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Market Power Mitigation in Two-stage Electricity
Markets with Supply Function and Quantity Bidding

Rajni Kant Bansal, Yue Chen, Pengcheng You, Enrique Mallada

Abstract—Two-stage settlement electricity markets, which in-
clude day-ahead and real-time markets, often observe unde-
sirable price manipulation due to the price difference across
stages, inadequate competition, and unforeseen circumstances. To
mitigate this, some Independent System Operators (ISOs) have
proposed system-level market power mitigation (MPM) policies
in addition to existing local policies. These system-level policies
aim to substitute noncompetitive bids with a default bid based on
estimated generator costs. However, without accounting for the
conflicting interest of participants, they may lead to unintended
consequences when implemented. In this paper, we model the
competition between generators (bidding supply functions) and
loads (bidding quantity) in a two-stage market with a stage-
wise MPM policy. An equilibrium analysis shows that a real-
time MPM policy leads to equilibrium loss, meaning no stable
market outcome (Nash equilibrium) exists. A day-ahead MPM
policy leads to Stackelberg-Nash game, with loads acting as
leaders and generators as followers. Despite estimation errors, the
competitive equilibrium is efficient, while the Nash equilibrium is
comparatively robust to price manipulations. Moreover, analysis
of inelastic loads shows their tendency to shift allocation and
manipulate prices in the market. Numerical studies illustrate the
impact of cost estimation errors, heterogeneity in generation cost,
and load size on market equilibrium.

Index Terms—electricity market, two-stage settlement, supply
function bidding, Stackelberg game, equilibrium analysis

I. INTRODUCTION

MOST wholesale energy markets in the US consider a
two-stage settlement system as a market norm, i.e.,

day-ahead and real-time markets. The first stage, the day-
ahead (forward) market, clears a day before the delivery
based on the hourly forecasts of resources for the next day
and accounts for the majority of energy trades. The second
stage, the real-time (spot) market, occurs at a faster timescale
(typically every five minutes) and is considered a last resort
for participants to adjust their commitment following forecast
errors [1], [2]. The main goal of such a sequential two-
stage market is to operate efficiently and encourage market
participation. However, the often price difference between the
two stages in practice, due to intrinsic uncertainty in the
forecast, unscheduled maintenance, etc., creates opportunities
for price speculation and arbitrage, which could be further
exploited by strategic participants to their benefit [3], [4].
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To discourage suppliers from exploiting consumers, most
operators employ an inbuilt local market power mitigation
mechanism (LMPM) triggered at congestion during market
clearing [5], [6]. Despite this, some operators, like California
Independent System Operator (CAISO), have documented
periods of time with non-competitive bids (approximately 2%
hours in the case of CAISO [7]). It led to the development of
initiatives aimed at implementing system-level market power
mitigation (MPM), i.e., bid mitigation similar to LMPM, but
system-wide for each stage separately [8], [9]. Such system-
level policies, when implemented, substitute in, e.g., real-
time or day-ahead, any non-competitive bids with default
bids, which estimate generator costs based on the operator’s
knowledge of technology, fuel prices, and operational con-
straints [10, §39.7.1], [11]. Although such market policies
are straightforward, their effect on market outcome remains
unknown if implemented without accounting for the con-
flicting interest of individual participants. This paper studies
the proposed system-level policies and discusses the possible
unintended effects.

Precisely, we study a sequential game formulation in a two-
stage market with an MPM policy to analyze the competition
between generators (bidding supply functions and seeking to
maximize individual profit) [12] and loads (bidding demand
quantities and minimizing payment) [13] such that the market
operator substitutes generators’ bids with default bids as per
the policy. In this paper, we assume that an operator makes an
error in estimating the truthful cost of dispatching generators
in a stage with an MPM policy. We show that a real-time
MPM policy results in a loss of market equilibrium. However,
the complimentary case of a day-ahead MPM policy leads to
a form of Stackelberg-Nash game with loads leading gener-
ators in their decision-making. A detailed Nash equilibrium
analysis for this case shows a stable market outcome that is
comparatively robust to price manipulations.

The main contributions of this paper are summarized below:
1) We show that a real-time MPM policy leads to a Nash
game in the day-ahead, while generators participate truthfully
in real-time. We characterize the competitive equilibrium of
such a game, which is inefficient w.r.t the social planner’s
problem. Further, competition between price-anticipating par-
ticipants does not result in a stable market outcome, and a
Nash equilibrium does not exist.
2) We then study the impact of a day-ahead MPM policy
that leads to a generalized Stackelberg-Nash game with loads
acting as leaders in the day-ahead market and generators
acting as followers in the real-time market. Despite the
operator’s error in cost estimation, the competitive equi-
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librium of the resulting game is efficient. Also, the Nash
equilibrium, assuming that generators are homogeneous and
bid symmetrically for closed-form analysis, is robust to price
manipulations compared to standard markets, i.e., a two-stage
market without any mitigation policies.

3) To understand the impact of these policies, we compare
the day-ahead MPM policy market equilibrium with the
equilibrium in a standard market. The closed-form analysis
shows that prices across stages are the same for the two cases.
However, loads acting as leaders in a market with a day-ahead
MPM policy allocates higher demand in day-ahead at the
expense of generators’ profit. Despite being inelastic, loads
can shift their allocation and manipulate prices in the market.

4) We further provide a detailed numerical study to illustrate
the impact of a day-ahead MPM policy. We show that the
Nash equilibrium converges to competitive equilibrium as
the number of participants increases in the market. Over-
estimation of the cost of generators benefits them with a
higher profit and helps mitigate the market power of loads.
Furthermore, the case with heterogeneity in generator cost
shows that expensive generators are least affected when
benchmarked with the competitive equilibrium. The case
with significant diversity in load participants reveals that a
sufficiently smaller load could earn money instead of making
payments at the expense of larger loads in the market.

Related work: Understanding market power and strategies
for mitigating it has been an extensive subject of study in the
literature. Prior works have studied the identification of market
power [14], [15], the development of metrics to quantify
it [16], competition between various market players [17]–[19],
and general analysis of market power in two-stage markets [1],
[20]–[23]. In addition, some works have analyzed local MPM
policies, e.g. see [24]. However, a closed-form analysis, where
the system-level policy effect on the resulting equilibrium is
studied counterfactually, is rare in the literature. Our work
contributes to the field by conducting a counterfactual study
on the impact of CAISO’s system-level policy based on default
bids and the role of inelastic demand in the market. To the best
of our knowledge, there is no existing study that investigates
these features.

Paper Organization: The rest of the paper is structured as
follows. In Section II we first introduce the social planner
problem, two-stage market model, and participants’ behavior,
and then define a two-stage market equilibrium. In Section III
we model the market power mitigation policy for each stage,
characterize the market equilibrium, and compare it with the
solution to the social planner problem. We first compare the
impact of MPM policies on market equilibrium and then
compare it with a standard market equilibrium in Section IV.
Numerical studies on market power for a day-ahead MPM
policy, limitations of work along with policy implications, and
conclusions are in Section V, VI, and VII, respectively.

Notation: We use standard notation f(a, b) to denote a
function of independent variables a and b. However, we use
f(a; b) to represent a function of independent variable a and
parameter b.

