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ABSTRACT
In this paper, we introduce the notion of recurrence entropy in

the context of nonlinear control systems. A set is said to be (𝜏-

)recurrent if every trajectory that starts in the set returns to it

(within at most 𝜏 units of time). Recurrence entropy quantifies the

complexity of making a set 𝜏-recurrent measured by the average

rate of growth, as time increases, of the number of control signals

required to achieve this goal. Our analysis reveals that, compared

to invariance, recurrence is quantitatively less complex, meaning

that the recurrence entropy of a set is no larger than, and often

strictly smaller than, the invariance entropy. Our results further

offer insights into the minimum data rate required for achieving

recurrence. We also present an algorithm for achieving recurrence

asymptotically.
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1 INTRODUCTION
The topological entropy of a dynamical system is a fundamental

property, an invariant [1], that describes the rate of the exponential

growth of the number of trajectories that are distinguishable with

arbitrarily small but finite accuracy. Originally proposed by Adler,

Konheim, and McAndrew [2], and shortly after reformulated in the

form described above by Bowen [3, 4], it provides a quantitative

measure of complexity by capturing how the uncertainty around

the system state grows as time evolves. As a result, topological

entropy is closely related to information-theoretic notions, such as

the average rate of information gathering about the system state

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00

https://doi.org/XXXXXXX.XXXXXXX

above which one can distinguish its trajectories with arbitrary

accuracy [5].

In control theory, wherein one uses the system’s state infor-

mation to perform a task, several notions of entropy have been

proposed in the literature, characterizing the complexity of and the

minimal data rates necessary for performing a certain control task.

Examples of this include estimation entropy [5–10], restoration

entropy [11, 12], stabilization entropy [13–15], among others. One

notion of entropy particularly instrumental in control is the invari-

ance entropy [16–19], which aims to capture the growth rate of the

number of distinct control signals necessary to render a certain set

invariant.

Invariance holds a prominent role in control theory. It is, for

instance, a core notion in the development of the Lyapunov the-

ory [20]. By trapping trajectories on sub-level sets of a Lyapunov

function, one can guarantee boundedness and completeness of tra-

jectories, stability, and even asymptotic or exponential stability via

a gradual reduction of the value of the function. Invariant sets can

also be used to estimate regions of attractions of an asymptotically

stable equilibrium [21]. However, due to intrinsic coupling between

the dynamics of the system and the geometry of the set, finding in-

variant sets and, by extension, Lyapunov functions is often difficult.

Furthermore, in the context of controlled systems, it is not always

possible to make a given set (controlled) invariant.

In this work, motivated by recent literature aimed at using the

notion of recurrent sets as functional substitutes for invariant sets

in control theory [22, 23], we introduce the notion of recurrence en-

tropy for nonlinear control systems. A set is said to be (𝜏-)recurrent

if every trajectory that starts in the set returns to it (within at most

𝜏 units of time). Our analysis shows that recurrence, as a control

task, is quantitatively less complex than invariance from the point

of view that for a given set and dynamical system, the recurrence

entropy is no larger than the invariance entropy. Furthermore,

we provide upper and lower bounds for the recurrence entropy, a

characterization of recurrence entropy as the minimum data rate

necessary to render a set recurrent, as well as an accompanying al-

gorithm that achieves this task asymptotically with a bit rate equal

to the recurrence entropy upper bound that we derive plus a linear

term equal to the product of the system dimension and the desired

rate of exponential convergence toward a recurrent trajectory.

Related Work: Our work is closely related to the literature of

invariance entropy [16–18]. Naturally, since every invariant set is

(trivially) 𝜏-recurrent, for all 𝜏 ≥ 0, the results presented therein ap-

ply for 𝜏 = 0. Our work also relates to that of Tomar et al. [24]. That

work relates the minimal bit rates needed to enforce a regular safety

property for a discrete-time dynamical system to the invariance

entropy of a new system that combines the automaton defining

the property and the original system. Particularly, 𝜏-recurrence can

be thought of as regular safety property, but as we define it here,

it is for continuous-time dynamical systems. Relating our results
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with [24] would be an interesting future direction. It would also be

interesting to design numerical methods such as those proposed in

[19] for invariance entropy to estimate recurrence entropy.

Organization of the Paper: The rest of the paper is organized as

follows. In Section 2, we provide preliminary definitions regarding

the system to be considered, as well as the notion of invariance

entropy. In Section 3, we formally introduce the notion of recurrence

to be studied in the paper, i.e., 𝜏-recurrence (c.f. Definition 5), as well

as the associated notion of entropy. We then introduce, in Section

4, a fundamental result that allows us to bound the distance from

a set that recurrent trajectories can travel if they are required to

come back to the set within 𝜏 units of time. A comparison between

recurrence and invariance entropy is performed in Section 5, upper

and lower bounds for recurrence entropy are provided in Section

6, and a relationship between entropy and data rates is formally

established in Section 7. We finalize by introducing an algorithm

that can make trajectories (asymptotically) 𝜏-recurrent in Section 8

and giving final remarks in Section 9.

2 PRELIMINARIES
Notation: Given a set 𝑆 , cl(𝑆) denotes its closure, and co(𝑆) its convex
hull. We denote by ∥ · ∥ an arbitrary norm over R𝑛 , unless otherwise
specified. If 𝑆 is finite, |𝑆 | denotes its cardinality. If𝑁 ∈ N, we denote
by [𝑁 ] the set of all non-negative integers less than 𝑁 . We denote

the closed∞-norm ball, or hyperrectangle, centered at 𝑥 ∈ R𝑛 with

radius 𝑟 ∈ R≥0 by 𝐵(𝑥, 𝑟 ). Given a compact set 𝑆 , a 𝛿-cover of 𝑆 is a

set of balls of radius 𝛿 whose union contains 𝑆 . We abuse notation

and call the set containing the centers of the balls the cover instead

of the balls themselves. We denote by grid(𝑆, 𝛿) the 𝛿-cover of 𝑆
that is constructed with the centers of ∞-norm balls which are

2𝛿 apart and located on axis-parallel lines. We also call it a 𝛿-grid

of 𝑆 . We assume that the logarithm function log is that of base 2

throughout the paper. Fix an 𝜀 > 0 and a compact set 𝑄 ⊂ R𝑛 . We

define 𝑁𝜀 (𝑄) := {𝑦 ∈ R𝑛 |∃𝑥 ∈ 𝑄, ∥𝑥 − 𝑦∥ ≤ 𝜀}. We also define

𝜆𝑛(𝑄) to be the Lebesgue measure of 𝑄 . Consider a function with

𝑁 arguments. If we replace its 𝑖th argument with “·” (i.e., dot) and
its other arguments with constants, we mean the projection of that

function to the one-dimensional domain of the 𝑖th argument with

the other ones fixed to the specified constants. If we replace an

argument with a set in its domain, we mean the function defined

only over that set in the domain.

2.1 System description
In this paper, we consider control systems that are defined as follows.

Definition 1. Consider a nonlinear control system of the form:

¤𝑥 (𝑡 ) = 𝑓 (𝑥 (𝑡 ), 𝑢(𝑡 )), (1)

where 𝑥 (𝑡 ) ∈ R𝑛 , 𝑢 ∈ U, withU being a set of piece-wise continuous
functions mapping R≥0 to a compact set𝑈 ⊂ R𝑚 , and the map 𝑓 is
locally Lipschitz. We often abuse notation and interchangeably refer
to the function 𝑢 ∈ U as well as an input vector 𝑢 ∈ 𝑈 .

2.2 Invariance entropy
In this section, we recall the definition of invariance entropy of sys-

tem (1) from [16]. It requires the definitions of controlled invariant

sets, invariant trajectories, and invariance spanning sets.

Definition 2 (Controlled invariant sets [16]). A set 𝑄 ⊆ R𝑚 is
controlled invariant for system (1) if ∀𝑥 ∈ 𝑄 , ∃𝑢 ∈ U such that for
any 𝑡 ≥ 0, 𝜉(𝑥,𝑢, 𝑡 ) ∈ 𝑄 .

We call controlled invariant sets invariant from hereafter for

brevity.

Definition 3 ((𝑇, 𝜀,𝑄)-invariant trajectories [16]). Fix any 𝜀 ≥ 0,
𝑇 ≥ 0, compact set 𝑄 ⊂ R𝑛 , 𝑥 ∈ 𝑄 , and 𝑢 ∈ U. The trajectory
𝜉(𝑥,𝑢, ·) of system (1) is (𝑇, 𝜀,𝑄)-invariant, if for every 𝑡 ∈ [0,𝑇 ],
𝜉(𝑥,𝑢, 𝑡 ) ∈ 𝑁𝜀 (𝑄). If the condition is 𝜉(𝑥,𝑢, 𝑡 ) ∈ 𝑄 instead, we say
that 𝜉 is (𝑇,𝑄)-invariant.

Fix two non-empty sets 𝐾 ⊆ 𝑄 ⊂ R𝑛 , an 𝜀 ≥ 0, and a 𝑇 ≥ 0.

