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Abstract

Recent theoretical analyses of the convergence of
gradient descent (GD) to a global minimum for
over-parametrized neural networks make strong
assumptions on the step size (infinitesimal), the
hidden-layer width (infinite), or the initialization
(spectral, balanced). In this work, we lift these
stringent assumptions and derive a linear conver-
gence rate for two-layer linear networks trained
using GD on the squared loss in the case of finite
step size, finite width and general initialization.
Despite the generality of our analysis, our rate
estimates are significantly tighter than those of
prior work. Moreover, we provide a time-varying
step size rule that monotonically improves the
convergence rate as the loss function decreases
to zero. Numerical experiments validate our find-
ings.

1 Introduction

The empirical success of neural networks on a wide va-
riety of applications, such as natural language process-
ing [Vaswani et al., 2017, [Vaswani et al., 2018]], computer
vision [He et al., 2015, [Minaee et al., 2021] and decision
making [Silver et al., 2016, [Vo et al., 2019]], has motivated
significant research on understanding theoretically why
neural networks work so well in practice. One interesting
and puzzling phenomenon is that over-parametrized neu-
ral networks trained with gradient descent (GD) enjoy fast
convergence even if their loss landscape is non-convex.
Much of the recent work in this area has focused on de-
riving convergence rates for over-parametrized networks.
However, existing results require stringent assumptions on
the step size (infinitesimally small), the hidden-layer width
(infinitely large), or the initialization (spectral, balanced).

Preliminary work. Under review by AISTATS 2023. Do not dis-
tribute.

Table 1: Summary of prior work and our contributions.
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[Mei et al., 2018, infinite-
Chizat and Bach, 2018| imal infinite | general
Ding et al., 2022) suma
[Saxe et al., 2013 infinite-
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Tarmoun et al., 2021]] )
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Min et al., 2022 simal
[Arora et al., 2018, large margin
Du et al., 2018al finite finite |and small
Nguegnang et al., 2021]] imbalance
This work finite finite | general

Prior work. One line of work [Jacot et al., 2018
Du et al., 2018Db, [Lee et al., 2019, |Liu et al., 2022 studies
the convergence of GD when the scale of the initializa-
tion and the network width are sufficiently large. Un-
der these assumptions, the network weights remain close
to their initialization during training, and one can show
that GD converges linearly to a global minimum. How-
ever, [[Chizat et al., 2019, |Chen et al., 2022|] show that this
“lazy training” regime is unrealistic in practice as it lim-
its feature learning. A convergence analysis beyond the
so-called lazy regime can be undertaken in the (mean-
field) limit of infinitely wide networks [Mei et al., 2018|
Sirignano and Spiliopoulos, 2020, |Chizat and Bach, 2018
Ding et al., 2022], where suitable assumptions on the ini-
tialization and step size make GD become a Wasserstein
flow; a partial differential equation commonly appearing in
optimal transport theory. However, while such analysis can
guarantee convergence to the global optimum for a wider
range of initializations, it still imposes strong assumptions
on the network width (infinite) and step size (infinitesimal).

Another line of work studies the convergence of gradi-
ent algorithms for over-parametrized networks with finite
width. In this finite-width setting, the vast majority of ex-
isting results consider linear networks trained using gra-
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dient flow (GF). GF can be seen as GD with infinites-
imal step size, but its dynamics in this setting are gen-
erally easier to analyze. For example, [Saxe et al., 2013}
Gidel et al., 2019, [Tarmoun et al., 2021]] show that under
spectral initialization the dynamics of GF decouple into
several scalar dynamics, which allows them to derive a
linear convergence rate. For non-spectral initialization,
[Tarmoun et al., 2021, Min et al., 2022|] show that a large
imbalance or large margin of the initialization can lead
to faster convergence of GF, significantly extending the
range of initializations from which linear convergence of
GF is guaranteed. However, such results require infinites-
imal step size. For finite step size, [Arora et al., 2018
Du et al., 2018a, Nguegnang et al., 2021]] prove linear con-
vergence of GD when there is sufficient margin at initial-
ization and the imbalance is small. However, such assump-
tions rarely hold in practice since commonly used random
initializations have a large imbalance.

Paper contributions. In this work, we derive a linear
convergence rate for GD in the case of over-parametrized,
finite-width, two-layer linear networks with general initial-
ization. Our analysis can be seen as a natural extension
of recent results for GF, which cover finite width and im-
balanced initializations. However, a key challenge in the
case of GD is that quantities such as imbalance, which are
preserved by GF, are no longer preserved by GD. To ad-
dress this challenge, we derive quantities that effectively
bound the deviation of the discrete dynamics from the con-
tinuous dynamics as a function of the step size, thus en-
suring sufficient control (via upper and lower bounds) of
the level of imbalance throughout training. This leads to
a convergence rate that naturally depends on the step size,
as well as other quantities, such as the current loss value.
Moreover, the dependency of the rate on the step size is a
low-degree polynomial, which allows us to easily compute
an optimal step size at each iteration of training. Further-
more, we prove that the resulting time-varying step size
is lower-bounded by the optimal rate of GD for the non-
overparametrized problem. Finally, our numerical results
show that, despite the generality of our analysis, our rate
estimates are significantly tighter than those of prior work.

Notation. We use lower case letters a to denote a scalar,
and capital letters A and AT to denote a matrix and
its transpose. We use Apax(A) and Apin(A) to denote
the largest and smallest eigenvalues of A, oyax(A4) and
Omin(A) to denote its largest and smallest singular values,
||A|| 7 and || A]|2 to denote its Frobenius and spectral norms,
and A[i, j] to denote its (7, j)-th element. Given two matri-
ces A € R"*™ and B € R¥*! it will be convenient to use

either (g) or (A, B) to represent an element in the prod-

uct space R™"*™ x R*¥*! irrespectively of the dimensions.
For a function f(Z), we use Vf(Z) := a%f(z) to denote

its gradient, and whenever Z depends on an independent
variable t, we use f(t) := f(Z(t)) and Z(t) = 47(t),
dropping the dependence on ¢ when it is implicit from the
context, e.g., Z = %Z. Finally, we use NV (u, o2) to denote
a normal distribution with mean ;. and variance o.

2 Convergence of Gradient Flow for
Two-layer Linear Networks

In this section, we first consider a linear regression prob-
lem and its over-parametrized version, which is equivalent
to training a two-layer linear neural network. We then sum-
marize the convergence results for GF in [Min et al., 2022]],
which constitute the starting point of our work. Throughout
this section, we thus consider a continuous time ¢t € R.

Given N training samples (z;, yi)fil, where z; € R", y; €
R™, we consider the following linear regression problem

1
in (W) = -[|Y — XW|3} 1
min (W) = S| W[, (1)
where W € R™™ X = [x,---,2n]T € RVYX" and
Y = [y1,-,yn]" € RV>X™ We are interested in solv-

ing the optimization problem in equation [I] by solving the
following over-parametrized problem

1
in LWy, W) = =||Y — XW1Ws||%, 2
Jin, (W1, W2) = | Wa% 2
where W, € R"*" W, € R"*™_ This over-parametrized
problem corresponds to training a two-layer linear neural
network with n inputs, h hidden neurons, m outputs, and
weight matrices W; and Wo.

To simplify exposition, we consider the above problems in
the under-determined case, i.e., N < n. We assume that
the input data matrix X is full rank, i.e., rank(X) = N D
We also assume that A > min{n,m}. These assump-
tions imply that the minimum of both problems is zero, i.e.,
minW ((W) = 0and L* := Hlinv[/l,m/2 L(Wl,Wg) = 0.
We note, however, that our results generalize the case
N > n, by properly accounting for a non-zero L*.