Fig. 1. Two-stage Market Mechanism

II. MARKET MODEL

In this section, we formulate the social planner problem
and describe the standard two-stage settlement market. We
then formally define participants’ behavior, i.e., price-taking
or price-anticipating, and lay out a general market equilibrium.

A. Social Planner Problem
Consider a single-interval two-stage settlement market

where a set G of generators participate with a set L of
inelastic loads to meet inelastic aggregate demand d ∈ R. Each
generator j ∈ G supplies gj ∈ R and each inelastic load l ∈ L
consumes dl ∈ R respectively, where

∑
l∈L dl = d. We define

G := |G| and L := |L| to denote the number of generators
and loads, respectively. Assuming a quadratic cost function for
the generators, the social planner problem — minimum cost
of meeting aggregate inelastic demand — is given by

min
gj ,j∈G

∑
j∈G

cj
2
gj

2 (1a)

s.t.
∑

l∈L
dl =

∑
j∈G

gj (1b)

where (1b) enforces the power balance in the market.

B. Two-Stage Market Mechanism
In this subsection, we define the two-stage market clearing,

as shown in Figure 1. The net output gj of each generator j
and individual load dl of load l is allocated over two stages,
such that

gj = gdj + grj , ddl + drl = dl (2)

where (gdj , d
d
l ) and (grj , d

r
l ) represent allocation in day-ahead

and real-time markets, respectively.
1) Day-Ahead Market: The power output of each generator

j ∈ G in the day-ahead market is denoted by gdj . Each
generator j submits a supply function parameterized by the
slope θdj , that indicates willingness of generator j to supply
gdj as a function of price

gdj = θdjλ
d (3)

where λd denotes the price in the day-ahead market. Each load
l ∈ L bids quantity ddl in the day-ahead market. Based on the
bids (θdj , d

d
l ) from participants, the market operator clears the

day-ahead market to meet the supply-demand balance.∑
j∈G

θdjλ
d = dd (4)

The optimal solution to the day-ahead dispatch problem (4)
gives the optimal dispatch (gdj , d

d
l ) and clearing prices λd to

all the participants. Each generator j ∈ G and load l ∈ L are
paid λdgdj and λdddl as part of the market settlement.
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2) Real-Time Market: The power output of each generator
j in real-time market is denoted by grj and their bid is:

grj = θrjλ
r (5)

where λr denotes the price in the real-time market. The supply
function bid is parameterized by θrj , indicating willingness of
generator j to supply grj at the price λr. Each load l ∈ L
submits quantity bids drl . Given the bids (θrj , d

r
l ), the operator

clears the real-time market to meet the supply-demand balance.∑
j∈G

θrjλ
r = dr (6)

Similar to the day-ahead market clearing, the optimal solution
to the dispatch problem (6) gives the optimal dispatch and the
market clearing prices λr to all the participants, such that each
generator j ∈ G and load l ∈ L produces or consumes grj and
drl , and is paid or charged λrgrj and λrdrl , respectively.

3) Market Rules and Goal: In this section, we first define
a set of rules to account for degenerate cases in the market
mechanism and then discuss the goal of a two-stage market.

Rule 1: For v ∈ {d, r} and w ∈ {d, r}, if the net supply
and demand of the generators and loads in a stage follow∑

j∈G
θvjλ

v = 0, dv = 0 =⇒ λv = λw, v ̸= w (7)

i.e., the clearing price in that stage is set to the clearing prices
of the other stage with a non-zero demand.

Rule 2: For v ∈ {d, r}, if the net supply and net demand
of the generators and loads in a stage follow∑

j∈G
θvjλ

v = 0, dv ̸= 0 =⇒ λv = 0 (8)

i.e., the clearing price is set to zero, and demand is split evenly
across all the loads.
We are interested in two-stage market outcomes that satisfy∑

j∈G
(gdj + grj ) =

∑
j∈G

gj =
∑
l∈L

(ddl + drl ) =
∑
l∈L

dl = d (9)

and solve the social planner problem (1). Though the market
outcome may deviate from the optimal social planner solution,
signaling efficiency losses due to price manipulation by partic-
ipants, we quantify such deviations to understand the behavior
of participants and the market outcome.

C. Participant Behaviour

In this section, for the purposes of our study, we introduce
two different types of rational participants’ behavior, price-
taking, and price-anticipating. Each generator j ∈ G seeks to
maximize their profit πj , given by:

πj(g
d
j , g

r
j , λ

d, λr) :=λrgrj+ λdgdj −
cj
2
gj

2 (10)

Each load l ∈ L aims to minimize their payments ρl, as:

ρl(d
d
l , d

r
l , λ

d, λr) := λdddl + λrdrl (11)

Substituting the load coupling constraint (2) in (11) we get,

ρl(d
d
l , λ

d, λr) := λdddl + λr(dl − ddl ) (12)

For each load l ∈ L, the allocation in the day-ahead market
ddl determines its allocation in the real-time market drl due to
the demand inelasticity.

1) Price-Taking Participants: A price-taker participant is
defined below:

Definition 1: A market participant is price-taking if it ac-
cepts the existing prices in the market and does not anticipate
the impact of its bid on the market prices.

Given the prices in the day-ahead market λd and real-time
market λr, the generator individual problem is given by:

max
gd
j ,g

r
j

πj(g
d
j , g

r
j ;λ

d, λr) (13)

Similarly given the prices λd, λr, the individual bidding prob-
lem for load is given by:

min
dd
l

ρl(d
d
l ;λ

d, λr) (14)

We next define the price-anticipating (or strategic) participants.
2) Price-Anticipating Participants: A price-anticipating

participant is defined below:
Definition 2: A market participant is price-anticipating

(strategic) if it anticipates the impact of its bid on the prices in
two stages and has complete knowledge of other participants’
bids.

The individual problem of a price-anticipating generator is:

max
gd
j ,g

r
j ,λ

d,λr
πj

(
gdj , g

r
j , λ

d
(
gdj ; g

d
−j , d

d
)
, λr
(
grj ; g

r
−j , d

r
))

(15a)

s.t. (4), (6) (15b)

where gd−j :=
∑

k∈G,k ̸=j g
d
k , and gr−j :=

∑
k∈G,k ̸=j g

r
k . The

generator j maximizes its profit while anticipating the market
clearing prices in the day-ahead and real-time market (4),(6),
along with complete knowledge of load bids ddl , d

r
l , l ∈ L, and

other generators’ bids θdk, θ
r
k, k ∈ G, k ̸= j. Similarly, the indi-

vidual problem for strategic load l with complete knowledge
of prices in two stages (4),(6) and other participants’ bids:

min
dd
l ,λ

d,λr
ρl

(
ddl , λ

d
(
ddl ; g

d
j , d

d

−l

)
, λr
(
ddl ; g

r
j , d

r

−l

))
(16a)

s.t. (4), (6) (16b)

where the load l minimizes its payment in the market and
d
d

−l :=
∑

l∈L,k ̸=l d
d
l , d

r

−l :=
∑

l∈L,k ̸=l d
r
l .

D. Market Equilibrium

In this section, for the purpose of this study, we characterize
the market equilibrium in a two-stage settlement electricity
market. At the equilibrium, no participant has any incentive
to deviate from their bid, and market clears, as defined below.