A set 𝑆 ⊆ U is called an invariance (𝑇, 𝜀, 𝐾,𝑄)-spanning set if for
any 𝑥 ∈ 𝐾 , there exists a 𝑢 ∈ 𝑆 , such that 𝜉(𝑥,𝑢, [0,𝑇 ]) is (𝑇, 𝜀,𝑄)-
invariant. Let 𝑟inv (𝑇, 𝜀, 𝐾,𝑄) be the minimal cardinality of such a

set if it exists, and be equal to infinity otherwise. The invariance
entropy of system (1) is defined in [16] as follows:

ℎinv (𝐾,𝑄) := lim

𝜀↘0

lim sup

𝑇→∞

1

𝑇
log 𝑟inv (𝑇, 𝜀, 𝐾,𝑄). (2)

If the trajectories are required to be (𝑇,𝑄)-invariant in (2), then

the minimal cardinality of the corresponding invariance spanning

set is denoted in [16] by 𝑟∗inv (𝑇, 𝐾,𝑄). If substituted in (2), the result-

ing entropy notion ℎ∗inv (𝐾,𝑄) is called the strict invariance entropy
of system (1). When 𝐾 is equal to 𝑄 , we drop the 𝐾 argument in

the definitions above.

3 𝜏-RECURRENCE ENTROPY
In this section, we define the main concept that we contribute in this

paper: 𝜏-recurrence entropy. Before being able to define it, we need

to define controlled 𝜏-recurrent sets, recurrent trajectories, and

recurrence spanning sets, in parallel with the definitions preceding

the definition of invariance entropy in the previous section.

3.1 Recurrence spanning sets and entropy
In the following definition, we introduce controlled 𝜏-recurrent sets

as compact subsets of the state space of system (1) which satisfy

the following condition: for each state in such a set, there exists

a control signal that drives the system to have a trajectory that

visits the set at least once within each time interval of size 𝜏 . This

concept generalizes for non-autonomous systems the notion of 𝜏-

recurrent sets, first introduced in [22]. We then define the concept

of (𝑇, 𝜀, 𝜏,𝑄)-recurrent trajectories, which are ones that return to

𝑁𝜀 (𝑄) at least once within each time interval of size 𝜏 in the interval

[0,𝑇 ].

Definition 4 (Controlled 𝜏-recurrent sets). A set 𝑄 ⊆ R𝑚 is con-
trolled 𝜏-recurrent for system (1), for some finite 𝜏 ∈ R≥0, if for every
𝑥 ∈ 𝑄 , there exists a 𝑢 ∈ U such that for any 𝑡 ≥ 0, there exists a
𝑡 ′ ∈ [𝑡, 𝑡 + 𝜏] such that 𝜉(𝑥,𝑢, 𝑡 ′) ∈ 𝑄 .

We call controlled 𝜏-recurrent sets 𝜏-recurrent from hereafter

for brevity.
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Definition 5 ((𝑇, 𝜀, 𝜏,𝑄)-recurrent trajectories). Fix any 𝜏 ≥ 0,
𝜀 ≥ 0, 𝑇 ≥ 𝜏 , compact set 𝑄 ⊂ R𝑛 , 𝑥 ∈ 𝑄 , and 𝑢 ∈ U. The trajectory
𝜉(𝑥,𝑢, ·) of system (1) is (𝑇, 𝜀, 𝜏,𝑄)-recurrent, if for every 𝑡 ∈ [0,𝑇 −𝜏],
there exists a 𝑡 ′ ∈ [𝑡, 𝑡 + 𝜏] such that 𝜉(𝑥,𝑢, 𝑡 ′) ∈ 𝑁𝜀 (𝑄).

For simplicity of notation, if 𝜀 = 0, we drop the 𝜀 argument.

Similarly, if 𝑇 = ∞, we drop the 𝑇 argument. We will also use Defi-

nition 5 for functions of time, that are not necessarily trajectories

of system (1) or even continuous, but just piece-wise continuous.

The final definition before that of 𝜏-recurrence entropy is that of

spanning sets. They are sets of control signals which are sufficient

to make any trajectory starting from a 𝜏-recurrent set 𝜏-recurrent.

Fix a 𝜏 ∈ R≥0, a compact 𝜏-recurrent set 𝑄 ⊂ R𝑛 , an 𝜀 ≥ 0, and

a 𝑇 ≥ 0. A set 𝑆 ⊆ U is called a recurrence (𝑇, 𝜀, 𝜏,𝑄)-spanning
set if for any 𝑥 ∈ 𝑄 , there exists a 𝑢 ∈ 𝑆 such that 𝜉(𝑥,𝑢, [0,𝑇 ]) is
(𝑇, 𝜀, 𝜏,𝑄)-recurrent. Let 𝑟rec(𝑇, 𝜀, 𝜏,𝑄) be the minimal cardinality of

such a set if it exists, and be equal to infinity otherwise. We define

the 𝜏-recurrence entropy of system (1) as follows:

ℎrec(𝜏,𝑄) := lim

𝜀↘0

lim sup

𝑇→∞

1

𝑇
log 𝑟rec(𝑇, 𝜀, 𝜏,𝑄). (3)

If we require the trajectories to be (𝑇, 𝜏,𝑄)-recurrent in (3), then

we denote the minimal cardinality of the corresponding spanning

set 𝑟∗rec(𝑇, 𝜏,𝑄). If substituted in (3), we call the resulting entropy

notion ℎ∗rec(𝜏,𝑄) the strict 𝜏-recurrence entropy of system (1).

4 CONTAINMENT LEMMA
In this section, we show how trajectories that are (𝜏,𝑄)-recurrent

cannot depart arbitrarily from 𝑄 . The following assumption is in-

strumental in achieving this goal.

Assumption 1 (𝜏-completeness). For any 𝑥 ∈ 𝑄 and 𝑢 ∈ U, the
trajectory 𝜉(𝑥,𝑢, ·) is defined for all 𝑡 ∈ [0, 𝜏] and is continuous in its
first argument.

An immediate consequence of Assumption 1 is that for any

𝑢 ∈ U, the closure reachable set 𝑅(𝑄,𝑢, 𝜏) := ∪𝑡 ∈[0,𝜏 ],𝑥∈𝑄𝜉(𝑥,𝑢, 𝑡 )
of system (1), i.e., cl(𝑅(𝑄,𝑢, 𝜏)), is compact. Moreover, it follows

from Proposition 5.2 [25], that under Assumption 1, the set

𝑅(𝑄, 𝜏) :=
⋃
𝑢∈U

𝑅(𝑄,𝑢, 𝜏)

is bounded. The set 𝑅(𝑄, 𝜏) contains all states visited by trajectories

starting from some initial state 𝑥 ∈ 𝑄 and following some control
𝑢 ∈ U. While such a set is, indeed, bounded, it may be quite big, as

not all control inputs are meant to make trajectories recurrent. We

will therefore consider the subsetU𝑟 ⊆ U containing all control

inputs 𝑢 ∈ U such that there exists some 𝑥 ∈ 𝑄 , making the

trajectory 𝜉(𝑥,𝑢, ·) (𝜏,𝑄)-recurrent.
A similar reasoning as before, using the fact thatU𝑟 ⊆ U, leads

to fact that the set

𝑅𝑟 (𝑄, 𝜏) :=
⋃

𝑢∈U𝑟

𝑅(𝑄,𝑢, 𝜏) ⊆ 𝑅(𝑄, 𝜏) , (4)

and is therefore bounded. For the purpose of estimating how far

out (𝜏,𝑄)-recurrent trajectories can reach, we define

𝐿𝜏 = max

𝑥1,𝑥2∈cl(co(𝑅𝑟 (𝑄,𝜏 ))),𝑢∈𝑈

∥ 𝑓 (𝑥1, 𝑢) − 𝑓 (𝑥2, 𝑢)∥
∥𝑥1 − 𝑥2∥

< ∞. (5)

Note that 𝐿𝜏 is an upper bound of the Lipschitz constant of the

vector field along any (𝜏,𝑄)-recurrent trajectory.

The following lemma, which is a generalization of Lemma 2 in

[23], allows us to obtain an estimate of how far trajectories can go

outside a compact set 𝑄 within 𝜏 seconds.

Lemma 1 (Containment Lemma). Consider a compact controlled
𝜏-recurrent set 𝑄 . Then, given any 𝑥 ∈ 𝑄 , and 𝑢 ∈ U𝑟 such that
𝜉(𝑥,𝑢, ·) is (𝜏,𝑄)-recurrent, the following holds:

sup

𝑡 ∈R≥0
𝑑(𝜉(𝑥,𝑢, 𝑡 ), 𝑄) ≤ 𝐹𝑄𝜏𝑒𝐿𝜏𝜏 , (6)

where 𝑑(𝑦,𝑄) := min𝑥∈𝑄 ∥𝑦 − 𝑥 ∥, 𝐿𝜏 is given in (5), and

𝐹𝑄 := sup

𝑥∈𝑄,𝑢∈𝑈
∥ 𝑓 (𝑥,𝑢)∥ < ∞.

