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Abstract
In this paper, we analyze the convergence of gra-
dient flow on a multi-layer linear model with a
loss function of the form f(W1W2 · · ·WL). We
show that when f satisfies the gradient dominance
property, proper weight initialization leads to ex-
ponential convergence of the gradient flow to a
global minimum of the loss. Moreover, the con-
vergence rate depends on two trajectory-specific
quantities that are controlled by the weight initial-
ization: the imbalance matrices, which measure
the difference between the weights of adjacent
layers, and the least singular value of the weight
product W = W1W2 · · ·WL. Our analysis ex-
ploits the fact that the gradient of the overparam-
eterized loss can be written as the composition
of the non-overparametrized gradient with a time-
varying (weight-dependent) linear operator whose
smallest eigenvalue controls the convergence rate.
The key challenge we address is to derive a uni-
form lower bound for this time-varying eigenvalue
that lead to improved rates for several multi-layer
network models studied in the literature.

1. Introduction
The mysterious ability of gradient-based optimization al-
gorithms to solve the non-convex neural network training
problem is one of the many unexplained puzzles behind the
success of deep learning in various applications (Krizhevsky
et al., 2012; Hinton et al., 2012; Silver et al., 2016). A vast
body of work has tried to understand this phenomenon by
analyzing the dynamics of the training parameters.

The trajectory-based analyses study the training dynamics
of the weights given a specific initialization. For example,
the case of small initialization has been studied for various
models (Arora et al., 2019a; Gidel et al., 2019; Li et al.,
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2018; Stöger & Soltanolkotabi, 2021; Li et al., 2021b;a).
Under this type of initialization, the trained model is im-
plicitly biased towards low-rank (Arora et al., 2019a; Gidel
et al., 2019; Li et al., 2018; Stöger & Soltanolkotabi, 2021;
Li et al., 2021b), and sparse (Li et al., 2021a) models. While
the analysis for small initialization gives rich insights on
the generalization of neural networks, the number of iter-
ations required for gradient descent to find a good model
often increases as the initialization scale decreases. Such
dependence proves to be logarithmic on the scale for sym-
metric matrix factorization model (Li et al., 2018; Stöger
& Soltanolkotabi, 2021; Li et al., 2021b), but for deep net-
works, existing analysis at best shows a polynomial de-
pendency (Li et al., 2021a). Therefore, the analysis for
small initialization, while insightful in understanding the
implicit bias of neural network training, is not suitable for
understanding the training efficiency in practice since small
initialization is rarely implemented due to its slow conver-
gence. Another line of work studies the initialization in
the kernel regime, where a randomly initialized sufficiently
wide neural network can be well approximated by its lin-
earization at initialization Jacot et al. (2018); Chizat et al.
(2019); Arora et al. (2019b). In this regime, gradient de-
scent enjoys a linear rate of convergence toward the global
minimum (Du et al., 2019; Allen-Zhu et al., 2019; Du &
Hu, 2019). However, the width requirement in the analysis
is often unrealistic, and empirical evidence has shown that
practical neural networks generally do not operate in the
kernel regime (Chizat et al., 2019).

The study of non-small, non-kernel-regime initialization has
been mostly centered around linear models. For matrix fac-
torization models, spectral initialization (Saxe et al., 2014;
Gidel et al., 2019; Tarmoun et al., 2021) allows for decou-
pling the training dynamics into several scalar dynamics.
For non-spectral initialization, the notion of weight imbal-
ance, a quantity that depends on the differences between
the weights matrices of adjacent layers, is crucial in most
analyses. When the initialization is balanced, i.e., when
the imbalance matrices are zero, the convergence relies on
the initial end-to-end linear model being close to its opti-
mum (Arora et al., 2018a;b). The effect of weight imbalance
on the convergence has been only studied in the case when
all imbalance matrices are positive semi-definite (Yun et al.,
2020), which is often unrealistic in practice. Therefore, a



convergence analysis that applies to deep linear networks
under general initialization is still missing. Lastly, most of
the aforementioned analyses study the l2 loss for regression
tasks, and it remains unknown whether they generalize to
other types of losses commonly used in classification tasks.

Our contribution: This paper aims to provide a general
framework for analyzing the convergence of gradient flow
on multi-layer linear models. We consider a loss function
of the form L = f(W1W2 · · ·WL), where f satisfies the
gradient dominance property. Our analysis relies on a novel
characterization of the gradient of the overparameterized
loss as the composition of the non-overparametrized gra-
dient with a time-varying (weight-dependent) linear oper-
ator whose smallest eigenvalue controls the convergence
rate. The convergence analysis reduces to finding a uniform
lower bound on the least eigenvalue of this time-varying
linear operator over the entire training trajectory. However,
finding such a uniform lower bound for general networks is
extremely difficult even in the case of linear networks be-
cause the linear operator depends nontrivially on the weight
matrix trajectories. As a consequence, in this work we focus
on two- and three-layer neural networks as well as some
classes of deep networks for which bounds are possible to
obtain despite the complex dependency of the operator on
the weight matrix trajectories. More specifically:

• Our analysis shows that the convergence rate depends on
two trajectory-specific quantities: 1) the imbalance matri-
ces, which measure the difference between the weights of
adjacent layers, and 2) a lower bound on the least singular
values of weight product W = W1W2 · · ·WL. The for-
mer is time-invariant under gradient flow, thus determined
at initialization, while the latter can be controlled by ini-
tializing the product sufficiently close to its optimum.

• We provide a rate bound that applies to three-layer net-
works under general initialization. For deep networks, we
study a broader class of initialization that covers most ini-
tialization schemes used in prior work (Saxe et al., 2014;
Tarmoun et al., 2021; Arora et al., 2018a;b; Min et al.,
2021; Yun et al., 2020) for both multi-layer linear net-
works and diagonal linear networks while providing an
improved rate bound.

• Our results directly apply to loss functions commonly
used in regression tasks, and extend to loss functions used
in classification tasks with an alternative assumption on
f , under which we show O(1/t) convergence of the loss.

Notations: For an n×m matrix A, we let AT denote the
matrix transpose of A, σi(A) denote its i-th singular value
in decreasing order and we conveniently write σmin(A) =
σmin{n,m}(A) and let σk(A) = 0 if k > min{n,m}. We
also let ∥A∥2 = σ1(A) and ∥A∥F =

√
tr(ATA). For a

square matrix of size n, we let tr(A) denote its trace and
we let diag{ai}ni=1 be a diagonal matrix with ai specifying
its i-th diagonal entry. For a Hermitian matrix A of size n,
we let λi(A) denote its i-th eigenvalue and we write A ⪰ 0
(A ⪯ 0) when A is positive semi-definite (negative semi-
definite). For two square matrices A,B of the same size, we
let ⟨A,B⟩F = tr(ATB). We use In to denote the identity
matrix of order n and O(n) to denote the set of n × n
orthogonal matrices. Lastly, we use [·]+ := max{·, 0}.

2. Overview of the Analysis
This paper considers finding a matrix W that solves

min
W∈Rn×m

f(W ) , (1)

with the following assumption on f .

Assumption 1. f is differentiable and satisfies1:

A1: f satisfies the Polyak-Łojasiewicz (PL) condition, i.e.
∥∇f(W )∥2F ≥ γ(f(W ) − f∗),∀W . This condition
is also known as gradient dominance.

A2: f is K-smooth and µ-strongly convex.

While classic work (Polyak, 1987) has shown that the gra-
dient descent update on W with proper step size ensures
a linear rate of convergence of f(W ) towards its optimal
value f∗, the recent surge of research on the convergence
and implicit bias of gradient-based methods for deep neural
networks has led to a great amount of work on the over-
parametrized problem:

min
{Wl}L

l=1

L
(
{Wl}Ll=1

)
= f(W1W2 · · ·WL) , (2)

where L ≥ 2, Wl ∈ Rhl−1×hl , i = 1, · · · , L, with h0 =
n, hL = m and min{h1, · · · , hL−1} ≥ min{n,m}. This
assumption on min{h1, · · · , hL−1} is necessary to ensure
that the optimal value of (2) is also f∗, and in this case, the
product

∏L
l=1 Wl can represent an overparametrized linear

network/model (Arora et al., 2018b; Tarmoun et al., 2021)

2.1. Convergence via Gradient Dominance

For problem (2), consider the gradient flow dynamics on the
loss function L

(
{Wl}Ll=1

)
:

Ẇl = − ∂

∂Wl
L
(
{Wl}Ll=1

)
, l = 1, · · · , L . (3)

The gradient flow dynamics can be viewed as gradient de-
scent with “infinitesimal” step size and convergence results

1Note that A2 assumes µ-strong convexity, which implies A1
with γ = 2µ. However, we list A1 and A2 separately since they
have different roles in our analysis.



for gradient flow can be used to understand the correspond-
ing gradient descent algorithm with sufficiently small step
size (Elkabetz & Cohen, 2021). We have the following result
regarding the time-derivative of L under gradient flow.

Lemma 1. Under continuous dynamics in (3), we have

L̇ = −∥∇L
(
{Wl}Ll=1

)
∥2F

= −
〈
T{Wl}L

l=1
∇f(W ),∇f(W )

〉
F
, (4)

where W =
∏L

l=1 Wl, and T{Wl}L
l=1

=
∑L

l=1 Tl is a sum
of L positive semi-definite linear operator on Rn×m:

TlE =

(
l−1∏
i=0

Wi

)(
l−1∏
i=0

Wi

)T

E

(
L+1∏
i=l+1

Wi

)T ( L+1∏
i=l+1

Wi

)
.

Such an expression of ∥∇L∥2F has been studied in Arora
et al. (2018b), and we include a proof in Appendix D for
completeness. Our convergence analysis is as follows.

For this overparameterized problem, the minimum L∗ of (2)
is f∗. Then from Lemma 1 and Assumption A1, we have

L̇ = −
〈
T{Wl}L

l=1
∇f(W ),∇f(W )

〉
F

≤ −λmin(T{Wl}L
l=1

)∥∇f(W )∥2F (5)
(A1)
≤ −λmin(T{Wl}L

l=1
)γ(f(W )− f∗) (6)

= −λmin(T{Wl}L
l=1

)γ(L − L∗).

If we find an α > 0 such that λmin(T{Wl(t)}L
l=1

) ≥ α,∀t,
then the following inequality holds on the entire training tra-
jectory d

dt (L − L∗) ≤ −αγ (L − L∗). Therefore, by using
Grönwall’s inequality (Grönwall, 1919), we can show that
the loss function L converges exponential to its minimum:

L(t)− L∗ ≤ exp (−αγt) (L(0)− L∗) ,∀t ≥ 0 . (7)

Therefore, to show exponential convergence of the loss, we
need to lower bound λmin(T{Wl(t)}L

l=1
).

Key challenge: Most existing work on the convergence of
gradient flow/descent on linear networks implicitly provides
a lower bound on λmin(T{Wl(t)}L

l=1
) throughout the training

trajectory, under particular assumptions on the initialization
and network structure: For extremely wide networks under
NTK initialization (Du & Hu, 2019), the weights do not
deviate too much from their initialization, from which one
has T{Wl(t)}L

l=1
≃ T{Wl(0)}L

l=1
, then the analysis reduces to

finding eigenvalue bound for a fixed operator, rather than a
time-varying one. Outside the kernel regime, one requires
a uniform lower bound on λmin(T{Wl(t)}L

l=1
) that accounts

for the evolution of the weights. What has been facilitating
the analysis are special initialization schemes that induce
persistent structural properties on the weights, from which

the operator can be simplified. For example, under bal-
anced initialization (Arora et al., 2018a), the linear operator
would only depend on the product of the weights, instead
of individual ones. To show convergence for general initial-
ization without any structural property on the weights, one
not only requires some analysis of the evolution of weights
but, most importantly, also a careful eigenvalue analysis on
T{Wl(t)}L

l=1
. However, the operator T{Wl(t)}L

l=1
is a polyno-

mial on the weight matrices whose degree depends on the
network depth L, and the higher the degree of T{Wl(t)}L

l=1
,

the harder it is to bound its least eigenvalue.

We first revisit recent convergence analysis developed for
two-layer networks under general initialization, then we
show that much of its ingredients hint at possible ways
to lower bound λmin(T{Wl(t)}L

l=1
) for deep networks, then

present our convergence results regarding deep networks.

3. Lessons from Two-layer Linear Models
In this section, we revisit prior work through the lens of
our general convergence analysis in Section 2.1. A lower
bound on λmin(T{Wl(t)}L

l=1
) can be obtained from the train-

ing invariance of the gradient flow. We first consider the
following imbalance matrices:

Dl := WT
l Wl −Wl+1W

T
l+1, l = 1, · · · , L− 1 . (8)

For such imbalance matrices, we have

Lemma 2. Under (3), Ḋl(t) = 0,∀t ≥ 0, l = 1, · · · , L−1.

Such invariance has been studied in most work on linear
networks (Arora et al., 2018a; Du et al., 2018). We in-
clude the proof in Appendix D for completeness. Since the
imbalance matrices {Dl}L−1

l=1 are fixed at its initial value,
any point {Wl(t)}Ll=1 on the training trajectory must satisfy
the imbalance constraints Wl(t)

TWl(t) − Wl+1W
T
l+1 =

Dl(0), l = 1, · · · , L − 1. Previous work has shown that
enforcing certain non-zero imbalance at initialization leads
to exponential convergence of the loss for two-layer net-
works (Tarmoun et al., 2021; Min et al., 2021), and for deep
networks (Yun et al., 2020). Another line of work (Arora
et al., 2018a;b) has shown that balanced initialization (Dl =

0,∀l) haves exactly λmin(T{Wl(t)}L
l=1

) = Lσ
2−2/L
min (W (t)),

where W (t) =
∏L

l=1 Wl(t). This suggests that the desired
bound on λmin(T{Wl(t)}L

l=1
) potentially depend on both the

weight imbalance matrices and weight product matrix. In-
deed, for L = 2, a re-statement2 of the results in (Min et al.,
2022) provides a lower bound on λmin(T{W1,W2}) with the
knowledge of the imbalance and the product.

