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Abstract— Lyapunov’s direct method is a powerful tool that
provides a rigorous framework for stability analysis and control
design for dynamical systems. A critical step that enables the
application of the method is the existence of a Lyapunov func-
tion V —a function whose value monotonically decreases along
the trajectories of the dynamical system. Unfortunately, finding
a Lyapunov function is often tricky and requires ingenuity,
domain knowledge, or significant computational power. At the
core of this challenge is the fact that the method requires
every sub-level set of V (V≤c) to be forward invariant, thus
implicitly coupling the geometry of V≤c and the trajectories of
the system. In this paper, we seek to disentangle this dependence
by developing a direct method that substitutes the concept
of invariance with the more flexible notion of recurrence. A
set is (τ -)recurrent if every trajectory that starts in the set
returns to it (within τ seconds). We show that, under mild
conditions, the recurrence of sub-level sets V≤c is sufficient
to guarantee stability and introduce the appropriate stronger
notions to obtain asymptotic stability and exponential stability.
We further provide a GPU-based algorithm to verify whether
V satisfies such recurrence conditions up to an arbitrarily small
neighborhood of the equilibrium.

I. INTRODUCTION

Lyapunov stability theory plays a central role in the study
of dynamical systems. It provides a rigorous mathemati-
cal framework for qualitatively analyzing system solutions
and has heavily influenced systems theory and engineering
over the past century. A fundamental tool derived from
this theory is the so-called Lyapunov direct method, a.k.a.
Lyapunov’s second method [1], which states mild conditions
on a function V (x) (non-increasing along trajectories and
proper) that can certify stability of an equilibrium point.
Since first proposed in 1892, Lyapunov’s direct method has
found ubiquitous applications across multiple branches of
engineering, including aerospace, electrical, mechanical, and
chemical, among others [2]–[4].

A critical step in the application of Lyapunov’s direct
method is finding the function V that indeed satisfies all
the conditions stated by the theory. Unfortunately, while the
existence of such a function is known to exist via converse
theorems [5], manually finding a Lyapunov function is often
tricky and relies on ingenuity and deep domain knowledge.
To circumvent this step, a variety of computational methods
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have been proposed for finding Lyapunov functions [6], e.g.,
via the use of partial differential equation (PDE) solvers to
solve Zubov’s Equation [7], [8], linear programs (LPs) to find
piece-wise linear Lyapunov functions [9], and semidefinite
programs (SDPs) to solve linear matrix inequalities (LMIs)
[10] or sum of square (SoSs) problems [11]. However, the
computational complexity is known to exponentially increase
with not only the dimension of the state space but also the
parameterization of the Lyapunov function [6], [12].

This has led to multiple investigations into relaxing the
conditions required for V , and in particular, its time deriva-
tive V̇ . Such relaxations can be broadly divided into three
groups. The first group seeks LaSalle-Krasovskii type of con-
ditions by relaxing the negative definiteness of V̇ , i.e., only
requiring V̇ ≤ 0; see [4], [13] and its generalization [14],
[15]. The second group further relaxes the strict negative
definite condition Lyapunov method by allowing V̇ > 0
on some regions of the state space. This is implicitly done
by using generalizations of the comparison lemma [16] to
impose conditions on higher order time derivatives of V that
still ensure convergence of V → 0 while allowing V̇ > 0
for some regions of the state space. The third and final
group, known as the discretization method, considers a fixed
parameter T > 0 and leverages the net decrement of V
across any trajectory x(t), i.e., V (x(t + T )) − V (x(t)), to
reason about stability [17], [18]. Unfortunately, despite such
efforts, the basic principle can still be traced back to the
(indirect) construction of a Lyapunov function whose sub-
level sets are invariant [19], [20], which still needs to be
verified either analytically or via the solution of a convex
program, rendering similar verification challenges as before.

At the core of this challenge is that the Lyapunov direct
method implicitly constrains the shape of the function by
requiring every sub-level set to be an invariant set. In this
paper, we seek to relax this condition by replacing the
invariance of sub-level sets with a weaker notion known as
recurrence–a set is (τ -)recurrent if every trajectory that starts
in the set returns to it (within τ seconds). Such relaxation
has been recently shown to provide a powerful mechanism
for estimating regions of attractions of stable equilibrium
points [21]. Herein, we seek to explore their role in certifying
stability. To that end, we derive conditions on a function V
that renders its sub-level sets recurrent. We show that, under
properly defined progressively stricter conditions, recurrence
can be used to show (asymptotic) stability (Theorem 1), and
exponential stability (Theorem 2).

Our derived conditions for V are similar in spirit to the
ones considered by Karafyllis in [20], which considers robust
stability analogs (c.f. Proposition 2.3 and 2.5). Particularly,



our asymptotic stability conditions seem to be contemplated
by [20, Prop. 2.5]. Our stability and exponential stability
conditions are, however, new and not present in prior work.
More importantly, the focus of our paper is on exploring the
connection of such conditions with the recurrence of level
sets of V and developing highly parallelizable algorithms
that can be implemented on GPUs, whereas [20], focuses on
robust stability and provides Matrosov-type conditions that
imply such level set recurrence.