Proof. As mentioned before, the proof of this lemma is akin

to [23], Lemma 2. Given 𝑥 ∈ 𝑄 and the corresponding 𝑢 ∈ U𝑟

that makes 𝜉(𝑥,𝑢, ·) (𝜏,𝑄)-recurrent, let 𝑡1 > 0 be the first time the

trajectory leaves𝑄 , i.e., such that 𝜉(𝑥,𝑢, 𝑡 ) ∈ 𝑄 , for 𝑡 ≤ 𝑡1, and for all
𝛿 > 0 sufficiently small 𝜉(𝑥,𝑢, 𝑡 + 𝛿) ∉ 𝑄 . Without loss of generality,

we assume 𝑡1 < +∞. It then follows from the (𝜏,𝑄)-recurrent that

for all 𝑡 ∈ [0, 𝑡1 + 𝜏], 𝜉(𝑥,𝑢, 𝑡 ) can only be outside 𝑄 for at most 𝜏

seconds. Using now the short notation 𝑥 (𝑡 ) = 𝜉(𝑥,𝑢, 𝑡 ) we have

𝑎(𝑡 ) := 𝑑(𝑥 (𝑡 ), 𝑄) ≤ ∥𝑥 (𝑡 ) − 𝑥 ∥

=





∫ 𝑡

0

𝑓 (𝑥 (𝑠), 𝑢(𝑠))𝑑𝑠






≤
∫ 𝑡

0

∥ 𝑓 (𝑥 (𝑠), 𝑢(𝑠)) − 𝑓 (Π𝑄 [𝑥 (𝑠)], 𝑢(𝑠)∥

+ ∥ 𝑓 (Π𝑄 [𝑥 (𝑠)], 𝑢(𝑠))∥𝑑𝑠

≤
(∫ 𝑡

𝑡1

𝑎(𝑠)𝐿𝜏𝑑𝑠

)
+
+ 𝐹𝑄 (𝑡 − 𝑡1)+ .

It follows the from Grönwall’s inequality (c.f Lemma 2.1 in [20],

with 𝜆 = 𝐹𝑄 (𝑡 − 𝑡1)+, 𝜇 = 𝐿,𝑦(𝑡 ) = 𝑎(𝑡 )) that ∀𝑡 ∈ [0, 𝑡1 + 𝜏],

𝑎(𝑡 ) = 𝑑(𝜉(𝑥,𝑢, 𝑡 ), 𝑄) ≤ 𝐹𝑄 (𝑡 − 𝑡1)+𝑒𝐿
∗
𝜏 (𝑡−𝑡1)+ ≤ 𝐹𝑄𝜏𝑒𝐿

∗
𝜏𝜏 .

Finally, by repeating the same argument every time 𝜉(𝑥,𝑢, 𝑡 ) leaves

𝑄 , the result follows. □

5 RELATION BETWEEN RECURRENCE,
𝜏-RECURRENCE, AND INVARIANCE
ENTROPY

In this section, we show different relations between recurrence and

invariance entropy of system (1). In Theorem 1, we show that 𝜏-

recurrence entropy is both lower and upper bounded by invariance

entropy with different initial and invariant sets. That results in a

corollary showing that as 𝜏 approaches zero, 𝜏-recurrence entropy

approaches invariance entropy, which is in agreement with the

intuition that 𝜏-recurrence with 𝜏 = 0 is invariance. In Theorem 2,

we show that 𝜏-recurrence entropy is less than 𝜏 ′-recurrence en-
tropy if 𝜏 ′ ≥ 𝜏 . That is in agreement with the intuition that faster

recurrence to 𝑄 requires more information about the state.

Theorem 1. For any 𝑄 ⊆ R𝑛 that is controlled invariant and 𝜏 ≥
0, ℎ𝑖𝑛𝑣 (𝑄, 𝑁𝛿𝜏 (𝑄)) ≤ ℎrec(𝜏,𝑄) ≤ ℎinv (𝑄) and ℎ∗𝑖𝑛𝑣 (𝑄, 𝑁𝛿𝜏 (𝑄)) ≤
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ℎ∗rec(𝜏,𝑄) ≤ ℎ∗inv (𝑄), where 𝛿𝜏 is the right-hand-side of the contain-
ment lemma.

Proof. The first inequality follows from the containment lemma

that shows that any recurrence (𝑇, 𝜀, 𝜏,𝑄)-spanning (resp. (𝑇, 𝜏,𝑄)-

spanning) set is an invariance (𝑇, 𝜀,𝑄, 𝑁𝛿𝜏 (𝑄))-spanning (resp. (𝑇,𝑄,

𝑁𝛿𝜏 (𝑄))-spanning) set. The second inequality follows from the

observation that any invariance (𝑇, 𝜀,𝑄)-spanning (resp. (𝑇,𝑄)-

spanning) set is a recurrence (𝑇, 𝜀, 𝜏,𝑄)-spanning (resp. (𝑇, 𝜏,𝑄)-

spanning) set as well, for any 𝜏 ≥ 0 and 𝜀 ≥ 0. □

Corollary 1. As 𝜏 → 0, 𝜏-recurrence entropy becomes equal to
invariance entropy, i.e., lim𝜏↘0

ℎrec(𝜏,𝑄) = ℎinv (𝑄).

Theorem 2. For any 𝑄 ⊆ R𝑛 that is 𝜏-recurrent for some 𝜏 > 0, for
any 𝜏 ′ ≥ 𝜏 , ℎrec(𝜏 ′, 𝑄) ≤ ℎrec(𝜏,𝑄) and ℎ∗rec(𝜏 ′, 𝑄) ≤ ℎ∗rec(𝜏,𝑄).

Proof. The result follows from the observation that any (𝑇, 𝜀, 𝜏,𝑄)-

spanning set (resp. (𝑇, 𝜏,𝑄)-spanning set) is a (𝑇, 𝜀, 𝜏 ′, 𝑄)-spanning
one (resp. (𝑇, 𝜏 ′, 𝑄)-spanning) as well. □

Though Theorem 1 only provides a non-strict statement, it is im-

portant to notice that it only requires𝑄 to be controlled 𝜏-recurrent.

As a result, it is certainly possible to have scenarios wherein

ℎrec(𝑄, 𝜏) < ℎinv (𝑄) = ∞ (7)

which further emphasizes the fact that achieving 𝜏-recurrence is

less demanding than achieving invariance. We will show such an

example in the next section.

6 RECURRENCE ENTROPY BOUNDS
In this section, we present an upper and a lower bound on 𝜏-

recurrence entropy. We show that when 𝜏 = 0, we recover the

upper bound on invariance entropy presented in [16].

Theorem 3 (Upper bound). For any 𝜏-recurrent set𝑄 ⊆ R𝑛 and any
𝜏 ′ ≥ 𝜏 , ℎrec(𝜏 ′, 𝑄) ≤ 𝐿𝜏 dim𝐹 (𝑄)/ln 2 ≤ 𝐿𝜏𝑛/ln 2, where dim𝐹 (𝑄) :=

lim sup𝜀↘0

ln𝑏(𝛿,𝑄)

ln(1/𝛿) and 𝑏(𝛿,𝑄) is the minimal cardinality of a 𝛿-
cover of 𝑄 .

Proof. The proof follows that of Theorem 4.2 in [16]. Fix any

𝑇 , 𝜀, and 𝜏 ′ ≥ 𝜏 . We define

𝐿𝜏,𝜀 = max

𝑥1,𝑥2∈𝑁𝜀 (cl(co(𝑅𝑟 (𝑄,𝜏 )))),𝑢∈𝑈

∥ 𝑓 (𝑥1, 𝑢) − 𝑓 (𝑥2, 𝑢)∥
∥𝑥1 − 𝑥2∥

< ∞. (8)

Let 𝐶 be a minimal 𝜀𝑒−𝐿𝜏,𝜀𝑇 -cover of 𝑄 . Since 𝑄 is 𝜏-recurrent,

then there exists a set 𝑆 = {𝑢𝑖 }𝑖∈[ |𝐶 | ] such that 𝜉(𝑥𝑖 , 𝑢𝑖 , [0,𝑇 ]) is
a (𝑇, 𝜏,𝑄)-recurrent trajectory, where 𝑥𝑖 is the 𝑖

th
center in the

cover. Using the containment lemma (i.e, Lemma 1), we get that

sup𝑡 ∈R≥0𝑑(𝜉(𝑥𝑖 , 𝑢𝑖 , 𝑡 ), 𝑄) ≤ 𝐹𝑄𝜏𝑒
𝐿𝜏𝜏

.