Lemma 3 (re-stated from Min et al. (2022)). When L =
2, given weights {W1,W2} with imbalance matrix D =

2In Min et al. (2022), there is no general idea of lower bounding
λmin

(
T{W1,W2}

)
, but their analyses essentially provide a bound.



WT
1 W1 −W2W

T
2 and product W = W1W2, define

∆+ = [λ1(D)]+ − [λn(D)]+ ,

∆− = [λ1(−D)]+ − [λm(−D)]+ ,

∆ = [λn(D)]+ + [λm(−D)]+ .

Then for the linear operator T{W1,W2} , we have

2λmin

(
T{W1,W2}

)
≥−∆+ +

√
(∆+ +∆)2 + 4σ2

n (W )

−∆− +
√
(∆− +∆)2 + 4σ2

m (W ) .
(9)

Min et al. (2022) include a detailed discussion on the bound,
including tightness. For our purpose, we note the following:

Effect of imbalance: It follows from (9) that
λmin

(
T{W1,W2}

)
≥ ∆ since σmin(W ) ≥ 0. Therefore,

∆ is always a lower bound on the convergence rate. This
means that, for most initializations, the fact that the imbal-
ance matrices are bounded away from zero (characterized
by ∆ > 0) is already sufficient for exponential convergence.

Effect of product: The role of the product in (9) is
more nuanced: Assume n = m for simplicity so that
σn(WWT ) = σm(WTW ) = σ2

min(W ). We see that
the non-negative quantities ∆+,∆− control how much
the product affects the convergence. More precisely, the
lower bound in (9) is a decreasing function of both ∆+ and
∆−. When ∆+ = ∆− = 0, the lower bound reduces to√

∆2 + 4σ2
min(W ), showing a joint contribution to con-

vergence from both imbalance and product. However, as
∆+,∆− increases, the bound decreases towards ∆, which
means that the effect of imbalance always exists, but the
effect of the product diminishes for large ∆+,∆−. We note
that ∆+,∆− measure how the eigenvalues of the imbal-
ance matrix D are different in magnitude, i.e., how “ill-
conditioned" the imbalance matrix is.

Implication on convergence: Note that (9) is almost a
lower bound for λmin

(
T{W1(t),W2(t)}

)
, t ≥ 0, as the im-

balance matrix D is time-invariant (so are ∆+,∆−,∆), ex-
cept the right-hand side of (9) also depends on σmin(W (t)).
If f satisfies A2, then f has a unique minimizer W ∗.
Moreover, one can show that given a initial product
W (0), W (t) is constrained to lie within a closed ball{
W : ∥W −W ∗∥F ≤

√
K
µ ∥W (0)−W ∗∥F

}
i.e., W (t)

does not get too far away from W ∗ during training. We can
use this to derive the following lower bound on σmin(W (t)):

σmin(W (t)) ≥

[
σmin(W

∗)−

√
K

µ
∥W (0)−W ∗∥F

]
+

:= (margin) (See Appendix B). (10)

This margin term being positive guarantees that the closed
ball excludes any W with σmin(W ) = 0. With this obser-
vation, we find a lower bound λmin

(
T{W1(t),W2(t)}

)
, t ≥ 0

that depends on both the weight imbalance and margin, and
the exponential convergence of loss L follows:

Theorem 1. Let D be the imbalance matrix for L = 2. The
continuous dynamics in (3) satisfy

L(t)− L∗ ≤ exp (−α2γt) (L(0)− L∗),∀t ≥ 0 , (11)

1. If f satisfies only A1, then α2 = ∆ ;

2. If f satisfies both A1 and A2, then

α2 = −∆+ +
√

(∆+ +∆)2 + 4ν2n

−∆− +
√
(∆− +∆)2 + 4ν2m , (12)

where

νn =
[
σn (W

∗)−
√
K/µ∥W (0)−W ∗∥F

]
+
,

νm =
[
σm (W ∗)−

√
K/µ∥W (0)−W ∗∥F

]
+
,

W (0) =
∏L

l=1 Wl(0), and W ∗ equal to the unique op-
timizer of f .

Please see Appendix F for the proof. Theorem 1 is new as
it generalizes the result in Min et al. (2022), which is only
for l2 loss in linear regression. We consider a general loss
function defined by f , including the losses for matrix fac-
torization (Arora et al., 2018a), linear regression (Min et al.,
2022), and matrix sensing (Arora et al., 2019a). Addition-
ally, Arora et al. (2018a) first introduced the notion of mar-
gin for f in matrix factorization problems (K = 1, µ = 1),
and we extend it to any f that is smooth and strongly convex.

Towards deep models: So far, we revisited prior results
on two-layer networks, showing how λmin(TW1,W2) can
be lower bounded by weight imbalance and product, from
which the convergence result is derived. Can we generalize
the analysis to deep networks? The challenge is that even
computing λmin(T{Wl}L

l=1
) given the weights {Wl}Ll=1 is

complicated: For L = 2, λmin(TW1,W2
) = λn(W1W

T
1 ) +

λm(WT
2 W2), but such nice relation does not exist for L >

3, which makes the search for a tight lower bound potentially
difficult. On the other hand, the findings in (9) shed light on
what can be potentially shown for the deep layer case:

1. For two-layer networks, we always have the bound
λmin

(
T{W1,W2}

)
≥ ∆, which depends only on the im-

balance. Can we find a lower bound on the convergence
rate of a deep network that depends only on an imbal-
ance quantity analogous to ∆? If yes, how does such a
quantity depend on network depth?



2. For two-layer networks, the bound reduces to√
∆2 + 4σ2

min(W ) when the imbalance is “well-
conditioned" (∆+,∆− are small). For deep networks,
can we characterize such joint contribution from the
imbalance and product, given a similar assumption?

We will answer these questions as we present our conver-
gence results for deep networks.

4. Convergence Results for Deep Linear
Models

4.1. Three-layer Model

To answer the first question of how weight imbalance effect
convergence, we derive a novel rate bound for three-layer
models showing the general effect of imbalance. For ease
of presentation, we denote the two imbalance matrices for
three-layer models, D1 and D2, as

−D1 = W2W
T
2 −WT

1 W1 := D21 , (13)

D2 = WT
2 W2 −W3W

T
3 := D23. (14)

Our lower bound comes after a few definitions.

Definition 1. Given two real symmetric matrices A,B of
order n, we define a non-commutative binary operation ∧r

as A ∧r B := diag{min{λi(A), λi+1−r(B)}}ni=1 , where
λj(·) = +∞,∀j ≤ 0.

Definition 2. Given (D21, D23) ∈ Rh1×h1×Rh2×h2 , define

D̄h1
=diag{max{λi(D21), λi(D23), 0}}h1

i=1,

D̄h2
=diag{max{λi(D21), λi(D23), 0}}h2

i=1,

∆21=tr(D̄h1
)− tr(D̄h1

∧n D21),

∆
(2)
21 =tr(D̄2

h1
)− tr

(
(D̄h1 ∧n D21

)2
),

∆23=tr(D̄h2)− tr(D̄h2 ∧m D23),

∆
(2)
23 =tr(D̄2

h2
)− tr

(
(D̄h2

∧m D23

)2
).

Theorem 2. When L = 3, given weights {W1,W2,W3}
with imbalance matrices (D21, D23) as defined in (13)(14),
then for the linear operator T{W1,W2,W3}, we have

λmin

(
T{W1,W2,W3}

)
≥ 1

2
(∆

(2)
21 +∆2

21) + ∆21∆23 +
1

2
(∆

(2)
23 +∆2

23)

:= ∆∗(D21, D23) . (15)

Proof Sketch. It is generally difficult to study T{W1,W2,W3},
hence we use the lower bound λmin

(
T{W1,W2,W3}

)
≥

λn(W1W2W
T
2 WT

1 ) + λn(W1W
T
1 )λm(WT

3 W3) +
λm(WT

3 WT
2 W2W3) := g(W1,W2,W3). We show that

given D21, D23, the optimal value of

min
W1,W2,W3

g(W1,W2,W3) (16)

s.t. W2W
T
2 −WT

1 W1 = D21,W
T
2 W2 −W3W

T
3 = D23 ,

is ∆∗(D21, D23). Please see Appendix G for the proof.

With the theorem, we have the following corollary.

Corollary 1. When L = 3, given initialization with imbal-
ance matrices (D21, D23) and f satisfying A1, the continu-
ous dynamics in (3) satisfy

L(t)− L∗ ≤ exp (−α3γt) (L(0)− L∗),∀t ≥ 0 , (17)

where α3 = 1
2 (∆

(2)
21 +∆2

21) + ∆21∆23 +
1
2 (∆

(2)
23 +∆2

23).

We make the following remarks regarding the contribution.

Optimal bound via imbalance: First of all, as shown in
the proof sketch, our bound should be considered as the best
lower bound on λmin(T{W1(t),W2(t),W3(t)}) one can obtain
given knowledge of the imbalance matrices only. More
importantly, the bound works for ANY initialization and
has the same role as ∆ does in two-layer networks, i.e., (15)
quantifies the general effect imbalance on the convergence.
Finding an improved bound that takes the effect of σmin(W )
into account is an interesting future research direction.

Implication on convergence: Corollary 1 suggests that
the gradient flow starting at any initialization with positive
∆∗(D21, D23) converges exponentially. However, due to
its complicated expression, it is less clear under what ini-
tialization the bound is positive. We conjecture that most
random initialization schemes would have a positive ∆∗,
and through some numerical experiments in Section 5, we
show that random initialization (outside NTK regime) is
most likely to have a positive ∆∗, thus exponential conver-
gence is guaranteed by our theorem.

Technical contribution: We highlight in Section 2 the
challenge in bounding λmin(T{Wl(t)}L

l=1
) for deep networks.

One needs to develop new mathematical tools for the eige-
nanalysis: The way we find the lower bound in (15) is
by studying the generalized eigenvalue interlacing rela-
tion imposed by the imbalance constraints. Specifically,
W2W

T
2 −WT

1 W1 = D21 suggests that λi+n(W2W
T
2 ) ≤

λi(D21) ≤ λi(W2W
T
2 ),∀i because W2W

T
2 − D21 is a

matrix of at most rank-n. We derive, from such interlac-
ing relation, novel eigenvalue bounds (See Lemma G.6) on
λn(W

T
1 W1) and λn(W1W2W

T
2 W1) that depends on eigen-

values of both W2W
T
2 and D21. Then the eigenvalues of

W2W
T
2 can also be controlled by the fact that W2 must sat-

isfy both imbalance equations in (13)(14). Since imbalance
equations like those in (13)(14) appear in deep networks and
certain nonlinear networks (Du et al., 2018; Le & Jegelka,



2022), we believe our mathematical results are potentially
useful for understanding those networks.

Comparison with prior work: The convergence of multi-
layer linear networks under balanced initialization (Dl =
0,∀l) has been studied in Arora et al. (2018a;b), and our
result is complementary as we study the effect of non-
zero imbalance on the convergence of three-layer networks.
Some settings with imbalanced weights have been studied:
Yun et al. (2020) studies a special initialization scheme
(Dl ⪰ 0, l = 1, · · · , L − 2, and DL−1 ⪰ λIhL−1

) that
forces the partial ordering of the weights, and Wu et al.
(2019) uses similar initialization to study the linear residual
networks. Our bound works for such initialization and also
show such partial ordering is not necessary for convergence.

4.2. Deep Linear Models

The lower bound we derived for three-layer networks ap-
plies to any initialization. However, the bound is a fairly
complicated function of all the imbalance matrices that is
hard to interpret. Searching for such a general bound is even
more challenging for models with arbitrary depth (L ≥ 3).
Therefore, our results for deep networks will rely on extra
assumptions on the weights that simplify the lower bound
to facilitate interpretability. Specifically, we consider the
following properties of the weights:

Definition 3. A set of weights {Wl}Ll=1 with imbalance
matrices {Dl := WT

l Wl − Wl+1W
T
l+1}

L−1
l=1 is said to be

unimodal with index l∗ if there exists l∗ ∈ [L] such that

Dl ⪰ 0, for l < l∗ and Dl ⪯ 0, for l ≥ l∗ .

We define its cumulative imbalances {d̃(i)}L−1
i=1 as

d̃(i) =

{∑i
l=l∗ λm(−Dl), i ≥ l∗∑l∗−1
l=i λn(Dl), i < l∗

.

Furthermore, for weights with unimodality index l∗, if addi-
tionally, Dl = dlIhl

, l = 1, · · · , L− 1 for

dl ≥ 0, for l < l∗ and dl ≤ 0, for l ≥ l∗ ,

those weights are said to have homogeneous imbalance.

The unimodality assumption enforces an ordering of the
weights w.r.t. the positive semi-definite cone. This is more
clear when considering scalar weights {wl}Ll=1, in which
case unimodality requires w2

l to be descending until index
l∗ and ascending afterward. Under this unimodality assump-
tion, we show that imbalance contributes to the convergence
of the loss via a product of cumulative imbalanaces. Fur-
thermore, we also show the combined effects of imbalance
and weight product when the imbalance matrices are “well-
conditioned" (in this case, homogeneous).

Theorem 3. For weights {Wl}Ll=1 with unimodality index
l∗ and product W =

∏L
l=1 Wl, we have

λmin

(
T{Wl}L

l=1

)
≥
∏L−1

l=1
d̃(i) . (18)

Furthermore, if the weights have homogeneous imbalance,

λmin(T{Wl}L
l=1

) ≥

√(∏L−1

l=1
d̃(i)

)2

+
(
Lσ

2− 2
L

min (W )
)2

,

(19)

We make the following remarks:

Connection to results for three-layer: For three-layer net-
works, we present an optimal bound given some imbalance.
Interestingly, when comparing the three-layer bound (15)
with our bound in (18), we have (See Appendix H):

Claim. When L = 3, for weights {W1,W2,W3} with uni-
modality index l∗,

1. If l∗ = 1, then 1
2 (∆

(2)
23 + ∆2

23) =
∏L−1

l=1 d̃(i) and
1
2 (∆

(2)
21 +∆2

21) = ∆21∆23 = 0;

2. If l∗ = 2, then ∆21∆23 =
∏L−1

l=1 d̃(i) and 1
2 (∆

(2)
21 +

∆2
21) =

1
2 (∆

(2)
23 +∆2

23) = 0;

3. If l∗ = 3, then 1
2 (∆

(2)
21 + ∆2

21) =
∏L−1

l=1 d̃(i) and
1
2 (∆

(2)
23 +∆2

23) = ∆21∆23 = 0.