Definition 3: We say the participant bids and market clearing
prices (θdj , θ

r
j , j ∈ G, ddl , drl , l ∈ L, λd, λr) in the day-ahead

and real-time respectively form a two-stage market equilibrium
if the following conditions are satisfied:

1) For each generator j ∈ G, the bid θdj , θ
r
j maximizes their

individual profit.
2) For each load l ∈ L, the allocation ddl , d

r
l minimizes

their individual payment.
3) The inelastic demand d ∈ R is satisfied with the market-

clearing prices λd given by (4) and λr given by (6) over
the two-stages of the market.
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We will study market equilibria as a tool to understand the
impact of MPM policies.

III. UNDERSTANDING IMPACT OF MPM POLICY

In this section, we first characterize the market equilibrium
in a standard two-stage market without any such mitigation
policy [1], then model mitigation policies and the resulting
market equilibrium. In particular, ISOs have significant prior
knowledge of market participants allowing them to evaluate
the competitiveness of energy bids. For example, operators
are aware of the generator’s technology, fuel prices, and
operational constraints that can be used to estimate or bound
the generator’s cost [10, §39.7.1], [11] within a reasonable
threshold under the mitigation policies. We assume that the
operator makes an error in estimating the truthful cost of
dispatching the generator in a stage with a mitigation policy.

A. Standard Two-stage Market

The role of participants in a standard market without any
mitigation policy is studied extensively in the literature [1],
[12], [25], [26]. Here, we cite the results from [1] that analyze
the role of strategic generators and inelastic demand in a
standard two-stage market and use them as a benchmark to
analyze the impact of a mitigation policy in the market.

1) Price-taking Participation and Competitive Equilibrium:
For the individual incentive problem in a two-stage market,
substituting the supply function (3),(5) in (10), we get

πj(θ
d
j , θ

r
j ;λ

d, λr)= θdjλ
d2+θrjλ

r2− cj
2

(
θdjλ

d+θrjλ
r
)2

(17)

and the individual problem for price-taking generator j is:

max
θd
j ,θ

r
j

πj(θ
d
j , θ

r
j ;λ

d, λr) (18)

The individual problem for load l is given by (12). Given the
prices, λd, λr, we next characterize the resulting competitive
equilibrium due to competition between price-taking partici-
pants.

Theorem 1 (Proposition 1 [1]): A competitive equilibrium
in a two-stage market exists and is explicitly given by

θdj + θrj = c−1
j , θdj ≥ 0, θrj ≥ 0, ∀j ∈ G (19a)

ddl + drl = dl, ∀l ∈ L (19b)

λd = λr =
d∑

j∈G c−1
j

(19c)

The resulting competitive equilibrium solves the social planner
problem (1). Moreover, it exists non-uniquely, and there is no
incentive for a load to allocate demand in the day-ahead market
due to equal prices in two stages.

2) Price-Anticipating Participation and Nash Equilibrium:
The individual problem of price-anticipating generator j and
price-anticipating load l is given by (15) and (16), respectively.
We next characterize the resulting Nash equilibrium in the
market.

Theorem 2 (Proposition 4 [1]): Assuming strategic genera-
tors are homogeneous (cj := c, ∀j ∈ G) and make identical
bids (θvj := θv, ∀j ∈ G, v ∈ {d, r}) at equilibrium. If there

Fig. 2. Two-stage Market Mechanism with Real-Time MPM

are at least three firms, i.e., G ≥ 3, a Nash equilibrium in
a two-stage market exists. Further, this equilibrium is unique
and explicitly given by

θdj =
L(G− 1) + 1

L(G− 1)

G− 2

G− 1

1

c
, θrj=

1

L+ 1

(G− 2)2

(G− 1)2
1

c
(20)

ddl =
L(G− 1) + 1

L(L+ 1)(G− 1)
d, drl= dl − ddl (21)

λd =
L

L+ 1

G− 1

G− 2

c

G
d, λr =

G− 1

G− 2

c

G
d (22)

The resulting Nash equilibrium exists uniquely, where price-
anticipating loads anticipate the actions of generators and
allocate demand to exploit lower prices in the day-ahead
market. Thus prices are different in two stages. Moreover, the
net demand allocation in the day-ahead and real-time markets
follows∑

l∈L
ddl = dd ∈ (0.5d, d),

∑
l∈L

drl =dr ∈ (0, 0.5d) (23)

B. Real-Time MPM Policy

In this section, we first discuss the modified market model,
the individual incentives of participants, and then characterize
market equilibrium for a real-time MPM policy.

1) Modeling Real-Time MPM Policy: In the case of a real-
time MPM policy, the market ignores generators’ bids in real-
time, as shown in Figure 2, and roughly estimates the cost
of dispatching generator j with an error ϵj ≥ 0, given the
day-ahead dispatch gdj

grj = (cj + ϵj)
−1λr − gdj (24)

Using the two-stage generation and supply-demand bal-
ance (9) and real-time dispatch (24) we get

λr =
d∑

j∈G
(cj + ϵj)−1

(25)

2) Price-taking Participation and Competitive Equilibrium:
For the individual incentive problem in a two-stage market
with real-time MPM policy, substituting the day-ahead supply
function (3), real-time true dispatch condition (24) and real-
time clearing prices (25) in (10), we get

πj(θ
d
j ,λ

d)= θdjλ
d2+

d∑
k∈G

c−1
k

(
ωjd− θdjλ

d
)
− cj

2
(ωjd)

2 (26)
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where ωj :=
(cj+ϵj)

−1∑
k∈G(ck+ϵk)−1 . Hence, an individual problem

of a price-taking generator is:

max
θd
j

πj(θ
d
j ;λ

d) (27)

Similarly, substituting the clearing price (25) in (12) we get,

ρl(d
d
l , λ

d) := λdddl +
d∑

k∈G(ck + ϵk)−1
(dl − ddl ) (28)

such that the individual problem for load l is given by:

min
dd
l

ρl(d
d
l ;λ

d) (29)

The competition between price-taking participants for indi-
vidual incentives leads to a set of competitive equilibria, as
characterized below.

Theorem 3: The competitive equilibrium in a two-stage
market with a real-time MPM policy exists, and given by:

gdj + grj =
(cj + ϵj)

−1∑
k∈G(ck + ϵk)−1

d, θdj ∈ R≥0 ∀j ∈ G (30a)

ddl + drl = dl, ∀l ∈ L (30b)

λd = λr =
d∑

k∈G(ck + ϵk)−1
(30c)

We provide proof of the theorem in Appendix A. At the
competitive equilibrium, the market clearing prices are equal
in the two stages, meaning there is no incentive for a load to
allocate demand in the day-ahead market, e.g., current market
practice. However, the resulting equilibrium in Theorem 3 is
inefficient and does not always align with the social planner
problem.

Corollary 1: The competitive equilibrium in a two-stage
market with a real-time MPM policy (30) also solves the social
planner problem (1) only when ϵj = 0, ∀j ∈ G,

3) Price-Anticipating Participation and Nash Equilibrium:
The individual problem of each price-anticipating generator j,
given by:

max
θd
j ,λ

d
πj

(
θdj , λ

d
(
θdj ; θ

d

−j , d
d
))

s.t. (4) (31)

where generator j maximizes its profit in the two-stage market.
The individual problem of price-anticipating load is:

min
dd
l ,λ

d
ρl

(
ddl , λ

d
(
ddl ; θ

d
j , d

d

−l

))
s.t. (4) (32)

where the load l minimizes its payment in the market.
We study the resulting sequential game where players

anticipate each other actions and prices in the market, and the
day-ahead clears before the real-time market. To this end, we
analyze the game backward, starting from the real-time market,
where prices are fixed due to MPM policy (25), followed
by the day-ahead market, where participants make decisions
for optimal individual incentives and compute the equilibrium
path. Generators do not bid in real-time, but loads are allowed
to bid in the market. However, load makes decisions simul-
taneously in the day-ahead market due to inelasticity, fixing

Fig. 3. Two-stage Market Mechanism with Day-Ahead MPM

their bids in the real-time market, which affects the two-stage
market clearing. The following theorem characterizes the two-
stage Nash equilibrium that satisfies the Definition (3).