The rest of this paper is organized as follows. In Sec-
tion II, we introduce preliminary definitions for dynamical
systems and stability. Section III introduces the concepts of
recurrence and τ -recurrence and characterizes properties of
a function V that render its sub-level sets recurrent. We then
move towards proving stability and asymptotic stability of an
equilibrium point in Section IV. A critical step of this effort
is showing that under mild conditions, τ -recurrence leads to
the boundedness of trajectories, thus making recurrent sets
functionally equivalent to invariant sets in proving stability.
We further extend our analysis in Section V to exponential
stability and develop, in Section VI, an algorithm that can
be used to verify it for arbitrarily small neighborhoods of an
equilibrium. We conclude in Section VII.

Notation: Throughout the text, we will use Br(x) to
denote the closed ball of radius r around the equilibrium
point x, and ∥ · ∥ will denote an arbitrary norm.

II. PRELIMINARIES

We consider a continuous time dynamical system

ẋ = f(x) , (1)

where x ∈ D ⊂ Rn is the state, and the map f : D → Rn is
a continuously differentiable and locally Lipschitz function
defined over a domain D. Given an initial state x0, we
use ϕ(t, x0) to denote the solution of (1). Whenever the
initial condition is understood from the context, we will use
x(t) := ϕ(t, x0). We next introduce the core building blocks
of Lyapunov Theory.

Definition 1 (Stability). An equilibrium x∗ is stable if for any
ε > 0, ∃δ > 0, such that if ∥x0 − x∗∥ ≤ δ then ∥ϕ(t, x0)−
x∗∥ ≤ ε ∀t ≥ 0.

Definition 2 (Asymptotic Stability). An equilibrium x∗ is
asymptotically stable if it is stable, and ∃δ > 0 small enough
such that if ∥x0 − x∗∥ ≤ δ then ∥ϕ(t, x0) − x∗∥ → 0 as
t → ∞.

Definition 3 (Exponential Stability). An equilibrium x∗

is exponentially stable with rate α if there exists positive
constants δ, k, α such that if ∥x0−x∗∥ ≤ δ, then ∥ϕ(t, x0)−
x∗∥ ≤ ke−αt∥x0 − x∗∥, ∀t ≥ 0.

Definition 4 (ω-Limit Sets). For a dynamical system f , we
say that x ∈ D ⊂ Rn is an ω-limit point of f if there exists
a sequence (tn)n∈N ⊂ R≥0 such that limn→∞ tn = ∞ and
limn→∞ ϕ(tn, y) = x for some y ∈ D ⊂ Rn. We denote by
Ω(f) the set of all ω-limit points of f , which we call the
ω−limit set of f .

Definition 5 (Positively Invariant Set). A set S ⊆ Rn is
positively invariant w.r.t. (1) if and only if:

x0 ∈ S =⇒ ϕ(t, x0) ∈ S, ∀ t ∈ R≥0.

The notion of positive invariance is a fundamental part
of Lyapunov theory. By trapping trajectories on compact
level sets of a function one can guarantee boundedness of
trajectories, stability, and even asymptotic stability via a
gradual reduction of the Lyapunov function value. However,
invariance is a very strong condition, and is quite restrictive.
Thus, we seek to weaken invariance into something more
easily satisfied.

III. RECURRENCE

To relax the notion of invariance, one must allow trajecto-
ries to temporarily leave a set. In order to make statements
about asymptotic behavior, our first condition requires tra-
jectories to return infinitely often.

Definition 6 (Recurrent Set). A set S ⊆ Rn is recurrent
w.r.t. (1), if for any x0 ∈ S , and t ≥ 0,

∃ t′ > t, s.t. ϕ(t′, x0) ∈ S.

As we will soon see, Definition 6 will ensure that part of
the ω-limit set of x0 is contained within S. However, for
stability analysis purposes we require some control on how
far the trajectory may depart from S; this is achieved by the
following stronger notion of recurrence.

Definition 7 (τ -Recurrent Set). A set S ⊆ Rn is τ -recurrent
w.r.t. (1), if for any x0 ∈ S , and t ≥ 0,

∃ t′ > t, with t′ − t ∈ (0, τ ] s.t. ϕ(t′, x0) ∈ S.

We say that S is strictly τ -recurrent, if for any x0 ∈ S , and
t ≥ 0,

∃ t′ > t, with t′ − t ∈ (0, τ ] s.t. ϕ(t′, x0) ∈ S\∂S.

We now introduce Lyapunov-like functions which form
the basis of our stability results. In contrast to their standard
counterpart, they are not required to decrease monotonically
over trajectories. Rather, we allow τ units of time to elapse
before the function is required to go below its current value;
this will make their sub-level sets τ -recurrent. Definitions
are given below, after some notation.

Let V : D ⊂ Rn → R≥0, V continuous. Given τ > 0 we
denote:

Λ
(t,t+τ ]
min V (x) :=

{
mins∈(t,t+τ ] V (ϕ(s, x)), if min exists;

∞, otherwise.

Definition 8 (τ -Decreasing Functions). Let V : D ⊂ Rn →
R≥0 and fix τ > 0. We say that V is τ -decreasing over the
set D0 ⊂ D if

Λ
(0,τ ]
min V (x) ≤ V (x), ∀x ∈ D0. (2)

If the inequality holds strictly for all x ∈ D0\Ω(f), i.e.,

Λ
(0,τ ]
min V (x) < V (x), ∀x ∈ D0\Ω(f),

we say that V is strictly τ -decreasing.