Convergence under GF. Let us consider solving equa-
tion[2] via GF

(1) - v - (R, o

where V(W) = X (Y — XW). Notice that there exists
a linear operator y(+; Wy, Wy) : R?X™m — Rmxh o Rhxm,

“

Y(VEW); Wy, Wa) = <VE(W)W2T> )

W VeW)
"When X is rank deficient, one can reformulate the problem

into one with full-rank input data matrix (see Appendix |A]for de-
tails).
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which depends on Wy, W5, that maps the gradient of
the loss V(W) € R™ ™ to the gradient of the over-
parametrized loss VL(W7, W) € R x Rhxm,

Then, one can show that the evolution of L under GF is

L(Wy, W3)
oL . oL .
_ <6W1(W1, Wg),wl> + <8W2(W1,W2), W2>(5)

= — (Y(VLW); Wi, Wa),~(VEW); Wy, Wa))
= —(VUW), 7" oy (VLW ); W1, W2)) ,

where v* (-; W1, W) is the adjoint of ~(-; W7, W5). There-
fore, the dynamics of L are defined by the following posi-
tive semi-definite Hermitian linear operator on V/(W):

T(VEL(W); We, Wa) :=~" o y(VL(W); W7, Wa) (©6)
=VUW) Wy Wy + W, W, VE(W).

Then, from equation [5] and the min-max principle of Her-
mitian operators, we have

L(t) = —(VL(1), (V1)) < ~Aumin(r) [ VEE)IF, (D)

where for simplicity we use £(t), L(t) and 7,(V{(t)),
resp., as a shorthand for ¢(W (t)), L(W1(t), Wa(t)) and
T(VL(W (t)); W1(t), Wa(t)). Similarly, we use Apmin(7t)
and Apax(7¢) as a shorthand for Apin (7( -5 W1 (2), Wa(t)))
and Apax (7( s Wi (t), Wa(t))), respectively.

The core contribution of [Min et al., 2022] is to provide a
lower bound on Ay (7¢) using two quantities: imbalance

D(t) = W ()W (t) — Wa(t)Wa(t) T, (8)

and product W (t) = W1 (t)Wa(t). Specifically, they show
there exists an non-negative function a/(D, oyin (W)) that
depends on imbalance and product, such that for all ¢ > 0,

Amin(7t) > (D (t), omin(W(2))). C))

To find a uniform lower bound on «(D(t), omin (W (¢)))
for all ¢ > 0, they exploit the fact that the imbal-
ance matrix remains constant along the trajectories of
GF [Aroraet al., 2018|, |Du et al., 2018al, i.e., D = 0so
that D(t) = D(0). As for the product, [Min et al., 2022]|
show (from the fact that the loss L(¢) is non-increasing)
that

Oumin(W(8)) = pi(:= margin). (10)

Therefore, we can replace the imbalance D(t) in equation@]
by its initial value D(0). Moreover, it can be shown that
a(D, o) is a non-decreasing function of the second argu-
ment o, allowing us to use equations [9]and [I0]to show that

Amin(7t) > a(D(t),p1) = a(D(0),p1):=ag, (11)

where the expression for o is shown in Table 2} Observe
that equationyields a uniform lower bound on Ay, (7¢)-

Combining equation |11| with the fact that £(¢) satisfies the
PL condition || V(t)[|% > pl(t) with = o2, (X) > 0,

we show that equation [7]can be further upper-bounded by:

L(t) < —Xin(m) | VEO) |7 < —aol VL)1

(12)
< —2uapl(t) = —2papL(t),

where the third inequality follows from the PL condition.
Moreover, if ag > 0, it follows from Gronwall’s inequal-
ity that L(t) < exp(—2paot)L(0), showing that GF con-
verges exponentially with a rate 2pay.

As discussed in the introduction, the imbalance matrix
D(t) measures the difference of the weights in the two
layers, while the margin p; depends on the initial error
Y — XW,(0)W2(0)||r (the smaller the error, the larger
the margin). [Min et al., 2022] show that g > 0 when
there is either 1) sufficient imbalance A > 0 or 2) sufficient
margin p; > 0, where A is defined in Table 2| Moreover,
a larger imbalance (as measured by A) or a larger margin
p1 improves the rate of convergence ayy. In summary, the
convergence of GF is completely determined by the ini-
tialization W7 (0), W5(0), and convergence is guaranteed
when the initialization satisfies «vg > 0, which is achieved
by either being imbalanced or having sufficient margin.

3 Convergence of Gradient Descent for
Two-layer Linear Networks

In this section, we analyze the convergence of GD for over-
parametrized two-layer linear networks. We start in §3.1|by
highlighting the challenges of analyzing over-parametrized
GD when compared to (1) the standard GD algorithm
applied to ¢(W) and (2) the GF algorithm applied to
L(W;, Ws) described in the previous section. Alongside,
we provide a high-level overview of the overall strategy we
use to overcome these challenges. Based on the proposed
approach, we then derive in a rigorous convergence
rate that depends on not only the imbalance and margin at
the initialization but also the step size and condition num-
ber of the data. Finally, in §3.3] we propose an adaptive
step size scheme that accelerates convergence. Due to the
discrete nature of our updates, we thus consider ¢ to be dis-
crete, i.e.,t € N.

3.1 Challenges in the Analysis of Over-parametrized
Gradient Descent

Standard GD. We start by deriving the convergence rate of
the non-overparametrized regime described in equation [T}
Notice that £(t) is K-smooth and satisfies p-PL condition,
where K = 02, (X),u = 02, (X). Then, the following

smoothness inequality holds for any W (¢), W (t+1):
L(t+1) <L)+ (VE(t), W (t4+1)—W (t))

S W) - W
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After substituting the GD update with fixed step size n
W(t+1) = W(t) — nVe(t). (14)

into the smoothness inequality in equation I3 we obtain
2 K 5 2
Ut+1) < £@) =l VED 7w + 50 VLD Iw

= ot) = (1- K2) Va3

Then, if the step size satisfies 7 < %, then the loss is
non-increasing. Moreover, if we apply the PL condition

SIVL)|I3 > pl(t) to equation[I5] we obtain
0(t+1) < (1= 2np + Kpn?)L(t), (16)

which suffices to show the linear convergence of GD, for
properly chosen 7.

Over-parametrized GD. In the over-parametrized case,
we use the chain rule to write the gradient of L with respect
to Wi, Ws in terms of VI(W), Wy, Ws. The update of
weights in GD is

Wi(t+1 Wi (t
(W;EtL;) - (W;EtD —me(VEE) A7)
Thus, the update of the product is

W(t4+1) = Wi(t+1)Wa(t+1)
= (Wi(t) = VL&) Wa(t) ") (Wa(t) = nWi(t) T V(L))
= W(t) — nr (VL)) + n? VLW () TVE{t).  (18)

In other words, the update of the product is a polynomial
of degree two on the step size 7, unlike the update in equa-
tion [T4] which is a polynomial of degree one. Substitut-
ing equation [I8]into the smoothness inequality [T3] and us-
ing the PL condition, we can connect the loss at iteration
t+1 with the loss at iteration ¢. The following lemma char-
acterizes this property.

Lemma 3.1. If at the t-th iteration of GD applied to the
over-parametrized loss L, the step size 1) satisfies

Amin () = 0l VD[R [W ()| 7

K ) (19)
— 5 Pmax(m) + 0l VO£ [W (0]l £] "> 0,
then the following inequality holds
L(t+1) < p(n, t)L(1), (20)

where

p(n,t) = 1 = 2npdmin (7e) + Kpn? A2, (1)
+ 20 0 max (W (1)) [ V(1) | 7
+ 20° 11K Ammaxc (T¢) Tmax (W (£)) [ VE(2) || 7
+ 0 K o (W () V()] 3 @1

The proof of the above lemma can be found in the Ap-
pendix B}

Comparison with non-overparametrized GD. The dif-
ference between the inequality we derive in Lemma [3.1]
and the one in equation [16|is twofold. Firstly, p(n,t) in
equation[50|includes a quadratic polynomial of 7:

1= 20pAmin (1) + Kpn® A2 o (12) (22)

that resembles the one in equation[I6] The only difference
is that the second coefficient is now scaled by Apnin(7¢)
and the third coefficient by A2 __(7;). Equation[22] comes
from the term 77 (V£(t)) in the product update in equa-
tion which corresponds to moving the weight W (¢)
along the “skewed gradient direction” 7+(V4(t)) instead
of V{(t). Secondly, equation |50| has extra second- and
higher-order terms in 1 which come from the other term
n?VL(#)W T (t)VL(t) in equation Overall, compared
to equation [I6] the over-parametrized GD introduces a
more complicated update on the product W (t), leading to
the inequality in equation [49] that not only is a polyno-
mial of degree four in 7, but also depends on the weights
Wi (t), Wa(t) at the current iteration. These differences
pose additional challenges in deriving a linear convergence
rate for over-parametrized GD.