Theorem 4: The Nash equilibrium in a two-stage market
with a real-time MPM policy does not exist.

We provide proof of the theorem in Appendix B and a
brief insight below into the loss of equilibrium. The price-
anticipating participants compete with each other to manipu-
late prices in the day-ahead given by (4):

λd =
dd∑

j∈G
θdj

(33)

while the prices in the real-time λr (25) is fixed. Loads bid
decreasing quantities ddl to reduce clearing prices in the day-
ahead market and minimize the load payment. Simultaneously,
generators bid decreasing parameter θdj to increase clearing
prices and maximize revenue. The competition between loads
and generators for individual incentives in the day-ahead mar-
ket drives all the demand to the real-time market, where gen-
erators operate truthfully. However, in our market mechanism,
loads then have the incentive to deviate and allocate demand in
the day ahead where prices are zero, meaning zero payment in
the market, see Rule 2. Such unilateral load deviations result in
deviations from generators to increase clearing prices in the
day-ahead market. Therefore the equilibrium does not exist.
Without such a market rule, the Nash equilibrium does exist
with undefined clearing prices in the day-ahead and all demand
allocated to the real-time market. Nevertheless, since day-
ahead accounts for a majority of energy trades, the resulting
equilibrium is undesirable.

C. Day-Ahead MPM Policy
In this section, we define the individual incentive of par-

ticipants and characterize market equilibrium for a day-ahead
MPM policy.

1) Modeling Day-Ahead MPM Policy: In the case of a
day-ahead MPM policy, as shown in Figure 3, the market
ignores the generators’ bids and roughly estimates the cost of
dispatching generator j in the day-ahead with an error ϵj ≥ 0,
as given by:

gdj = (cj + ϵj)
−1λd (34)

Moreover, using day-ahead power balance constraint, we get

λd =
dd∑

j∈G(cj + ϵj)−1
(35)
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2) Price-taking Participation and Competitive Equilibrium:
For the individual incentive problem in a two-stage mar-
ket with a day-ahead MPM policy, substituting the clearing
price (35) in (10), we get

πj(θ
r
j ;λ

r)=(cj+ϵj)(ωjd
d)2+θrjλ

r2− cj
2

(
ωjd

d+θrjλ
r
)2

(36)

where ωj :=
(cj+ϵj)

−1∑
k∈G(ck+ϵk)−1 . The individual problem for

price-taking generator j is:

max
θr
j

πj(θ
r
j ;λ

r) (37)

and the individual problem for load l is given by (12). The
resulting competitive equilibrium given the clearing prices λd

and λr is characterized below.
Theorem 5: The competitive equilibrium in a two-stage

market with a day-ahead MPM policy exists and is given by:

gdj =
(cj + ϵj)

−1∑
j∈G c−1

j

d, grj =
ϵjc

−1
j

cj+ϵj

d∑
j∈G c−1

j

∀j ∈ G (38a)

ddl +drl =dl, ∀l ∈ L, dd=

∑
j∈G

(cj+ϵj)
−1

∑
j∈G

c−1
j

d, dr=d−dd (38b)

θrj =
ϵjc

−1
j

cj+ϵj
, λd = λr =

1∑
j∈G c−1

j

d (38c)

We provide proof of the theorem in Appendix C. Unlike the
competitive equilibrium for a real-time MPM policy in (30)
with equal prices across stages, the loads at equilibrium (38)
allocate a majority of the demand in the day-ahead. The
incentive for day-ahead demand allocation is a desired market
outcome and is not generally satisfied by other market mech-
anisms. The resulting equilibrium exists as price-taking loads
do not anticipate the effect of their bid on the market prices,
meaning the payment remains the same for any allocation
across the two stages. Moreover, the market outcome (38)
solves the social planner problem (1).

3) Price-Anticipating Participation and Nash Equilibrium:
The individual problem of each price-anticipating generator j,
given by:

max
θr
j ,λ

r
πj

(
θrj , λ

d
(
dd
)
, λr
(
θrj ; θ

r

−j , d
r
))

s.t. (6) (39)

where generator j maximizes its profit in the market. The
individual problem of price-anticipating load l, is given by:

min
dd
l ,λ

r
ρl

(
ddl , λ

d
(
ddl ; d

d

−l

)
, λr
(
ddl ; θ

r
j , d

r

−l

))
s.t. (6) (40)

where load l minimizes its payment in the market.
In the market model with a day-ahead MPM policy, genera-

tors make decisions in real-time while load can make decisions
in the day-ahead. The resulting two-stage sequential game is
essentially a leader-follower Stackelberg-Nash game, where
generators are followers in the real-time market and loads
are leaders in the day-ahead market, and each participant
in their respective groups competes amongst themselves in
a Nash game. We follow the terminology used in [27] to
describe similar formulations in different markets. For the

closed form solution, we assume that generators are homo-
geneous in the sense that they share the same cost coefficient,
i.e. cj =: c, ∀j ∈ G and bid symmetrically in the market,
i.e. θrj =: θr, ∀j ∈ G. Under these assumptions, the Nash
equilibrium is characterized below.

Theorem 6: Assume that generators are homogeneous and
bid symmetrically in the market. Also, assume that estimation
error is same for homogeneous generators, i.e. ϵj := ϵ, ∀j ∈
G. If more than two generators are participating in the market
i.e., G ≥ 3 and the number of individual loads participating in
the market satisfies 1

L > c−ϵ(G−2)
(c+ϵ)(G−2) , then the symmetric Nash

equilibrium in a two-stage market with a day-ahead MPM
policy exists uniquely as:

gdj =
c

c+ϵ

L

L+1

G−1

G−2

d

G
, grj=

(
1− c

c+ϵ

L

L+1

G−1

G−2

)
d

G
(41a)

ddl =
c

c+ϵ

1

L+1

G−1

G−2
d, drl=

(
dl−

c

c+ϵ

1

L+1

G−1

G−2
d

)
(41b)

θr=
1

c

(
G−2

G−1
− c

c+ϵ

L

L+1

)
(41c)

λd =
L

L+1

G−1

G−2

c

G
d, λr =

G−1

G−2

c

G
d. (41d)

Moreover, for 1
L ≤ c−ϵ(G−2)

(c+ϵ)(G−2) , a symmetric equilibrium does
not exist.