The following Lemma establishes basic properties of τ -
decreasing functions and their connection with τ -recurrent
sets.

Lemma 1. Let V : D ⊂ Rn → R≥0 continuous, and D0 =
V≤c := {x ∈ D : V (x) ≤ c}, c > 0 be a sub-level set,
assumed compact. Assume V is τ -decreasing over D0. Then:

(i) Given x0 ∈ D0, there exists a sequence {tn}n∈N, with

lim
n→∞

tn = ∞ and tn+1 − tn ∈ (0, τ ] ∀n, (3)

such that

V (ϕ(tn+1, x0)) ≤ V (ϕ(tn, x0)) ≤ V (x0) ∀n. (4)

(ii) D0 is τ -recurrent.
Furthermore, if V is strictly τ -decreasing, then the strict
version of the first inequality in (4) holds for x0 ∈ D0\Ω(f),
and D0 is strictly τ -recurrent.

Proof. Given x0 ∈ D0, we build the sequence {tn}n∈N
satisfying (3) and (4) by induction. For the base case, let
t0 = 0 so that ϕ(t0, x0) = x0 and V (ϕ(t0, x0)) = V (x0),
and choose

t1 = max{argmint∈(0,τ ]V (ϕ(t, x0))};

note that the minimum exists by hypothesis (2), and is no
larger than V (x0); if there are multiple minimizing times, t1
is defined as the largest. By construction, t1−t0 ∈ (0, τ ] and
V (ϕ(t1, x0)) ≤ V (x0) ≤ c, therefore x1 := ϕ(t1, x0) ∈ D0.

The inductive construction proceeds in a similar manner:
given t1 < t2 < · · · tn, with xn := ϕ(tn, x0) ∈ D0, define

tn+1 − tn = max{argmins∈(0,τ ]V (ϕ(s, xn))}. (5)

Note that tn+1 − tn ∈ (0, τ ] as required. Also,

xn+1 := ϕ(tn+1, x0) = ϕ(tn+1 − tn, xn)

satisfies V (xn+1) ≤ V (xn) by the τ -recurrence condition at
xn ∈ D0, so we verify (4).

It remains to show that tn → ∞, which we argue by
contradiction. If, instead, the strictly increasing sequence of
times was bounded, we would have tn ↑ t∗. Note that xn =
ϕ(tn, x0) remains bounded in D0, compact, so ϕ(t∗, x0) is
well defined and satisfies by continuity:

vn := V (ϕ(tn, x0)) → V (ϕ(t∗, x0)) =: v∗.

Since {vn} is non-increasing we conclude that v∗ ≤ vn for
all n ∈ N. Now pick n such that tn ≥ t∗ − τ . This means
that s∗ := t∗ − tn ∈ (0, τ ] is in the feasible set for the
minimization in (5), which by definition gives as minimum
vn+1, achieved at tn+1 − tn.

Now, since v∗ = V (s∗, xn) ≤ vn+1, this means s∗ also
qualifies as a minimizer, and in fact s∗ = t∗−tn > tn+1−tn.
This contradicts the definition of tn+1 − tn given in (5),
because it would not be the largest minimizing time. Thus
the sequence must be divergent, establishing claim (i).

As for (ii), note that by construction, the sequence {tn}
has an element in any interval [t, t + τ) of length τ , with
ϕ(tn, x0) ∈ D0; these are precisely the conditions for τ -
recurrence of D0 = V≤c.

The proof of the strict case follows analogously.

IV. STABILITY AND ASYMPTOTIC STABILITY

From the preceding results, it follows that if one finds a
τ -decreasing function V , trajectories must visit its sublevel
sets infinitely often, which is a certain indication of stability.
To formalize a result with the standard notions of Lyapunov
stability, we must control the behavior of trajectories between
subsequent visits to the sublevel set. Since these excursions
last at most τ , we will proceed to bound the distance a point
can deviate from a set within τ units of time.

We recall here that the vector field is assumed locally Lip-
schitz: i.e. for any point z ∈ D, there exists a neighborhood
Uz around z and constant Lz such that ∀x, y ∈ Uz ,

∥f(y)− f(x)∥ ≤ Lz∥y − x∥.

We note that under these conditions, a uniform Lipschitz
constant can be defined over any compact set.

In what follows we will use Fr := maxBr(x∗) ∥f(x)∥.
Note that Fr → 0 as r → 0, by continuity of the vector
field.

Lemma 2 (Containment Lemma). Consider a ball S′ =
Br′(x

∗) for some r′ > 0 around an equilibrium point x∗.
Let τ > 0, L := maxz∈S′ Lz , and let φ(ℓ) = ℓ + Fℓτe

Lτ .
There exists an r satisfying

0 < r ≤ φ−1(r′). (6)

Furthermore, for any r satisfying (6) and any x ∈ S :=
Br(x

∗) the following holds:

sup
t∈(0,τ ]

d(ϕ(t, x), S) ≤ Frτe
Lτ ,

where d(y, S) := mins∈S ∥y−s∥. In particular, ϕ(t, x) ∈ S′

for t ∈ [0, τ ].

Proof. Let r′ > 0 be given. To see that r satisfying (6) exists,
observe that φ(0) = 0, and φ is a monotonically strictly
increasing function such that φ(ℓ) > ℓ for ℓ > 0. Thus, we
can select r = φ−1(r′) uniquely as the largest such ℓ.