The claim shows that the bound in (18) is optimal for three-
layer unimodal weights as it coincides with the one in The-
orem 2. We conjecture that (18) is also optimal for multi-
layer unimodal weights and leave the proof for future re-
search. Interestingly, while the bound for three-layer models
is complicated, the three terms 1

2 (∆
(2)
23 + ∆2

23), ∆21∆23,
1
2 (∆

(2)
21 + ∆2

21), seem to roughly capture how close the
weights are to unimodality. This hints at potential gener-
alization of Theorem 2 to the deep case where the bound
should have L terms capturing how close the weights are to
those with different unimodality (l∗ = 1, · · · , L).

Effect of imbalance under unimodality: For simplicity, we
assume unimodality index l∗ = L. The bound

∏L−1
i=1 d̃(i),

as a product of cumulative imbalances, generally grows ex-
ponentially with the depth L. Prior work Yun et al. (2020)
studies the case Dl ⪰ 0, l = 1, · · · , L − 2, and DL−1 ⪰
λIhL−1

, in which case
∏L−1

i=1 d̃(i) ≥ λL−1. Our bound∏L−1
i=1 d̃(i) suggests the dependence on L could be super-

exponential: When λn(Dl) ≥ ϵ > 0, for l = 1, · · · , L− 1,
we have

∏L−1
i=1 d̃(i) =

∏L−1
i=1

∑L−1
l=i λn(Dl) ≥

∏L−1
l=1 lϵ =

ϵL−1(L − 1)!, which grows faster in L than λL−1 for any
λ. Therefore, for gradient flow dynamics, the depth L could
greatly improve convergence in the presence of weight im-
balance. One should note, however, that such analysis can
not be directly translated into fast convergence guarantees of



Table 1. Compare our rate bound with prior work on deep networks.
Assumptions Arora et al. (2018a) Yun et al. (2020) Ours

Unimodal weights N/A λL−1
∏L−1

l=1 d̃(i)
Homogeneous imbalance N/A λL−1 √

(
∏L−1

l=1 d̃(i))2 + (Lσ
2−2/L
min (W ))2

Balanced (Dl = 0,∀l) Lσ
2−2/L
min (W ) N/A

gradient descent algorithm as one requires careful tuning of
the step size for the discrete updates to follow the trajectory
of the continuous dynamics (Elkabetz & Cohen, 2021).

Convergence under unimodality: The following immedi-
ately comes from Theorem 3:

Corollary 2. If the initialization weights {Wl(0)}Ll=1 are
unimodal, then the continuous dynamics in (3) satisfy

L(t)− L∗ ≤ exp (−αLγt) (L(0)− L∗),∀t ≥ 0, (20)

1. If f satisfies A1 only, then αL = ΠL−1
i=1 d̃(i) ;

2. If f satisfies both A1, A2, and the weights addi-
tionally have homogeneous imbalance, then αL =√(∏L−1

i=1 d̃(i)

)2
+ (Lνmin)

2
, where

νmin =
[
σmin (W

∗)−
√
K/µ∥W (0)−W ∗∥F

]
+
,

W (0) =
∏L

l=1 Wl(0) and W ∗ equal to the unique opti-
mizer of f .

Spectral initialization under l2 loss: Suppose f =
1
2∥Y − W∥2F and W =

∏L
l=1 Wl. We write the SVD of

Y ∈ Rn×m as Y = P

[
ΣY 0
0 0

] [
Q
0

]
:= P Σ̃Y Q̃, where

P ∈ O(n), Q ∈ O(m) . Consider the spectral initialization
W1(0) = RΣ1V

T
1 , Wl(0) = Vl−1ΣlV

T
l , l = 2, · · · , L−1,

WL(0) = VL−1ΣLQ̃, where Σl, l = 1, · · · , L are diagonal
matrices of our choice and Vl ∈ Rn×hl , l = 1, · · · , L − 1
with V T

l Vl = Ihl
. It can be shown that (See Appendix E.1)

W1(t) = RΣ1(t)V
T
1 , WL(t) = VL−1ΣL(t)Q̃,

Wl(t) = Vl−1Σl(t)V
T
l , l = 2, · · · , L− 1.

Moreover, only the first m diagonal entries of Σl are chang-
ing. Let σi,l, σi,y denote the i-th diagonal entry of Σl, and
Σ̃Y respectively, then the dynamics of {σi,l}Ll=1 follow
the gradient flow on Li({σi,l}Ll=1) =

1
2 |σi,y −

∏L
l=1 σi,l|2

for i = 1, · · · ,m, which is exactly a multi-layer model
with scalar weights: f(w) = |σi,y − w|2/2, w =

∏L
l=1 wl.

Therefore, spectral initialization under l2 loss can be decom-
posed into m deep linear models with scalar weights, whose
convergence is shown by Corollary 2. Note that networks
with scalar weights are always unimodal, because the gra-
dient flow dynamics remain the same under any reordering

of the weights, and always have homogeneous imbalance,
because the imbalances are scalars.

Diagonal linear networks: Consider f a function on
Rn satisfying A1 and L = f(w1 ⊙ · · · ⊙ wL), where
wl ∈ Rn and ⊙ denote the entrywise product. We
can show that (See Appendix E.2) L̇ = −∥∇L∥2F ≤
−(min1≤i≤n λmin(T{wl,i}L

l=1
))γ(L − L∗) , where wl,i is

the i-th entry of wl. Then Theorem 3 gives lower bound on
each λmin(T{wl,i}L

l=1
).

Comparison with prior work: Regarding unimodality, Yun
et al. (2020) studies the initialization scheme Dl ⪰ 0, l =
1, · · · , L− 2 and DL−1 ⪰ λIhL−1

, which is a special case
(l∗ = L) of ours. The homogeneous imbalance assumption
was first shown in Tarmoun et al. (2021) for two-layer net-
works, and we generalize it to the deep case. We compare,
in Table 1, our bound to existing work (Arora et al., 2018a;
Yun et al., 2020) on convergence of deep linear networks
outside the kernel regime. Note that Yun et al. (2020) only
studies a special case of unimodal weights (l∗ = L with
d̃(i) ≥ λ > 0,∀i). For homogeneous imbalance, (Yun et al.,
2020) studied spectral initialization and diagonal linear net-
works, which necessarily have homogeneous imbalance, but
the result does not generalize to the case of matrix weights.
Our results for homogeneous imbalance works also for net-
works with matrix weights, and our rate also shown the ef-
fect of the product Lσ2−2/L

min (W ), thus covers the balanced
initialization (Arora et al., 2018a) as well.

4.3. Convergence results for classification tasks

Note that the loss functions used in Gunasekar et al. (2018);
Yun et al. (2020) are classification losses, such as the ex-
ponential loss, which do not satisfy A1. However, we can
show O (1/t) convergence with an alternative assumption.

Theorem 4. Suppose f satisfies (A1’) ∥∇f(W )∥F ≥
γ(f(W ) − f∗),∀W ∈ Rn×m. Given initialization
{Wl(0)}Ll=1 such that λmin(T{Wl(t)}L

l=1
) ≥ α, ∀t , then

L(t)− L∗ ≤ L(0)− L∗

(L(0)− L∗)αγ2t+ 1
. (21)

We refer readers to Appendix C for the proof. The lower
bound on λmin(T{Wl(t)}L

l=1
) can be obtained for different

networks by our results in previous sections.



Figure 1. Three-layer network under random initialization most likely converges exponentially. Left: Box plot of our bound ∆ =
∆∗(D21, D23) for different initialization schemes on a three-layer network with n = 5,m = 1, h1 = h2 = 200, each box is generated
with 100 random samples of the weights; Middle: Gradient descent on three-layer network with n = 1,m = 1. Right: Gradient descent
on three-layer network with n = 5,m = 1. For different network widths, we compare the actual loss with our theoretical bound.

5. Numerical Experiments
In Section 4.1, we have shown a rate bound for three-layer
networks under general initialization in Theorem 2. How-
ever, due to its complicated expression, it is less clear under
what initialization the bound is positive. Through some
numerical experiments, we show that our bound is very
likely to be positive under various random initialization
schemes. In Figure 1, we show a box plot of our bound
∆ = ∆∗(D21, D23) in Theorem 2 under: NTK initial-
ization (Du & Hu, 2019), Xavier initialization (Glorot &
Bengio, 2010), and Fanout initialization. These initializa-
tion schemes all randomly sample the network weights
with Gaussian distribution, but with different variances
for each layer. We refer the reader to Appendix A for de-
tails on the experiment setting. Shown from the box plot,
our bound is non-vacuous for random initialization: All
the sampled instances of random initialization, we have
∆∗(D21, D23) > 0, i.e., exponential convergence is guaran-
teed for all cases, while no existing work provide exponen-
tial convergence guarantee for this experiment because the
initialization has a non-zero imbalance (Arora et al. (2018a)
requires balancedness), and the network has only a moderate
width (Du & Hu (2019) requires extremely large width).

Next, we run gradient descent on three-layer networks un-
der Fanout initialization with a loss function L = ∥Y −
W1W2W3∥2F /2, and compare our theoretical bound from
Corollary 1 with the actual loss curve. We see that for cer-
tain cases n = 1,m = 1 (Middle plot in Figure 1), our
bound provides a good characterization of the actual conver-
gence rate, but appears less tight for problems with higher
dimensions n = 5,m = 1 (Right plot in Figure 1). How-
ever, we note that even in the latter case, initialization with
a large value of the bound ∆ does converge faster, hence
there exists some correlation between the bound ∆ and the
actual convergence rate, and formally justify such correla-
tion is an interesting future research. Moreover, we view
the fact that ∆ fails to provide a tight bound for problems
with larger scales as some evidence showing that imbal-

ance constraint is relatively weaker in characterizing the
eigenmodes of T{Wl(t)}L

l=1
for deep networks, despite its

usefulness in shallow networks (Tarmoun et al., 2021; Min
et al., 2021). This suggests that we should be searching for
new structural properties on the weights to fully understand
the convergence of deep networks.

6. Conclusion and Discussion
In this paper, we study the convergence of gradient flow
on multi-layer linear models with a loss of the form
f(W1W2 · · ·WL). We show that with proper initialization,
the loss converges to its global minimum exponentially.
Our analysis applies to various types of multi-layer linear
networks, and our assumptions on f are general. Future di-
rections include extending our results to nonlinear networks.
Du et al. (2018) shows the diagonal entries of the imbalance
are preserved, and Le & Jegelka (2022) shows a stronger ver-
sion of such invariance given additional assumptions on the
training trajectory. Therefore, the weight imbalance could
be used to understand the training of nonlinear networks.
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A. Experiment Details
For the box plot, we consider a three-layer network with n = 5,m = 1, h1 = h2 = 200, we use the following random
initialization schemes

1. NTK initialization (Du & Hu, 2019): [W1]ij ∼ N (0, 1), [W2]ij ∼ N (0, 1), [W3]ij ∼ N (0, 1)

Note: the model used in Du & Hu (2019) is scaled by 1√
mh1h2

, i.e., the loss is of the form f( 1√
mh1h2

W1W2W3), thus
the rate is scaled by 1√

mh1h2
. The box plot shows the scaled rate.

2. Xavier/Fanin initialization (Glorot & Bengio, 2010): [W1]ij ∼ N (0, 1
n ), [W2]ij ∼ N (0, 1

h1
), [W3]ij ∼ N (0, 1

h2
)

3. Fanout initialization: [W1]ij ∼ N (0, 1
h1
), [W2]ij ∼ N (0, 1

h2
), [W3]ij ∼ N (0, 1

m )

For each random initialization scheme, we sample 100 instances of weight initialization and compute our bound
∆∗(D21, D23) for each weight initialization. Then we plot the 100 values in the box plot in Figure 1. From the box
plot, we see that our bound is non-vacuous for random initialization: All the sampled instances of random initialization, we
have ∆∗(D21, D23) > 0, i.e., exponential convergence is guaranteed for all cases.

For the middle and right plots in Figure 1, we run gradient descent on three-layer networks under Fanout initialization with
a loss function L = ∥Y −W1W2W3∥2F /2 with step size η:

1. Middle plot: n = 1,m = 1, Y = −2, η = 5e− 6;

2. Right plot: n = 5,m = 1, Y = [1, 1, 1, 1, 1]T , η = 5e− 6;

We consider networks with different width: (h1, h2) = (100, 200), (200, 300), (300, 500), the choice of Y is made such
that for network with different widths, the random initialization has roughly the same initial loss. The dashed line
is an upper bound on the loss provided by Corollary 1, since when step size is small, Corollary 1 suggests L(k) ≤
exp(1− γ∆∗(D21, D23)kη)L(0), where L(k) is the loss at k-th iteration.



B. Controlling Product with Margin
Most of our results regarding the lower bound on λminT{Wl}L

l=1
are given as a value that depends on 1) the imbalance of

the weights; 2) the minimum singular value of the product W =
∏L

l=1. The former is time-invariant, thus is determined
at initialization. As we discussed in Section 3, we require the notion of margin to lower bound σmin(W (t)) for the entire
training trajectory.

The following Lemma that will be used in subsequent proofs.

Lemma B.1. If f satisfies A2, then the gradient flow dynamics (3) satisfies

σmin (W (t)) ≥ σmin (W
∗)−

√
K

µ
∥W (0)−W ∗∥F ,∀t ≥ 0

where W (t) =
∏L

l=1 Wl(t) and W ∗ is the unique minimizer of f .