Towards linear convergence. Lemma [3.1) provides an up-
per bound on L(#+1), p(n, t)L(t), which implicitly depends
on Wi (t) and Wa(t) via Amin(7t), Omax (W (t)), £(t) and
Amax (7). However, it is unclear whether one can find some
step size ) that can simultaneously satisfy equation #8|and
uniformly bound p(n,t) < p < 1, for all t. Only under
such conditions Lemma[3.1l would lead to

L(t+1) < pL(t) < (p)™™ L(0).

We approach this challenge in a similar spirit as it was done
in GF [Min et al., 2022].

Step 1. Spectral bounds for 7. and W (t): First, we seek to
find bounds for A\ i (7¢) and Apax(7¢) based on the imbal-
ance D(t) and the singular values of the product, i.e.,

a(D(t)vain(W(t))) < )‘min(Tt)
)\max(Tt) < B(D(t)v Umax(W(t)))7

where both functions «(D, o) and §(D, o) are increasing
on the second argument, o. As a result, if one is able to
control D(¢) and the singular values of W (), one can at-
tempt to upper-bound p(), t) in equation

For the case of opmin (W (t)) and omax(W(t)), a similar
monotonicity argument as in GF can be done to obtain

(23)

D1 S Umin(W(t)) S Umax(W(t)) S P2 (24’)

The additional, non-trivial challenge present in GD is
the fact that the imbalance D(t) is no longer preserved,



Manuscript under review by AISTATS 2023

i.e., D(t) # D(0), which makes it still difficult control
Amin (7¢), Amax(7¢) by equation Nevertheless, we show
in Theorem that if 7 is sufficiently small, but not in-
finitesimal, it is possible to control how much the imbal-
ance changes by bounding || D(t) — D(0)|| for all ¢, which
leads to a uniform bound of the form

apC1 S )\min(Tt) S )\max(Tt) S 60027 (25)

where Sy := 5(D(0), p1), and the parameters 0 < ¢; < 1,
co > 1 represent an additional level of conservativeness
in the bound that is necessary to accommodate the time
varying nature of D(¢) in GD; see discussion after Theorem
[B.11for more details.

Stage 2.  Uniform upper-bound on rate p(n,t): Once
bounds for the spectrum of W (¢) and 7, have been es-
tablished, one can then proceed to bound p(7,t) in equa-
tion [50] In particular, we will show that p(n,t) < f(n,t),
where

f(n,t) :==1—ain +ax()n* + as(t)n® + as(t)n*, (26)
and the dependency on time is only through L(¢), i.e
ay = 2(010&0) mm(X)7

a2(t) =2 2K‘L( ) mln(X)p2 + K’Uﬁ’lin(X)(CQBO)Q’
as(t) = 2/ 263 L(t) o, (X) 2 fopa,

as(t) = 2x%08, (X)paL(2). (27)

The above bound for p(n,t) in equation 26] whose deriva-
tion is provided in Theorem can be then leverage in
multiple ways.

min (

¢ Uniform linear rate. Under mild conditions no the step
size, here exists 77 independent of ¢ such that f(n,t) <
f(n,0) (also in Theorem|3.2)), leading to

L(t) < f—o f(n, k) L(0) < (f(n,0))'L(0).  (28)

* Time-varying step size. A natural consequence of equa-
tions [26|and [28]is the possibility to adaptively choose 7;,
using only knowledge of the current loss L(¢), so as to
improve the convergence rate. This is explored in §3.3}
call for Algorithm|[I}

3.2 General bound on linear convergence rate

In this subsection, we derive conditions under which
Lemma [3.1]is a descent lemma. Based on this result, we
can prove that GD converges linearly to a global minimum
of equation[2} We refer the reader to Table 2] for the defini-
tion of various quantities appearing in this section.

Before stating our main result, we note that prior
work [Arora et al., 2018, /Du et al., 2018a] studied optimiz-
ing equation 2] via GD, but their results require the ini-
tial imbalance to have small Frobenius norm and the ini-
tial margin to be sufficiently large. The NTK initializa-
tion [Du and Hu, 2019]] does not require small imbalance,

but it does require a large hidden-layer width h, and the
weights needs to be randomly initialized. To the best of
our knowledge, Theorem [3.2]is the first convergence result
for GD which provides an explicit convergence rate without
making the assumption that the initial imbalance is small or
that the width of the network is large.

Table 2: Table of Notation

SYMBOL DEFINITION
£(t) (W)
L(t) LW (1), W2( ))
n(VE(t)  T(Ve(W(t )) ( ), Wa(t))
Amin(7e)  Amin(7(:; Wi(t), Wa(t)))
)\max(Tt) )\maX(T( ( ) (t)))
D(t) WlT(f)Wl( ) = Wa(t)Wa(t)
W (t) Wi (t)Wa(t)
E(t) Y — XWi(t)Wa(t)
rnax(X)
” X)
i max’{o,,,igg)x—(}\LE(owF,o}
P2 ||YHF+H(E)§?)HF
Ay max(Amax(D(0)),0) — max(A,(D(0)),0)
A max(Amax (—D(0),0)) — max(Am(—D(0)),0)
A max(An (D(0)),0) + max(Am (—D(0)),0)
Ay max(Amax (D(0)),0)
A max(Amax(—D(0)),0)
a0 —Awm —A_+4/(A_+A)2+4p3

2

P x++,/x2 +4p2 A7+~/A'i+4p§
0 2

Theorem 3.1 (Uniform bounds on eigenvalues of 7 and
singular values of W (¢)). Assume oy > 0, and choose 0 <
c1 < 1, and cag > 1. Let n"** and n5'** be, respectively,
the unique positive roots of the following two polynomials

inmn

a0 +as O+ (ax(0)+ 22D 0y,
a4(0)773+a3(0)772+(a2(0)+802ﬁ0L( ) max(X))n = a.
(1 — Cl)OéQ

(29)

Then, for any 0 < 1 < Nmax = min{ni"®> 2>} the
following holds for allt = 0,1, ...

C10 S )\min(Tt) é Amax('rt) é 0250

P < Onin (WD) < onas(W(O) <pac
The above theorem says that when the step size is small,
we can bound the eigenvalues of 7; and the singular val-
ues of W (t) using the initial imbalance and margin. When
ap > 0, we have a; > 0, and the LHS of equation@]is a
monotonically increasing function of 7, when n > 0, and
is equal to zero, when 1 = 0. Therefore, each polynomial
has a unique positive root. The condition 1 < 7, ax 1S used
to control || D(t) — D(0)|| . We use Amin(7¢) as an exam-
ple to illustrate why we need to control || D(t) — D(0)|| .
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In GD, equation E] still holds. However, since the imbal-
ance is no longer constant, i.e. since D(t) # D(0), we
no longer have «(D(¢),p1) = «(D(0),p1). Nonetheless,
after careful analysis, we observe that the change of imbal-
ance at each iteration is of order 2. Moreover, as long as
the loss decreases linearly and 7 is small (see equation[29),
we can prove that || D(t) — D(0)||r < O(n). Thus, we first
introduce c; to control the change of the eigenvalues of the
imbalance matrix. Then, if the step size is bounded, i.e.
7 < Nmax» We can show that a(D(t),p1) > c1a(D(0), p1).
A similar analysis yields the upper bound for Ayax(7%).
When ¢y, ¢y are chosen to be close to one, the change in
eigenvalues of imbalance is guaranteed to be small, but it
requires a smaller step as Nyax is small.

Then, based on Theorem@ we can prove the linear con-
vergence of GD.

Theorem 3.2 (Convergence rate of gradient descent on
two-layer linear networks). Under the assumptions in The-
orem[3.1] for any 0 < n < fax 1= min{nP>, nax}, the
loss function under GD satisfies

L(t+1) < f(n,t)L(t),
for f(n,t) as defined in equation 26| and with
0< f(n,t) < f(n,0) <1, Vt>0. a3
Thus, the loss converges linearly, i.e.,
L(t) < Mo f (n, k) L(0) < f(n,0)'L(0).  (32)
with rate given by f(n,0).