Now, consider an initial point x ∈ S := Br(x
∗). Let

us define PS [y] := argminx∈S∥y − x∥. Let us also define
a(t) := d(ϕ(t, x), S). Observe that

a(t)≤∥ϕ(t, x)− x∥ =

∣∣∣∣∣∣∣∣∫ t

0

f(ϕ(σ, x))dσ

∣∣∣∣∣∣∣∣ (7)

≤
∫ t

0

∥f(ϕ(σ, x))−f(PS(ϕ(σ, x)))∥+∥f(PS(ϕ(σ, x)))∥dσ

(8)

≤
∫ t

0

(L · d(ϕ(σ, x), S) + Fr)dσ=Frt+

∫ t

0

La(σ)dσ (9)

for any t ≤ τ , wherein (7) follows from x ∈ S, (8)
follows from the Triangle Inequality, and (9) follows from
the Lipschitz constant L and the definition of Fr, Now,
applying Grönwall’s inequality (c.f [4], Lemma 2.1 with
λ = Frt, µ = L, y(t) = a(t)), we have

a(t) = d(ϕ(t, x), S) ≤ Frte
Lt.

and thus ∥x(t) − x∗∥ ≤ r + Frτe
Lτ = φ(r) = r′, which

implies that x(t) ∈ S′ for any t ≤ τ , as desired.



The combination of Lemma 1 and Lemma 2, applied to a
ball around equilibrium, forms the basis of our local stability
analysis, which is now presented.

Theorem 1 (Stability Analysis via τ -decreasing Lyapunov
Functions). Consider the system (1), with a locally Lipschitz
field. Let x∗ ∈ D be an equilibrium point of (1), and let
V : D ⊂ Rn → R≥0 be positive definite around x∗, i.e.,

V (x∗) = 0, V (x) > 0 for x ∈ D\{x∗}. (10)

If V is τ -decreasing over D0 = V≤c ⊂ D, for some c > 0,
then x∗ is stable. Furthermore, if V is strictly τ -decreasing
over D0, then x∗ is asymptotically stable.

Proof. Given any ε > 0, choose 0 < r ≤ ε s.t. Br(x
∗) ⊂ D,

let L = maxz∈Br(x∗) Lz and find ε′ > 0 small enough such
that

ε′ + τFε′e
τL< r ≤ ε.

Now let α = minε′≤∥x−x∗∥≤r V (x). Note that by construc-
tion α > 0 due to (10) and continuity of V . Select β such
that 0 < β < min(α, c) and introduce the set

Ωβ := {x ∈ Bε′(x
∗) : V (x) ≤ β}. (11)

Consider an initial condition x0 ∈ Ωβ , and apply the
construction of in the proof of Lemma 1 a sequence {tn}.
In particular, by the τ -recurrence hypothesis there exists a
time t1 ∈ (0, τ ] such that x1 := ϕ(t1, x0) satisfies V (x1) ≤
V (x0) ≤ β. Also, by Lemma 2, we have that the distance
d(x1, Bε′(x

∗)) ≤ τFε′e
τL, hence

∥x1 − x∗∥ ≤ ε′ + τFε′e
τL < r.

Note, however, that x1 ̸∈ {x : ε′ ≤ ∥x − x∗∥ ≤ r} because
V (x1) < α; therefore we must have ∥x1 − x∗∥ < ε′ and
x1 ∈ Ωβ . The construction can be repeated inductively as
in Lemma 1, generating a sequence of times tn → ∞,
tn+1 − tn ≤ τ , and such that xn = ϕ(tn, x0) ∈ Ωβ . Now,
invoking the Containment Lemma (Lemma 2) once again, we
can bound the behavior at intermediate times t ∈ (tn, tn+1],

d(ϕ(t, x0), Bε′(x
∗))≤τFε′e

τL=⇒∥ϕ(t, x0)− x∗∥<r≤ε.

In summary, a trajectory which starts at x0 ∈ Ωβ stays within
Bε(x

∗) for all time. Finally, there exists δ > 0 small enough
such that Bδ(x

∗) ⊂ Ωβ , and thus we satisfy the conditions
of stability in Definition 1.

We now turn to asymptotic stability, under the condition
that V is strictly τ -decreasing. The stability requirement
is already established, we must prove the convergence to
equilibrium of a trajectory ϕ(t, x0) with initial condition
x0 ∈ Bδ ⊂ Ωβ .

Reviewing again the construction from Lemma 1, the
points xn = ϕ(tn, x0) ∈ Ωβ now can be taken to make
vn := V (xn) a strictly decreasing sequence. Let v̄ be its
limit, we have vn > v̄ for all n.