Proof. From Polyak (1987), we know if f is µ-strongly convex, then it has unique minimizer W ∗ and

f(W )− f∗ ≥ µ

2
∥W −W ∗∥2F .

Additionally, if f is K-smooth, then

f(W )− f∗ ≤ K

2
∥W −W ∗∥2F .

This suggests that for any t ≥ 0,

K

2
∥W (t)−W ∗∥2F ≥ L(t)− L∗ ≥ µ

2
∥W −W ∗∥2F .

Therefore we have the following

σmin (W (t)) = σmin (W (t)−W ∗ +W ∗)

(Weyl’s inequality (Horn & Johnson, 2012, 7.3.P16)) ≥ σmin(W
∗)− ∥W (t)−W ∗∥2

≥ σmin(W
∗)− ∥W (t)−W ∗∥F

(f is µ-strongly convex) ≥ σmin(W
∗)−

√
2

µ
(L(t)− L∗)

(L(t) non-decreasing under (3)) ≥ σmin(W
∗)−

√
2

µ
(L(0)− L∗)

(f is K-smooth) ≥ σmin(W
∗)−

√
K

µ
∥W (0)−W ∗∥2F

= σmin (W
∗)−

√
K

µ
∥W (0)−W ∗∥F .

Lemma B.1 directly suggests

σmin(W (t)) ≥

[
σmin (W

∗)−

√
K

µ
∥W (0)−W ∗∥F

]
+

:= margin ,

and the margin is positive when the initial product W (0) is sufficiently close to the optimal W ∗.



C. Convergence Analysis for Classification Losses
In this section, we consider f that satisfies, instead of A1, the following
Assumption 2. f satisfies (A1´) the Łojasiewicz inequality-like condition

∥∇f(W )∥F ≥ γ(f(W )− f∗),∀W ∈ Rn×m .

Theorem 4 (Restated). Given initialization {Wl(0)}Ll=1 such that

λminT{Wl(t)}L
l=1

≥ α, ∀t ≥ 0 ,

and f satisfying (A1´), then

L(t)− L∗ ≤ L(0)− L∗

(L(0)− L∗)αγ2t+ 1
.

Proof. When f satisfies (A1´), then (5) becomes

L̇ = −
〈
T{Wl}L

l=1
∇f(W ),∇f(W )

〉
F

≤ −λmin

(
T{Wl}L

l=1

)
∥∇f(W )∥2F

(A1′) ≤ −λmin

(
T{Wl}L

l=1

)
γ2(f(W )− f∗)2 = −λmin

(
T{Wl}L

l=1

)
γ2(L − L∗)2 .

This shows
− 1

(L − L∗)2
d

dt
(L − L∗) ≥ λmin

(
T{Wl}L

l=1

)
γ2 ≥ αγ2 .

Take integral
∫
dt on both sides, we have for any t ≥ 0,

1

L − L∗

∣∣∣∣t
0

≥ αγ2t ,

which is

L(t)− L∗ ≤ L(0)− L∗

(L(0)− L∗)αγ2t+ 1
.

Following similar argument as in Yun et al. (2020), we can show that exponential loss on linearly separable data satisfies
A1´.
Claim. Let f(w) =

∑N
i=1 exp

(
−yi · (xT

i w)
)
, if there exists z ∈ Sn−1 and γ > 0 such that

yi(x
T
i z) ≥ γ , ∀i = 1, · · · , N ,

then
∥∇f(w)∥F ≥ γf(w) ,∀w ∈ Rn .

Proof. Using the linear separability, we have

∥∇f(w)∥2F =

∥∥∥∥∥
N∑
i=1

exp
(
−yi · (xT

i w)
)
yixi

∥∥∥∥∥
2

F

(Cauchy-Schwarz inequality) ≥

∣∣∣∣∣
〈
z,

N∑
i=1

exp
(
−yi · (xT

i w)
)
yixi

〉∣∣∣∣∣
2

≥

∣∣∣∣∣
N∑
i=1

exp
(
−yi · (xT

i w)
)
γ

∣∣∣∣∣
2

= |f(w)γ|2 ,

as desired.

Therefore, our convergence results applies to classification tasks with exponential loss.



D. Proofs in Section 2
First we prove the expression for L̇ in Lemma 1

Lemma 1 (Restated). Under continuous dynamics in (3), we have

L̇ = −∥∇L
(
{Wl}Ll=1

)
∥2F = −

〈
T{Wl}L

l=1
∇f(W ),∇f(W )

〉
F
,

where W =
∏L

l=1 Wi, and T{Wl}L
l=1

is a positive semi-definite linear operator on Rn×m with

T{Wl}L
l=1

E =

L∑
l=1

(
l−1∏
i=1

Wi

)(
l−1∏
i=1

Wi

)T

E

(
L+1∏
i=l+1

Wi

)T ( L+1∏
i=l+1

Wi

)
,W0 = In,WL+1 = Im .

Proof. The gradient flow dynamics (3) satisfies

d

dt
Wl = − ∂

∂Wl
L
(
{Wl}Ll=1

)
= −

(
l−1∏
i=1

Wi

)T

∇f(W )

(
L+1∏
i=l+1

Wi

)T

, (D.1)

where W =
∏L

l=1 Wi and W0 = In,WL+1 = Im.

Therefore

L̇ =

L∑
l=1

〈
∂

∂Wl
L
(
{Wl}Ll=1

)
,
d

dt
Wl

〉
F

= −
L∑

l=1

∥∥∥∥ ∂

∂Wl
L
(
{Wl}Ll=1

)∥∥∥∥2
F

= −
L∑

l=1

〈(
l−1∏
i=1

Wi

)T

∇f(W )

(
L+1∏
i=l+1

Wi

)T

,

(
l−1∏
i=1

Wi

)T

∇f(W )

(
L+1∏
i=l+1

Wi

)T〉
F

= −
L∑

l=1

〈(
l−1∏
i=1

Wi

)(
l−1∏
i=1

Wi

)T

∇f(W )

(
L+1∏
i=l+1

Wi

)T ( L+1∏
i=l+1

Wi

)
,∇f(W )

〉
F

= −

〈
L∑

l=1

(
l−1∏
i=1

Wi

)(
l−1∏
i=1

Wi

)T

∇f(W )

(
L+1∏
i=l+1

Wi

)T ( L+1∏
i=l+1

Wi

)
,∇f(W )

〉
F

= −
〈
T{Wl}L

l=1
∇f(W ),∇f(W )

〉
F
.

Next, we prove that the imbalance matrices are time-invariant

Lemma 2 (Restated). Under continuous dynamics (3), we have Ḋl(t) = 0,∀t ≥ 0, l = 1, · · · , L− 1.

Proof. Each imbalance matrix is defined as

Dl = WT
l Wl −Wl+1W

T
l+1, l = 1, · · · , L− 1

We only need to check that d
dt

(
WT

l Wl

)
and d

dt

(
Wl+1W

T
l+1

)
are identical.



From the following derivation, for l = 1, · · · , L− 1,

d

dt

(
WT

l Wl

)
= ẆT

l Wl +WT
l Ẇl

= −

(
L+1∏
i=l+1

Wi

)
∇T f(W )

(
l−1∏
i=1

Wi

)
Wl −WT

l

(
l−1∏
i=1

Wi

)T

∇f(W )

(
L+1∏
i=l+1

Wi

)T

= −

(
L+1∏
i=l+1

Wi

)
∇T f(W )

(
l∏

i=1

Wi

)
−

(
l∏

i=1

Wi

)T

∇f(W )

(
L+1∏
i=l+1

Wi

)T

,

d

dt

(
Wl+1W

T
l+1

)
= Ẇl+1W

T
l+1 +Wl+1Ẇ

T
l+1

= −

(
l∏

i=1

Wi

)T

∇f(W )

(
L+1∏
i=l+2

Wi

)T

WT
l+1 −Wl+1

(
L+1∏
i=l+2

Wi

)
∇T f(W )

(
l∏

i=1

Wi

)

= −

(
l∏

i=1

Wi

)T

∇f(W )

(
L+1∏
i=l+1

Wi

)T

−

(
L+1∏
i=l+1

Wi

)
∇T f(W )

(
l∏

i=1

Wi

)

we know d
dt

(
WT

l Wl

)
= d

dt

(
Wl+1W

T
l+1

)
, therefore Ḋl(t) = 0, l = 1, · · · , L− 1



E. Linear Models Related to Scalar Dynamics
E.1. Spectral Initialization under l2 loss

The spectral initialization (Saxe et al., 2014; Gidel et al., 2019; Tarmoun et al., 2021) considers the following:

Suppose f = 1
2∥Y − XW∥2F and we have overparametrized model W =

∏L
l=1 Wl. Additionally, we assume Y ∈

RN×m, X ∈ RN×n (n ≥ m) are co-diagonalizable, i.e. there exist P ∈ RN×n with PTP = In and Q ∈ O(m), R ∈ O(n)

such that we can write the SVDs of Y,X as Y = P

[
ΣY 0
0 0

] [
Q
0

]
:= P Σ̃Y Q̃ and X = PΣXRT .

Remark 1. In Section 4, we discussed the case f = 1
2∥Y −W∥2F , which is essentially considering the aforementioned

setting with N = n and X = In.

Given any set of weights {Wl}Ll=1 such that

W1 = RΣ1V
T
1 , Wl = Vl−1ΣlV

T
l , l = 2, · · · , L− 1, WL = VL−1ΣLQ̃ ,

where Σl, l = 1, · · · , L are diagonal matrices and Vl ∈ Rn×hl , l = 1, · · · , L − 1 with V T
l Vl = Ihl

. The gradient flow
dynamics requires

Ẇ1 = − ∂L
∂W1

= −XT (Y −XW )WT
L WT

L−1 · · ·WT
2

= −RΣXPT · (P Σ̃Y Q̃− PΣXRT ·R
L∏

l=1

ΣLQ̃) · Q̃TΣLVL−1 · VL−1ΣL−1V
T
L−2 · · ·V2Σ2V

T
1

= −R

(
ΣX

(
ΣY − ΣX

L∏
l=1

Σl

)
Q̃Q̃T

L∏
l=2

Σl

)
V T
1

= −R

(
ΣX

(
ΣY − ΣX

L∏
l=1

Σl

)[
Im 0
0 0

] L∏
l=2

Σl

)
V T
1 ,

which shows that the singular space R, V1 for W1 do not change under the gradient flow, and the singular values σi,1of W1

satisfies

σ̇i,1 =

(
σi,y − σi,x

L∏
l=1

σi,l

)
σi,x

L∏
l=2

σi,l , i = 1, · · · ,m ,

and σ̇i,1 = 0, i = m+ 1, · · · , n.

Similarly, we can show that

Ẇl = Vl−1

ΣX

(
ΣY − ΣX

L∏
i=1

Σi

)[
Im 0
0 0

]∏
i̸=l

Σi

V T
l , l = 2, · · · , L− 1 ,

ẆL = VL−1

ΣX

(
ΣY − ΣX

L∏
i=1

Σi

)[
Im 0
0 0

]∏
i ̸=L

Σi

 Q̃ .

Overall, this suggests that the singular space of {Wl}Ll=1 do not change under the gradient flow, and their singular values
satisfies, for i = 1, · · · ,m,

σ̇i,l =

(
σi,y − σi,x

L∏
k=1

σi,k

)
σi,x

L∏
k ̸=l

σi,k , l = 1, · · · , L .

Each dynamic equation is equivalent to the one from gradient flow on Li({σi,l}Ll=1) =
1
2

∣∣∣σi,y − σi,x

∏L
l=1 σi,l

∣∣∣2 . There-
fore, under spectral initialization, the dynamics of the weights are decoupled into at most m dynamics discussed in Section
4.2.



E.2. Diagonal Linear Networks

The loss function of diagonal linear networks (Gunasekar et al., 2017; Yun et al., 2020) is of the form f(w1 ⊙ · · · ⊙ wL),
we write

L({wl}Ll=1) = f(w1 ⊙ · · · ⊙ wL) = f(w(1), · · · , w(n)) = f

(
L∏

l=1

wl,1 , · · · ,
L∏

l=1

wl,n

)
,

i.e. f takes n variables w(1), · · · , w(n) and each variable w(i) is overparametrized into
∏L

l=1 wl,i.

Then we can show that

L̇ = −∥∇{wl}L
l=1

L∥2F

=

n∑
i=1

L∑
l=1

∣∣∣∣ ∂L
∂wl,i

∣∣∣∣2

=

n∑
i=1

L∑
l=1

∣∣∣∣ ∂f

∂w(i)

∣∣∣∣2 ∣∣∣∣∂w(i)

∂wl,i

∣∣∣∣2

=

n∑
i=1

∣∣∣∣ ∂f

∂w(i)

∣∣∣∣2 L∑
l=1

∣∣∣∣∂w(i)

∂wl,i

∣∣∣∣2

=

n∑
i=1

∣∣∣∣ ∂f

∂w(i)

∣∣∣∣2 τ{wl,i}L
l=1

≤ −
(

min
1≤i≤n

τ{wl,i}L
l=1

) n∑
i=1

∣∣∣∣ ∂f

∂w(i)

∣∣∣∣2
(f satisfies A1) ≤ −

(
min

1≤i≤n
τ{wl,i}L

l=1

)
γ(f − f∗) = −

(
min

1≤i≤n
τ{wl,i}L

l=1

)
γ(L − L∗) .

Moreover, the imbalances {d(i)l := w2
l,i − w2

l+1,i}
L−1
l=1 are time-invariant for each i = 1, · · · , n by Lemma 2. Therefore, we

can lower bound each τ{wl,i}L
l=1

using the imbalance {d(i)l }L−1
l=1 as in Proposition 3, from which one obtain the exponential

convergence of L.