UsingGrönwall’s inequality,∀𝑡 ∈ [0,𝑇 ] and∀𝑥 ∈ 𝐵(𝑥𝑖 , 𝜀𝑒−𝐿𝜏,𝜀𝑇 )∩
𝑄 , ∥𝜉(𝑥𝑖 , 𝑢𝑖 , 𝑡 ) − 𝜉(𝑥,𝑢𝑖 , 𝑡 )∥ ≤ 𝑒𝐿𝜏,𝜀𝑡 ∥𝑥𝑖 − 𝑥 ∥ ≤ 𝑒𝐿𝜏,𝜀𝑡 (𝜀𝑒−𝐿𝜏,𝜀𝑇 ) ≤ 𝜀.
Consequently, 𝜉(𝑥,𝑢𝑖 , 𝑡 ) is a (𝑇, 𝜀, 𝜏,𝑄)-recurrent trajectory and 𝑆

is a recurrence (𝑇, 𝜀, 𝜏 ′, 𝑄)-spanning set, for any 𝜏 ′ ≥ 𝜏 . Thus,

𝑟rec(𝑇, 𝜀, 𝜏
′, 𝑄) ≤ 𝑏(𝜀𝑒−𝐿𝜏,𝜀𝑇 , 𝑄) = |𝑆 |. Now that we have an up-

per bound on the minimal cardinality of a (𝑇, 𝜀, 𝜏 ′, 𝑄)-spanning set,

we can get the upper bound on recurrence entropy by substituting

it in equation (3). Formally,

ℎrec(𝜏
′, 𝑄) = lim

𝜀↘0

lim sup

𝑇→∞

1

𝑇
log 𝑟rec(𝑇, 𝜀, 𝜏

′, 𝑄)

≤ lim

𝜀↘0

lim sup

𝑇→∞

1

𝑇
log 𝑟rec(𝑇, 𝜀, 𝜏,𝑄)

≤ lim

𝜀↘0

lim sup

𝑇→∞

1

𝑇
log𝑏(𝜀𝑒−𝐿𝜏,𝜀𝑇 , 𝑄)

≤ lim

𝜀↘0

lim sup

𝑇→∞

𝐿𝜏,𝜀

ln(𝑒𝐿𝜏,𝜀𝑇 /𝜀) + ln 𝜀
log𝑏(𝜀𝑒−𝐿𝜏,𝜀𝑇 , 𝑄)

= lim

𝜀↘0

𝐿𝜏,𝜀 lim sup

𝑇→∞

1

ln(𝑒𝐿𝜏,𝜀𝑇 /𝜀)
log𝑏(𝜀𝑒−𝐿𝜏,𝜀𝑇 , 𝑄)

= lim

𝜀↘0

𝐿𝜏,𝜀 lim sup

𝛿↘0

ln𝑏(𝛿,𝑄)

ln 2 ln(1/𝛿)
= 𝐿𝜏dim𝐹 (𝑄)/ln 2. (9)

The first inequality follows from the fact that any (𝑇, 𝜀, 𝜏,𝑄)-

spanning set is a (𝑇, 𝜀, 𝜏 ′, 𝑄)-spanning one when 𝜏 ≤ 𝜏 ′. The second
inequality follows from 𝑆 constructed earlier being a (𝑇, 𝜀, 𝜏,𝑄)-

spanning set with cardinality 𝑏(𝜀𝑒−𝐿𝜏,𝜀𝑇 , 𝑄). The third inequality

follows from multiplying the numerator and denominator with 𝐿𝜏,𝜀

and using the fact that ln(𝑒𝐿𝜏,𝜀𝑇 /𝜀)+ ln 𝜀 = 𝐿𝜏,𝜀𝑇 . The equality after
that follows from the lim sup being unaffected by ln 𝜀 in the de-

nominator and 𝐿𝜏,𝜀 being independent of𝑇 . The one before the last

equality follows from replacing 𝜀𝑒−𝐿𝜏,𝜀𝑇 with 𝛿 , which transform

lim sup𝑇→∞ to lim sup𝛿↘0
as well as the fact that log 𝑐 = ln 𝑐/ln 2.

The last equality follows from substituting the definition of dim𝐹 (𝑄)

and lim𝜀↘0
𝐿𝜏,𝜀 by its value 𝐿𝜏 . □

Remark 1. Setting 𝜏 to zero makes 𝑅𝑟 (𝑄, 𝜏) as defined in (4) equal
to 𝑄 and in the definition of 𝐿𝜏 in (5), the domain of the maximum
would be cl(co(𝑄)). Assuming 𝑄 is already convex, substituting this
𝐿𝜏 in the bound in Theorem 3 results in the same upper-bound as that
on invariance entropy in Theorem 4.2 in [16].

Remark 2. Theorem 3 shows that if the system is capable of achieving
faster recurrence to𝑄 than required, i.e., achieving 𝜏-recurrence while
the requirement is 𝜏 ′-recurrence for some 𝜏 ′ > 𝜏 , then we can obtain
a tighter upper bound on recurrence entropy since 𝐿𝜏 ≤ 𝐿𝜏 ′ .

Example 4 (Illustrative Example). Consider the case following
two-dimensional linear system[

¤𝑥1
¤𝑥2

]
=

[
0 1

0 0

] [
𝑥1
𝑥2

]
+
[
0

1

]
𝑢 (10)

We assume 𝑢 ∈ 𝑈 = [−1, 1], and consider the set 𝑄 = [−1, 1]2.
Observe that with simple integration, we can get the closed form

solution as follows:

𝜉(𝑥,𝑢, 𝑡 ) =

[
𝑥1(𝑡 )

𝑥2(𝑡 )

]
=

[∫ 𝑡

𝑠2=0

∫ 𝑡

𝑠1=0
𝑢(𝑠1)𝑑𝑠1𝑑𝑠2 + 𝑥2(0)𝑡 + 𝑥1(0)∫ 𝑡

𝑠=0
𝑢(𝑠)𝑑𝑠 + 𝑥2(0)

]
.

Consider the case when 𝑥 = [1, 1]. Then, for the trajectory starting

at 𝑥 to not leave 𝑄 , the control signal should be chosen so that

neither of the two coordinates increase. Both coordinates are mono-

tonically increasing in 𝑢. If we choose the control signal to have

the minimum value −1 for some interval [0,𝑇 ] in the effort of pre-

venting the state coordinates from increasing and escaping 𝑄 , then
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𝜉(𝑥,𝑢, 𝑡 ′) = [1 + 𝑡 − 1

2
𝑡2,−𝑡 + 1]. Thus, for all 𝑡 ≤ 2, 𝜉(𝑥,𝑢, 𝑡 ′) ∉ 𝑄 .

Therefore, there is no piece-wise continuous control signal that

can make the trajectory starting from 𝑥 invariant to 𝑄 or even

𝜏-recurrent with 𝜏 < 2, and 𝑄 is not controlled invariant or 𝜏-

recurrent with any 𝜏 < 2. Thus, the invariance entropy and 𝜏-

recurrence entropy of system (10) ℎinv (𝑄) and ℎrec(𝑄, 𝜏 ) are infinite

for 𝜏 < 2.

In contrast, observe that with constant control signals with val-

ues in𝑈 , any trajectory with an initial state in𝑄 can be driven back

to 𝑄 within 2 time units. Thus, 𝑄 is controlled 2-recurrent and we

can use the upper bound of Theorem 3. If we choose the∞-norm,

then 𝐿𝜏 ≤ ∥ 𝜕𝑓𝜕𝑥 ∥ = ∥𝐴∥ = 1. It therefore follows that

ℎ𝑖𝑛𝑣 (𝑄) = +∞ and ℎ𝑟𝑒𝑐 (𝑄, 𝜏) =

{
+∞ 𝜏 < 2

≤ 2/ln 2 𝜏 ≥ 2

.

Theorem 5 (Lower bound). For any 𝜏-recurrent set 𝑄 ⊆ R𝑛 ,

ℎrec(𝜏,𝑄) ≥
1

ln 2

max

{
0, min

(𝑥,𝑢)∈cl(𝑁𝛿𝜏 (𝑄))×𝑈
div𝑥 𝑓 (𝑥,𝑢)

}
,

where div𝑥 𝑓 (𝑥,𝑢) =
∑𝑛
𝑖=1

𝜕𝑓𝑖
𝜕𝑥𝑖

(𝑥,𝑢) = tr 𝜕𝑓𝜕𝑥 (𝑥,𝑢).

Proof. A small modification of the proof of Theorem 4.1 in

[16] would result in the theorem. The modified proof is as follows:

first, fix 𝑇, 𝜀 ≥ 0 and let 𝑆 = {𝑢 𝑗 } 𝑗∈[𝑀 ] be a minimal recurrence

(𝑇, 𝜀, 𝜏,𝑄)-spanning set. Let us define the following sets: for any

𝑗 ∈ [𝑀],

𝑄 𝑗 = {𝑥 ∈ 𝑄 | 𝜉(𝑥,𝑢 𝑗 , [0,𝑇 ]) is (𝑇, 𝜀, 𝜏,𝑄)-recurrent}. (11)

For simplicity of notation, we define 𝜉(𝑄 𝑗 , 𝑢 𝑗 ,𝑇 ) := ∪𝑥∈𝑄 𝑗
𝜉(𝑥,𝑢 𝑗 ,𝑇 ).