In f(n,t), —ain is an important term that facilitates con-
vergence because it is the only term that is associated with
a negative coefficient. a; depends on py, D(0) via g, and
when ag > 0, i.e., there is either sufficient margin or im-
balance, we have a; > 0. The proof Theorem @] and
Theorem [3.2]is presented in Appendix

Detailed comparison with SOTA. We compare our
results with other works studying the same prob-
lem [Du et al., 2018al, |Arora et al., 2018]]. In both works,
the authors make assumptions that the initial imbalance is
small. In our work, Theorem [3.2] holds if there is either
a sufficient imbalance or sufficient margin at initialization,
which is a more general setting. In [Du et al., 2018a], they
prove the loss decreases, and the imbalance remains small
during training, but the paper does not provide an explicit
convergence rate. More importantly, a decay in step size is
needed to control the difference between D(t¢) and D(0).
In our work, we provide an explicit convergence rate with-
out the need to decrease step size. In [Arora et al., 2018]],
the authors provide an explicit convergence rate. However,
their result depends on the property that when step size is
small, [|D(t)||F < 2||D(0)||F. We think the rwo used in
their proof is an artifact and improve it by introducing c;
and cy and characterize the dependence between step size
and c1, co, which is a more general case.

Comparison with non-overparametrized regime. In
the GF regime, [Min et al., 2022, Tarmoun et al., 2021]]
show that if ay is sufficiently large, the over-parametrized
model can have a faster convergence rate than the non-
overparametrized model. However, as shown in the next
proposition, such a result does not extend to the GD regime.

Proposition 3.1. If ag > 0, for all 0 < 1 < Nmax and for
allt =0,1,---, the following inequality holds

fln,t) >1— % (33)

where v = L is the condition number of the non-

overparametrizgd Problem

In Proposition 1 - % is the theoretical optimal con-
vergence rate of solving Problem [1| via GD (see for a
derivation of it). As a result, Proposition states that the
convergence rate derived in Theorem ie., f(n,t), for
solving the over-parametrized Problem[2]via GD, is always
larger. Nevertheless, we point out that Theorem [3.2] only
provides an upper bound on the rate, and further study is
needed to characterize its tightness.

3.3 Adaptive Step Size Scheme

In Theorem @], we show that a fixed step size 7 < Nax
guarantees linear rate of convergence of the loss L(t).
However, our analysis also suggests that faster convergence
can be achieved if we use a time-varying step size n; at ev-
ery iteration ¢. Specifically, in Theorem [3.2] we show that
when 1 < npax the following result holds

Lt+1) < f(n,)L(t),vt=0,1,2,... (34

At every iteration ¢, the best choice for the step size, sug-
gested by our theoretical result in equation [34] is the one
that minimizes f(n, t), subject to our constraint for conver-
gence nt S nmax:

m = arg min f (m,t). 35)

S7max

Finding the solution to equation |35|only requires solving a
third-order polynomial:

Claim 3.1. Suppose oy > 0. Let n; be the unique positive
root of the following equation

—ay + 2a2(t)n + 3az(t)n? +4as(t)n® = 0.  (36)
Then the solution to Problem is . = min(n;, Nmax)-
The proof is in Appendix [E] This suggests that one can find

1y very efficiently at each iteration. We present the GD
algorithm with adaptive step size scheduling below:
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Figure 1: Tightness check for upper bound in Theoremversus reconstruction error. We run the simulations three times.
The solid line is the log;, of the mean reconstruction error L(t), and the shaded area is the mean plus and minus one
standard deviation. For different ratios 32, and o (c.f. ~D we select two step sizes: Fixed Step Size Thm3.2 is the

Bo”’

minimum of f(7,0) s.t. ) < Nmax, and Adaptive Step Size Algol is the step size proposed in Algorithm The solid lines
are actual training loss. Dashed lines are theoretical upper bound in equation ie I} _, f(n, k) L(0).

Algorithm 1: GD with Adaptive Step Size Scheme
Data: X, Y, and initial W;(0), W5(0)

Result: W, W3 which minimize ||Y — X W, Wa||%.
fort =0,1,2--- do

/+ adaptive step size */
M < argming <y, f(1,t)
/+ GD update with */

(wetrry)) = (atp)) = mcoecon.

end

Convergence rate under adaptive step size. Notice that
f(n,t) depends on the iteration ¢ via the loss function L(¢).
As the training proceeds, the adaptive step size scheme en-
sures f(n,t) < 1 such that the loss L(t) converges to zero.
This in turn affects the asymptotic expression for f(n,t).
Specifically, when ¢ is sufficiently large (so that L(t) ~ 0),
we have

f(777 t) ~1-— Q(Clao)afnin(x)n + ’%U;lnin(X)(CQBO)2772 .

(37
Under a proper choice of ¢, co such that
€10
Nmax 2 3233 7w (38)
C%ﬁg Ko-rznin (X)
the adaptive step size scheduler yields a rate
(01040)2 1
)21 — —— 39)
T0n0 = 1 e

In this case, the asymptotic convergence rate of GD with
adaptive size depends on both % and % In Appendix
we show that there always exists such choice of ¢1, co suc

that equation |38 holds. Our numerical simulations show

that GD with the adaptive step size strategy achieves faster
convergence than GD with a fixed step size. Please refer to
Section 4.l for details.

4 Simulations

In this section, we first present empirical evidence that
Theorem provides a good characterization of the ac-
tual convergence rate of the loss under several different ini-
tializations. Moreover, we compared the convergence rate
of GD using the step sizes presented in Theorem [3.2] and
Algorithm |1| with those using step size proposed in pre-
vious work [Arora et al., 2018, |Du et al., 2018al], and our
step sizes achieve considerably faster convergence rate.
Throughout the experiments, we fix c; = 0.5 and c; = 1.5
in our choice of step sizes. The details of the simulations
are presented in Appendix [F

4.1 Evaluation of the tightness of the theoretical
bound on the convergence rate

We train a two-layer linear network using GD on the
squared loss in equation We generate the data matrix
as follows: X € R?%%20 XTi j] ~ N(0,1),and Y = X©O
where © € R20%20 Q[i, j] ~ N(0,1). The initial weight
matrices are generated as W1 (0) = oUy, W2(0) = %VO,
where Uy, V) have entry-wise i.i.d. samples drawn from a
standard gaussian A (0,1). We choose different values of
o to test our convergence rate in different regimes.

Figure [T] compares the convergence rate predicted by The-
orem with the actual convergence rate of L(t), under
different values of ¢ and approximately similar values of
‘ig. In all scenarios, our theoretical bounds follow the
empirical results relatively well. Moreover, we see, on



Manuscript under review by AISTATS 2023

4

—6 4

log: oL (t)

—— Fixed Step Size Thm3.2

—— Adaptive Step Size Algol

—— Step Size by Arora et al
Step Size by Du et al

—12 4

log1on

-1.04

~1.54
-2.01
—2.5 4 — Fixed Step Size Thm3.2

—— Adaptive Step Size Algol

—— Step Size by Arora et al
Step Size by Du et al

304

75 100 125 150 175 200

Iterations

o] 25 50

75 100 125 150 175 200

Iterations

0 25 50

Figure 2: Comparison between different step sizes is presented here. We run the simulations three times. On the left
plot, the solid line is the log;, of the mean reconstruction error L(t), and the shaded area is the mean plus and minus one
standard deviation. We select step sizes in [Arora et al., 2018} [Du et al., 2018al] and the other two step sizes are the same
as previous experiment. On the right plot, how each choice of step size changes during training is presented.

the one hand, that the rate of convergence of the adap-
tive step size regime is relatively insensitive to the value
of o in the initialization. This is not surprising, given the
discussion in §3.3] on the asymptotic rate of the adaptive
step size regime, which mostly depends on % On the
other hand, the rate of the fixed step size value in Theo-
rem [3.2] varies significantly with 0. As a result, this ex-
periment suggests a certain level of robustness provided
by the adaptive step size scheme. Finally, in this experi-
ment, the initial margin is 0 and the there is large initial im-
balance. Those initial conditions violate the assumptions
in [Arora et al., 2018, |Du et al., 2018a], but still enjoys lin-
ear convergence.