F. Proof for Two-layer Model
Using Lemma 3, we can prove Theorem 1

Theorem 1 (Restated). Let D be the imbalance matrix for L = 2. The continuous dynamics in (3) satisfy

L(t)− L∗ ≤ exp (−α2γt) (L(0)− L∗),∀t ≥ 0 , (F.2)

where

1. If f satisfies only A1, then α2 = ∆ ;

2. If f satisfies both A1 and A2, then

α2 = −∆+ +

√
(∆+ +∆)2 + 4

( [
σn (W ∗)−

√
K/µ∥W (0)−W ∗∥F

]
+

)2
−∆− +

√
(∆− +∆)2 + 4

( [
σm (W ∗)−

√
K/µ∥W (0)−W ∗∥F

]
+

)2
, (F.3)

with W (0) =
∏L

l=1 Wl(0) and W ∗ equal to the unique optimizer of f .

Proof. As shown in (5) in Section 2. We have

d

dt
(L(t)− L∗) ≤ −λminT{W1(t),W2(t)}γ(L(t)− L∗) .

Consider any {W1(t),W2(t)} on the trajectory, we have, by Lemma 3,

λminT{W1(t),W2(t)}
Lemma 3
≥ 1

2

(
−∆+ +

√
(∆+ +∆)2 + 4σ2

n (W (t))

−∆− +
√
(∆− +∆)2 + 4σ2

m (W (t))
)

≥ 1

2

(
−∆+ +

√
(∆+ +∆)2 −∆− +

√
(∆− +∆)2

)
= ∆ := α2 .

When f also satisfies A2: we need to prove

σn (W (t)) ≥
[
σn (W

∗)−
√

K/µ∥W (0)−W ∗∥F
]
+
, (F.4)

σm (W (t)) ≥
[
σm (W ∗)−

√
K/µ∥W (0)−W ∗∥F

]
+
. (F.5)

When n = m, both inequalities are equivalent to

σmin(W (t)) ≥
[
σmin(W

∗)−
√
K/µ∥W (0)−W ∗∥F

]
+
,

which is true by Lemma B.1.

When n ̸= m, one of the two inequalities become trivial. For example, if n > m, then (F.4) is trivially 0 ≥ 0, and (F.5) is
equivalent to

σmin(W (t)) ≥
[
σmin(W

∗)−
√
K/µ∥W (0)−W ∗∥F

]
+
,

which is true by Lemma B.1.



Overall, we have

λminT{W1(t),W2(t)}
Lemma 3
≥ 1

2

(
−∆+ +

√
(∆+ +∆)2 + 4σ2

n (W (t))

−∆− +
√
(∆− +∆)2 + 4σ2

m (W (t))
)

≥ 1

2

−∆+ +

√
(∆+ +∆)2 + 4

([
σn (W ∗)−

√
K/µ∥W (0)−W ∗∥F

]
+

)2

−∆− +

√
(∆− +∆)2 + 4

([
σm (W ∗)−

√
K/µ∥W (0)−W ∗∥F

]
+

)2


:= α2 .

Either case, we have d
dt (L(t)− L∗) ≤ −α2γ(L(t)− L∗), and by Grönwall’s inequality, we have

L(t)− L∗ ≤ exp(−α2γt)(L(0)− L∗) .



G. Proofs for Three-layer Model
In Section G.1, we discuss the proof idea for Theorem 2, then present the proof afterwards. In Section H, we show a
simplified bound when the weights can be ordered w.r.t. positive-semidefiniteness.

G.1. Proof Idea

We first discuss the proof idea behind Theorem 2, then provide the complete proof. Consider the case when n = m = 1, we
use the following notations for the weights {wT

1 ,W2, w3} ∈ R1×h1 × Rh1×h2 × Rh2×1. The quantity we need to lower
bound is

λminT{wT
1 ,W2,w3} = wT

1 W2W
T
2 w1 + wT

1 w1 · wT
3 w3 + wT

3 W
T
2 W2w3

= ∥WT
2 w1∥2 + ∥w1∥2∥w3∥2 + ∥W2w3∥2 ,

where our linear operator T{wT
1 ,W2,w3} reduces to a scalar. The remaining thing to do is to find

min
wT

1 ,W2,w3

∥WT
2 w1∥2 + ∥w1∥2∥w3∥2 + ∥W2w3∥2 (G.6)

s.t. W2W
T
2 − w1w

T
1 = D21

WT
2 W2 − w3w

T
3 = D23

i.e., we try to find the best lower bound on λminT{wT
1 ,W2,w3} given the fact that the weights have to satisfies the imbalance

constraints from D21, D23, and λminT{wT
1 ,W2,w3} is related to the norm of some weights ∥w1∥, ∥w3∥ and the “alignment”

between weights ∥WT
2 w1∥, ∥W2w3∥.

The general idea of the proof is to lower bound each term ∥WT
2 w1∥2, ∥w1∥2, ∥w3∥2, ∥W2w3∥2 individually given the

imbalance constraints, then show the existence of some {wT
1 ,W2, w3} that attains the lower bound simultaneously. The

following discussion is most for lower bounding ∥w1∥, ∥WT
2 w1∥ but the same argument holds for lower bounding other

quantities.

Understanding what can be chosen to be the spectrum of W2W
T
2 (WT

2 W2) is the key to derive an lower bound, and the
imbalance constraints implicitly limit such choices. To see this, notice that W2W

T
2 − w1w

T
1 = D21 suggests an eigenvalue

interlacing relation (Horn & Johnson, 2012, Corollary 4.39) between W2W
T
2 and D21, i.e.

λh1
(D21) ≤ λh1

(W2W
T
2 ) ≤ λh1−1(D21) ≤ · · · ≤ λ2(W2W

T
2 ) ≤ λ1(D21) ≤ λ1(W2W

T
2 ) .

Therefore, any choice of {λi(W2W
T
2 )}h1

i=1 must satisfy the interlacing relation with {λi(D21)}h1
i=1. Similarly,

{λi(W
T
2 W2)}h2

i=1 must satisfy the interlacing relation with {λi(D23)}h2
i=1. Moreover, {λi(W2W

T
2 )}h1

i=1 and
{λi(W

T
2 W2)}h2

i=1 agree on non-zero eigenvalues. In short, an appropriate choice of the spectrum of W2W
T
2 (WT

2 W2)
needs to respect the interlacing relation with the eigenvalues of D21 and D23.

The following matrix is defined
D̄h1

:= diag{max{λi(D21), λi(D23), 0}}h1
i=1

to be the “minimum” choice of the spectrum of W2W
T
2 (WT

2 W2) in the sense that any valid choice of {λi(W2W
T
2 )}h1

i=1

must satisfies
λi(W2W

T
2 ) ≥ λi(D̄h1

) ≥ λi(D21) , i = 1, · · · , h1 .

That is, the spectrum of D̄h1 “lies between” the one of W2W
T
2 and of D21. Now we check the imbalance constraint again

W2W
T
2 − w1w

T
1 = D21, it shows that: using a rank-one update w1w

T
1 , one obtain the spectrum of D21 starting from the

spectrum of W2W
T
2 , and more importantly, we require the norm ∥w1∥2 to be (taking the trace on the imbalance equation)

tr(W2W
T
2 )− ∥w1∥2 = tr(D21) ⇒ ∥w1∥2 = tr(W2W

T
2 )− tr(D21) .

Now since D̄h1
“lies inbetween”, we have

∥w1∥2 = tr(W2W
T
2 )− tr(D21)

= (changes from λi(W2W
T
2 ) to λi(D21))

= (changes from λi(W2W
T
2 ) to λi(D̄h1

)) + (changes from λi(D̄h1
) to λi(D21))

≥ (changes from λi(D̄h1
) to λi(D21)) = tr(D̄h1

)− tr(D21) ,



which is a lower bound on ∥w1∥2. It is exactly the ∆21 in Theorem 2 (It takes more complicated form when n > 1).

A lower bound on ∥WT
2 w1∥2 requires carefully exam the changes from the spectrum of D̄h1

to the one of D21. If
λh1

(D21) < 0, then “changes from λi(D̄) to λi(D21)” has two parts

1. (changes from λi(D̄) to [λi(D21)]+) through the part where w1 is “aligned" with WT
2 ,

2. (changes from 0 to λh1(D21)) through the part where w1 is “orthogonal" to WT
2 .

Only the former contributes to ∥WT
2 w1∥2 hence we need the expression ∆

(2)
21 +∆2

21, which excludes the latter part. Using
similar argument we can lower bound ∥w3∥2, ∥W2w3∥2. Lastly, the existence of {wT

1 ,W2, w3} that attains the lower bound
is from the fact that D̄h1

(D̄h2
) is a valid choice for the spectrum of W2W

T
2 (WT

2 W2).

The complete proof of the Theorem 2 follows the same idea but with a generalized notion of eigenvalue interlacing, and
some related novel eigenvalue bounds.

G.2. Proof of Theorem 2

Theorem 2 is the direct consequence of the following two results.
Lemma G.1. Given any set of weights {W1,W2,W3} ∈ Rn×h1 × Rh1×h2 × Rh2×m, we have

λminT{W1,W2,W3} ≥ λn(W1W2W
T
2 WT

1 ) + λn(W1W
T
1 )λm(WT

3 W3) + λm(WT
3 WT

2 W2W3) .

(Note that λminT{W1,W2,W3} does not have a closed-form expression. One can only work with its lower bound
λn(W1W2W

T
2 WT

1 ) + λn(W1W
T
1 )λm(WT

3 W3) + λm(WT
3 WT

2 W2W3).)
Theorem G.2. Given imbalance matrices pair (D21, D23) ∈ Rh1×h1 × Rh2×h2 , then the optimal value of

min
W1,W2,W3

2
(
λn(W1W2W

T
2 WT

1 ) + λn(W1W
T
1 )λm(WT

3 W3) + λm(WT
3 WT

2 W2W3)
)

s.t. W2W
T
2 −WT

1 W1 = D21

WT
2 W2 −W3W

T
3 = D23

is
∆∗(D21, D23) = ∆

(2)
21 +∆2

21 + 2∆21∆23 +∆
(2)
23 +∆2

23 .

Combining those two results gets λminT{W1,W2,W3} ≥ ∆∗(D21, D23)/2, as stated in Theorem 2.

The Lemma G.1 is intuitive and easy to prove:

Proof of Lemma G.1. Notice that T{W1,W2,W3} is the summation of three positive semi-definite linear operators on Rn×m,
i.e.

T{W1,W2,W3} = T12 + T13 + T23 ,
where

T12E = W1W2W
T
2 WT

1 E, T13E = W1W
T
1 EWT

3 W3, T23E = EWT
3 WT

2 W2W3 ,

and λminT12 = λn(W1W2W
T
2 WT

1 ), λminT13 = λn(W1W
T
1 )λm(WT

3 W3), λminT23 = λm(WT
3 WT

2 W2W3).

Therefore, let Emin with ∥Emin∥F = 1 be the eigenmatrix associated with λminT{W1,W2,W3}, we have

λminT{W1,W2,W3} =
〈
T{W1,W2,W3}, Emin

〉
F

= ⟨T12, Emin⟩F + ⟨T13, Emin⟩F + ⟨T23, Emin⟩F
≥ λminT12 + λminT13 + λminT23 .

The rest of this section is dedicated to prove Theorem G.2

We will first state a few Lemmas that will be used in the proof, then show the proof for Theorem G.2, and present the long
proofs for the auxiliary Lemmas in the end.



G.3. Auxiliary Lemmas

The main ingredient used in proving Theorem G.2 is the notion of r-interlacing relation between the spectrum of two
matrices, which is a natural generalization of the interlacing relation as seen in classical Cauchy Interlacing Theorem (Horn
& Johnson, 2012, Theorem 4.3.17).
Definition 4. Given real symmetric matrices A,B of order n, write A ⪰r B, if

λi+r(A) ≤ λi(B) ≤ λi(A) ,∀i

where λj(·) = +∞, j ≤ 0 and λj(·) = −∞, j > n. The case r = 1 gives the interlacing relation.
Claim. We only need to check

λi+r(A) ≤ λi(B) ≤ λi(A) ,∀i ∈ [n] ,

for showing A ⪰r B.

Proof. Any inequality regarding index outside [n] is trivial.

The following Lemma is a direct concequence of Weyl’s inequality Horn & Johnson (2012, Theorem 4.3.1), and stated as a
special case of Horn & Johnson (2012, Corollary 4.3.3)
Lemma G.3. Given real symmetric matrices A,B of order n, if A − B is positive semi-definite and rank(A − B) ≤ r,
then A ⪰r B

The converse is also true
Lemma G.4. Given real symmetric matrices A,B of order n, if A ⪰r B, then there exists a positive semi-definite matrix
XXT with rank(XXT ) ≤ r and a real orthogonal matrix V such that A−XXT = V BV T .

Proof. The case r = 1 is proved in Horn & Johnson (2012, Theorem 4.3.26). The case r > 1 is proved in Wang & Zheng
(2019, Theorem 1.3) by induction.

Specifically for our problem, we also need the following (D̄h1
and D̄h2

are defined in Section 4)
Lemma G.5. Given imbalance matrices pair (D21, D23) ∈ Rh1×h1 × Rh2×h2 , we have D̄h1

⪰n D21 and D̄h2
⪰m D23.

In our analysis, the weights W1,W2,W3 are “constrained” by the imbalance D21, D23, such constraints leads to some
special eigenvalue bounds (The operation ∧r was defined in Section 4):
Lemma G.6. Given an positive semi-definite matrix A of order n, and Z ∈ Rr×n with r ≤ n, when

A− ZTZ = B ,

we have
λr(ZZT ) ≥ tr(A)− tr(A ∧r B) ,

and
2λr(ZAZT ) ≥ tr

(
A2
)
− tr

(
(A ∧r B)2

)
+ (tr(A)− tr(A ∧r B))

2

and this bound is actually tight
Lemma G.7. Given two real symmetric matrices A,B of order n, if A ⪰r B (r ≤ n), then there exist Z ∈ Rr×n and some
orthogonal matrix V ∈ O(n), such that

A− ZTZ = V BV T ,

and

λr(ZZT ) = tr(A)− tr(A ∧r B) ,

2λr(ZAZT ) = tr
(
A2
)
− tr

(
(A ∧r B)2

)
+ (tr(A)− tr(A ∧r B))

2
.