We provide proof of the Theorem in Appendix D. Unlike
the market with a real-time MPM policy, the Nash equilibrium
exists in the market with a day-ahead MPM policy. However, it
requires restrictive conditions on the number of participants in
the market and may not even exist in other cases. We discuss
these cases with no symmetric Nash equilibrium and provide
intuition into participants’ behavior in the market:

1) 1
L < c−ϵ(G−2)

(c+ϵ)(G−2) : In this case, the net demand is negative
in the real-time market. The first order condition implies that
each generator j acts as load, paying λrgrj as part of the
market settlement since their optimal bid θrj < 0 and the
real-time clearing price λr > 0. However, if the generators
bid θrj > 0, then the linear supply function implies that
each generator j dispatch grj < 0 at the clearing prices
λr < 0 earning revenue in the market. However, this is
not desirable from a load perspective since they are making
payments in the market and they have the incentive to deviate
to minimize their payment. Hence, symmetric equilibrium
with negative demand in the real-time market does not exist
as the symmetric bid θrj > 0 does not satisfy the first-order
condition. The dependence of the individual bid θrj on the
given bids from other participants makes the closed-form
analysis challenging, and any guarantee of the existence of
equilibrium is hard.
2) 1

L = c−ϵ(G−2)
(c+ϵ)(G−2) : In this case, no symmetric Nash equi-

librium exists. Loads take advantage of the truthful partici-
pation of generators in day-ahead market and their ability to
anticipate impact of bids on the clearing prices. Regardless
of generators’ bids, loads have the incentive to deviate by
allocating demand in the real-time market with a lower
clearing price.
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TABLE I
COMPETITIVE EQUILIBRIUM (CE) AND NASH EQUILIBRIUM (NE) WITH A

STAGE-WISE MPM POLICY

Instance Real-Time MPM Day-Ahead MPM

CE
Non-unique equilibrium Unique equilibrium

Do not achieve social cost Achieve social cost
Arbitrary demand allocation Higher demand in day-ahead

NE
Does not exist Symmetric equilibrium

- Social Cost same as CE
- Extra constraints on players

Corollary 2: For 1
L > c−ϵ(G−2)

(c+ϵ)(G−2) , at the Nash equilib-
rium (41) in a two-stage market with a day-ahead MPM policy,
the demand allocation is given by:∑

l∈L ddl = dd = c
c+ϵ

L
L+1

G−1
G−2d (42a)∑

l∈L drl = dr =
(
1− c

c+ϵ
L

L+1
G−1
G−2d

)
d (42b)

Assuming ϵ = 0, the following relation holds,

dd ∈ (0.5d, d), dr ∈ (0, 0.5d)

IV. EQUILIBRIUM ANALYSIS

In this section, we study the properties of market equilib-
rium under the proposed policy framework and compare it
with the standard market equilibrium.

A. Comparison of a stage-wise MPM Policy

An MPM policy in real-time either results in an inefficient
market outcome at the competitive equilibrium or leads to no
Nash equilibrium. However, an MPM policy in the day-ahead
leads to a stable market outcome that is robust to price ma-
nipulations, e.g. see Nash equilibrium (41). Despite errors in
cost estimations, the competitive equilibrium is efficient (38).
This is summarized in Table I.

We further analyze the case of a day-ahead MPM policy to
study the strategic behavior of participants while regarding
the respective competitive equilibrium in Theorem 5 as a
benchmark. In the case of a day-ahead MPM policy, loads
act as leaders in the day-ahead and generators as followers
in real-time. The generator bids to manipulate prices leading
to inflated prices in real-time (41d) while the load shifts its
allocation in the day-ahead (41b), increasing prices in the day-
ahead market. Though the market equilibrium deviates from
the competitive equilibrium (38), the social cost remains the
same due to the homogeneous participation of generators. Ta-
ble II summarizes the aggregate profit and aggregate payment
of generators and loads, respectively.

Corollary 3: For L < G−2, the aggregate payment of loads
and aggregate profit of generators at symmetric Nash equilib-
rium (41) is less than that at respective competitive equilib-
rium (38). Moreover, for L ≥ G− 2 and 1

L > c−ϵ(G−2)
(c+ϵ)(G−2) , the

aggregate payment of loads and aggregate profit of generators
at symmetric Nash equilibrium (41) is greater than that at
respective competitive equilibrium (38).

The corollary follows from comparing the aggregate profit
(payment) at Nash equilibrium to that at competitive equilib-
rium in Table II for L < G− 2.

TABLE II
COMPARISON BETWEEN COMPETITIVE EQUILIBRIUM (CE) AND NASH
EQUILIBRIUM (NE) IN A MARKET WITH A DAY-AHEAD MPM POLICY

Case Generators total profit Loads total payment
CE 1

2
c
G
d2 c

G
d2

NE 1
2
c
G
d2
(

G
G−2

− c
c+ϵ

(G−1)2

(G−2)2
2L

(L+1)2

)
c
G
d2
(
G−1
G−2

− c
c+ϵ

(G−1)2

(G−2)2
L

(L+1)2

)

TABLE III
COMPARISON BETWEEN COMPETITIVE EQUILIBRIUM (CE) AND NASH

EQUILIBRIUM (NE) IN A STANDARD MARKET

Case Generators total profit Loads total payment
CE 1

2
c
G
d2 c

G
d2

NE 1
2
c
G
d2
(

G
G−2

− 2L(G−1)+2

(L+1)2(G−2)

)
c
G
d2
(
G−1
G−2

− L(G−1)+1

(L+1)2(G−2)

)

B. Equilibrium comparison with a standard market

In this section, we compare the equilibrium in a day-ahead
MPM policy market to a standard market. The social cost at the
competitive equilibrium remains the same for the two markets
with equal prices in the two stages. However, unlike in the
case of a day-ahead MPM policy, the competitive equilibrium
in Theorem 1 exists non-uniquely and there is no incentive for
a load to allocate demand in the day-ahead market.

Interestingly, at Nash equilibrium prices in the two stages
are the same for a day-ahead MPM policy market (41d) and a
standard market (22). Furthermore, an error in the estimation
of the cost of dispatching generators does not impact market
prices due to the participation of homogeneous generators.
However, the dispatch of generators and allocation of demand
is different in the two market settings due to a leader-follower
structure between participants in the market with a day-ahead
MPM policy. To understand the impact of price-anticipating
participants on market equilibrium, we compare the aggregate
profit (payment) in Table II and III, respectively.

We restrict our comparison for 1
L > c−ϵ(G−2)

(c+ϵ)(G−2) only since
the Nash equilibrium in Theorem 6 does not exist otherwise.
In particular, for L = G − 3 the aggregate profit (payment)
as shown in row 2 of Table III at the Nash equilibrium
in Theorem 2 equals to that of the competitive equilibrium.
However, for L < G−3 the aggregate profit (payment) at Nash
equilibrium is always less than the competitive equilibrium,
meaning the loads are winners. The change in the normalized
aggregate profit (payment) at the Nash equilibrium between a
market with a day-ahead MPM policy and a standard market
is given by

2

(L+ 1)2
1

G− 2

(
1− L

G− 2
− L+

ϵ

c+ ϵ
L(G− 1)

)
where profit (payment) is normalized with the competitive
equilibrium. The difference depends on the number of par-
ticipants and as the number of participants increases, the
difference tends to 0, since the Nash equilibrium in both cases
approaches the competitive equilibrium, respectively.

