aggregate dynamics for different generator models

Having characterized how, the coherent dynamics given by ĝ(s), represent the net-

work’s aggregate behavior, from now on we will use with no distinction the terms

“aggregate” and “coherent” dynamics. Now we look into the explicit forms these

dynamics take for different generator models.

Example 1. Generators with 1st order model, of two types:

1) For synchronous generators[48], gi(s) = 1
mis+di

, where mi, di are the inertia and

damping of generator i, respectively. The coherent dynamics are ĝ(s) = 1

m̂s+d̂
, where

m̂ =
∑︁n

i=1mi and d̂ =
∑︁n

i=1 di.

2) For droop-controlled inverters[107], gi(s) =
kP,i

τP,is+1
, where kP,i and τP,i are the droop

coefficient and the filter time constant of the active power measurement, respectively. The co-

herent dynamics are ĝ(s) = k̂P
τ̂P s+1

, where k̂P =
(︁∑︁n

i=1 k
−1
P,i

)︁−1
, τ̂P = k̂P (

∑︁n
i=1 τP,i/kP,i).

Notice that both dynamics are of the same form; by suitable reparameterization,

we may use the “swing” model gi(s) = 1
mis+di

to model both types of generators.

In this case no order reduction is needed: the aggregate model given in Case 1 is

consistent with the conventional approach of choosing inertia m̂ and damping d̂ as

the respective sums over all generators. Theorem 3.11 explains why such a choice is

indeed appropriate.

The aggregation is more complicated when considering generators with turbine

droop control:

Example 2. Synchronous generators given by the swing model with turbine droop[48]

gi(s) =
1

mis+ di +
r−1
i

τis+1

, (3.84)

where r−1
i and τi are the droop coefficient and turbine time constant of generator i, respec-
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tively. The coherent dynamics are given by

ĝ(s) =
1

m̂s+ d̂+
∑︁n

i=1
r−1
i

τis+1

. (3.85)

When all generators have the same turbine time constant τi = τ̂ , then ĝ(s)

in (3.85) reduces to the typical effective machine model of the form (3.84) with

parameters (m̂, d̂, r̂−1, τ̂), where r̂−1 =
∑︁n

i=1 r
−1
i , i.e., the aggregation model is still

obtained by choosing parameters as the respective sums of their individual values.

However, if the τi are heterogeneous, then
∑︁n

i=1
r−1
i

τis+1
is generally of high-order

because the summands have distinct poles. As a result, the closed-loop dynamics

ĝ(s) is a high-order transfer function and cannot be accurately represented by a

single generator model. The aggregation of generators thus requires a low-order

approximation of ĝ(s).

Aggregate dynamics for mixture of generators

We have shown the aggregate dynamics for generators of three different types.

When a mixture of these different types is present3, we adopt (3.84) as a general

representation of the three types; in particular, the first order models can be regarded

as (3.84) with r−1
i = 0. Therefore, (3.85) provides a general representation of the

aggregate dynamics resulting from a mixture of generators. Again, high-order

coherent dynamics arise when heterogeneous turbines exist.

3.3.2 Reduced order model for coherent generators with heteroge-
neous turbines

As shown in the previous section, the coherent dynamics ĝ(s) are of high-order

if the coherent group has generators with different turbine time constants. This

3Generally, when considering a mixture of synchronous generators and grid-forming inverters,
our network model is valid only when synchronous generators make up a significant portion of the
composition.
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suggests that substituting ĝ(s) with an equivalent machine of the same order as

each gi(s) may lead to a substantial approximation error. In this section we propose

instead a hierarchy of reduced models with increasing order, based on balanced

realization theory [108], such that eventually an accurate reduced model is obtained

as the order of the reduction increases. An additional avenue of improvement is:

instead of the standard approach [44, 45, 47] of reducing the aggregate of turbines,

to apply the reduction methodology over the closed-loop coherent dynamics.

We use frequency weighted balanced truncation [109] to approximate ĝ(s). Fre-

quency weighted balanced truncation identifies the most significant dynamics with

respect to particular LTI frequency weight by computing the weighted Hankel sin-

gular values, which decay fast in many cases, allowing us to accurately approximate

high-order systems. Importantly, the reduction procedure favors approximation

accuracy in certain frequency range specified by the weights. We defer the detailed

procedure of frequency weighted balanced truncation at the end of this section.