Remark 2. To see how Lemma G.6 is used, let A = W2W
T
2 and Z = W1, B = D21, one obtain a lower bound on

λr(W1W
T
1 ) that depends on the entire spectrum of W2W

T
2 and D21. This bound is strictly better than λr(W2W

T
2 ) −

λ1(D21), the one from Weyl’s inequality (Horn & Johnson, 2012). This should not be suprising because we have “more
information” on W2W

T
2 and D21 (entire spectrum v.s. certain eigenvalue).



G.4. Proof of Theorem G.2

With these Lemmas, we are ready to prove Theorem G.2.

Proof of Theorem G.2. The proof is presented in two parts: First, we show ∆∗(D21, D23) is a lower bound on the optimal
value; Then we construct an optimal solution (W ∗

1 ,W
∗
2 ,W

∗
3 ) that attains ∆∗(D21, D23) as the objective value.

Showing ∆∗(D21, D23) is a lower bound: Given any feasible triple (W1,W2,W3), the imbalance equations

W2W
T
2 −WT

1 W1 = D21 , (G.7)

WT
2 W2 −W3W

T
3 = D23 , (G.8)

implies W2W
T
2 ⪰n D21 and WT

2 W2 ⪰m D23 by Lemma G.3. These interlacing relation shows

λi(W2W
T
2 ) ≥ λi(D21), λi(W

T
2 W2) ≥ λi(D23),∀i ,

which is

λi(W2W
T
2 ) = λi(W

T
2 W2) ≥ max{λi(D21), λi(D21), 0} = λi(D̄h1) ≥ 0 ,∀i ∈ [h1] (G.9)

Now by Lemma G.6, imbalance equation (G.7) suggests

λn(W1W
T
1 ) ≥ tr(W2W

T
2 )− tr(W2W

T
2 ∧n D21) ,

and

2λn(W1W2W
T
2 WT

1 )

≥ tr
(
(W2W

T
2 )2

)
− tr

(
(W2W

T
2 ∧n D21)

2
)
+
(
tr(W2W

T
2 )− tr(W2W

T
2 ∧n D21)

)2
.

Notice that

λr(W1W
T
1 ) ≥ tr(W2W

T
2 )− tr(W2W

T
2 ∧n D21)

=

h1∑
i=1

λi(W2W
T
2 )−min{λi(W2W

T
2 ), λi+1−n(D21)}

=

h1∑
i=1

max{λi(W2W
T
2 )− λi+1−n(D21), 0}

≥
h1∑
i=1

max{λi(D̄h1
)− λi+1−n(D21), 0}

= tr(D̄h1
)− tr(D̄h1

∧n D21) = ∆21 , (G.10)

where the inequality holds because (G.9) and the fact that ReLU function f(x) = max{x, 0} is a monotonically non-
decreasing function.

Since ∆21 can be viewed as summation of ReLU outputs, it has to be non-negative, then (G.10) also suggests

(
tr(W2W

T
2 )− tr(W2W

T
2 ∧n D21)

)2 ≥ ∆2
21 . (G.11)



Next we have

2λn(W1W2W
T
2 WT

1 )

≥ tr
(
(W2W

T
2 )2

)
− tr

(
(W2W

T
2 ∧n D21)

2
)
+
(
tr(W2W

T
2 )− tr(W2W

T
2 ∧n D21)

)2
(G.11)
≥ ∆2

21 + tr
(
(W2W

T
2 )2

)
− tr

(
(W2W

T
2 ∧n D21)

2
)

= ∆2
21 +

h1∑
i=1

λ2
i (W2W

T
2 )−

(
min{λi(W2W

T
2 ), λi+1−n(D21)}

)2
≥ ∆2

21 +

h1∑
i=1

λ2
i (D̄h1

)−
(
min{λi(D̄h1

), λi+1−n(D21)}
)2

= ∆2
21 + tr

(
D̄2

h1

)
− tr

(
(D̄h1

∧n D21)
2
)
= ∆2

21 +∆
(2)
21 ,

where the last inequality is because (G.9) and the fact that the function

g(x) = x2 − (min{x, a})2 =

{
0, x ≤ a

x2 − a2, x > a
,

is monotonically non-decreasing on R≥0 for any constant a ∈ R.

At this point, we have shown

λn(W1W
T
1 ) ≥ ∆21 , 2λn(W1W2W

T
2 WT

1 ) ≥ ∆2
21 +∆

(2)
21 . (G.12)

We can repeat the proofs above with the following replacement

W2 → WT
2 ,W1 → WT

3 , D21 → D23, D̄h1
→ D̄h2

,

and obtain
λm(WT

3 W3) ≥ ∆23 , 2λm(WT
3 WT

2 W2W3) ≥ ∆2
23 +∆

(2)
23 . (G.13)

These inequalities (G.12)(G.13) show that

∆∗(D21, D23) = ∆
(2)
21 +∆2

21 + 2∆21∆23 +∆
(2)
23 +∆2

23 .

is a lower bound on the optimal value of our optimization problem. Now we proceed to show tightness.

Constructing optimal solution:

By Lemma G.5, we know D̄h1 ⪰n D21, and by Lemma G.7, there exists Z1 ∈ Rn×h1 and orthogonal V1 ∈ O(h1) such
that

D̄h1
− ZT

1 Z1 = V1D21V
T
1 , (G.14)

and most importantly,
λn(Z1Z

T
1 ) = ∆21, 2λn(Z1D̄h1

ZT
1 ) = ∆

(2)
21 +∆2

21 . (G.15)

Similarly, by Lemma Lemma G.5, we know D̄h2 ⪰m D23, and by Lemma G.7, there exists Z3 ∈ Rm×h2 and orthogonal
V3 ∈ O(h2) such that

D̄h2
− ZT

3 Z3 = V3D23V
T
3 , (G.16)

and most importantly,
λm(Z3Z

T
3 ) = ∆23, 2λm

(
Z3D̄h2Z

T
3

)
= ∆

(2)
23 +∆2

23 . (G.17)

Let

W ∗
2 =


V T
1

[
D̄

1
2 0h1×(h2−h1)

]
V3, h2 ≥ h1

V T
1

[
D̄

1
2

0(h1−h2)×h2

]
V3, h2 < h1

,



where D̄ = diag{max{λi(D21), λi(D21), 0}}min{h1,h2}
i=1 , and

W ∗
1 = Z1V1, W ∗

3 = V T
3 ZT

3 ,

we have

W ∗
2 (W

∗
2 )

T − (W ∗
1 )

TW ∗
1 = V T

1 D̄h1
V1 − V T

1 ZT
1 Z1V1 = D21

(W ∗
2 )

TW ∗
2 −W ∗

3 (W
∗
3 )

T = V T
3 D̄h2

V3 − V T
3 Z3Z

T
3 V3 = D23 ,

and

λr(W
∗
1 (W

∗
1 )

T ) = λr(Z1Z
T
1 ) = ∆21 ,

λm((W ∗
3 )

TW ∗
3 ) = λm(ZT

3 Z3) = ∆23 ,

2λr(W
∗
1W

∗
2 (W

∗
2 )

T (W ∗
1 )

T ) = λr(Z1D̄h1
ZT
1 ) = ∆

(2)
21 +∆2

21 ,

2λm((W ∗
3 )

T (W ∗
2 )

TW ∗
2W

∗
3 ) = λm(ZT

3 D̄h2
Z3) = ∆

(2)
23 +∆2

23 ,

Therefore the lower bound ∆∗(D21, D23) is tight.

G.5. Proofs for Auxiliary Lemmas

We finish this section by providing the proofs for auxiliary lemmas we used in the last section.

Proof of Lemma G.5. Since (D21, D23) is a pair of imbalance matrices, there exists W2W
T
2 , such that

W2W
T
2 ⪰n D21,W

T
2 W2 ⪰m D23 , (G.18)

because at least our weight initialization W1(0),W2(0),W3(0) have to satisfy W2(0)W2(0)
T − WT

1 (0)W1(0) =
D21,W

T
2 (0)W2(0)−W3(0)W

T
3 (0) = D23.

Therefore, for 0 < i ≤ h1 − n,

λi+n(D̄h1
) = max{λi+n(D21), λi+n(D23), 0} ≤ λi+n(W2W

T
2 ) ≤ λi(D21) ≤ λi(D̄h1

) ,

where the first two inequalities uses (G.18) and the fact that λi+n(W2W
T
2 ) = λi+n(W

T
2 W2). Also the last inequality is

from the fact that λi(D̄h1
) = max{λi(D21), λi(D23), 0},∀i ∈ [h1].

For h1 ≥ i > h1 − n, we still have

−∞ = λi+n(D̄h1) ≤ λi(D21) ≤ λi(D̄h1) ,

Overall, we have
λi+n(D̄h1) ≤ λi(D21) ≤ λi(D̄h1) ,∀i ,

which is exactly D̄h1 ⪰n D21.

Similarly, for 0 < i ≤ h2 −m,

λi+m(D̄h2
) = max{λi+m(D21), λi+m(D23), 0} ≤ λi+m(WT

2 W2) ≤ λi(D23) ≤ λi(D̄h2
) ,

where the first two inequalities uses (G.18) and the fact that λi+m(W2W
T
2 ) = λi+m(WT

2 W2). Also the last inequality is
from the fact that λi(D̄h2

) = max{λi(D21), λi(D23), 0},∀i ∈ [h2].

For h2 ≥ i > h2 −m, we still have

−∞ = λi+m(D̄h2) ≤ λi(D23) ≤ λi(D̄h2) ,

Overall, we have
λi+m(D̄h2) ≤ λi(D23) ≤ λi(D̄h2) ,∀i ,

which is exactly D̄h2 ⪰m D23.



Proof of Lemma G.6. Notice that rank(ZTZ) ≤ r, hence we consider the eigendecomposition

ZTZ =

r∑
i=1

λi(Z
TZ)viv

T
i ,

where vi are unit eigenvectors of ZTZ. Then we can write

A− λr(Z
TZ)viv

T
i −

r−1∑
i=1

λi(Z
TZ)viv

T
i = B

We let D = A− λr(Z
TZ)viv

T
i , then by Lemma G.3, we know A ⪰1 D, and D ⪰r−1 B, which suggests that ∀i,

λi+1(A) ≤ λi(D) ≤ λi(A) (G.19)
λi+r−1(D) ≤ λi(B) ≤ λi(D) . (G.20)

In particular, we have λi(D) ≤ λi(A) from (G.19) and λi(D) ≤ λi+1−r(B) from (G.20), which suggests

λi(D) ≤ min{λi(A), λi+1−r(B)} = λi (A ∧r B) ,∀i .

Hence
tr(A ∧r B) ≥ tr(D) = tr(A)− λr(Z

TZ)tr(viv
T
i ) = tr(A)− λr(Z

TZ) .

This proves the first inequality.

For the second the inequality, let x be the unit eigenvector associated with λr(ZAZT ), then λr(ZAZT ) = xTZAZTx.
Now write

A− ZxxTZT − Z(I − xxT )ZT = B .

Let D̃ = A− ZxxTZT , then again by Lemma G.3 we have A ⪰1 D̃, and D̃ ⪰r−1 B.

Notice that

D̃2 = (A− ZxxTZT )2

= A2 + (ZxxTZT )2 −AZxxTZT − ZxxTZTA .

Taking trace on both side of this equation and using the cyclic property of trace operation lead to

tr(D̃2) = tr
(
A2
)
+ ∥Zx∥4 − 2λr(ZAZT ) . (G.21)

We only need to lower bound ∥Zx∥4 − tr(D̃2), for which we write the eigendecomposition D̃ using eigenpairs
{(λi(D̃), ui)}ni=1 as

D̃ =

n∑
i=1

λi(D̃)uiu
T
i =

n−1∑
j=1

λi(D̃)uiu
T
i + λn(D̃)unu

T
n .

Then we have

∥Zx∥2 = tr(ZxxTZT ) = tr(A)− tr(D̃)

= tr(A)−
n−1∑
j=1

λj(D̃)− λn(D̃)

≥ tr(A)−
n−1∑
j=1

λj(A ∧r B)− λn(D̃)

= tr(A)− tr(A ∧r B) + λn(A ∧r B)− λn(D̃) ,

where the inequality follows similar argument in the previous part of the proof and uses

λi(D̃) ≤ min{λi(A), λi+1−r(B)} = λi (A ∧r B) , (G.22)



from the fact that A ⪰1 D̃, and D̃ ⪰r−1 B.

Now examine the right-hand side carefully: The first component tr(A) − tr(A ∧r B) is non-negative because λi(A) ≥
λi(A ∧r B),∀i. The second component λn(A ∧r B)− λn(D̃) is non-negative as well by (G.22). Therefore the right-hand
side is non-negative and we can take square on both sides of the inequality, namely,

∥W1x∥4 ≥
(
tr(A)− tr(A ∧r B) + λn(A ∧r B)− λn(D̃)

)2
. (G.23)

We also have

tr(D̃2) =

n−1∑
i=1

λ2
i (D̃) + λ2

n(D̃)

≤
n−1∑
i=1

λ2
i (A ∧r B) + λ2

n(D̃)

= tr
(
(A ∧r B)2

)
− λ2

n(A ∧r B) + λ2
n(D̃) , (G.24)

The inequality holds because for i = 1, · · · , n− 1,

0 ≤ λi+1(A) ≤ λi(D̃) ≤ λi(A ∧r B) ,

where the inequality on the left is from A ⪰1 D̃ and the inequality on the right is due to (G.22).

With those two inequalities (G.23)(G.24), we have (For simplicity, denote λ∧ := λn(A ∧r B), λ̃ := λn(D̃))

∥W1x∥4 − tr(D̃2)−
[
(tr(A)− tr(A ∧r B))

2 − tr
(
(A ∧r B)2

)]
≥ λ2

∧ + λ̃2 − 2λ∧λ̃+ 2(λ∧ − λ̃)(tr(A)− tr(A ∧r B)) + λ2
∧ − λ̃2

= 2λ2
∧ − 2λ∧λ̃+ 2(λ∧ − λ̃)(tr(A)− tr(A ∧r B))

= 2(λ∧ − λ̃)(tr(A)− tr(A ∧r B) + λ∧) ≥ 0 ,

where the last inequality is due to the facts that λ∧ ≥ λ̃ by (G.22) and

tr(A)− tr(A ∧r B) + λ∧

=

n−1∑
i=1

(λi(A)− λi(A ∧r B)) + λn(A) ≥ 0 .