Figure 4 compares the total profit (payment) normalized
with competitive equilibrium for a day-ahead MPM (DA-
MPM) policy market and a standard market for cost estimation
error ϵ = 0.1, respectively, as we change the number of loads
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Fig. 4. Total profit and total payment at Nash Equilibrium (NE) normalized with competitive equilibrium (CE): total profit in (a) day-ahead MPM (DA-MPM)
and (b) standard markets, and total payment in (c) day-ahead MPM (DA-MPM) and (d) standard markets; white cells denote no equilibrium

(l ∈ L, L ∈ {1, . . . , G − 3}), and generators (j ∈ G, G ∈
{4, . . . , 20}). The ratio decreases monotonically as the number
of generators increases, meaning the increased competition
between more generators to meet the inelastic demand gives
more power to loads, allowing them to reduce their payment
even further, as shown by the horizontal rows in all panels
in Figure 4. Furthermore, the ratio increases monotonically as
the number of loads increases (for a large enough number of
generators), meaning the market power shifts between loads
and generators, as shown by the vertical color columns in
panels (a) and (b) in Figure 4. In particular, in both markets,
we observe a reversal in power, e.g., for a large number of
loads generators make a higher profit at the expense of loads
in the market and vice versa, as shown in panels (b) and (d)
in the Figure 4.

Additionally, implementing the day-ahead MPM policy
helps reduce market power. This leads to a total profit
(payment) at Nash equilibrium that is closer to competitive
equilibrium levels than what is observed in standard markets,
as demonstrated in panels (a) and (c) for profit and panels (b)
and (d) for payment in Figure 4. Unfortunately, with a day-
ahead MPM policy, the equilibrium does not always exists as
shown by white-colored cells in panels (a) and (c). Finally,
in the limit L → ∞ =⇒ G → ∞, the Nash equilibrium
converges to competitive equilibrium, also shown in Table II.

V. NUMERICAL STUDY

We now investigate how the cost estimation error, hetero-
geneity in cost coefficients, and load size affect individual
incentives at Nash equilibrium in the market with a day-
ahead MPM. We overcome the theoretical complexity of the
closed-form analysis and run numerical best-response studies
to understand the impact on market equilibrium. To this end,
we consider the case of 2 price-anticipating loads and 5 price-
anticipating generators in a two-stage market.

The individual aggregate inelastic load is given by dl =
[99.4, 199.6]T MW from the Pennsylvania, New Jersey, and
Maryland (PJM) data miner day-ahead demand bids [28].
For each generator j with a truthful cost coefficient cj =
0.1$/MW 2, ∀j ∈ G corresponding to the cost coefficients
from the IEEE 300-bus system [29]. We assume a proportional
error ϵj = δjcj such that estimated cost coefficient is given
by ĉj = cj(1 + δj), ∀j ∈ G. The cost estimation error
of generators are sampled 10, 000 times from a Gaussian

Fig. 5. Net (top) and normalized (bottom) individual profit at Nash Equilib-
rium (NE) normalized with competitive Equilibrium (CE) w.r.t proportional
error ϵj in cost estimation of generators

distribution with mean 10% and variance 2.5%, i.e. δj ∼
N(0.1, 0.025) ∀j ∈ {1, ..., 5}. The top and bottom panel in
Figure 5 plots the net profit and the normalized profit (nor-
malized with the competitive equilibrium) at Nash equilibrium,
respectively. An increase in estimation error results in a higher
net profit at Nash equilibrium, as shown in the top panel in
Figure 5. Furthermore, errors in cost estimation also mitigate
the market power of loads with profits closer to the competitive
one.

We next analyze the impact of heterogeneity in cost co-
efficients on market equilibrium. For ease of exposition, we
assume that the cost estimation error ϵj = 0 ∀j ∈ {1, ..., 5}.
Our analysis is focused on capturing the qualitative impact
of heterogeneity in cost coefficients on system-level market
power. To this end, we choose a Gaussian distribution to
model the uncertainty in the market operator’s estimate for
generators’ truthful cost as the first step toward understanding
the potential impact. The cost coefficients of generators are
sampled 10, 000 times from a Gaussian distribution with
mean 0.1 and sample variance 0.001 for a sample of cost
coefficients from the IEEE 300-bus system [29], i.e. cj ∼
N(0.1, 0.001), ∀j ∈ {1, ..., 5}. The top and bottom panel in
Figure 6 plots the absolute profit and the normalized profit
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Fig. 6. Net (top) and normalized (bottom) individual profit at Nash Equilib-
rium (NE) normalized with competitive Equilibrium (CE) w.r.t cost coefficient
of generators for a DA-MPM policy

Fig. 7. Net (top) and normalized (bottom) load individual payment (bottom)
at Nash Equilibrium (NE) normalized with competitive Equilibrium (CE) w.r.t
size of smaller load d1, d1 < d2, d1 + d2 = d, for a DA-MPM policy

(normalized with the competitive equilibrium) at Nash equilib-
rium, respectively. The cheaper generators earn a higher profit
when compared with the expensive generators with higher
cost coefficients at Nash equilibrium. However, the normalized
profit ratio in the bottom panel shows that expensive generators
have a higher value than cheaper ones, meaning that though
expensive generators have lower absolute profit, these are the
least exploited in the market. We hypothesize that such a
non-trivial behavior is related to the nature of competition
between strategic generators instead of an effect of a day-
ahead MPM policy. We admit that a closed-form analysis
is theoretically complex, and we do not have a thorough
mechanism to validate our hypothesis.

In Figure 7 we show the absolute (top panel) and normalized
(bottom panel) load payment w.r.t smaller load size. For
this, we keep the same number of loads and generators in
the market with varying load sizes for fixed net demand.
We again sample cost coefficients from Gaussian distribution
with mean 0.1 and sample variance 0.001 for a sample of

cost coefficients from the IEEE 300-bus system [29], i.e.
cj ∼ N(0.1, 0.001), ∀j ∈ {1, ..., 5}. The cost estimation error
ϵj = 0, ∀j ∈ {1, ..., 5}. The top panel shows that though
the net load payment remains the same as we change the
size of the load, the smaller load may even make a profit
in the market at the expense of a higher load. More formally
to develop intuition, in the case of homogeneous generators,
the normalized payment ratio for individual load at Nash
equilibrium in Theorem 6, is given by

G− 1

G− 2

(
1− 1

(L+ 1)2
G− 1

G− 2

d

dl

)
which is negative for a sufficiently small load. In particular, the
smaller load has a negative normalized ratio at the expense of
a higher load (a ratio greater than 1), as shown in the bottom
panel of Figure 7. The larger load makes more payment at
Nash equilibrium than at the competitive equilibrium, while
the aggregate payment of the set of loads is still less than at
the competitive equilibrium. Though the heterogeneity in load
size does not affect the net payment or the group behavior
in the market, a smaller load makes negative payments at the
expense of larger loads and can exercise more market power.

VI. DISCUSSIONS

In this section, we discuss the limitations of the study and
potential implications for policymakers.

A. Limitations of the study

The closed-form analysis of supply function equilibrium in
a two-stage settlement market is theoretically complex and
the system is often analyzed under certain simplifying market
assumptions. While there are works that certainly consider
a more relaxed set of assumptions, they either study single-
stage market [12], [18], [19], [25], competitive market struc-
ture [17], [18], [22], inelastic demand [30], [31], homogeneous
participants or symmetric participation [1], [32], etc. Given
that the supply-function Nash equilibria are generally hard
to characterize, even for a single-stage market, the literature
often uses this approach as a zero-order analysis [1], [32].
We further note that our findings are consistent with the
theory in our numerical experiments, where we relax, for e.g.,
the homogeneity constraints. Although capacity constraints,
network constraints, etc., impact market power, our focus is on
system-level market power, which occurs regardless of these
constraints. Furthermore, an analysis contemplating all of such
settings, though interesting, will be too nuanced and digressed
from our goal of counterfactual study.