Given a SISO stable proper transfer function G(s), and a stable frequency weight

W (s), the k-th order weighted balanced truncation returns

G̃k(s) =
bk−1s

k−1 + · · ·+ b1s+ b0
aksk + · · ·+ a1s+ a0

, (3.86)

which is guaranteed to be stable [109], and such that the weighted error

sup
η∈R
|W (jη)(G(jη)− G̃k(jη))|

is upper bounded, with an upper bound decreasing to zero with the order k. For

our purposes, W (s) must have a high gain in the low frequency range, so that the

DC gains of the original and the reduced dynamics are approximately matched, i.e.,

G(0) ≃ G̃(0). Our two proposed model reduction approaches for high-order ĝ(s) in

(3.85) are both based on frequency weighted balanced truncation.
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Model reduction on turbine dynamics

Our first model is based on applying balanced truncation to the turbine aggregate.

Essentially, ĝ(s) in (3.85) is of high order because it has high-order turbine dynamics∑︁n
i=1

r−1
i

τis+1
; we seek to replace it with a reduced-order model. This is akin to the

existing literature [44, 45] which replaces an aggregate of turbines in parallel by

a first order turbine model with parameters obtained by minimizing certain error

functions.

We denote the aggregate turbine dynamics as ĝt(s) :=
∑︁n

i=1
r−1
i

τis+1
.We also denote

the (k − 1)-th reduction model of ĝt(s) by frequency-weighted balanced truncation

as g̃t,k−1(s). Then the k-th order reduction model of ĝ(s) is given by

g̃tbk (s) =
1

m̂s+ d̂+ g̃t,k−1(s)
, (3.87)

with, again, m̂ =
∑︁n

i=1mi, d̂ =
∑︁n

i=1 di. We highlight two special instances of

relevance for our numerical illustration.

2nd order reduction: When k = 2, the reduced model g̃t,1(s) can be interpreted as a

first order turbine model

g̃t,1(s) =
b0

a1s+ a0
=

b0/a0
(a1/a0)s+ 1

:=
r̃−1

τ̃ s+ 1
,

with parameters (r̃−1, τ̃) chosen by the weighted balanced truncation method. Then

the overall reduced model g̃tb2 (s) is of second order, which is a single generator

model.

Unlike [44, 45], there is a DC gain mismatch between g̃tb2 (s) and the original ĝ(s)

since r̃−1 ̸= r̂−1 =
∑︁n

i=1 r
−1
i . Later in the simulation section, by choosing a proper

frequency weight W (s), we effectively make the DC gain mismatch negligible.

However, as we will see in the numerical section, k = 2 may not suffice to accurately

approximate the coherent dynamics.
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3rd order reduction: To obtain a more accurate reduced-order model, one may

consider k = 3 as the next suitable option. In fact, as we see in the later numerical

simulation, a 2nd order turbine model g̃t,2(s), i.e., k = 3, is sufficient to give an

almost exact approximation of ĝt(s).

We can also interpret g̃t,2(s), by means of partial fraction expansion, i.e.,

g̃t,2(s) =
b1s+ b0

a2s2 + a1s+ a0
=

r̃−1
1

τ̃ 1s+ 1
+

r̃−1
2

τ̃ 2s+ 1
,

assuming the poles are real. Then the reduced dynamics g̃t,2(s) can be viewed as

two first order turbines in parallel with parameters (r̃−1
1 , τ̃ 1) and (r̃−1

2 , τ̃ 2). In Section

3.3.3, we show such interpretation is valid for our numerical example.

Model reduction on closed-loop coherent dynamics

Our second proposal is to apply weighted balanced truncation directly on ĝ(s),

instead of reducing the turbine dynamics (3.87). Thus, we denote g̃clk (s) as the k-th

order reduction model, via frequency weighted balanced truncation, of the coherent

dynamics ĝ(s). Again, DC gain mismatch can be made negligible by properly

choosing W (s).

As compared to the one in Section 3.3.2, this reduced model might not be easy

to interpret. Nevertheless, the procedure described below often leads to a practical

interpretation.