This shows
∥Zx∥4 − tr(D̃2) ≥ (tr(A)− tr(A ∧r B))

2 − tr
(
(A ∧r B)2

)
.

Finally from (G.21) we have

2λr(ZAZT ) = tr
(
(A)2

)
+ ∥Zx∥4 − tr(D̃2)

≥ tr
(
(A)2

)
− tr

(
(A ∧r B)2

)
+ (tr(A)− tr(A ∧r B))

2
.

To proof Lemma G.7, we need one final lemma

Lemma G.8. Given two real symmetric matrices A,B of order n, for any r ≤ n, if A ⪰r B, then A ⪰1 (A ∧r B) and
(A ∧r B) ⪰r−1 B.

Proof. Denote D := A ∧r B, we show A ⪰1 D and D ⪰r−1 B. The following statements holds for any index i ∈ [n].

First of all, we have
λi(D) = min{λi(A), λi+1−r(B)} ≤ λi(A) , (G.25)



and
λi+1(A) ≤ min{λi(A), λi+1−r(B)} = λi(D) , (G.26)

where λi+1(A) ≤ λi+1−r(B) is from A ⪰r B. (G.25)(G.26) together show A ⪰1 D.

Next, notice that
λi(B) ≤ min{λi(A), λi+1−r(B)} = λi(D) , (G.27)

where λi(B) ≤ λi(A) is from A ⪰r B, and

λi+r−1(D) = min{λi+r−1(A), λi(B)} ≤ λi(B) (G.28)

(G.27)(G.28) together show D ⪰r−1 B.

Then we are ready to prove Lemma G.7

Proof of Lemma G.7. Denote D := A ∧r B. We have shown in Lemma G.8 that A ⪰1 D and D ⪰r−1 B.

With the two interlacing relations, we know there exist x ∈ Rn×1, X ∈ Rn×(r−1) and some orthogonal matrices V1, V2 ∈
O(n) such that

A− xxT = V1DV T
1 , D −XXT = V2BV T

2 , (G.29)

then let V := V1V2, we have

A− xxT − V1XXTV T
1 = V1V2BV T

2 V T
1 = V BV T . (G.30)

Notice that

xxT + V1XXTV T
1 =

[
x V1X

] [ xT

XTV T
1

]
,

then with ZT :=
[
x V1X

]
∈ Rn×r, we can write

A− ZTZ = V1V2BV T
2 V T

1 = V BV T .

It remains to show λr(ZZT ) and 2λr(ZAZT ) have the exact expressions as stated.

Notice that A− xxT = V1DV T
1 , then we have

∥x∥2 = tr(xxT ) = tr(A− V1DV T
1 ) = tr(A)− tr(D) . (G.31)

Moreover, taking trace on both sides of (A− xxT )2 = (V1DV T
1 )2 yields

tr
(
(A)2

)
− 2xTAx+ ∥x∥4 = tr(D2) ,

from which we have

2xTAx = tr(A)− tr(D2) + ∥x∥4 = tr(A)− tr(D2) + (tr(A)− tr(D))
2
. (G.32)

Finally, notice that the first diagonal entry of

ZZT =

[
xT

XTV T
1

] [
x V1X

]
=

[
∥x∥2 xTX
XTx XTX

]
is ∥x∥2, we have, by Horn & Johnson (2012, Corollary 4.3.34),

λr(ZZT ) ≤ ∥x∥2 = tr(A)− tr(D) = tr(A)− tr(A ∧r B) .

Since we have already shown in Lemma G.6 that

λr(ZZT ) ≥ tr(A)− tr(A ∧r B) ,

we must have the exact equality λr(ZZT ) = tr(A)− tr(A ∧r B).



Similarly, the first diagonal entry of

ZAZT =

[
xT

XTV T
1

]
A
[
x V1X

]
=

[
xTAx xTAX
XTAx XTAX

]
is xTAx, then we have, by Horn & Johnson (2012, Corollary 4.3.34),

2λr(ZAZT ) ≤ 2xTAx = tr
(
A2
)
− tr

(
(A ∧r B)2

)
+ (tr(A)− tr(A ∧r B))

2
.

Again, Lemma G.6 shows the inequality in the opposite direction, hence one must take the equality

2λr(ZAZT ) = xTAx = tr
(
A2
)
− tr

(
(A ∧r B)2

)
+ (tr(A)− tr(A ∧r B))

2
.



H. Simplification of the bound in Theorem 2 under unimodality assumption
Consider weights {W1,W2,W3} with unimodality index l∗, there are three cases:

l∗ = 1: D21 ⪰ 0, D23 ⪯ 0

Definiteness of imbalance matrix put rank constraints on the weight matrices:

Since WT
2 W2 − W3W

T
3 = D23 ⪯ 0, rank(W3W

T
3 ) ≤ m implies rank(D23) ≤ m. (D23 can only have negative, if

non-zero, eigenvalues and any negative eigenvalue is contributed from W3W
T
3 .)

rank(D23) ≤ m and D23 ⪯ 0 together implies rank(WT
2 W2) ≤ m (WT

2 W2 having positive invariant subspace with
dimension larger than m will give positive eigenvalue to D23), which is equivalent to rank(WT

2 W2) ≤ m.

rank(WT
2 W2) ≤ m forces rank(D21) ≤ m. (D22 can only have positive, if non-zero, eigenvalues and any positive

eigenvalue is contributed from WT
2 W2.)

In summary, we have rank(D23) ≤ m and rank(D21) ≤ m, which implies,

λi(D23) =

{
= 0, 1 ≤ i < h2 −m+ 1

≤ 0, h2 −m+ 1 ≤ i ≤ h2

, λi(D21) =

{
≥ 0, 1 ≤ i < m

= 0, m+ 1 ≤ i ≤ h1

.

We also have

D̄h1 = diag{max{λi(D21), 0}}h1
i=1 = diag{λi(D21)}h1

i=1, D̄h2 = diag{max{λi(D21), 0}}h2
i=1 ,

Then

D̄h1 ∧n D21 = D̄h1 , D̄h2 ∧m D23 =


λi(D21), 1 ≤ i ≤ m− 1

0, m ≤ i < h2

λh2+1−m(D23), i = h2

.

hence ∆21 = ∆
(2)
21 = 0, and

∆23 = λm(D21)− λh2+1−m(D23)

∆
(2)
23 = λ2

m(D21)− λ2
h2+1−m(D23)

∆2
23 +∆

(2)
23 = 2λm(D21)(λm(D21)− λh2+1−m(D23)) .

l∗ = 3: D23 ⪰ 0, D21 ⪯ 0

Similar to previous cases, (by considering unimodal weights {WT
3 ,WT

2 ,WT
1 })

∆23 = ∆
(2)
23 = 0,∆2

21 +∆
(2)
21 = 2λr(D23) (λn(D23)− λh1+1−n(D21)) .

l∗ = 2: D23 ⪯ 0, D21 ⪯ 0

D23, D21 being negative semi-definite implies rank(D21) ≤ n, rank(D23) ≤ m.

In this cases,
D̄h1

= 0, D̄h2
= 0 ,

and

D̄h1 ∧n D21 =

{
0, 1 ≤ i < h1

λh1+1−n(D21), i = h1

, D̄h2 ∧m D23 =

{
0, 1 ≤ i < h2

λh2+1−m(D23), i = h2

,

then

∆21 = −λh1+1−n(D21), ∆23 = −λh2+1−m(D23),

∆
(2)
21 = −λ2

h1+1−n(D21), ∆
(2)
23 = −λ2

h2+1−m(D23) = 0 .

Therefore
2∆21∆23 = 2 (−λh1+1−n(D21)) (−λh2+1−m(D23)) ,∆

2
21 +∆

(2)
21 = ∆2

23 +∆
(2)
23 .



I. Proofs for deep models
We prove Theorem 3 in two parts: First, we prove the lower bound under the unimodality assumption in Section I.1. Then
we show the bound for the weights with homogeneous imbalance in Section I.2.

I.1. Lower bound on λmin(T{Wl}L
l=1

) under unimodality

We need the following two Lemmas (proofs in Section I.3):
Lemma 4. Given A ∈ Rn×h, B ∈ Rh×m, and D = ATA−BBT ∈ Rh×h. If rank(A) ≤ r and D ⪰ 0, then

1. rank(B) ≤ r, and rank(D) ≤ r.

2. There exists Q ∈ Rh×r with QTQ = Ir, such that

AQQTB = AB, AQQTAT = AAT , BTQQTB = BTB ,

and λi(Q
TDQ) = λi(D), i = 1, · · · , r.

Lemma 5. For W1 ∈ Rn×h1 ,W2 ∈ Rh1×h2 · · · ,WL−1 ∈ RhL−2×hL−1 and WL ∈ RhL−1×hL such that

Dl = WT
l Wl −Wl+1W

T
l+1 ⪰ 0 , l = 1, · · · , L− 1

we have

λn(W1W2 · · ·WL−1W
T
L−1 · · ·WT

2 WT
1 ) ≥

L−1∏
i=1

L−1∑
l=i

λn(Dl) .

Then we can prove the following:
Theorem I.1. For weights {Wl}Ll=1 with unimodality index l∗, we have

λmin

(
T{Wl}L

l=1

)
≥

L−1∏
l=1

d̃(i) . (I.33)

Proof. Recall that

T{Wl}L
l=1

E =

L∑
l=1

(
l−1∏
i=1

Wi

)(
l−1∏
i=1

Wi

)T

E

(
L+1∏
i=l+1

Wi

)T ( L+1∏
i=l+1

Wi

)
,W0 = In,WL+1 = Im .

For simplicity, define p.s.d. operators

TlE :=

(
l−1∏
i=1

Wi

)(
l−1∏
i=1

Wi

)T

E

(
L+1∏
i=l+1

Wi

)T ( L+1∏
i=l+1

Wi

)
, l = 1, · · · , L

Then T{Wl}L
l=1

=
∑L

l=1 Tl.

When l∗ = L, we have, by Lemma 5,

λmin(T{Wl}L
l=1

) ≥ λmin(TL) = λn(W1 · · ·WL−1W
T
L−1 · · ·WT

1 ) ≥
L−1∏
i=1

L−1∑
l=i

λn(Dl) =

L−1∏
l=1

d̃(i) .

When l∗ = 1, we have, again by Lemma 5,

λmin(T{Wl}L
l=1

) ≥ λmin(T1) = λm(WT
L · · ·WT

2 W2 · · ·WL) ≥
L−1∏
i=1

L−1∑
l=i

λm(−DL−l)

=

L−1∏
i=1

L−i∑
l=1

λm(−Dl)

=

L−1∏
i=1

i∑
l=1

λm(−Dl) =

L−1∏
l=1

d̃(i) .



(To see Lemma 5 applies to the case l∗ = 1, consider the following

WT
L → W1, · · · ,WT

L−l+1 → Wl, · · · ,WT
1 → WL ,

and this naturally leads to −DL−l → Dl. The expressions on the right-hand side of the arrow are those appearing in Lemma
5.)

Now for unimodality index 1 < l∗ < L, we have

λmin(T{Wl}L
l=1

) ≥ λmin(Tl∗) = λn(W1 · · ·Wl∗−1W
T
l∗−1 · · ·W1)λm(WT

L · · ·WT
l∗+1Wl∗+1 · · ·WL) .

Now apply Lemma 5 to both {W1, · · · ,Wl∗−1,Wl∗} and {WT
L , · · · ,WT

l∗+1,W
T
l∗}, we have

λn(W1 · · ·Wl∗−1W
T
l∗−1 · · ·W1) ≥

l∗−1∏
i=1

l∗−1∑
l=i

λn(Dl) =

l∗−1∏
i=1

d̃(i) , (I.34)

and

λm(WT
L · · ·WT

l∗+1Wl∗+1 · · ·WL) ≥
L−l∗∏
i=1

L−l∗∑
l=i

λm(−DL−l)

=

L−l∗∏
i=1

L−i∑
l=l∗

λm(−Dl)

=

L−1∏
i=l∗

i∑
l=l∗

λm(−Dl) =

L−1∏
i=l∗

d̃(i) . (I.35)

Combining (I.34) and (I.35), we have

λn(W1 · · ·Wl∗−1W
T
l∗−1 · · ·W1)λm(WT

L · · ·WT
l∗+1Wl∗+1 · · ·WL) ≥

L−1∏
i=1

d̃(i) , (I.36)

which leads to λmin(T{Wl}L
l=1

) ≥
∏L−1

i=1 d̃(i). The proof is complete as we have shown λmin(T{Wl}L
l=1

) ≥
∏L−1

i=1 d̃(i) for
any unimodality index l∗ ∈ [L].

I.2. Lower bound on λmin(T{Wl}L
l=1

) under homogeneous imbalance

We need the following Lemma (proof in Section I.3):

Lemma I.2. Given any set of scalars {wl}Ll=1 such that d(i) := w2
i − w2

L ≥ 0, i = 1, · · · , L− 1, we have

L∑
l=1

∏
i ̸=l

w2
i =

L∑
l=1

w2

w2
l

≥

√√√√(L−1∏
i=1

d(i)

)2

+
(
Lw2−2/L

)2
, (I.37)

where w =
∏L

l=1 wl.

Then we can prove the following:

Theorem I.3. For weights {Wl}Ll=1 with homogeneous imbalance, we have

λmin

(
T{Wl}L

l=1

)
≥

√√√√(L−1∏
l=1

d̃(i)

)2

+
(
Lσ

2−2/L
min (W )

)2
, W =

L∏
l=1

Wl . (I.38)

Proof. When all imbalance matrices are zero matrices, this is the balanced case (Arora et al., 2018b) and λmin

(
T{Wl}L

l=1

)
=

Lσ
2−2/L
min (W ). Here we only prove the case when some dl ̸= 0.