Then, by the Containment lemma (Lemma 1), 𝜆𝑛(𝜉(𝑄 𝑗 , 𝑢 𝑗 ,𝑇 )) ≤
𝜆𝑛(𝑁𝛿𝜏+𝜀 (𝑄)). Note that in the case of invariance (as when 𝜏 = 0),

we instead have 𝜆𝑛(𝜉(𝑄 𝑗 , 𝑢 𝑗 ,𝑇 )) ≤ 𝜆𝑛(𝑁𝜀 (𝑄)), as shown in [16].

Now, we can use the transformation theorem and Liouville’s

trace formula to get:

𝜆𝑛(𝜉(𝑄 𝑗 , 𝑢 𝑗 ,𝑇 )) =

∫
𝑄 𝑗

|det 𝜕𝜉
𝜕𝑥

(𝑥,𝑢 𝑗 ,𝑇 )|𝑑𝑥

≥ 𝜆𝑛(𝑄 𝑗 ) inf

(𝑥,𝑢)∈𝑄×U𝑟 ,
𝜉 (𝑥,𝑢,[0,𝑇 ])⊆𝑁𝛿𝜏 +𝜀 (𝑄)

|det 𝜕𝜉
𝜕𝑥

(𝑥,𝑢,𝑇 )|

= 𝜆𝑛(𝑄 𝑗 ) inf

(𝑥,𝑢)∈𝑄×U𝑟 ,
𝜉 (𝑥,𝑢,[0,𝑇 ])⊆𝑁𝛿𝜏 +𝜀 (𝑄)

exp

( ∫ 𝑇

0

div𝑥 𝑓 (𝜉(𝑥,𝑢, 𝑠), 𝑢(𝑠))𝑑𝑠
)

≥ 𝜆𝑛(𝑄 𝑗 ) min

(𝑥,𝑢)∈cl(𝑁𝛿𝜏 +𝜀 (𝑄))×𝑈
exp

(
𝑇div𝑥 𝑓 (𝑥,𝑢)

)
.

Now since 𝜆𝑛(𝑄) ≤ 𝑀 max𝑗∈[𝑀 ] 𝜆𝑛(𝑄 𝑗 ),

𝜆𝑛(𝑄) ≤ 𝑀
max𝑗∈[𝑀 ] 𝜆𝑛(𝜉(𝑄 𝑗 , 𝑢 𝑗 ,𝑇 ))

min
(𝑥,𝑢)∈cl(𝑁𝛿𝜏 +𝜀 (𝑄))×𝑈 exp

(
𝑇div𝑥 𝑓 (𝑥,𝑢)

)
≤ 𝑀

𝜆𝑛(𝑁𝛿𝜏+𝜀 (𝑄))

min
(𝑥,𝑢)∈cl(𝑁𝛿𝜏 +𝜀 (𝑄))×𝑈 exp

(
𝑇div𝑥 𝑓 (𝑥,𝑢)

) .
Consequently,

𝑀 ≥ 𝜆𝑛(𝑄)

𝜆𝑛(𝑁𝛿𝜏+𝜀 (𝑄))
min

(𝑥,𝑢)∈cl(𝑁𝛿𝜏 +𝜀 (𝑄))×𝑈
exp

(
𝑇div𝑥 𝑓 (𝑥,𝑢)

)
.

Recall that𝑀 here is equal to 𝑟rec(𝑇, 𝜀, 𝜏,𝑄). Thus, since 𝜏 is finite,

𝛿𝜏 is finite and ℎrec(𝜏,𝑄)

≥ lim

𝜀↘0

lim sup

𝑇→∞

1

𝑇
min

(𝑥,𝑢)∈cl(𝑁𝛿𝜏 +𝜀 (𝑄))×𝑈
log exp

(
𝑇div𝑥 𝑓 (𝑥,𝑢)

)
= lim

𝜀↘0

1

ln 2

min

(𝑥,𝑢)∈cl(𝑁𝛿𝜏 +𝜀 (𝑄))×𝑈
div𝑥 𝑓 (𝑥,𝑢)

=
1

ln 2

min

(𝑥,𝑢)∈cl(𝑁𝛿𝜏 (𝑄))×𝑈
div𝑥 𝑓 (𝑥,𝑢).

Note that 𝛿𝜏 strictly increases with 𝜏 . Thus, with a larger 𝜏 , the

domain over which the minimum is taken in the lower bound

becomes larger, and the minimum itself becomes smaller. This is

expected since ℎ(𝜏 ′, 𝑄) ≤ ℎ(𝜏,𝑄) if 𝜏 ′ ≥ 𝜏 , according to Theorem 2.

Also, as 𝜏 → 0, we get the same lower bound as invariance entropy

presented in [16]. □

Remark 3. Theorem 5 does not follow directly from Theorem 4.1
in [16], i.e., from the result that ℎinv (𝑄) is greater than or equal
to max{0,min

(𝑥,𝑢)∈𝑄×𝑈 div𝑥 𝑓 (𝑥,𝑢)}, since ℎrec(𝜏,𝑄) ≤ ℎinv (𝑄), for
any 𝜏 ≥ 0.

7 ENTROPY AND 𝜏-RECURRENCE DATA
RATES

We assume the setup where there is a sensor that can accurately

measure the state of system (1) at any time instant. It also has com-

putation capabilities that allows it to simulate the system starting

from any initial state and following any control, as long as that

trajectory exists. The sensor is connected to a controller over a

limited-bandwidth channel. The controller does not have informa-

tion about the state of the system besides what it receives from

the sensor. It does however know the 𝜏-recurrent set 𝑄 ⊆ R𝑛 , the
corresponding control signal that drives the system when starting

from any state in 𝑄 to have an (𝜀, 𝜏,𝑄)-recurrent trajectory.

An (𝜀, 𝜏,𝑄)-recurrence enforcing algorithm is a pair of procedures,

one for the sensor and the other for the controller. The sensor’s

procedure determines the bits it sends over the channel to the

controller. Based on these bits, the controller’s procedure deter-

mines how to map these bits to a control signal to drive the system

to have an (𝜀, 𝜏,𝑄)-recurrent trajectory. The average bit rate of

an (𝜀, 𝜏,𝑄)-recurrence enforcing algorithm is defined as follows:

lim𝑇→∞
#bits(𝑇 )

𝑇
, where #bits(𝑇 ) is the total number of bits sent by

the sensor until time 𝑇 .

Theorem 6. For any controlled 𝜏-recurrent set 𝑄 ⊆ R𝑛 and 𝜀 ≥ 0,
there exists no (𝜀, 𝜏,𝑄)-recurrence enforcing algorithmwith an average
bit rate smaller than ℎrec(𝜏,𝑄).

Proof. The proof is by contradiction. If there is such an algo-

rithm with an average data rate smaller than entropy, then there

exists a 𝑇 > 0 such that

#bits(𝑇 )

𝑇
<

1

𝑇
log 𝑟rec(𝑇, 𝜀, 𝜏,𝑄). (12)

That implies that 2
#bits(𝑇 ) < 𝑟rec(𝑇, 𝜀, 𝜏,𝑄). Observe that 2

#bits(𝑇 )
is

the number of control signals that the controller can possibly gen-

erate over the interval [0,𝑇 ]. By the assumption that the controller

enforces the system to have an (𝑇, 𝜀, 𝜏,𝑄)-recurrent trajectory, then

for every 𝑥 ∈ 𝑄 , it can generate a control signal that results in
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a (𝑇, 𝜀, 𝜏,𝑄)-recurrent trajectory. Therefore, the set of control sig-

nals that the controller can generate is a (𝑇, 𝜀, 𝜏,𝑄)-spanning one

that has a smaller cardinality than 𝑟rec(𝑇, 𝜀, 𝜏,𝑄), which contradicts

the latter’s definition being the minimal cardinality of a (𝑇, 𝜀, 𝜏,𝑄)-

spanning set. □

8 ALGORITHM FOR ENFORCING
𝜏-RECURRENCE OVER
LIMITED-BANDWIDTH CHANNELS

In this section, we present Algorithm 1, which when run at the

sensor and a corresponding procedure running at the controller, it

can produce a control signal for system (1) that drives its trajectory

to be exponentially converging to a (𝜏,𝑄)-recurrent one at a user-

specified rate 𝛼 ≥ 0. When 𝛼 = 0, the trajectory would be an

(𝜀, 𝜏,𝑄)-recurrent trajectory with a user-specified 𝜀. We define this

more formally in Theorem 7 and Corollary 2. After that, we show

that the bit rate at which the sensor should send information to

the controller is equal to the upper bound on 𝜏-recurrence entropy

presented in Theorem 3 when 𝛼 = 0, and grows linearly with 𝛼 ,

otherwise.