Since {xn} is bounded in Rn, we may take a convergent
subsequence xnk

k→∞−→ x̄ ∈ Ωβ . By continuity, v̄ = V (x̄).
Suppose v̄ > 0, so x̄ ̸= x∗. Then, by strict τ -recurrence there
exists s̄ ∈ (0, τ ] satisfying V (ϕ(s̄, x̄)) < v̄. Note that

V (ϕ(s̄, xnk
))

k→∞−→ V (ϕ(s̄, x̄)) < v̄. (12)

However, by construction of the sequence according to
Lemma 1, we have that

vnk+1 = min
s∈(0,τ ]

V (ϕ(s, xnk
)) ≤ V (ϕ(s̄, xnk

)),

which contradicts (12) because v̄ < vnk+1.
Therefore we have shown that vn = V (ϕ(tn, x0))

n→∞−→
0. An immediate consequence of (10) is that xn =
ϕ(tn, x0)

n→∞−→ x∗. Indeed, xn ∈ Bε′(x
∗) ∀n, and for any

ε̃ < ε′ the minimum of V (x) in {ε̃ ≤ ∥x − x∗∥ ≤ ε′} is
positive, so xn must exit such a set in a finite number of
steps, satisfying ∥xn − x∗∥ < ε̃ afterward.

Let rn := ∥xn − x∗∥ ≤ ε′. Applying the Containment
Lemma to Brn , we have that for any t ∈ (tn, tn+1],

∥ϕ(t, x0)− x∗∥ ≤ rn + Frnτe
Lτ .

Since the right-hand side goes to zero in n, we have that
limt→∞ ϕ(t, x0) = x∗.

V. EXPONENTIAL STABILITY

In the previous section, we showed that strictly τ decreas-
ing functions were able to sequentially contain trajectories
via finding progressively smaller level sets. We now move
towards finding conditions on function V that ensure the
exponential stability of an equilibrium point.

To that end, we will use the following notation:

Λ(t,t+τ ]
α V (x) :=

 min
s∈(t,t+τ ]

eαsV (ϕ(s, x)), if min exists,

+∞, otherwise.

Definition 9 (α-Exponentially τ -Decreasing Functions). Let
V : D ⊂ Rn → R≥0 and fix α, τ > 0.

We say that V is exponentially τ -decreasing with rate α
over the set D0 ⊂ D if

Λ(0,τ ]
α V (x) ≤ V (x), ∀x ∈ D0\Ω(f). (13)

For short, we will often refer to V as α-exponentially τ -
decreasing over D0.

Note that an α-exponentially τ -decreasing function is
always strictly τ -decreasing, but not the other way around.
We will use (13) to control (exponentially decreasing) upper
and lower bounds of V (ϕ(t, x)) as t → ∞.

A standard approach to prove the exponential stability of
an equilibrium point using a Lyapunov function first shows
that for some c and any x ∈ V≤c the trajectories ϕ(t, x)
satisfy

V (ϕ(t, x)) ≤ k1V (x)e−αt (14)

for some positive constants k1 and α. Then, one proceeds
to assume certain regularity conditions, such as the ones
described next.

Definition 10 (Linear Containment). Let V : D ⊂ Rn →
R≥0 be continuous. If ∃α1, α2 > 0 such that

α1∥x− x∗∥ ≤ V (x) ≤ α2∥x− x∗∥, ∀x ∈ D, (15)

we say that V is linearly contained.



It follows from (14) that a linearly contained V satisfies

∥ϕ(t, x)− x∗∥ ≤ 1

α1
V (ϕ(t, x)) ≤ k1

α1
e−αtV (x)

≤ k1
α2

α1
e−αt∥x− x0∥

for all x ∈ V≤c. Thus choosing δ small enough s.t. ∥x −
x∗∥ ≤ δ =⇒ V (x) ≤ c, and k = k1

α2

α1
leads to exponential

stability according to Definition 3.
Condition (13) is actually weaker than (14), so obtaining

an exponential stability result is not as immediate. Neverthe-
less, we will see it suffices.

Theorem 2 (Exponential Stability). Consider the system (1),
with locally Lipschitz field. Let x∗ be an equilibrium point
(1), and let V : D ⊂ Rn → R≥0 be linearly contained, i.e.,
V satisfies (15). If V is α-exponentially τ -decreasing over
D0 = V≤c, for some c, α, τ > 0, then x∗ is exponentially
stable with rate α. In particular, there exists δ > 0 small
enough such that

∥ϕ(t, x)− x∗∥ ≤
(
α2

α1

)
eατ (1+τLeτL)e−αt∥x− x∗∥,

∀x ∈ Bδ(x
∗) ⊂ D0, t ∈ R+. (17)

Proof. Choose r > 0 s.t. Br(x
∗) ⊂ D, and let L =

maxz∈Br(x∗) Lz . First, since our hypothesis is stronger than
that in Theorem 1, we can introduce the set Ωβ as in (11),
such that for any x ∈ Ωβ , we can guarantee ϕ(t, x) ∈ Br(x

∗)
for all t ∈ R+. In particular, for such x the trajectory remains
within the region of validity of the Lipschitz constant L.

Starting with x ∈ Ωβ , using similar reasoning as in
Lemma 1, we can recursively define a sequence {tn}n∈N,
with t0 = 0, limn→∞ tn = ∞ and tn+1 − tn ∈ (0, τ ], ∀n,
such that

eαtn+1V (ϕ(tn+1, x)) ≤ eαtnV (ϕ(tn, x)) ≤ V (x), n ≥ 1.
(18)

Using (15) and (18) we deduce that, for n ≥ 1 we

∥ϕ(tn, x)− x∗∥ ≤ V (ϕ(tn, x))

α1
≤ e−αtn

α1
V (x).

Denote now rn = min
(
r, e−αtn

α1
V (x)

)
. For any t ∈

(tn, tn+1], we can apply the argument in the Containment
Lemma to deduce that

∥ϕ(t, x)− x∗∥ ≤ rn + Frnτe
Lτ .