Notice that given the homogeneous imbalance constraint

WT
l Wl −Wl+1W

T
l+1 = dlI ,

WT
l Wl and Wl+1W

T
l+1 must be co-diagonalizable: If we have QTQ = I such that QTWT

l WlQ is diagonal, then
QTWl+1W

T
l+1Q must be diagonal as well since QTWT

l WlQ−QTWl+1W
T
l+1Q = dlI .

Moreover, if the diagonal entries of QTWT
l WlQ are in decreasing order, then so are those of QTWl+1W

T
l+1Q because the

latter is the shifted version of the former by dl.

This suggests that all Wl, l = 1, · · · , L have the same rank and one has the following decomposition of the weights:

Wl = Ql−1ΣlQ
T
l , (I.39)

Here, Σl, l = 1, · · · , L are diagonal matrix of size k = min{n,m} whose entries are in decreasing order. And Ql ∈
Rhl×min{n,m} with QT

l Ql = I . (h0 = n, hL = m). From such decomposition, we have

W = W1 · · ·WL = Q0Σ1Q
T
1 Q1Σ2Q

T
2 · · ·QL−1ΣLQ

T
L = Q0

(
L∏

l=1

Σl

)
QT

L , (I.40)

thus

σmin(W ) =

L∏
l=1

λmin(Σl) . (I.41)

Regarding the imbalance, we have

QT
l (W

T
l Wl −Wl+1W

T
l+1)Ql = dlI ⇒ Σ2

l − Σ2
l+1 = dlI , (I.42)

which suggests that
λ2
min(Σl)− λ2

min(Σl+1) = dl, l = 1, · · · , L− 1 . (I.43)

Now consider the set of scalars {wl}Ll=1:

wl = λmin(Σl), l = 1, · · · , l∗ − 1

wl = λmin(Σl+1), l = l∗, · · · , L− 1

wL = λmin(Σl∗) .

Then {wl}Ll=1 satisfy the assumption in Lemma I.2:

w2
i − w2

L = d̃(i) ≥ 0, i = 1, · · · , L− 1 , (I.44)

where d̃(i) is precisely the cumulative imbalance. Then Lemma I.2 gives ((I.41) is also used here)

L∑
l=1

∏
i ̸=l

w2
i ≥

√√√√(L−1∏
i=1

d̃(i)

)2

+
(
Lσ

2−2/L
min (W )

)2
(I.45)

Recall that

T{Wl}L
l=1

E =

L∑
l=1

(
l−1∏
i=0

Wi

)(
l−1∏
i=0

Wi

)T

E

(
L+1∏
i=l+1

Wi

)T ( L+1∏
i=l+1

Wi

)
,W0 = In,WL+1 = Im .

For simplicity, define p.s.d. operators

TlE :=

(
l−1∏
i=0

Wi

)(
l−1∏
i=0

Wi

)T

E

(
L+1∏
i=l+1

Wi

)T ( L+1∏
i=l+1

Wi

)
, l = 1, · · · , L



Then T{Wl}L
l=1

=
∑L

l=1 Tl.

Notice that the summand
∏

i ̸=l w
2
i exactly corresponds to one of λmin(Tl). For example,

λmin(T1) = λmin(W
T
L · · ·WT

2 W2 · · ·WL) = λmin

(
QT

L

(
L∏

l=2

Σ2
l

)
QL

)
=
∏
i ̸=1

w2
i . (I.46)

More precisely, we have

λmin(Tl) =
∏
i ̸=l

w2
i , l < l∗

λmin(Tl) =
∏

i ̸=l−1

w2
i , l > l∗

λmin(Tl) =
∏
i ̸=L

w2
i , l = l∗ .

Therefore, we finally have

λmin(T{Wl}L
l=1

) ≥
L∑

l=1

λmin(Tl) =
L∑

l=1

∏
i ̸=l

w2
i ≥

√√√√(L−1∏
i=1

d̃(i)

)2

+
(
Lσ

2−2/L
min (W )

)2
. (I.47)

I.3. Proofs for Auxiliary Lemmas

Proofs for Lemma 5. The proof is rather simple when n = h1 = h2 = · · · = hL−1: Notice that

λn(W1W2 · · ·WL−1W
T
L−1 · · ·WT

2 WT
1 )

≥ λn(WL−1W
T
L−1) · λn(W1W2 · · ·WL−2W

T
L−2 · · ·WT

2 WT
1 )

≥ λn(WL−1W
T
L−1) · λn(WL−2W

T
L−2) · λn(W1W2 · · ·WL−3W

T
L−3 · · ·WT

2 WT
1 )

· · ·

≥
L−1∏
i=1

λn(WiW
T
i ) .

Then it remains to show that λn(WiW
T
i ) ≥

∑L−1
l=i λn(Dl) for i = 1, · · · , L− 1.

Suppose λn(WkW
T
k ) ≥

∑L−1
l=k λl(D) for some k ∈ [L− 1], then we have

λn(Wk−1W
T
k−1) = λn(W

T
k−1Wk−1)

= λn(WkW
T
k +Dk−1)

≥ λn(WkW
T
k ) + λn(Dk−1)

≥
L−1∑
l=k

λn(Dl) + λn(Dk−1) =

L−1∑
l=k−1

λn(Dl) .

Therefore, we only need to show λn(WL−1W
T
L−1) ≥ λn(DL−1) then the rest follows by the induction above. Indeed

λn(WL−1W
T
L−1) = λn(W

T
L−1WL−1) = λn(WLW

T
L +DL−1) ≥ λn(DL−1) ,

which finishes the proof for the case of n = h1 = h2 = · · · = hL−1.

When the above assumptions does not hold, Lemma 4 allows us to related the set of weights {Wl}Ll=1 to the one {W̃l}Ll=1

that satisfy the equal dimension assumption. More specifically, apply Lemma 4 using each imbalance constraint

Dl = WT
l Wl −Wl+1W

T
l+1 ⪰ 0 , l = 1, · · · , L− 1 ,



to obtain a Ql ∈ Rhl×n that has all the property in Lemma (4). Use these Ql, l = 1, · · · , L− 1 to define

W̃l = QT
l−1WlQl , l = 1, · · · , L,

D̃l = W̃T
l W̃l − W̃T

l+1W̃l+1 , l = 1, · · · , L− 1 ,

where Q0 = I,QL = I . Now {W̃l}Ll=1 satisfies the assumption that n = h1 = · · · = hL−1, then

λn(W̃1W̃2 · · · W̃L−1W̃
T
L−1 · · · W̃T

2 W̃T
1 ) ≥

L−1∏
i=1

L−1∑
l=i

λn(D̃l) . (I.48)

Using the properties of Ql ∈ Rhl×n, l = 1, · · · , L− 1, we have

λn(W̃1W̃2 · · · W̃L−1W̃
T
L−1 · · · W̃T

2 W̃T
1 )

= λn(W1Q1Q
T
1 W2Q2 · · ·QT

L−2WL−1QL−1Q
T
L−1W

T
L−1Q

T
L−2 · · ·QT

2 W
T
2 Q1Q

T
1 W

T
1 )

= λn(W1W2 · · ·WL−1W
T
L−1 · · ·WT

2 WT
1 ) ,

and
L−1∏
i=1

L−1∑
l=i

λn(D̃l) =

L−1∏
i=1

L−1∑
l=i

λn(Q
T
l DlQl) =

L−1∏
i=1

L−1∑
l=i

λn(Dl) .

Therefore, (I.48) is exactly

λn(W1W2 · · ·WL−1W
T
L−1 · · ·WT

2 WT
1 ) ≥

L−1∏
i=1

L−1∑
l=i

λn(Dl) . (I.49)

Proofs for Lemma 4. Since rank(A) ≤ r, A has a compact SVD A = PΣAQ
T such that Q ∈ Rh×r and QTQ = Ir.

This is exactly Q we are looking for. Let Q⊥Q
T
⊥ = Ih − QQT be the projection onto the subspace orthogonal to the

columns of Q. Then

D = ATA−BBT ⇒ QT
⊥DQ⊥ = QT

⊥A
TAQ⊥ −QT

⊥BBTQ⊥ ⇒ QT
⊥DQ⊥ +QT

⊥BBTQ⊥ = 0 .

QT
⊥DQ⊥ and QT

⊥BBTQ⊥ are two p.s.d. matrices whose sum is zero, which implies

QT
⊥DQ⊥ = 0, DQ⊥ = 0, QT

⊥BBTQ⊥ = 0, BTQ⊥ = 0 .

QT
⊥DQ⊥ = 0 shows that the nullspace of D has at least dimension h− r, i.e., rank(D) ≤ r.

Moreover

AQQTB = A(Ih −Q⊥Q
T
⊥)B = AB

AQQTAT = A(Ih −Q⊥Q
T
⊥)A

T = AAT

BTQQTB = BT (Ih −Q⊥Q
T
⊥)B = BTB

The last equality BTB = BTQQTB shows that rank(B) ≤ r.

Lastly, we have, for i = 1, · · · , r,

λi(Q
TDQ) = λi(QQTD) = λi((Ih −Q⊥Q

T
⊥)D) = λi(D) .

Before proving Lemma I.2, we state a Lemma that will be used in the proof.



Lemma I.4. Given positive xi, i = 1, · · · , n, we have

n∑
i=1

xi ≥ n

(
n∏

i=1

xi

)1/n

.

Proof. This is from the fact that arithmetic mean of {xi}ni=1 is greater than the geometric mean of {xi}ni=1.

We are ready to prove Lemma I.2.

Proof of Lemma I.2. We denote

τ{wl}L
i=1

:=

L∑
l=1

∏
i ̸=l

w2
i (I.50)

Notice that w2
i = w2

L +
∑L−1

j=i (w
2
j − w2

j+1) = w2
L + d(i). Let d(L) = 0, we write the expression for τ as

τ{wl}L
i=1

=

L∑
l=1

∏
i ̸=l

w2
i =

L∑
l=1

∏
i ̸=l

(
w2

L + d(i)
)
:= τ(w2

L; {d(i)}L−1
i=1 ) .

Therefore, when fixing {d(i)}L−1
i=1 , τ can be viewed as a function of w2

L.

When w = 0: one of wl must be zero, and because w2
L has the least value among all the weights, we know w2

L = 0. Then

τ{wl}L
i=1

= τ(0; {d(i)}L−1
i=1 ) =

L−1∏
i=1

d(i) ,

i.e. we actually have equality when w = 0.

When w ̸= 0: then w2 ̸= 0 and we write

w2 =

L∏
l=1

w2
l = w2

L

L−1∏
l=1

(
w2

L + d(l)
)
:= p(w2

L; {d(i)}L−1
i=1 ) ,

which shows w2 is a function of w2
L when {d(i)}L−1

i=1 are fixed. Here we use p to denote w2 for simplicity. Moreover,
function p: R≥0 → R≥0 has differentiable inverse p−1 as long as p > 0, because

dp

dw2
L

=

L∑
l=1

∏
i ̸=l

(
w2

L + d(i)
)
=

L∑
l=1

∏
i ̸=l

w2
i

(Lemma I.4)
≥ L

(
pL−1

)1/L
> 0 ,

and inverse function theorem (Rudin, 1953) shows the existence of differentiable inverse. Whenever, p−1 exists, it derivative
is

dw2
L

dp
=

 L∑
l=1

∏
i ̸=l

(
w2

L + d(i)
)−1

= τ−1 .

Now pick any 0 < p0 ≤ w2 we have, by Fundamental Theorem of Calculus,

τ2{wl}L
l=1

= τ2(p−1(w2); {d(i)}L−1
i=1 )

= τ2(p−1(p0); {d(i)}L−1
i=1 ) +

∫ p−1(w2)

p−1(p0)

d

dw2
L

τ2(w2
L; {d(i)}L−1

i=1 )dw2
L



For the first part, we have

τ2(p−1(p0); {d(i)}L−1
i=1 )

=

 L∑
l=1

∏
i̸=l

(
p−1(p0) + d(i)

)2

≥

∏
i̸=L

(
p−1(p0) + d(i)

)2

≥

(
L−1∏
i=1

d(i)

)2

,

and for the second part, we have ∫ p−1(w2)

p−1(p0)

d

dw2
L

τ2dw2
L

=

∫ p−1(w2)

p−1(p0)

2τ
d

dw2
L

τdw2
L

=

∫ p−1(w2)

p−1(p0)

2τ

L∑
l=1

∑
i ̸=l

∏
j ̸=i,j ̸=l

(w2
L + d(j))dw

2
L

=

∫ p−1(w2)

p−1(p0)

2τ

L∑
l=1

∑
i ̸=l

p

w2
iw

2
l

dw2
L

(Lemma I.4) ≥
∫ p−1(w2)

p−1(p0)

2τL(L− 1)

 L∏
l=1

∏
i ̸=l

p

w2
iw

2
l

 1
L(L−1)

dw2
L

=

∫ p−1(w2)

p−1(p0)

2τL(L− 1)

(
pL(L−1)

p2L−2

) 1
L(L−1)

dw2
L

=

∫ p−1(w2)

p−1(p0)

2τL(L− 1)p1−2/Ldw2
L

(dw2
L = τ−1dp) =

∫ w2

p0

2L(L− 1)p1−2/Ldp = L2p2−2/L
∣∣∣w2

p0

=
(
Lw2−2/L

)2
− L2p

2−2/L
0 .

Overall, for any 0 < p0 ≤ w2, we have

τ2{wl}L
l=1

≥

(
L−1∏
i=1

d(i)

)2

+
(
Lw2−2/L

)2
− L2p

2−2/L
0 .

Let p0 → 0, we have τ2 ≥
(∏L−1

i=1 d(i)

)2
+
(
Lw2−2/L

)2
, i.e.

τ ≥

√√√√(L−1∏
i=1

d(i)

)2

+
(
Lw2−2/L

)2
.