2nd order reduction: When k = 2, we wish to interpret g̃cl2 (s) in terms of a single gen-

erator with a first order turbine of the form in (3.84), with parameters (m̃, d̃, r̃−1, τ̃).

Given

g̃cl2 (s) =
b1s+ b0

a2s2 + a1s+ a0
:=

N(s)

D(s)
,

obtained by the proposed method, we write the polynomial division D(s) =

Q(s)N(s) + R, where Q(s), R are quotient and remainder, respectively. This leads
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to the expression

g̃cl2 (s) =
N(s)

Q(s)N(s) + R
=

1

Q(s) + R
N(s)

.

Here the first order polynomial Q(s) can be matched to m̃s+ d̃, and R
N(s)

to r̃−1

τ̃ s+1
. Pro-

vided the obtained constants (m̃, d̃, r̃−1, τ̃) are positive, the interpretation follows.

3rd order reduction: Similarly, when k = 3, the reduced model is g̃cl3 (s) = N(s)
D(s)

,

with N(s) of 2nd order and D(s) of 3rd order. The polynomial division D(s) =

Q(s)N(s) + R(s), still gives a first order quotient Q(s), which is interpreted as

m̃s+ d̃; the second order transfer function R(s)
N(s)

can be expressed, by partial fraction

expansion, as two first order turbines in parallel, provided the obtained constants

remain positive. We explore this in the examples studied below.

3.3.3 Numerical Simulations

We now evaluate the reduction methodologies proposed in the previous section,

and compare their performance with the solutions proposed in [44, 45]. In our

comparison, we consider 5 generators forming a coherent group4. All parameters

are expressed in a common base of 100 MVA.

The test case: 5 generators, m̂ = 0.0683(s2/rad), d̂ = 0.0107. The turbine and droop

parameters of each generator are listed in Table 3-I. In all comparisons, a step change

of −0.1 p.u. in disturbance power is used.

Table 3-I. Droop control parameters of generators in test case

Parameter
Index 1 2 3 4 5

droop r−1
i (p.u.) 0.0218 0.0256 0.0236 0.0255 0.0192

time constant τi (s) 9.08 5.26 2.29 7.97 3.24

4More specifically, we assume sufficiently strong network coupling among these generators
such that the frequency responses are coherent. The numerical simulation will only illustrate the
approximation accuracy with respect to the coherent response rather than individual ones.
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Remark 10. In the test case, we only aggregate 5 generators and report all parameters

explicitly in order to give insight on how the distribution of the time constant τi affects

our approximations. It is worth noting that similar behavior is observed when reducing

coherent groups with a much larger number of generators. In particular, the accuracy found

below with 3rd order reduced models is also observed in these higher order problems.

As mentioned in the previous section, one of the drawbacks of the balanced

truncation method is the DC gain mismatch, which leads to a steady-state error. In

our simulation, the DC gain mismatch is effectively cancelled by picking proper

frequency weights for different reduced models.

Effect of reduction order k in accuracy

We now evaluate the effect of the reduction order on the accuracy. That is, we com-

pare 2nd and 3rd order balanced truncation on the turbine dynamics, g̃tb2 (s) (BT2-tb),

g̃tb3 (s) (BT3-tb), as well as balanced truncation on the closed-loop coherent dynamics

g̃cl2 (s) (BT2-cl), g̃cl3 (s) (BT3-cl). The frequency weights are given by Wtb(s) =
s+3·10−2

s+10−4

and Wcl(s) =
s+8·10−2

s+10−4 , respectively. The step response and step response error with

respect to ĝ(s) are shown in Figure 3-8.
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Figure 3-8. Comparison of all reduced-order models by balanced truncation

Compared to 2nd order models, 3rd order reduced models give a very accurate

approximation of ĝ(s). While it is expected that the approximation error goes down

with the order, it is not trivial that a 3rd order model would provide this level of
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accuracy for an intrinsically high order system.