4.2 Comparison between different learning rates
presented in previous work

In this section, we compare the step sizes proposed in
Theorem 2 of [Aroraetal., 2018|] and Theorem 3.1 of
[Du et al., 2018a]] to the step size of Theorem @] and
the adaptive step size proposed in Section [3.3] We note
that the analyses in [Arora et al., 2018} |Du et al., 2018al
assume that the initialization is approximately balanced
(J|ID(0)|| 7 is small). In addition, [Arora et al., 2018] re-
quires the initialization to have sufficient margin (||Y —
XW1(0)W5(0)||F is small). Therefore, we compare our
results with [Arora et al., 2018}, |Du et al., 2018al] under ini-
tialization that is balanced (D(0) = 0) and has a suffi-
ciently large margin. In order to do so, we generate the
training data using the following:

X =15,Y = XW(O) + 0.01e,
W(0) € R**L W (0)[i, j] ~ N(0,1/4)
e € R ¢[i, j] ~ N(0,1).

(40)

Here we first randomly initialize the product W (0) and
the construction ensures that ||Y — XW(0)||r is small

so that there is a sufficiently large margin. Then, we ini-
tialize weights 1 (0), W2(0) of the linear networks such
that W1 (0)W3(0) = W(0). To construct a balanced
initialization, we compute the SVD of the initial prod-
uct W(0) = UXV". Then, we initialize the weights as
W1(0) = USY2 Wy(0) = 2Y/2V T,

Figure[2]shows the step size proposed in our paper achieves
the fastest convergence compared with other SOTA meth-
ods [Arora et al., 2018, |Du et al., 2018a]]. On the right plot,
step sizes proposed in this work is larger than the one pro-
posed in [[Arora et al., 2018}, |Du et al., 2018al.

5 Conclusions

This paper studied the convergence of GD for optimizing
two-layer linear networks. In particular, we derived a con-
vergence rate for networks of finite width that are initial-
ized in a non-NTK regime. Our results build upon recent
work for GF, which derived convergence rates that depend
on the imbalance and margin of the initialization. How-
ever, a key challenge in the GD regime is that the imbal-
ance of the weights changes with the iterations of GD. In
this paper, we show that when the step size is small, the
imbalance at iteration ¢ is close to its value at initializa-
tion. Moreover, we show that under this constraint on the
step size, the loss is decreasing. In addition, we derive an
explicit convergence rate that depends on the margin, im-
balance, and condition number of the data matrix. Finally,
based on the convergence rate, we propose an adaptive step
size scheme that accelerates convergence compared with a
constant step size. Empirically, we show the convergence
rate derived in our work is tighter than in previous work.
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Appendix
As we were preparing the supplement material, we find the following typos in the main paper:

+ In equation [30]and the correct singular value bounds on W (t) is p1 < omin(W (1)) < Omax (W (t)) < po.
* In equation equation the correct definition for az(t) is as(t) = 24/2k3L(t)o % (X)c2Bopa.

e In equation the correct lower bound on 7,y is %

min

* In Lemma[3.1] there are typos in the definition of p(, t). We restate the correct Lemma[3.1]in Appendix

We sincerely apologize for any confusion you may have while reading the main paper.

A Case when Data Matrix is rank deficient

Here, we show for any data matrix X of arbitrary dimensions and rank, the over-parametrized problem

1
i Ly x 2
WI?}VI%/Q (W1, Wo) 2H WiWs||%,

can be reparametrized into the following problem

min LWy, W) = Y — XWiWa|l%,
Wi, Wa

where X is a square matrix of full rank.

Let singular value decomposition of X be

Sy 0] [Vy"
el Y]

where X x contains all non-zero singular values of X . Then, we have X = U1 X x VlT. The GD update of W7, W5 is

Wi (t+1) = Wi (t) + nX TE(W, (t) = Wi(t) + nViZx U, E()Wy (t),
Wa(t+1) = Wa(t) + nW ()X TE(t) = Wa(t) + nW, ()ViExU, E(t).

We project W onto the space spanned by V7, Va,

Wiy =V, W,
Wio =V, Wi.

Furthermore, we define F(t) = U, E(t). Based on above, one has

Wii(t+1) = Wi (t) + nEx E(t)Wa(t),
Wia(t+1) = Wia(t),
Wa(t+1) = Wa(t) + nWi () Sx E(t).

The update of W71, W is the same to the following problem

1
in LWy, Wa) = =||U,/ Y — Sx Wy, Wa||2
pin (W11, Wa) 2|| 1 xWiuWal%,

(41)

(42)

(43)

(44)

(45)

(46)

(47)

where Y x is a sqaure matrix of full rank. The above problem takes the same form as equation 42| where Y =U Y, X =

Yx, Wi = Wi, Wy = Wa.
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B Proof of Lemma[3.1

Lemma B.1. [fat the t-th iteration of GD applied to the over-parametrized loss L, the step size 1 satisfies

Amin (7¢) = 1| VE(E) | FOmax (W (1))

5 Panax(7) + 0l VD) | £ oman (W (1)) 0.

(48)

then the following inequality holds
L(t+1) < p(n, t)L(1), (49)

where
p(n,t) = 1 — 20pAmin (1) + Kpum? X2 . (10)
+ 202 (0 max (W () V(1) | 7
+ 20 WK Amax (T¢) Omax (W () [ VE(t) || 7
+ 7 K ol (W ()| V()] 7 (50)

Proof. Applying smoothness equation [I3fo the update of the product in equation[T8] we get
L(t+1) < L(t) = n{V(t), 7 (VL(E) = nV &)W (1) V(D))
+ ol (V) — e W (1))
= L(t) = n{Ve@), (VL))

+a? ((VE(), VIO W () TVID) + 5 [ m(VE) 1)
= P K (r(VL(1)), VIR W () T V()

(G

+ §n4|\V€(t)W(t)TV5(t)||%

Then, we upper bound each term in the above inequality separately. First, since 7y is a positive semi-definite operator, we
have
(VL) (VL)) = Amin (1) [ VL) |7
17 (VLD E < A () IV L)1 (52)
Then, using the sub-multiplicative property of Frobenius norm and Cauchy Schwartz inequality, we can bound the rest
terms in equation [51]
[(Ve(t), VEOW () TVLD)| < VL) FIVEOW (&) T VLD [p < VD] Fomax (W (1)
(e (VL(D), V)W (1) T VL)) < VU] Fomax (W (0) (VD) 7 (VA1) < Ama(Te) Tanax (W () V() [
IVEOW (1) TVERF < o (W OV |- (53)

max

Based on above results, we can further upper bound equation [5]

L(t+1) < L(t) — n(VL(t), (VL)) (54)
+n* (V) VIOW () VD) + F I (V) [17) (55)

P (V). VW (1) V() (56)

+ VW) TV 57

< L(t) = nAmin(7) [ VL) I (58)

1 O W)V} + 5 W) IV ) (59)

+ 7P K A (T2) O (W () [ V() |5 (60)
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oz (Wb (61)
= L(t) — ][V L) [ 29(n) (62)

where

9(1) = Amin(7t) = 1(Tmax(W () [[VE(D)]| F + %Aiax(ﬁ))

(63)
K
= 1 K Amax (76) Omax (W () [ VA |7 = 0° - 0 W O) VD) 1
When ¢(n) > 0, which is assumed in equation we apply PL condition £||V£(¢)[|% > pl(t) to the above equation to get
L(t+1) < L(¢) x {1 — 20N min (T¢)

20 (e W)V + Ty W70

+ 207 I A (72) T (W (£)) | VE(8) | ©4)
V)V
= p(n, t)L(t).
O

C Proof of Theorem 3.1 and Theorem

Here we prove a new Theorem which implies Theorem [3.1]and Theorem 3.2}

Theorem C.1. Under the assumptions in Theorem SJorany 0 < n < Npax = min{n®* n2*Y the following four
properties hold for all t = 0,1,2,---.

o Ai(t): L(t) < f(n,t)L(t—1), where f(n,t) = 1 — a1n + as(t)n? + az(t)n® + as(t)n* < 1.

o Aao(t) : p1 < omin(W (1)) < Omax(W(t)) < po.