Furthermore, noting that f is L-Lipschitz on Brn(x
∗) ⊂

Br(x
∗) and f(x∗) = 0 we can further bound Frn ≤ Lrn,

leading to

∥ϕ(t, x)−x∗∥ ≤ rn(1+τLeLτ ) ≤ e−αtn

α1
(1+τLeLτ )V (x).

Note, further, that t ≤ tn+1 ≤ tn+ τ , therefore −tn ≤ τ − t
so e−αtn ≤ eατe−αt, leading to

∥ϕ(t, x)− x∗∥ ≤ eατ
e−αt

α1
(1 + τLeLτ )V (x).

Now applying the upper bound V (x) ≤ α2∥x−x∗∥ and we
establish the bound (17) for any x ∈ Ωβ . Finally, choose

δ > 0 s.t. Bδ(x
∗) ⊂ Ωβ .

VI. NUMERICAL METHODS

In this section, inspired by the Theorem 2, we will develop
an algorithm that, given a function V , seeks to certify a
region D0 ⊂ D for which V is α-exponentially τ -decreasing.
We aim to leverage the highly parallelizable processing
units to certify many points simultaneously. It should be
noted, however, that numerically testing whether V is α-
exponentially τ -decreasing over a dense set D0 is impossible.
Instead, we will seek to check whether a point x satisfies a
stricter condition, to simultaneously certify a neighborhood
of x (Proposition 1 and 2). Leveraging these results, we
then develop, in Section VI-B, a parallelizable algorithm that
allows us to certify regions around an equilibrium point. We
finally validate this algorithm in Section VI-C.

A. Verification of a Ball
We now show how, by requiring a stricter condition than

α-exponentially τ -decreasing on a trajectory (c.f. (19)), we
can certify close enough trajectories to be exponentially τ -
decreasing with rate κ, with κ ≥ 0.

Proposition 1. Consider the dynamical system (1), with
locally Lipschitz field. Let S′ be a compact set contained
in D and L := maxz∈S′ Lz , and consider S ⊂ S′ s.t. for all
x0 ∈ S and t ∈ [0, t], ϕ(t, x0) ∈ S′. Let V : D → R≥0 be
linearly contained, i.e., (15), and assume that there is x ∈ S
such that

Λ(0,τ ]
α V (x) ≤ µ

(
α1

α2

)2

V (x) (19)

for some µ ∈ (0, 1) and α ≥ 0. If there exists κ ≥ 0, r > 0
such that

0 < r ≤ min {f1(µ), f2(µ, κ, α)} (20)

with

f1(µ) :=
V (x)

α2

(
1− µ

1 + α2

α1

)
, and (21a)

f2(µ, κ, α) :=
V (x)

α2

(
1− µe−(α−κ)τ

1 + α2

α1
e(L+κ)τ

)
, (21b)

then, we have Λ
(0,τ ]
κ V (y) ≤ V (y), ∀y ∈ Br(x)∩S. That is,

V is κ-exponentially τ -decreasing over the set Br(x) ∩ S.

Proof. The proof is omitted due to page limits.
Proposition 1 gives us a condition to verify whether a ball

Br(x) is κ-exponentially τ -decreasing. That is, by finding
constants α > 0, µ ∈ (0, 1), and κ ≥ 0 satisfying (19)
and (20). However, it does not provide a method to find
such constants that can be easily translated into an algorithm.
Fortunately, a closer look at (21a) and (21b) allows us to
provide more tenable requirements based on an univariate
equation.

Proposition 2. Consider the dynamical system (1), with
locally Lipschitz field. Let S′ be a compact set contained
in D and L := maxz∈S′ Lz , and consider S ⊂ S′ s.t. for



all x0 ∈ S and t ∈ [0, t], ϕ(t, x0) ∈ S′. For r > 0, x ∈ S,
define

α(µ) :=max

{
α∈R≥0 |Λ(0,τ ]

α V (x)−µ
(

α1

α2

)2
V (x) ≤ 0

}
,

µmax :=1−r

(
1+

α2

α1

)
α2

V (x)
, µmin :=

Λ
(0,τ ]
0 V (x)

V (x)

(
α2

α1

)2

.

Then, if µmin ≤ µmax and ∃µ such that

0 < r ≤ f2(µ, 0, α(µ)), and µ ∈ [µmin, µmax], (22)

then r, x, µ, α(µ) satisfy the statement of Proposition 1 with

κ(µ, r) =
1

τ
ln

(
1− (α2/V (x))r

α2
2re

Lτ/(α1V (x)) + µe−α(µ)τ

)
, (23)

i.e., V is exponentially τ -decreasing over the set Br(x)∩ S
with rate given by (23).

Proof. The proof is omitted due to page limits.
We will now explain how to verify a neighborhood of

a point algorithmically. In this section, we assume that the
radius r > 0 to verify is given. Thus, leveraging Proposition
2, one is only required to search along a single variable,
µ ∈ [µmin, µmax], that can guarantee f2(µ, 0, α(u)) > r. We
summarize how to do that next.