Moreover, when we examine the transfer function given by g̃tb3 (s) (from input

u in p.u. to output w in rad/s), we find an interesting interpretation. That is, the

turbine model for g̃tb3 (s) is given by

g̃t,2(s) =
0.0266s+ 0.0057

s2 + 0.5046s+ 0.0489
=

0.0473

2.68s+ 1
+

0.0684

7.64s+ 1
,

where the latter is obtained by partial fraction expansion and can be viewed as two

turbines (one fast turbine and one slow turbine) in parallel, and the choices of droop

coefficients for these two turbines reflect the aggregate droop coefficients of fast

turbines (generators 3 and 5) and slow turbines (generators 1,2, and 4), respectively,

in ĝ(s).

Reduction on turbines vs. closed-loop dynamics

Another observation from Figure 3-8 is that reduction on the closed-loop is more

accurate than reduction on the turbine. For a more straightforward comparison, we

list in Table 3-II the approximation errors of all 4 models in Fig 3-8 using the follow-

ing metrics: 1) L2-norm of step response error5 e(t) (in rad/s1/2): (
∫︁ +∞
0
|e(t)|2dt)1/2;

2) L∞-norm of e(t) (in rad/s): maxt≥0 |e(t)|; 3)H∞-norm difference between reduced

and original models (from input u in p.u. to output w in rad/s).

We observe from Table 3-II that for a given reduction order, balanced truncation

on the closed-loop dynamics (g̃cl2 (s), g̃
cl
3 (s)) has smaller approximation error than

balanced truncation on turbine dynamics (g̃tb2 (s), g̃
tb
3 (s)) across all metrics. Such

observation seems to be true in general. For instance, Fig. 3-9 shows a similar trend

by plotting the same configuration (metrics and models) of Table 3-II for different

values of of the aggregate inertia m̂, while keeping all other parameters the same.

5For reduced-order models obtained via frequency weighted balanced truncation, there exists an
extremely small but non-zero DC gain mismatch that makes the L2-norm unbounded. We resolve
this issue by simply scaling our reduced-order models to have exactly the same DC gain as ĝ(s).
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Table 3-II. Approximation errors of reduced order models

Model
Metric L2 diff.

(rad/s1/2)
L∞ diff.
(rad/s) H∞ diff.

Guggilam[45] 7.2956 3.8287 10.2748
Germond[44] 3.9594 1.9974 5.1431
BT2-tb 4.3737 2.1454 7.5879
BT2-cl 2.0376 0.9934 2.0381
BT3-tb 0.0967 0.0361 0.1315
BT3-cl 0.0704 0.0249 0.0317
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Figure 3-9. Approximation errors of second order models (left) and third order
models (right) by balanced truncation in different metrics. Approximation errors of
reduced-order models g̃tb2 (s), g̃

tb
3 (s) are shown in dashed lines; Approximation errors

of reduced-order models g̃cl2 (s), g̃
cl
3 (s) are shown in solid lines. The approximation

errors are in their respective units.

It can be seen from Fig. 3-9 that reduction on closed-loop dynamics improves

the approximation in every metric, uniformly, for a wide range of aggregate inertia

m̂ values. The main reason is that, when applying reduction on the closed-loop

dynamics, the algorithm has the flexibility to choose the corresponding values

of inertia and damping to be different from the aggregate ones in order to better

approximate the response. More precisely, from the reduced model we obtain

g̃cl2 (s) =
4.9733s+ 1

(0.06715s+ 0.01464)(4.9733s+ 1) + 0.1118
,

from which we can get the equivalent swing and turbine models as:

swing model:
1

0.06715s+ 0.01464
, turbine:

0.1118

4.9733s+ 1
.

The equivalent inertia and damping are m̃ = 0.06715 and d̃ = 0.01464, which are

different from the aggregate values m̂, d̂. Therefore, when compared to reduction
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on turbine dynamics, reduction on closed-loop dynamics is less constrained on the

parameter space, thus achieving smaller approximation errors.

Comparison with existing methods

Lastly, we compare reduced-order models via balanced truncation on the closed-

loop dynamics, g̃cl2 (s), g̃
cl
3 (s), with the solutions proposed in [44, 45]. The step

responses and the approximation errors are shown in Fig. 3-10 and Table. 3-II.
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Figure 3-10. Comparison with existing reduced-order models

In the comparison, g̃cl3 (s) outperforms all other reduced-order models and is the

most accurate reduced-order model of ĝ(s). It is also worth noting that g̃cl2 (s) has

the least approximation error among all 2nd order models. In general, our results

suggest that to improve the accuracy of reduced-order models of the coherent

dynamics of generators ĝ(s), we should consider: 1) increasing the complexity

(order) of the reduced model; 2) reduction on the closed-loop dynamics instead of

the turbine dynamics.