0_2 2
« Ag(t) [ D(t) — D(O)|p < 2220 COLOL iy g

© Ag(t) s crag < o0 (Wit) + 0, (Wa(t)) < Amin(Te) < Amax(Te) < 000 (W1(1)) + 01k (Wa(t) < c20.

min

Notice Theorem [3.1]is Property As(t), A4(t), and Theorem [3.2]is implied by Property A; (¢) because when L(k) < L(0)
hold forall k = 0,1, - - ,t, we have az(k) < a2(0),as(k) < as(0),as(k) < as(0). Thus, f(n, k) < f(n,0). As aresult,
the following inequality holds

t—1

L(t) < f(n, ) L(t = 1) < LO) [ f(n, k) < f(n,0)"L(0). (65)

k=0
Before proving Theorem|[C.1] we first present several preliminary lemmas.

Lemma C.1. For matrix A, B, we have

Tmin(AIBIE < [AB|E < 050 (A1 BlI7

min max

Tmin (B AIE < [IABI[E < 0fux (B) Al 7 (66)

min max

Proof.
|AB|% =tr (ABBTAT)
=tr (ATABBT) use cyclic property of trace
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< Amax (ATA) |B||%  use trace inequality

:Umax( )HB”F (67)

For the other way
|AB||7 = tr (ABBTAT)

=tr (ATABBT)

< Amax (BBT) |A]1%

= ama,x( )HAHF (68)
The lower bound is similar. O
Lemma C.2. Let X € RNX" Y € RVNX™ Assume N < n and rank(X) = N. For arbitrary W € R"*™, the following
holds for (W) = Z||Y — XW||%.

205 (X)UW) < [VEW)|[F < 2070, (X)UW). (69)

Proof. The first inequality is PL inequality. We then prove the second

IVeW)||F = HXT(Y — XW)|% gradient calculation
<o (X)IY = XW|%  use LemmalCT]
= 2070 (X) (W) (70)

Lemma C.3. The difference of the imbalance between iteration t + 1 and t can be upper bounded by
ID(t+1) = DOl < 20° 00 (X) (0max (Wi (1)) + 0 (W (#))) L (). 71

Proof. Notice the definition of imbalance is D(t) := W, ()W (t) — Wo(t)W,| (t) and the update of GD is given in equa-
tion@ Thus, using both results, one has
D(t+1) = (Wi (t) — pVet)Wa()T) T (Wi(t) — nVEE)Wa(t)T)  plug in GD update
= (Walt) =W (1) (D)) (Welt) = WWr ()T V(1)
= D(t) +n* (Wa(t)VEE) TVLE)Wa(t) T — Wi (t) TVL()VL(E) Wi (). (72)
Then, we can upper bound || D(t+1) — D(t)||p using Lemma|C.1]and Lemma[C.2]
ID(t+1) = D(#)|lr = n*[Wa(t)VEt) TVEOW(t)T — Wi(t) T VL)V Wi ()]
<P (IWa @)V TVLOW2() Tl + W) T VL)V ) WA ()] F)
2(||VV2(t)W(7f) I+ W) TVEe@D)[F) by Lemma[C]

1 (T max (W1 (1)) +0max(W2(t)))HV5( )7 by Lemma[C2]
< 20702, (X) (Tmax (W1(1)) + 050 (Wa (1)) L(1). (73)
O
Lemma C.4. Suppose h > min{r,m}. Given any A € R"™*" B € R"™ that satisfy ATA — BBT = D, we have
)\ \ 2 2
A (BTB) > A+ A+ V(A +A)2 +402,(AB) %)

2
where A\ = max{\; (D), 0} and A\ = max{\,,(—D),0}.

Lemma@is cited from [Min et al., 2022] and the proof can be found in [Min et al., 2022[] Lemma 8.
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Lemma C.5. Suppose h > min{r,m}. Given any A € R"™*" B € R"™ that satisfy ATA — BBT = D, we have

max(Amax(—D),0) + \/max()\max(—D)7 0)2 + 402, (AB)

Amax(B' B) < ; (75)
Proof. We first choose z € R™ with ||z||z = 1 s.t.
2" B"Bz = Anax(B' B). (76)
Then, we have
M (B'B)—2"B"ATAB2z=:"B"BB"Bz—2"BTA"ABz
=2"(B"BB"B—-B"A"AB)z
= 2B (BB — ATA)Bz
=2'B'(~D)Bz. (77)
Notice
N (B"B)-2"BTATABz> )2, (B"B) —¢2,.(AB)
2" BT (=D)Bz < max(Amax(—D), 0)|| Bz[|3 < max(Amax(—D), 0)Amax(B' B). (78)
Thus, we have
Amax(BTB)? = 07, (AB) < max(Amax(—D), 0)Amax (BT B). (79)
The solution to the above inequality gives us the results. O

Then, we begin the proof of Theorem[C.1}

Proof. Assume A;(k), As(k), As(k), A4(k) hold at iteration k = 1,2, - - - | ¢, then we prove they all hold at iteration ¢+1.
First, we prove A;(t+1) hold. According to Lemma 3.1} we have
L(t+1) < L(t) x {1 — 20U min (T¢)
2 K5
+ 207 1(Tmax (W (O)[VEO) |7 + 5 N (72)
+207° (UK Anax (76) Tmax (W (1)) VE(E) | 7
I V)V (50)

Since As(t), A4(t) hold, we can further upper bound the above inequality

L(t+1) < L(t) x {1 — 2npcrao + 20 p(p2||[VE(E) || F + %(clﬁof)

2P e fopa VU0 + 0 IV 81
Apply Lemma[C.2]
2 2 Ur2nax(X) 2
L(t+1) < L(#) x ¢ 1= 2nperao + 20°1(pa /2050 (X) (1) + =5 (c20)?)

2P (X)cafs BT DOV + 200 (XIWALLE)
4
= L(t) % {1 — 202 (X)eran -+ 202 (pay 2008, () L(0) + ST (0, )2y (82)

+ 2ot/ 207015, (L) + 20" ot (OLLO)

min

= L(t) x [1 — a1n + az(t)n” + as(t)n’ + aa(t)n’]
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Finally, we show when 0 < 1 < fmax, f(n,t) < 1. Notice f(n,t) is a decreasing functions in ¢, it suffices to show

f(n,0) <1

f(0,0) <1 <= as(0)n* + a3(0)n* + a2 (0)n < ay.

Compare the above inequality with equation 29] one has

462L(0)0121t1ax (X)
Co — 1
SCQﬁoL(O)UQ

as(0)° + as(0)n° + ax(0)n < as(0)n° +as(0)+ (az(0) + == e

as(0)n° + a3 (0)n* + a2(0)n < as(0)n*+a3(0)n” + (a2(0)+

)0

X)

).

Thus, when 0 < 1 < Npax, We have

42 L(0)0 0 (X)
Coy — 1
882B0L(0)0’2

as(O)i” + as O} + az(0)n < aa(O)n’*+ag (O + (aa(0)+ =20 e

as(0)n* + az(0)n* + a2 (0)n < as(0)n®+as(0)n*+ (a2(0)+ )n < a

(X)

)n < as.
which is equivalent to f(n,0) < 1. Thus, A;(¢+1) is proved.
Then, we prove A;(t+1) hold. Since loss is decreasing, i.e. L(t+1) < L(t) < L(0), we have
1Y = XW(t+1D[r < [|EQ)]r-
equation [86]is equivalent to
IYlr = [EO)[r < [XW(E+Dlr < [[Y]lF + [|EQO)]p-

In [Min et al., 2022]], Theorem 3, the lower bound is proved. For the upper bound,

Tmax (W (t4+1))omin (X) < [[W (E+1D)][pomin(X) < [XW(E+1)[F < [V + [E(O)]|F,

Thus,
1Yllr + 1£(0)||r

Omax(W(t+1)) < o (%) =:po

Then, we prove A3(t+1) hold.

t
ID(t+1) = D(0)||r <> | D(K+1) - D(k)||[r  use Lemma[C3]
k=0

< 3 20202, (X) (02 (Wi (R)) + 020 (Walk))L(K)  use Au(k)

< 2n2ca B0 (X) Z(l — a1 + as(k)n* + az(k)n® + as(k)n*)*L(0)
k=0
t

< 2072 B00max(X) D (1 = arn + as(0)1* + az(0)n* + as(0)n*)* L(0)
k=0

277262600-12118)(()()[’(0)
- 1- f(na O)

where we upper bound «; (k) by a;(0) in equationfor 1=1,2,3,4.