Note first that since Λ
(0,τ ]
α V (x) is an increasing function

of α, given µ, α(µ) can be computed via binary search. To
find a µ satisfying (22), in our algorithm, we first verify that
µmin ≤ µmax, as otherwise [µmin, µmax] is empty and the
algorithm failed (returns false). Then, if f2(µmin, 0, α(µmin))
and f2(µmax, 0, α(µmax)) are both at most r, there is no
guarantee it will be greater than r at any point in the range.
In such a case, we conservatively declare failure. Else, if
f2(µmax, 0, α(µmax)) ≥ r = f1(µmax), by continuity of
f1, f2, they must intersect at some point in [µmin, µmax], (as
f1(µmin) > f2(µmin, 0, α(µmin))), so we can apply a binary
search to find an intersecting point and set µ to the point
of equality. Otherwise, we can simply select µ = µmin as
r ≤ f2(µmin, 0, α(µmin)). See Algorithm 1.

Algorithm 1: VerifyBall(x,r,τ , L,V ,α1, α2)
Input x ∈ Rn, r > 0, τ > 0, L > 0, V : Rn →
R≥0, α2 ≥ α1 ≥ 0

\\Two possible conditions of failure
if µmin > µmax then

return (False, -1)
if f2(µmin, 0, α(µmin)) < r and
f2(µmax, 0, α(µmax)) < r then

return (False, -1)
\\Definite success, all that is left is to find a good κ
if f2(µmin, 0, α(µmin)) ≥ r then

µ = µmin

else
µ = µ s.t. f1(µ) = f2(µ, 0, α(µ))

κ = max{κ ≥ 0 | f2(µ, κ, α(µ)) > r}
return (True, κ)

B. Verification of a Region

Having developed an algorithm to verify a ball Br(x),
c.f. Algorithm 1, we are now ready to integrate it into an
algorithm that can verify a region of the state space. A critical
defining aspect of Algorithm 1 is that the radius r of the ball
Br(x) that can be verified, i.e., (20), depends on the value
V (x) through (21a) and (21b). Thus, as x gets closer to
(resp. farther away from) x∗, the radius r will be necessarily
smaller (resp. larger).

We therefore focus here on verifying the κ-exponential
τ -recurrence of a given function V (x) in a region of the
state space given by D0 = BR(x

∗)\Bε(x
∗), and choose the

grid points to account for the dependence on V (x) of r. For
concreteness, in this section we use V (x) = ∥x∥ = ∥x∥∞,
that is, the infinity norm ∥x∥ := maxi |xi|.

Fig. 1: Illustration of initial grid setup for R = 3mε, with
m = 2 layers. The red dots are the grid points, while the
central black dot is x∗

a) Initial Grid Setup: As mentioned before, given x∗,
ε, and R, we will seek to verify the region of the state space
D0 := BR(x

∗)\Bε(x
∗). To this end, we cover D0 with m

layers, with each layer containing 3d − 1 points, where the
radius of the point of the lth layer is given by rl := 3l−1ε,
l ∈ {1, . . .m}. The number of layers m is chosen so that
the entire region D0 is covered, i.e, so that

R ≤ ε+
m∑
l=1

2rl = ε

(
1 + 2

m∑
l=1

3l−1

)
= 3mε.

Note that such an arrangement only requires O(3dm) number
of initial grid points, which is significantly smaller than a
uniform ε-grid that requires O((Rε )

d). An illustration of a
2-layer initial grid setup is provided in Figure 1.

b) Estimation of a Consistent Lipschitz Constant: In
order to successfully apply Proposition 1, one is required
to find a set S′ that contains all trajectories starting from
D0 = BR(x

∗)\Bε(x
∗). To that end, we will seek to find a

ball BR′(x∗) =: S′, for sufficiently large R′. To compute
R′, we build a uniform grid G within the boundary set
∂BR(x

∗) with maximum separation of ℓ > 0. Starting
from each grid point x ∈ G, we simulate a trajectory of
length τ , and verify that all grid points return to BR(x

∗)
within time τ ; else either R or τ must be changed. Then
we compute Rmax := maxx∈G,t∈[0,τ ] ∥ϕ(t, x) − x∗∥, and



set R′ = Rmax + δ for some small δ > 0. Finally, we
estimate L := maxz∈BR′ (x∗) Lz using a fine grid, and verify
that maxt∈(0,τ ] maxx∈G (R′ − ∥ϕ(t, x)∥) e−tL ≥ ℓ.1 Upon
success, this procedure guarantees no trajectory starting
within BR(x

∗) leaves BR′(x∗). Otherwise, we halve the grid
separation ℓ and repeat until we succeed.

c) Splitting Failed Points: Once a common Lipschitz
constant L has been computed for all trajectories that lie
within BR′(x∗), one is ready to apply Algorithm 1. However,
it is possible that for a given grid point pair (x, r) Algorithm
1 fails. Upon failure, we will seek to refine the local section
of the grid by splitting the ball Br(x) into 3d balls. We refer
the reader to Algorithm 2 for details and to Figure 2 for an
illustration for d = 2.

Algorithm 2: Splitting a Ball
Input x ∈ Rn, r > 0
(x1, ..., xn) = x
points = (x1 ± (2/3)r, ..., xn), ..., (x1, ..., xn ± (2/3)r)
radii = 3n copies of r/3
return (points, radii)

Fig. 2: Splitting a Ball according to Algorithm 2

d) Algorithm Summary: The combination of the above-
mentioned steps provides us with an algorithm that allows us
to verify a region BR(x

∗)\Bε(x
∗). The proposed algorithm,

which can verify many points in parallel on a GPU, is
summarized in Algorithm 3. In short, Algorithm 3 establish
the initial grid and verify each ball, recursively splitting the
failures a number of times until each ball is either verified
or we reach the maximum number of splits we are willing to
perform. On success, we take the minimum κ from across all
balls and can assert that V is κ-exponentially τ -decreasing
over BR(x

∗)\Bε(x
∗).