B. Implications for policymakers

Our work highlights the importance of counterfactual anal-
ysis of two specific system-level policies in the CAISO area.
Despite the CAISO’s proposal of implementing a real-time
MPM policy in the first phase, it should not be deployed
by itself. We show that such a policy results in an inef-
ficient competitive equilibrium, while the Nash equilibrium
does not exist. We believe that if a strategy does not work
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well in a simple setting, then is unlikely to do well in a
more complicated one. A day-ahead policy seems to have
a reasonable impact on the market outcome that merits fur-
ther analysis (with capacity constraints, network constraints,
etc.) and consideration. Despite errors in cost estimations of
generators, it results in an efficient competitive equilibrium,
meaning the outcome aligns with the social planner problem.
Moreover, the Nash equilibrium is more robust to market
power and price manipulations. The aggregate profit (payment)
of participants at Nash equilibrium is comparatively closer to
the competitive one. Furthermore, the impact of error in cost
estimation, heterogeneity in cost coefficient, and diversity in
load size help policymakers with the tools to ensure fairness in
the market. A positive bias in estimation leads to more profits
for generators and mitigation of market power of loads. Larger
loads may tend to split into smaller loads that merit further
analysis to ensure market fairness.

VII. CONCLUSIONS

We study competition between generators (bid linear supply
function) and loads (bid quantity) in a two-stage settlement
electricity market with a stage-wise MPM policy. In the
proposed policy framework, CAISO substitutes generator bids
with default bids in the stage with an MPM policy, i.e., day-
ahead or real-time. To understand the participant behavior in
the market, we start with a real-time MPM policy and analyze
the sequential game, where generators only bid in the day-
ahead market. The resulting competitive equilibrium, price-
taker participants, is inefficient, while the Nash equilibrium,
price-anticipating participants, does not exist, indicating an
unstable market outcome.

Despite the estimation error, in the case of a day-ahead
MPM policy, the competitive equilibrium aligns with the social
planner problem. Further, the Nash equilibrium is robust to
price manipulations compared to the standard market. Notably,
our analysis shows that demand, despite being inelastic, could
shift its allocation to manipulate market prices and win the
competition. A more nuanced analysis of cost estimation error
and heterogeneity in cost coefficients benefits generator over
loads. In the case of heterogeneous generators, expensive
generators are less affected in the market. Also, the load size
diversity highlights the role of a sufficiently smaller load in
exercising market power at the expense of larger loads.
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APPENDIX A
PROOF OF THEOREM 3

Under price-taking behavior, the individual problem for
loads (29) is a linear program with the closed-form solution
given by:

ddl =∞, drl =−∞, ddl + drl =dl,if λd< d∑
k∈G

(ck+ϵk)−1

ddl =−∞, drl =∞, ddl + drl =dl, if λd> d∑
k∈G

(ck+ϵk)−1

ddl + drl = dl, if λd = d∑
k∈G

(ck+ϵk)−1

(43)

where loads prefer the lower price in the market. The individ-
ual problem for generators (27) requires:

θdj = −∞, if 0 ≤ λd < d∑
k∈G

(ck+ϵk)−1

θdj = ∞, if λd < d∑
k∈G

(ck+ϵk)−1 , and λd < 0

θdj = ∞, if λd > d∑
k∈G

(ck+ϵk)−1

θdj ∈ R≥0, if λd = d∑
k∈G

(ck+ϵk)−1

(44)

where generators prefer higher prices in the market and seek to
maximize profit. At the competitive equilibrium the day-ahead
supply function (3), real-time true dispatch condition (24),
real-time clearing prices (25), and the individual optimal so-
lution (43),(44) holds simultaneously and this is only possible
if the market price is equal in the two-stages, i.e.,

λd = λr =
d∑

k∈G
(ck + ϵk)−1

, s.t dl = ddl + drl

From real-time true dispatch conditions we have

grj + gdj =
(cj + ϵj)

−1d∑
k∈G

(ck + ϵk)−1

Thus a set of competitive equilibria exists.

APPENDIX B
PROOF OF THEOREM 4

From the day-ahead market clearing we have∑
j∈G

θdjλ
d = dd =⇒ λd =

1∑
j∈G θdj

dd (45)

https://dataminer2.pjm.com/feed/hrl_da_demand_bids/definition
https://dataminer2.pjm.com/feed/hrl_da_demand_bids/definition
https://matpower.org/
https://matpower.org/
http://www.jstor.org/stable/1913707
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where we assume that
∑

j∈G θdj ̸= 0. Substituting (45)
in generator individual profit optimization (31), we get the
individual problem of strategic generator j as (we assume that
dd ̸= 0 and leave the discussion of dd = 0 for later):

max
θd
j

 dd∑
k∈G

θdk
− d∑

k∈G
(ck + ϵk)−1

 θdj d
d∑

k∈G
θdk

+
cj
2 + ϵj

(cj + ϵj)2

 d∑
k∈G

(ck + ϵk)−1


2

(46)

Though the individual problem is not necessarily concave in
the domain, we can analyze the optimal bidding behavior from
the first-order and second-order conditions. Writing the first-
order condition, we have

dπj

dθdj
=

 θdj∑
k∈G

θdk

 d∑
k∈G

(ck + ϵk)−1
− 2dd∑

k∈G
θdk


+

 dd∑
k∈G

θdk
− d∑

k∈G
(ck + ϵk)−1


 dd∑

k∈G
θdk

(47)

Now summing over j ∈ G to attain the turning point of (47),
we have

=⇒ (G− 2)(dd)2 − (G− 1)

∑
j∈G θdj∑

k∈G(ck + ϵk)−1
ddd = 0 (48)

where we assume that |G| ≥ 2. For the assumption dd ̸= 0,
the potential turning point is given by

θdj =
1

G

(∑
k∈G

(ck + ϵk)
−1

)
G− 2

G− 1

dd

d
(49)

Similarly, substituting (45) in load individual payment op-
timization (32), we get the individual problem of load l as
-

min
dd
l

dd∑
j∈G θdj

ddl +
d∑

j∈G(cj + ϵj)−1
(dl − ddl ) (50)

The unique optimal solution to the quadratic program (50) is
given by

ddl =
1

L+ 1

∑
j∈G θdj∑

k∈G(ck + ϵk)−1
d, drl = dl − ddl (51)

At equilibrium (45),(49), and (51) must hold simultaneously.
This implies that

dd = 0, θdj = 0 =⇒ λd = λr =
1∑

j∈G (cj + ϵj)−1
d

where we use Rule 1 to define prices in the day-ahead market.
However, this is in contradiction to our assumption and can
be rejected.

In the case of dd = 0,
• If

∑
j∈G θd ̸= 0, then solving (45) and (51) simultane-

ously implies that
∑

j∈G θd = 0, which contradicts our
assumption.

• If
∑

j∈G θd = 0, then we define prices using the Rule 1 in
the day-ahead market. However, in this case, loads have
the incentive to deviate from the equilibrium by allocating
some demand in the day-ahead market since λd = 0,
meaning loads make zero payment in the market, using
Rule 2.