In our algorithm, we assume that starting from any state in

𝑁𝛿𝜏+𝜀 (𝑄), for some 𝜀 > 0, there exists a control signal that drives

system (1) to 𝑄 within 𝜏 time units. Moreover, we assume that the

function that maps the initial states 𝑁𝛿𝜏+𝜀 (𝑄) to the shortest time

such a control signal takes to drive system (1) to 𝑄 to be Lipschitz

continuous. This is formulated as follows.

Assumption 2. ∃𝜀∗ > 0 such that there exists a control func-
tion ℎ : 𝑁𝛿𝜏+𝜀∗ (𝑄) × R≥0 → 𝑈 and a corresponding function ttq :

𝑁𝛿𝜏+𝜀∗ (𝑄)→ [0, 𝜏], such that ∀𝑥 ∈ 𝑁𝛿𝜏+𝜀∗ (𝑄), 𝜉(𝑥, ℎ(𝑥, ·),ttq(𝑥)) ∈
𝑄 and ∀𝑡 ∈ [0,ttq(𝑥)], 𝑑(𝜉(𝑥, ℎ(𝑥, ·), 𝑡 ), 𝑄) ≤ 𝑑(𝑥,𝑄). Moreover, there
exists some constant 𝑐∗ ≥ 0 such that for any 𝑥1, 𝑥2 ∈ 𝑁𝛿𝜏+𝜀∗ (𝑄),
|ttq(𝑥1) − ttq(𝑥2)| ≤ 𝑐∗∥𝑥1 − 𝑥2∥.

Next, for any 𝜏 > 0 and 𝜀 ∈ (0, 𝜀∗], we define a new control

function 𝑔 : 𝑁𝛿𝜏+𝜀 (𝑄) × R≥0 → 𝑈 to be used in the algorithm. If

the initial state 𝑥 is in 𝑄 , 𝑔(𝑥, ·) is equal to a control signal that

ensures (𝜏,𝑄)-recurrence, which exists by the assumption that 𝑄 is

𝜏-recurrent. Otherwise, it is equal to the control function ℎ defined

in Assumption 2 up until reaching 𝑄 , i.e., until ttq(𝑥). After that,
it is equal to the control function that ensures the trajectory is

𝜏-recurrent starting from the new initial state in 𝑄 .

Formally, let 𝑔′ : 𝑄 × R≥0 → 𝑈 be such that for any 𝑥 ∈ 𝑄 ,
the trajectory 𝜉(𝑥, 𝑔′(𝑥, ·), ·) is a (𝜏,𝑄)-recurrent one. Such a func-

tion exists because of the assumption that 𝑄 is a 𝜏-recurrent set.

We define 𝑔 as follows: ∀𝑡 ≥ 0, 𝑔(𝑥, 𝑡 ) := 𝑔′(𝑥, 𝑡 ) if 𝑥 ∈ 𝑄 . If 𝑥 ∈
𝑁𝛿𝜏+𝜀∗ (𝑄)\𝑄 , ∀𝑡 ≤ ttq(𝑥), 𝑔(𝑥, 𝑡 ) := ℎ(𝑥, 𝑡 ) and ∀𝑡 > ttq(𝑥), 𝑔(𝑥, 𝑡 ) :=
𝑔′(𝜉(𝑥, ℎ(𝑥, ·),ttq(𝑥 )), 𝑡 − ttq(𝑥 )).

8.1 Algorithm description
Algorithm 1 takes as input a 𝜏-recurrent set 𝑄 for some 𝜏 > 0,

an 𝜀 ∈ (0, 𝜀∗] (where 𝜀∗ is as defined in Assumption 2), and the

control function𝑔 defined earlier. It also assumes to be given several

functions: sense, quantize, encode, send, simulate, and sleep. The
function sense returns the current state of the system. The function

quantize returns the closest point in the set given in its second

argument to the point given in its first argument, according to∞-
norm. The function encode maps the first argument to a bit vector

that uniquely identifies it out of the set of states given in the second

argument. The function send sends the given bit vector over the

limited bandwidth channel to the controller. The function simulate
simulates the system starting from the state in its first argument

following the control signal in its second argument until the time

bound specified in its third argument. It returns the last state in the

simulated trajectory. If the third argument is an interval, it returns

the trajectory segment within that interval. Finally, the function

sleep makes the sensor wait for the amount of real time passed as

argument before continuing the execution of the algorithm. The

time of the algorithm execution is assumed to be negligible with

respect to 𝜏 .

The algorithm starts by initializing 𝑆0 to 𝑄 and constructing

an 𝜀𝑒−(𝐿𝜏+𝛼 )𝜏 -grid for it, which we denote by 𝐶0. The algorithm

then proceeds with an infinite loop. In each iteration, it sends a

bit vector that encodes a state estimate to the controller, according

to which it can identify the control function 𝑢𝑖 the system should

follow in the time interval [𝑖𝜏, (𝑖+1)𝜏 ). To produce the bit vector, the
sensor measures the current state of the system 𝑥𝑖 , i.e., 𝜉(𝑥0, 𝑢, 𝑖𝜏),

where 𝑢 is the control signal have been followed so far. Then, it

quantizes 𝑥𝑖 to one of the centers 𝑞𝑖 in the grid 𝐶𝑖 . The encoding

of 𝑞𝑖 with respect of 𝐶𝑖 is the bit vector that the sensor sends. The

controller, which is running a similar algorithm to Algorithm 1, but

without the sensing, can recover 𝑞𝑖 as it knows 𝐶𝑖 . Using 𝑞𝑖 , it can

choose the same control function 𝑢𝑖 that the sensor intends to use

to construct 𝐶𝑖+1.
After that, Algorithm 1 computes 𝑢𝑖 to be equal to 𝑔(𝑞𝑖 , [0, 𝜏)).

Then, it simulates the system for 𝜏 time units starting from 𝑞𝑖 and

following 𝑢𝑖 . It uses the last state in the simulated trajectory as

the center of the ball 𝑆𝑖+1 which bounds the region where the next

sensed state 𝑥𝑖+1 might be. The radius 𝑟𝑖+1 of 𝑆𝑖+1 is an 𝑒𝛼𝜏 factor

smaller than that of 𝑆𝑖 . After that, it constructs the grid 𝐶𝑖+1 to be

the 𝑟𝑖+1𝑒−(𝐿𝜏+𝛼 )𝜏 -grid over 𝑆𝑖+1, according to which the next state,

𝑥𝑖+1, would be quantized. Finally, the sensor waits for the system to

evolve for 𝜏 time units before sensing it again in the next iteration.

Algorithm 1 Sensor algorithm for achieving recurrence

1: input: 𝑄 , 𝜀 ∈ (0, 𝜀∗], 𝜏 > 0, 𝑔 : 𝑁𝛿𝜏+𝜀 (𝑄) × R≥0 → 𝑈

2: 𝑆0 ← 𝑄

3: 𝑟0 ← 𝜀

4: 𝐶0 ← grid(𝑆0, 𝑟0𝑒−(𝐿𝜏+𝛼 )𝜏 )
5: 𝑖 = 0

6: while true do
7: 𝑥𝑖 ← sense()
8: 𝑞𝑖 ← quantize(𝑥𝑖 ,𝐶𝑖 )
9: send(encode(𝑞𝑖 ,𝐶𝑖 ))
10: 𝑢𝑖 ← 𝑔(𝑞𝑖 , [0, 𝜏))
11: 𝑟𝑖+1 ← 𝑟𝑖𝑒

−𝛼𝜏

12: 𝑆𝑖+1 ← 𝐵(simulate(𝑞𝑖 , 𝑢𝑖 , 𝜏), 𝑟𝑖+1)
13: 𝐶𝑖+1 ← grid(𝑆𝑖+1, 𝑟𝑖+1𝑒−(𝐿𝜏+𝛼 )𝜏 )
14: 𝑖 ← 𝑖 + 1
15: sleep(𝜏)
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8.2 Algorithm guarantees
Fix the inputs to Algorithm 1, i.e., a controlled 𝜏-recurrent set𝑄 and

a corresponding 𝜏-recurrence achieving controller 𝑔. Moreover, fix

any initial state 𝑥0 ∈ 𝑄 . Let 𝑢 : R≥0 → R𝑚 be the concatenation of

the 𝑢𝑖s produced by Algorithm 1, i.e., for any 𝑡 ≥ 0, 𝑢(𝑡 ) = 𝑢𝑖 (𝑡 − 𝑖𝜏 ),
where 𝑖 = ⌊𝑡/𝜏⌋. Also, let ˆ𝜉 : R≥0 → R𝑚 be the concatenation

of the 𝜏-sized fragments of trajectories 𝜉(𝑞𝑖 , 𝑢𝑖 , [0, 𝜏)) produced by

the algorithm, i.e., ∀𝑡 ≥ 0 and 𝑡 ≠ 𝑖𝜏 for some 𝑖 ∈ N, ˆ𝜉(𝑡 ) =

simulate(𝑞𝑖 , 𝑢𝑖 , 𝑡 − 𝑖𝜏) and ˆ𝜉(𝑖𝜏) = 𝑞𝑖 , where 𝑖 = ⌊𝑡/𝜏⌋. Thus, ˆ𝜉

would be right-piece-wise-continuous. Finally, the trajectory that

the system would have starting from 𝑥0 following 𝑢 is denoted as

usual by 𝜉(𝑥0, 𝑢, ·).