C. Numerical validation
We end this section by providing a preliminary validation

of the proposed algorithm. To investigate the efficiency of
our proposed method, we consider the following systems:[

ẋ1

ẋ2

]
=

[
0 2
−1 −1

] [
x1

x2

]
+B1

 x2
1

x1x2

x2
2

 ; (24)

ẋ1

ẋ2

ẋ3

 =

−1 0 0
0.5 −1 0
0.5 0.5 −1

x1

x2

x3

+B2

x2
1

...
x2
3

 , (25)

1This condition is sufficient to guarantee that, not only the simulated
trajectories stay within BR′ (x∗), but also the trajectories within an l-
neighborhood.

Algorithm 3: Verification of a Region
Input x∗ ∈ Rn, R > 0, ε ∈ (0, R), τ, L > 0, V :
Rn → R≥0, α2 ≥ α1 ≥ 0,max_splits > 0
κ = ∞
splits = 0
points, radii = Grid of balls (x, r) covering
BR(x

∗)\Bε(x
∗)

while splits < max_splits do
(verified, kappas) = VerifyBall(points,radii,
τ ,L,V ,α1, α2)
κ = min{κ, kappalist[verified == True]}
failed_points, failed_radii = points[verified ==
False], radius[verified == False]

if failed_points is empty then
return (True, κ)

points, radii = Split(failed_points, failed_radii)
splits+ = 1

Fig. 3: Phase portrait of system (24), wherein the black box
surrounds the region which we do not verify (Bε(x

∗)), the
blue box represents surrounds the region which we verify in
Algorithm 3 (BR(x

∗)), and the red box surrounds the region
which trajectories that begin in the blue box do not leave
(BR′(x∗)).

where B1 ∈ R2×3 and B2 ∈ R3×9 are drawn independently
from a Gaussian distribution, i.e., [B1]ij , [B2]ij ∼ N (0, σ).
We will increase the standard deviation σ as a means to
increase the complexity of the dynamics. In our experiments,
we choose the ℓ∞ norm as our choice of V (x) and as the
norm used to measure distances between trajectories. Thus,
α1 = α2 = 1. Sample trajectories for the system (24) with
σ = 0.3 are shown in Figure 3, where we also illustrate
the ball of radius R (blue) selected, the computed ball of
radius R′ (red), and the small region around the origin (x∗)
not certified (black). We also show in Figure 4 the verified
region and a coloring scheme illustrating the different ball
sizes used at different parts of BR(x

∗)\Bε(x
∗).

In all of our experiments we use R = 0.7, ε = 0.01,
and τ = 1.5. Table I and Table II summarize the results
obtained by running Algorithm 3 together with a comparison
with SOSTOOLS. When running our algorithm, we use



Fig. 4: Sizes of blocks resulting from applying Algorithm 3
to system (24).

the Torchode toolbox [22] to compute system trajectories
in parallel. Note that our algorithm not only outputs the
domain D0 = BR(x

∗)\Bε(x
∗) wherein the function V is

κ-exponentially τ -decreasing, but also the parameter κ, for
which this is satisfied. When using SOSTOOLS [23], we use
both R and κ as inputs and select the minimum polynomial
order sufficient to guarantee κ-exponential stability in the
region BR(x

∗). Note that this speeds up the computation
of SOSTOOLS as one does not need to search for them. It
can be seen that as σ grows, i.e., the system becomes more
nonlinear, our algorithm outperforms SOSTOOLS.

2D system (24) σ = 0, 0.1, 0.3

R′: 1.176 1.193 1.206
L: 2.00 2.53 3.24
κ: 1.6e-3 9.7e-7 1.11e-7

Alg. 3 Time: 2.29s 2.40s 2.40s
SOS Time: 0.35 1.96s 3.3s

TABLE I: Parameter values and performance comparison
between our algorithm and the SOSTOOLS for system (24)

3D system (25) σ = 0, 0.1, 0.3

R′: 1.322 1.487 1.560
L: 2.81 3.23 4.07
κ: 1.63e-5 1.95e-7 4.22e-8

Alg. 3 Time: 14.15s 14.38s 14.79s
SOS Time: 0.73s 9.82s 30.63s

TABLE II: Parameter values and performance comparison
between our algorithm and the SOSTOOLS for system (25)

VII. CONCLUSIONS

In this paper, we seek to relax the notion of set invariance,
a fundamental tool in the analysis of dynamical systems.
We thus propose and use the notion of set recurrence and
show that under mild conditions, recurrence can be used
to guarantee stability, asymptotic stability, and exponential

stability of an equilibrium point. On the back of this theory,
we have constructed an algorithm that lets us verify that
a set, other than a ball arbitrarily close to the equilibrium,
is κ-exponentially τ -decreasing. This algorithm is entirely
deterministic and can be run in parallel on GPUs, resulting in
time improvements over the state-of-the-art Sum of Squares
method.
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