Frequency Weighted balanced Truncation

Given a minimum realization of frequency weight W (s) to be (AW , BW , CW , DW ),

the procedures of frequency weighted balanced truncation for a minimum, strictly

proper and stable linear system (A,B,C) with order n are given as follow:
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1. The extended system6 is given by:⎡⎣ A 0 B
BWC AW 0
DWC CW 0

⎤⎦ :=

[︄
Ā B̄

C̄ 0

]︄
.

2. Compute the frequency weighted controllability and observability gramians

Xc, Yo from the gramians X̄c, Ȳ o of extended system:

X̄c =

∫︂ ∞

0

eĀtB̄B̄
⊤
eĀ

⊤
tdt, Ȳ o =

∫︂ ∞

0

eĀ
⊤
tC̄

⊤
C̄eĀtdt

Xc =
[︁
In 0

]︁
Xc
¯
[︃
In
0

]︃
, Yc =

[︁
In 0

]︁
Yc̄

[︃
In
0

]︃
.

3. Perform the singular value decomposition of X
1
2
c YoX

1
2
c :

X
1
2
c YoX

1
2
c = UΣU∗ .

where U is unitary and Σ is diagonal, positive definite with its diagonal terms

in decreasing order. Then compute the change of coordinates T given by:

T−1 = X
1
2
c UΣ

−1 .

4. Apply change of coordinates T on (A,B,C) to get its balanced realization

(TAT−1, TB,CT−1). Then the k-th order (1 ≤ k ≤ n) reduction model

(Ak, Bk, Ck) is given by truncating (TAT−1, TB,CT−1) as the following:

Ak =
[︁
Ik 0

]︁
TAT−1

[︃
Ik
0

]︃
Bk =

[︁
Ik 0

]︁
TB

Ck = CT−1

[︃
Ik
0

]︃
.

Remark 11. Balanced truncation only applies to systems in state space. For a transfer

function, one should apply balanced truncation to its minimum realization, then obtain

reduced order transfer function from the state-space reduction model.
6When W (s) = 1, the extended system is exactly the same as original (A,B,C), then the proce-

dures give unweighted standard balanced truncation.
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3.4 Conclusion

In this chapter, we study network coherence as a low-rank property of the transfer

matrix T (s) in the frequency domain. The analysis leads to useful characteriza-

tions of coordinated behavior and justifies the relation between network coherence

and network effective algebraic connectivity. Our results suggest that network

coherence is a frequency-dependent phenomenon, which is numerically illustrated

in power networks. Lastly, concentration results for large-scale networks are pre-

sented, revealing the exclusive role of the statistical distribution of node dynamics in

determining the coherent dynamics of such networks. The network coherence anal-

ysis forms the basis for analyzing dominant dynamics in networks with multiple

coherence clusters, discussed in the next section.

Next, we extend our frequency-domain analysis to the case of multi-cluster

network systems. We propose a structure-preserving model-reduction methodology

for large-scale dynamic networks. Our analysis shows that networks with multiple

coherent groups can be well approximated by a reduced network of the same

size as the number of coherent groups, and we provide an upper bound on the

approximation error when the network graph is randomly generated from a weight

stochastic block model.

Lastly, to address the high complexity of our proposed model for power net-

work reduction. We seek tractable models for frequency dynamics in a power grid,

starting with the characterization ĝ(s) =
(︁∑︁n

i=1 g
−1
i (s)

)︁−1 for the coherent response,

which is shown to be asymptotically accurate as the coupling between generators

(characterized via λ2(L)) increases. Our characterization justifies existing aggrega-

tion approaches and also explains the difficulties of aggregating generators with

heterogeneous turbine time constants. We leverage model reduction tools from

control theory to find accurate reduced-order approximations to ĝ(s). For {gi(s)}ni=1
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given by the 2nd order generator models, the numerical study shows that 3rd order

models based on frequency weighted balanced truncation on closed-loop dynamics

are sufficient to accurately represent ĝ(s).