(83)

(84)

(85)

(86)

87)

(88)

(89)

(90)

oD
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Finally, we prove A4(t+1) hold. A\pin(7) < Amax(7) is obvious. We begin with the second inequality

Amin(7) = min (W, WW2T Wy + W1 W1T W) definition of operator norm

IWllF=1
> min (W, WW, Wy) + min (W, W, W, W)
IWilr=1 IWl[r=1

- 012nin (Wl) + Ur2ni11 (W2 ) .
The fourth inequality can be proved similarly

Mmax(T) = max (W, WW,) Wy + W, W, W)

IWllr=1
< max (W, WW, W)+ max (W, W, W, W)
IW =1 IWllr=1

= Ur2nax(W1) + arznax(WQ)

Then, we prove the first inequality and last inequality holds. According to Lemma[C.4] we have

U?nin(Wl(t+1)) > 9

(1) + A (1) + \/(X(H D)+ A, (t41))% + 402 (W(t+1))

A (1) F A_(t+1) + \/(X+(t+1) FA(t+1)° + 402, (W(t+1))

min(Wa(t+1)) >

O min 2
where
A+ (t) = max (A (D(1)),0)
%_ (t) = max (A, (—D(t)),0)
A-(t) = max (A1 (=D(t)),0)
Ay (t) = max (A, (D(2)),0)
We define
s Ay o O A0+ 8 ¢(2M0> FALO) + A1+ Ay)” 4 4p?
(A, Ay) A+ (0) + A1 +A_(0) + Ay + \/(2A+(0) +A_(0) + Ay + Ag)” + 4p?
where
A1 = A_(t+1) — A(0)
Ap = A, (t4+1) = A, (0)
Az = Ay (t+1) = A4 (0)
Ay =A_(t+1) = A_(0).

Then, we use opin (W (t+1)) > p; to lower bound equation[94]

UIerin(Wl (t+1))

Y

2

A (1) + A (t1) + \/(X(t+1) F AL (t+1))% 4 4p2
. :

>

= hl(Al, AQ)

Similarly, we have
Omin(Wa(t41)) > ha(Asz, Ayg).

SR+ A (1) 4 (Lt 1) 4+ A, (141))” + 402 (W(E+1))

92)

93)

(94)

95)

(96)

o7

(98)

99)
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Notice h1(0,0) 4+ h2(0,0) = ap which is independent of ¢. Our goal is to lower bound h1 (A1, As) + ho(As, Ay) using
h1(0,0) + h2(0,0). A natural solution is that if we can quantify how large |Ag|, k = 1,2,3,4 s, i.e.]Ag| < Ay, and if we
can show hq(+,), ha(:,-) are both Lj,-Lipschitz continuous. Using these two ingredients, one can show

71 (A1, Ag) = ki (0,0)|< Ly /A% + A3

= hi(A1, D) > h(0,0) — Ly /A2 + A2 > hy(0,0) — V2L, Ay (100)
Similarly, we have
ha(As, Ag) > ha(0,0) — V2Ly Ay, (101)

Based on above two equations, one has
hq (Al, AQ) + hQ(Ag, Ay) > hl(O, O) + hg(o, 0) - 2\/§LhAh. (102)
Next, we show the above two assumptions hold
1. hy(+,-), ha(:,-) are both Ly-Lipschitz continuous.
2. |Ag| < Aphold forall k = 1,2, 3, 4.

For the first one, using Weyl’s inequality and Property As(t+ 1), we can upper bound |A|
1] = [max(h (= D(t+1),0) — max(As (~D(0)), 0)|

< A (=D(t+1)) = A1 (=D(0)),0)| use Weyl’s inequality
< |ID(t+1) — D(0)||r use LemmalCJ3l
2 2
< 212800 max (X) L(0) (103)
Similarly, we have
21%c2B00 max (X) L(0)
Nsl, |As], |Ay] < ||D 1)—-D < max 104
Aol al, |ul < [D(+1) = D)) < 222 (104
What’s more,
’dhl(%y)’_‘_lJr x4y +A-(0) +2,(0)
de 2 2 /(L0 + A (0 +2+1) + 43
’ z+y+A_(0)+X,(0)
< 105
2\/ (0) + z+y)” + 4p? (105)
<1+1
-2 2
<1

Similarly, we have |dh1d(;u’y) | |dh2 - y)| |dh2($’y |< 1. Combine with equation we have hy(-,-), ha(,-) are v/2-
Lipschitz continuous. Thus, we have
JIznin(vvl (t)) + Urilin(WQ(t)) > hl(Alv AQ) + hQ(A37 A4)
> ag — 2LpV2||D(t+1) — D(0)|| Ly=V2
8n202ﬂ001?nax(X)L(0)
1- f(nv O) .

Although the above lower bound is smaller than «y, it is close to oy when 7 is small. This motivates us to introduce
0 < c1 < 1 so that when 7 is small, the above inequality is lower bounded by c;ay. To derive the upper bound on 7, it is
equivalent to ensure

> ap —

(106)

81280050, (X ) L(0)
1- f(777 O)

Qp — > 10
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8122 o0 max (X ) L(0)
1= f(n,0)
812800 max (X)L(0)
a1 — a2(0)n — az(0)n* — as(0)n?
802501/(0)0’2 (X)

= a0+ (O + (an(0) + = e

— (1 — Cl)OLQ

Y

< (1 — Cl)ao >

) < as (107)

which is ensured when 0 < 7 < 7max. The proof for the fourth inequality o2, (W1 (t+1)) + 02, (Wa(t+1)) < e28 in
A4(t+1) is similar. According to Lemmal|C.5] we have

Tax (W1 (t+1)) + 0o (Wa(t+1))
< max(Anax(D(0)),0) + Az + V402, (W (t+1)) + [max(Amax (D(0)), 0) + Ag]?

- 2
N max(Amax(—D(0)),0) + Ay + /402 (W (t+1) + max(Amax(—D(0)),0) + Ay]2
2
< max(Amax(D(0)), 0) + Az + v/4p3 + [max(Amax(D(0)), 0) + Ag]?
- 2
+ max(Amax(—0(0)),0) + Ay + \/417% + [max(Amax(=D(0)),0) + Ag]?
2
= h3(As, Ag), (108)
where
As = max(Amax(D(t+1)),0) — max(Amax (D(0)),0) (109)
Ag = max(Apax(—D(t+1)),0) — max(Amax(—D(0)),0).
Since
‘dh3($7 ) = ‘} z 4+ max(Amax(D(t+1)),0) < (110)
dx 2 24/4p% + max(Amax(D(t+1)),0) + A5]2 '
Similarly, |%§’y)| < 1. What’s more, Weyl’s inequality gives us
|As| = [max(Amax (D(t+1)),0) — max(Amax (D(0)), 0)]
< I/\max(D(t+1)) - /\max(D(O))‘
< [D(t+1) = D(0)||r (111)
Similarly, we have |Ag| < ||D(t+1) — D(0)||r. Thus, we have
Tmax(Wi(t+1)) + 07 (Wa(t+1)) = ha(As, Ae)
< h3(0,0) + v24/AZ + A2
< g+ B OLO) 4
- 1- f(777 O)
< Boc2
where the last inequality holds if and only if
4 L(0)o2, (X
asn® + asn? + (ag+w)n < ai. (113)

02—1
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D Proof of Proposition 3.1]

Proposition D.1. If oy > 0, for all 0 < n < Nyax and forallt = 0,1, - - -, the following inequality holds
1
fn,t) =1 —— (114)
K
where k = % is the condition number of the non-overparametrized Problem
Proof. The theoretical optimal convergence rate for non-overparametrized regime is 1 — % Then

1 1
fnt) — (1= =) = = —ayn + ao(t)n* + as(t)n® + as(t)n* drop last two terms which are non-negative
K K

1
> L 2ei000% (X1 4 (24/26 L0080 (X)pa + w2537
1
> — — 210002, (X)) + kot (X)eaBan? use [y > ap to lower bound last term
K
1
> — - QCIO‘OUr%nn(X)n + K:O.;lnin(X)cgagUQ
K