Theorem 7. Algorithm 1 ensures that:

(1) ∀𝑖 ≥ 0, 𝑥𝑖 ∈ 𝑆𝑖 , and ∀𝑡 ≥ 0, ∥ ˆ𝜉(𝑡 ) − 𝜉(𝑥0, 𝑢, 𝑡 )∥ ≤ 𝜀𝑒−𝛼𝑡 ,
(2) ∀𝑖 ∈ N, ˆ𝜉 [𝑖𝜏,∞) is an (𝜀𝑒−𝑖𝛼𝜏 , 𝜏 + 𝑐∗𝜀𝑒−(𝑖𝛼+𝐿𝜏 )𝜏 , 𝑄)-recurrent

function, and
(3) ∀𝑖 ∈ N, 𝜉(𝑥0, 𝑢, [𝑖𝜏,∞)) is a (2𝜀𝑒−𝑖𝛼𝜏 , 𝜏 + 𝑐∗𝜀𝑒−(𝑖𝛼+𝐿𝜏 )𝜏 , 𝑄)-

recurrent trajectory.

Proof. First, we will prove part 1) by induction. For the base

case: 𝑥0 ∈ 𝑆0 and ∥ ˆ𝜉(0) − 𝑥0∥ ≤ 𝜀𝑒−(𝐿𝜏+𝛼 )𝜏 ≤ 𝜀, which hold by the

fact that 𝐶0 is a grid over 𝑄 with cells of radii 𝑟0 = 𝜀𝑒
−(𝐿𝜏+𝛼 )𝜏

and

ˆ𝜉(0) = 𝑞0.

Inductive case: fix an 𝑖 ∈ N and assume that 𝑥𝑖 ∈ 𝑆𝑖 and

∀𝑡 ∈ [0, 𝑖𝜏], ∥ ˆ𝜉(𝑡 ) − 𝜉(𝑥0, 𝑢, 𝑡 )∥ ≤ 𝜀𝑒−𝛼𝑡 . By Grönwall’s inequality,

∀𝑡 ∈ [𝑖𝜏, (𝑖 + 1)𝜏], ∥𝜉(𝑥𝑖 , 𝑢𝑖 , 𝑡 ) − 𝜉(𝑞𝑖 , 𝑢𝑖 , 𝑡 )∥ ≤ 𝑒𝐿𝜏 (𝑡−𝑖𝜏 )∥𝑥𝑖 − 𝑞𝑖 ∥ ≤
𝜀𝑒−((𝑖+1)𝛼+𝐿𝜏 )𝜏𝑒𝐿𝜏 (𝑡−𝑖𝜏 ) ≤ 𝜀𝑒−(𝑖+1)𝛼𝜏 ≤ 𝜀𝑒−𝛼𝑡 . Recall that 𝑥𝑖+1 =

𝜉(𝑥𝑖 , 𝑢𝑖 , 𝜏) and 𝑟𝑖+1 = 𝜀𝑒−(𝑖+1)𝛼𝜏 . Thus, 𝑥𝑖+1 ∈ 𝐵(𝜉(𝑞𝑖 , 𝑢𝑖 , 𝜏), 𝑟𝑖+1),
and the latter is 𝑆𝑖+1. Then, since𝐶𝑖+1 is a grid over 𝑆𝑖+1 with gran-

ularity 𝑟𝑖+1𝑒−(𝐿𝜏+𝛼 )𝜏 and
ˆ𝜉((𝑖 + 1)𝜏) = 𝑞𝑖+1, ∥𝑥𝑖+1 − ˆ𝜉((𝑖 + 1)𝜏)∥ =

∥𝑥𝑖+1 − 𝑞𝑖+1∥ ≤ 𝑟𝑖+1𝑒−(𝐿𝜏+𝛼 )𝜏 , and thus ∥𝜉(𝑥0, 𝑢, (𝑖 + 1)𝜏) − ˆ𝜉((𝑖 +
1)𝜏)∥ ≤ 𝜀𝑒−((𝑖+2)𝛼+𝐿𝜏 )𝜏 ≤ 𝜀𝑒−(𝑖+1)𝛼𝜏 . That proves the inductive

argument for part 1).

We prove part 2) also by induction. We will prove the stronger

claim that for any 𝑖 ∈ N, either ˆ𝜉(𝑡 ) ∈ 𝑄 for some 𝑡 ∈ [𝑖𝜏, (𝑖 + 1)𝜏 ) or
lim𝑡→((𝑖+1)𝜏 )− ˆ𝜉(𝑡 ) ∈ 𝑄 , and |𝑡𝑖+1− 𝑡𝑖 | ≤ 𝜏 +𝑐∗𝜀𝑒−𝑖𝛼𝜏 , where 𝑡𝑖 is the
last time instant in [𝑖𝜏, (𝑖+1)𝜏 ) such that ˆ𝜉(𝑡𝑖 ) ∈ 𝑄 or equal to (𝑖+1)𝜏 ,
otherwise, and 𝑡𝑖+1 is the first time instant in [(𝑖 + 1)𝜏, (𝑖 + 2)𝜏 ) such
that

ˆ𝜉(𝑡𝑖+1) ∈ 𝑄 , or 𝑡∗𝑖+1 = (𝑖 + 2)𝜏 , otherwise. When it is the case

that lim𝑡→((𝑖+1)𝜏 )− ˆ𝜉(𝑡 ) ∈ 𝑄 , we know from part 1) that 𝑞𝑖+1 ∈ 𝑆𝑖+1,
which is centered at the value of that limit and has a radius of 𝑟𝑖+1.
Thus,

ˆ𝜉((𝑖 + 1)𝜏), which is equal to 𝑞𝑖+1, would be at most 𝑟𝑖+1 (i.e.,
𝜀𝑒−(𝑖+1)𝛼𝜏 ) from 𝑄 .

Base case: by assumption, 𝑥0 ∈ 𝑄 and
ˆ𝜉(0) = 𝑞0. By part 1), ∥ ˆ𝜉(0)−

𝑥0∥ ≤ 𝜀𝑒−(𝐿𝜏+𝛼 )𝜏 and thus ˆ𝜉(0) ∈ 𝑁𝜀𝑒−(𝐿𝜏 +𝛼 )𝜏 (𝑄) ⊆ 𝑁𝛿𝜏+𝜀𝑒−(𝐿𝜏 +𝛼 )𝜏 (𝑄).

If 𝑞0 ∈ 𝑄 , then 𝑢0 is equal to 𝑔(𝑞0, [0, 𝜏)). That would result in

ˆ𝜉([0, 𝜏)) being a prefix of a (𝜏,𝑄)-recurrent trajectory starting from

𝑞0, by the definition of 𝑔. Thus, either ˆ𝜉(𝑡 ) ∈ 𝑄 for some 𝑡 ∈ (0, 𝜏) or
lim𝑡→𝜏− ˆ𝜉(𝑡 ) ∈ 𝑄 . Moreover, by the containment lemma (Lemma 1),

∀𝑡 ∈ [0, 𝜏 ), ˆ𝜉(𝑡 ) ∈ 𝑁𝛿𝜏 (𝑄). Thus, lim𝑡→𝜏− ˆ𝜉(𝑡 ), which is the center of

𝑆1, would be in 𝑁𝛿𝜏 (𝑄). Thus,
ˆ𝜉(𝜏 ), which is equal to 𝑞1 and belongs

to 𝑆1, would be in 𝑁𝛿𝜏+𝜀𝑒−𝛼𝜏 (𝑄).
If

ˆ𝜉(0) ∈ 𝑁𝛿𝜏+𝜀 (𝑄)\𝑄 instead, then, by Assumption 2, apply-

ing the control 𝑔(𝑞0, [0, 𝜏]) will result in ˆ𝜉(𝑡 ) ∈ 𝑁𝛿𝜏+𝜀 (𝑄), for all

𝑡 ∈ [0,ttq(𝑥 )]. Ifttq(𝑥 ) = 𝜏 , then as in the first case, lim𝑡→𝜏− ˆ𝜉(𝑡 ) ∈ 𝑄
Otherwise, if ttq(𝑥) < 𝜏 , then ˆ𝜉(ttq(𝑥)) ∈ 𝑄 . Moreover, in the inter-

val (ttq(𝑥), 𝜏), ˆ𝜉 would be equal to the trajectory 𝜉(𝜉(𝑞0, 𝑢0,ttq(𝑥)),
𝑢0((ttq(𝑥 ), 𝜏)), ·), which is a (𝜏,𝑄)-recurrent trajectory by the defini-

tion of 𝑢0((ttq(𝑥 ), 𝜏]) being equal to 𝑔(𝜉(𝑞0, 𝑢0,ttq(𝑥 )), [𝑡 −ttq(𝑥 ), 𝜏 −
ttq(𝑥))). Thus, by the containment lemma (Lemma 1), it is con-

tained in 𝑁𝛿𝜏 (𝑄). Hence, lim𝑡→𝜏− ˆ𝜉(𝑡 ), the center of 𝑆1, is in 𝑁𝛿𝜏 (𝑄).