For future research, we believe our proposed model can be applied to power

networks for studying the inter-area oscillation in the frequency response and

allows new control designs based on the reduced network. Moreover, in the case

of unknown node dynamics, one possible path is to learn coherent dynamics

from output measurement data, then build a reduced network from the learned

dynamics.
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Chapter 4

Conclusions and General Discussion

In this thesis, we discuss two types of high-dimensional dynamical systems: train-

ing dynamics of neural networks and large-scale network systems. While classic

dynamical systems and control tools do not scale with the dimensionality of the

state-space, making it challenging to characterize and understand their dynamical

behavior. One can exploit their structural properties to develop new analyses of

these systems:

We first consider training multi-layer neural networks using gradient flow

dynamics. The high dimensionality comes from overparametrization: a typical

network has a large depth and hidden layer width. With the presence of millions

and billions of training parameters, even the simplest questions such as whether the

gradient flow converges to a global minimum of the loss become challenging and

can only be answered for networks with certain architectures. For linear networks,

the symmetry of the weights, a critical property induced by the multi-layer architec-

ture, turns out to be the key to analyzing convergence. Such symmetry leads to a

set of time-invariant quantities, called weight imbalance, that restrict the training

trajectory to a low-dimensional manifold defined by the weight initialization. A

tailored convergence analysis is developed over this low-dimensional manifold,

showing improved rate bounds for several multi-layer network models studied in

the literature, leading to novel characterizations of the effect of weight imbalance
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on the convergence rate. Moreover, our analysis is extended to the case of training

two-layer ReLU networks under small initialization.

Then, we consider large-scale networked systems with multiple weakly-connected

groups. Such a multi-cluster structure leads to a time-scale separation between

the fast intra-group interaction due to high intra-group connectivity, and the slow

inter-group oscillation, due to the weak inter-group connection. We develop novel

frequency-domain network coherence analysis. Unlike prior work, our analysis

applies to networks with heterogeneous nodal dynamics, and further provides an

explicit characterization in the frequency domain of the coherent response to distur-

bances as the harmonic mean of individual nodal dynamics. The new frequency-

domain analysis leads to a structure-preserving model-reduction methodology for

large-scale dynamic networks with multiple clusters.

There are many related research topics worth exploring. Regarding the training

dynamics of neural networks, there have been numerous developments in opti-

mization algorithms and network architecture design that have led to the success of

machine learning in many applications. How our neural network model benefits

from these designs will continue to be one of the most important questions in un-

veiling the mystery of deep learning. In practice, the algorithms used for optimizing

a neural network are more complicated than simple gradient descent algorithms.

At every iteration, a mini-batch of data is fed to evaluate the gradient instead of

the full data, and gradient descent updates are replaced by weight updates from

accelerated methods such as momentum-based optimization algorithms. These op-

timization algorithms allow for efficient training of neural networks, and the trained

networks are empirically shown to have superior generalization performance com-

pared to those trained with vanilla gradient descent algorithms. Moreover, practical

neural networks have also greatly benefited from architectural designs such as

convolutional layers, residual connections, batch normalization, and self-attention
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mechanisms. Understanding the convergence of practical neural networks, such as

CNNs and Transformers, under stochastic and accelerated optimization algorithms

will provide theoretical guarantees for the training and inspire new algorithmic and

architectural improvements.

Regarding large-scale network systems, the next step is the control design:

with interpretable and structured reduction models for the networks, how can

we design controllers for the network nodes, or improve the network connection

to achieve desired network response to the disturbance so that the network can

maintain safe operation? In the context of power networks, this is related to the

problem regulating the frequency response of the entire network subject to the

power imbalance in a certain area. The problem of control design in large networks

is even more challenging when the node dynamics or network topology is unknown.

Knowing that the network dynamics are governed by a few dominant modes that

correspond to the coherent behaviors, how can we leverage such low-dimensional

properties to design system identification algorithms for building a reduced model

in a data-driven fashion? Studying these questions will eventually lead to a scalable,

and interpretable control design for the safe and robust operation of large-scale

networks.
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