1
= (ﬁ — VRO (X)e2a0m)”
> 0. (115)
Thus, the results are proved. O
E Proof of Claim[3.1]
Claim E.1. Suppose g > 0. Let 1; be the unique positive root of the following equation
—ay + 2as(t)n + 3as(t)n? + 4as(t)n® = 0. (116)
Then the solution to Problem is ¢ = min(n}, Pmax)-
Proof. We first observe the derivative of f(n,t) with respect to 7 is monotonically increasing when 1 > 0
df (n,t
fg; ) = —ay + 2a2(t)n + 3az(t)n* + das(t)n?, (117)
and % > 0. Thus, if 7} < Nmax, the minimizer of Problem [35|iS Nmax- If 7} > 7max, since %’7’7’0 is negative when

0 <1 < Nmax < 1, f(n,1) is decreasing in the same range. Thus, the minimizer is 7,.x. Combing the above two cases,
the minimizer of Problem[35]is

e = mln(néa nmax)- (] ]8)
O
Claim E.2. Given some 0 < ¢ < % pick any
> M+ 1650(0) M 8Q%Lg(0) 2 119
c2 = X Claoafnin (X) ’ aOOanin (X) ’ ’ ( )

_ 2a3p2L(0) 24/202, (X)L(0)p2ag 24/2L(0)02,; (X)p2ao
where M = “5((?& + N + B .

Such choice of c1, co ensures Nmax >, forallt =0,1,2,---.



Manuscript under review by AISTATS 2023

Remark E.1. Claimimpliesforproper choice of ¢1, ca, one has Nmax > 0 forallt =0,1,2, - -. In the limiting case
when t — oo, one has

tll>rgo f(n’ ) =1- 2(010[0) mln(X)n + ’%U;lnin(X>(02/80>2772 (120)
With the choice of c1, co specified, we have ., < Nmax. Thus, the asymptotic convergence rate is

(c1ap)? 1

- 121
(cafo)? (120

and condition number k. The smaller k is, the faster convergence

f(nloovoo)zl_

(:1 (Xo

The asymptotic convergence rate is determined by

)\ .

)\"L((:i)) > ‘é;go , we can view 01%0 as a lower bound on the condition number of the operator
max

7. The more ill-conditioned T is, i.e. ‘;gz is small, the slower the convergence rate is.

rate is. What'’s more, since

Proof. Notice as(t), as(t),as(t) depends on L(t) and L(t) decreases as ¢ increases, so as(t),as(t), as(t) decrease as ¢
increase. From equation|117} we can see 7, increases as ¢ increases. Thus, to prove 7, < Nmax, it suffices to show

1
lim 7 = 55— < Dmax-
t=oo 38650 min (X)

min

(122)

which is equivalent to the following inequalities

3 2
el 190 4c2 L(0)0 70 (X) c1a0
Ot O st He O L i s 0

PN(0) ] (e — 3+a () e — 2+(a (0)+8025 0L(0)o ma"(X)) €10 <a. (124
NGB Re2 (X)) TN\ GB3Re2 (X) ? Q-c)ag ' ERroZ,(X) =

For equation[123]to hold, we study its LHS

250 BBL(0) | 2/2E0)25 ()
LHS of equation@: “1%P2 m1n pQClao

SB5x VRS
4 L 2L(0 X
C100 (0)2 (0,530 (X)p2c10 + 10007, (X)
(02 — 1)0250 CQﬁOf
263032 L(0 Pla 4e1apL(0 Pc
_ %4 é)pg (0) 31 0 100 L(0) —1 + c1apo i (X)
§ B8k c5 B0 (c2 = D)e2f33

where

2L( ) IIlll’l(X)pzaO
VEBS '

Since co > 2,50 co — 1 > 2. Then, we upper bound the above equality by substituting hlgher order terms of ¥,k > 2
with ¢; in the numerator by one except for the last term and replace higher order terms of c5, k > 3 with c2,

P_

(125)

2c3a3p3L(0)  Pclag 4e109L(0) Pcy

LHS of equati = — i (X
of equation 123 S + 3o | (er = eal2 + g + 1000 i (X)
2¢3a3p2 L(0 Pc? 8 L(0 P
< clozé)pg ©) 4 ?ao + clo;() 2( ) 4+ — il + claoafmn(X) use cg — 1 > ) in the first term
caBok c300 S1eh c3 2
2¢103p2L(0 P 8 L(0 P
< 6104201)2 (0) 21040 C1(3;0 2( ) ¢ JrClOZOO'?nm(X)
c3Bpk 350 3By 02

use ¢ > c’f ,k > 2 in the numerator and c% < clg, k > 3 in denominator

c1 [203p3L(0)  Pag  8agL(0) 9
= = + + + Pl4+cion0i;n
cg Bor Bo 53 o
L
_ (M+ 8apL(0)

02 5(2)

(X)

)+ crapo? i (X) use second condition in equation [T19]
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< 1o (X) 4 crogo?, (X)) = ay. (126)

For equation [I24]to hold, we study its LHS

2c3a3p3L(0)  Pclag 8L(0)cq Pcy 9
— L (X). 127
S B3k " c3Bo (1—(11)62ﬁ0+ c * €1207min(X) (120
Since 0 < ¢; < 2

5, we have 1 — ¢y > 5. Then, we upper bound the above equality by substituting ¢; with 1 in the
numerator by one except for the last term and replace higher order terms of &, k > 2 with ¢,

2¢3adp3iL(0)  Pciag 8L(0)cy Py

LHS of equation[124] =

LHS of equation = — 4+ cragoi; (X
quation[[28= = e se ™ a5 T A enepy T @ T 007min(X)
2c3adp3L(0)  Pc? 16L(0) P
< Claﬁopg ( ) glao ( ) + % + CloéoU?niH(X) use 1 — c1 2 cil
csByk c3 B0 c250 s 2

203p3L(0)  Pog | 16L(0) P ,
= - + +—+ (X
N 62685 Cgﬁo C2/80 Co Claoglnm( )
use ¢; < 1 in the numerator and ¢, > ¢k, k > 1 in the numerator

1 [203p3L(0)  Pag  16L(0)

= = + + + P|+c« anin
C2 Bok Bo Bo o
1 16L(0
=—[M+ 5()] + 10902, use first condition in equation[TT9]
C2 0
< crapo? i (X) + 1ol (X) = ay. (128)

F Simulations

In Section[4.2] we compare the step sizes proposed in [Arora et al., 2018, [Du et al., 2018a]l, Theorem [3.2]and Algorithm T}
In [Du et al., 2018al], they choose an adaptive step size

e/r
F Vo L (129)
100(t+1)| Y| 2
where 0 < € < ||Y|| is the final precision we want to achieve, r is the rank of Y. When comparing, we set ¢ = ||Y||r to
select the largest step size possible in their work.
In [Arora et al., 2018]], they choose constant step size which satisfies
3
b1

< 130
7= 6144 % 23 x Y5 (130)

When comparing, we select the largest step size possible, i.e. n = M)W.
F

In [Arora et al., 2018} Du et al., 2018al], the authors make assumptions that there is sufficient margin and zero imbalance at
initialization. What’s more, they both choose the setting of matrix factorization and claim it’s equivalent to linear networks.
To make fair comparison, we generate X using identity matrix. For initialization of the network, we follow Proposition [FI]
in [Arora et al., 2018]] to create a balanced initialization. The magnitude 0.05 of noise added to Y is a hyperparameter
which ensures there is sufficient margin at initialization. The procedure to ensure there is zero imbalance at initialization
is given below

Proposition F.1 (Balanced Initialization). Given dg,d,...,dn € N such that min{dy,...,dy_1} > min{dy, dy} and
a distribution D over dy X do matrices, a balanced initialization of W; € R xdj—1 5=1 ... N, assigns these weights
as follows:

1. Sample A € RN >0 gecording to D.

2. Take singular value decomposition A = ULV T, where U € R~ *min{dodn} y/ ¢ Rdoxmin{do.dn} paye orthonor-
mal columns, and ¥ € R™{do.dn}xmin{do.dn} s diagonal and holds the singular values of A.

3 Set Wy ~USYN Wyn_1 ~SVUN Wy~ SYN Wy ~ SYNVT swhere the symbol “~” stands for equality up
to zero-valued padding.
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