Therefore the equilibrium does not exist. Similarly, in the case
of only one generator, equilibrium does not exist. Though the
generator bids arbitrary small values in the day ahead to earn
increasing revenue, the load will also bid small quantities to
decrease its payment. Since the generator operates truthfully
in real-time, we attain the same equilibrium with all the
demand allocated to the real-time market. Again, loads have
the incentive to deviate and allocate demand in the day ahead
where prices are zero. This completes the proof of Theorem 4.

APPENDIX C
PROOF OF THEOREM 5

Under price-taking behavior, the individual problem for
loads (12) is a linear program with the closed-form solution
given by: ddl = ∞, drl = −∞, ddl + drl = dl, if λd < λr

ddl = −∞, drl = ∞, ddl + drl = dl, if λd > λr

ddl + drl = dl, if λd = λr
(52)

where loads prefer the lower price in the market. Similarly,
solving concave individual problem of each generator (37) by
taking the derivative, we have

λr
(
(1−cjθ

r
j )λ

r−cjωjd
d
)
=0 =⇒ θrjλ

r=c−1
j λr−wjd

d (53)

where we assume λr ̸= 0. Summing (53) over j ∈ G and
using real-time market clearing (6), we get

dr =
∑
j∈G

c−1
j λr − dd =⇒ λr =

d∑
j∈G c−1

j

(54)

At equilibrium (35), (52), (53), and (54) must hold simultane-
ously. This implies that

λd = λr =
d∑

j∈G c−1
j

, dd =

∑
j∈G(cj + ϵj)

−1∑
j∈G c−1

j

d (55)

gdj = ωjd
d, θrj =

ϵj
cj(cj + ϵj)

, grj =
ϵj

cj(cj + ϵj)
λr (56)

Hence the equilibrium exists, and this completes the proof of
Theorem 5.

APPENDIX D
PROOF OF THEOREM 6

Using the real-time clearing (6), we have

λr =
dr∑
j∈G θrj

(57)

where we assume that
∑

j∈G θrj ̸= 0. Substituting (57) in
generator individual problem (39), the individual problem of
price-anticipating generator j is given by:
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max
θr
j

(cj + ϵj)(ωjd
d)2+

θrjd
r2

(
∑
k∈G

θrk)
2
− cj

2

ωjd
d+

θrjd
r∑

k∈G
θrk


2

(58)

We again use first-order and second-order conditions to ana-
lyze the optimal bidding behavior since the individual problem
may not be concave in the domain. Writing the first-order
condition, we have

dπj

dθrj
=

dr

(
∑
k∈G

θrk)
3

[
mr

j − nr
jθ

r
j

]
(59)

where

mr
j := dr

∑
k,k ̸=j

θrk − cj
cj + ϵj

dd∑
k∈G

(ck + ϵk)−1
(
∑
k,k ̸=j

θrk)
2

and

nr
j := dr +

cj
cj + ϵj

dd∑
k∈G

(ck + ϵk)−1

∑
k,k ̸=j

θrk + cjd
r
∑
k,k ̸=j

θrk

Assuming generators are homogeneous and bid symmetrically,
we can rewrite (59) as

dπj

dθrj
=

dr

G3θr2
[dr(G− 2)− cd(G− 1)θr] (60)

then the turning point is given by

θrp =
G− 2

G− 1

dr

cd
(61)

Writing the second-order condition and evaluating for homo-
geneous generators that bid symmetrically, i.e., the turning
point (61), we have

d2πj

dθrj
2

∣∣∣∣
θr
j=θr

p(d
r)

=
dr

(
∑

j θ
r
j )

3

[
m̃r

j + ñr
jθ

r
j

] ∣∣∣∣
θr
j=θr

p(d
r)

(62)

= −c3(G− 1)4d2

G4(G− 2)3
d

dr

(
2 + (G− 2)

dr

d

)
(63)

where

m̃r
j := −

4dr
∑

k,k ̸=j θ
r
k∑

k θ
r
k

+2cjωjd
d
∑
k,k ̸=j

θrk−
cjd

r(
∑

k,k ̸=j θ
r
k)

2∑
k θ

r
k

and

ñr
j :=

2dr∑
k θ

r
k

+
2cjd

r
∑

k,k ̸=j θ
r
k∑

k θ
r
k

Now, loads acting as leaders anticipate the clearing prices
and optimal bids of generators in the real-time subgame
equilibrium, such that

λr =
G− 1

G− 2

cd

G
(64)

where we substitute (61) in (57). Substituting (64) in load
individual problem (40), we have

min
dd
l

dd∑
j∈G(cj + ϵj)−1

ddl +
G− 1

G− 2

cd

G
(dl − ddl ) (65)

The unique optimal solution to the quadratic program (65) is
given by

ddl =
c

c+ ϵ

1

L+ 1

G− 1

G− 2
d, drl =

(
dl −

c

c+ ϵ

1

L+ 1

G− 1

G− 2
d

)
(66)

where we assume that generators are homogeneous and esti-
mation error is the same, i.e. i.e., cj := c, ϵj := ϵ ∀j ∈ G
Assuming 1

L > c−ϵ(G−2)
(c+ϵ)(G−2) ,

dr > 0 =⇒ d2πj

dθrj
2

∣∣∣∣
θr
j=θr

p

< 0

Thus the obtained equilibrium maximizes generators’ profit
and minimizes loads’ payment while the supply-demand bal-
ance is satisfied. However, if 1

L < c−ϵ(G−2)
(c+ϵ)(G−2) , then

dr < 0 =⇒ θrp < 0 =⇒ d2πj

dθrj
2

∣∣∣∣
θr
j=θr

p

> 0

The obtained equilibrium minimizes generators’ profit, and
generators’ have the incentive to deviate from this equilibrium.
Therefore, symmetric equilibrium does not exist in this case.
Moreover, in the case of |G| < 3, generators have the incentive
to bid arbitrarily small values and earn arbitrarily large profits
in the market.

In the case of 1
L = c−ϵ(G−2)

(c+ϵ)(G−2) , at equilibrium dr = 0 which
contradicts our initial assumption. We analyze the case dr = 0
separately,

1) If
∑

j∈G θrj ̸= 0 =⇒ λr = 0 and λd = c+ϵ
G dd = c+ϵ

G d.
WLOG, we can assume that drl = 0, ∀l ∈ L, otherwise
load l with non-zero demand has the incentive to deviate
and participate in the real-time market to minimize its
payment. The payment of individual load l is then given
by

λdddl + λrdrl =
c+ ϵ

G
dddl

However, if load l unilaterally decides to deviate by
allocating demand in real-time, i.e., drl = γ then the
payment is given by

λdddl + λrdrl =
c+ ϵ

G
(dl − γ)d+

γ2∑
j∈G θj

which is smaller for small enough γ. Therefore the
equilibrium does not exist.

2) If
∑

j∈G θrj = 0, using Rule 1 we have λr = λd and
λd = c+ϵ

G dd = c+ϵ
G d. However, if load l unilaterally

decides to deviate by allocating demand in real-time i.e.,
drl = γ then using Rule 2 λr = 0. Therefore load has
the incentive to deviate and allocate demand in the real-
time market with zero clearing price. Hence equilibrium
does not exist.

This completes the proof of the Theorem 6.
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