By part 1), 𝑥1 ∈ 𝑆1. Also, 𝑞1 ∈ 𝑆1 and
ˆ𝜉(𝜏) = 𝑞1. Thus, ˆ𝜉(𝜏) ∈

𝑁𝛿𝜏+𝑟1 (𝑄) = 𝑁𝛿𝜏+𝜀𝑒−𝛼𝜏 (𝑄).
Inductive case: fix an 𝑖 ≥ 1 and assume that that part 2) is true

until time 𝑖𝜏 . Thus, there exists a time instant 𝑡 ∈ [0, 𝜏) such that

ˆ𝜉((𝑖 − 1)𝜏 + 𝑡 ) ∈ 𝑄 or lim𝑡→(𝑖𝜏 )−
ˆ𝜉(𝑡 ) ∈ 𝑄 . Let 𝑡𝑖−1 be the largest

such instant. If 𝑡𝑖−1 < 𝜏 and we simulate system (1) following

𝑔(𝜉(𝑞𝑖−1, 𝑢𝑖−1, 𝑖𝜏 + 𝑡𝑖−1), ·) starting from 𝜉(𝑞𝑖−1, 𝑢𝑖−1, 𝑖𝜏 + 𝑡𝑖−1), the
resulting trajectory will be (𝜏,𝑄)-recurrent. Thus, there exists 𝑡 ′ ∈
(0, 𝜏] such that that trajectory belongs to𝑄 at time 𝑖𝜏 + 𝑡 ′. However,
ˆ𝜉 is equal to that trajectory only in the interval [(𝑖−1)𝜏 +𝑡𝑖−1, 𝑖𝜏 ). In
the interval [𝑖𝜏, (𝑖 + 1)𝜏 ), ˆ𝜉 will be equal to the trajectory that starts

from 𝑞𝑖 and follows 𝑔(𝑞𝑖 , ·). If 𝑞𝑖 ∈ 𝑄 , then ˆ𝜉 would have visited 𝑄

within 𝜏 − 𝑡∗
𝑖−1 time units, which is less than 𝜏 . If 𝑞𝑖 ∉ 𝑄 , then from

part 1), we know that 𝑞𝑖 ∈ 𝑆𝑖 and thus ∥𝑞𝑖 − lim𝑡→𝑖𝜏− ˆ𝜉(𝑡 )∥ ≤ 𝑟𝑖 =
𝜀𝑒−𝑖𝛼𝜏 . Then, by Assumption 2, we know that

ˆ𝜉 would reach 𝑄 at

or before min{(𝑖 + 1)𝜏, 𝑡𝑖−1 + 𝜏 + 𝑐∗∥𝑞𝑖 − lim𝑡→𝑖𝜏− ˆ𝜉(𝑡 )∥}, which is

upper bounded bymin{(𝑖+1)𝜏, 𝑡𝑖−1+𝜏+𝑐∗𝜀𝑒−𝑖𝛼𝜏 }. We can conclude

that the time between two time instants at which
ˆ𝜉 belongs to 𝑄 in

the intervals [(𝑖 − 1)𝜏, 𝑖𝜏) and [𝑖𝜏, (𝑖 + 1)𝜏) is less than or equal to

𝜏 + 𝑐∗𝜀𝑒−𝑖𝛼𝜏 .
Finally, part 3) follows from combining parts 1) and part 2) and

using the triangular inequality 𝑑(𝜉(𝑥0, 𝑢, 𝑡 ), 𝑄) ≤ ∥𝜉(𝑥0, 𝑢, 𝑡 )− ˆ𝜉(𝑡 )∥+
𝑑( ˆ𝜉(𝑡 ), 𝑄) at the time instants where

ˆ𝜉(𝑡 ) is visiting 𝑁𝛿𝜏+𝜀𝑒−𝑖𝛼𝜏 (𝑄).
We obtain that 𝜉(𝑥0, 𝑢, ·) visits 𝑁𝛿𝜏+2𝜀𝑒−𝑖𝛼𝜏 (𝑄) in the [𝑖𝜏, (𝑖 + 1)𝜏 ) in-
terval. Thus, 𝜉(𝑥0, 𝑢, [𝑖𝜏,∞)) is a (2𝜀𝑒−𝑖𝛼𝜏 , 𝜏 +𝑐∗𝜀𝑒−𝑖𝛼𝜏 , 𝑄)-recurrent
trajectory. □

It follows that the trajectory of system (1) when following the

controller 𝑢 produced by Algorithm 1 asymptotically approaches a

(𝜏,𝑄)-recurrent trajectory.

Corollary 2. As 𝑡 →∞, 𝜉(𝑥0, 𝑢, [𝑡,∞)) is a (𝜏,𝑄)-recurrent trajec-
tory.

In the following theorem,we show that the bit rate of Algorithm 1

matches the upper bound on 𝜏-recurrence entropy we presented in

Section 6.

Theorem 8. The average bit rate at which a sensor running Algo-
rithm 1 will send to the controller is equal to 𝑛(𝐿𝜏 + 𝛼)/ln 2.

Proof. Fix any 𝑖 ∈ N. The number of bits that the sensor running

Algorithm 1 sends at the time instant 𝑡 = 𝑖𝜏 is log |𝐶𝑖 |. Given any

time bound 𝑇 ≥ 0, the total number of bits sent by the sensor

over [0,𝑇 ] is equal to ∑⌊𝑇 /𝜏 ⌋
𝑖=0

log |𝐶𝑖 |. Thus, the average bit rate is
lim𝑇→∞

∑⌊𝑇 /𝜏 ⌋
𝑖=0

log |𝐶𝑖 |
𝑇

.

We can observe that ∀𝑖 ≥ 0, 𝐶𝑖 = ⌈ diam(𝑆𝑖 )

2𝑟𝑖𝑒
−(𝐿𝜏 +𝛼 )𝜏 ⌉𝑛 . Then, 𝐶0 =

⌈ diam(𝑄)

2𝜀𝑒−(𝐿𝜏 +𝛼 )𝜏 ⌉𝑛 and for any 𝑖 ≥ 1, 𝐶𝑖 = ⌈ 2𝑟𝑖
2𝑟𝑖𝑒

−(𝐿𝜏 +𝛼 )𝜏 ⌉𝑛 = ⌈𝑒(𝐿𝜏+𝛼 )𝜏 ⌉𝑛 .
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Thus, the average bit rate is equal to:

lim

𝑇→∞
1

𝑇

⌊𝑇 /𝜏 ⌋∑︁
𝑖=0

log |𝐶𝑖 |
𝑇

= lim

𝑇→∞
1

𝑇

(
⌈ diam(𝑄)

2𝜀𝑒−(𝐿𝜏+𝛼 )𝜏
⌉𝑛 +

⌊𝑇 /𝜏 ⌋∑︁
𝑖=1

log⌈𝑒(𝐿𝜏+𝛼 )𝜏 ⌉𝑛
)

= 𝑛(𝐿𝜏 + 𝛼)/ln 2. (13)

□

9 CONCLUSIONS AND FUTUREWORK
We present the notion of 𝜏-recurrence entropy for nonlinear control

systems as a generalization of the notion of invariance entropy. In

𝜏-recurrence of the system with respect to a predefined compact set,

the trajectories can leave it, but only for 𝜏 time units whenever it

does. 𝜏-recurrence entropy measures the exponential rate at which

the number of control signals that are sufficient to make the system

𝜏-recurrent increases with time. We show that 𝜏-recurrence entropy

is bounded from above and below by the invariance entropy of

the system with respect to different compact sets. Moreover, we

show that it converges to invariance entropy with respect to the

same set as 𝜏 decreases, as expected. Then, we derive upper and

lower bounds on 𝜏-recurrence entropy as a function of the system

dimension, local Lipschitz constant, and the divergence of the vector

field. We show that both bounds converge to known corresponding

bounds on invariance entropy as 𝜏 → 0, as expected. We then show

that the average bit rate of a recurrence-achieving algorithm is

lower bounded by the 𝜏-recurrence entropy. Finally, we present

such an algorithm that guarantees exponential convergence to a

(𝜏,𝑄)-recurrent one with an average bit rate equal to the upper

bound on entropy we derived plus a linear term in the rate of

convergence multiplied by the state dimension.

A possible future direction would be to design an algorithm simi-

lar to Algorithm 1 that instead of constructing a moving grid online

each 𝜏 seconds, it uses fixed grid. This might increase the required

bit rate, but would save the sensor and controller from significant

online computations that can be done offline instead. Another di-

rection would be to design numerical methods to estimate entropy

using abstractions, as [19].
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