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Abstract

Recent theoretical analyses of the convergence of
gradient descent (GD) to a global minimum for
over-parametrized neural networks make strong
assumptions on the step size (infinitesimal), the
hidden-layer width (infinite), or the initialization
(spectral, balanced). In this work, we lift these
stringent assumptions and derive a linear conver-
gence rate for two-layer linear networks trained
using GD on the squared loss in the case of finite
step size, finite width and general initialization.
Despite the generality of our analysis, our rate
estimates are significantly tighter than those of
prior work. Moreover, we provide a time-varying
step size rule that monotonically improves the
convergence rate as the loss function decreases
to zero. Numerical experiments validate our find-
ings.

1 Introduction

The empirical success of neural networks on a wide va-
riety of applications, such as natural language process-
ing [Vaswani et al., 2017, Vaswani et al., 2018], computer
vision [He et al., 2015, Minaee et al., 2021] and decision
making [Silver et al., 2016, Vo et al., 2019], has motivated
significant research on understanding theoretically why
neural networks work so well in practice. One interesting
and puzzling phenomenon is that over-parametrized neu-
ral networks trained with gradient descent (GD) enjoy fast
convergence even if their loss landscape is non-convex.
Much of the recent work in this area has focused on de-
riving convergence rates for over-parametrized networks.
However, existing results require stringent assumptions on
the step size (infinitesimally small), the hidden-layer width
(infinitely large), or the initialization (spectral, balanced).

Preliminary work. Under review by AISTATS 2023. Do not dis-
tribute.

Table 1: Summary of prior work and our contributions.

step size width initialization
[Jacot et al., 2018,
Du et al., 2018b,
Lee et al., 2019,
Liu et al., 2022,
Oymak and Soltanolkotabi, 2020]

finite very
large

sufficiently
large

[Mei et al., 2018,
Chizat and Bach, 2018,
Ding et al., 2022]

infinite-
simal infinite general

[Saxe et al., 2013,
Gidel et al., 2019,
Tarmoun et al., 2021]

infinite-
simal finite spectral

[Tarmoun et al., 2021,
Min et al., 2022]

infinite-
simal finite general

[Arora et al., 2018,
Du et al., 2018a,
Nguegnang et al., 2021]

finite finite
large margin
and small
imbalance

This work finite finite general

Prior work. One line of work [Jacot et al., 2018,
Du et al., 2018b, Lee et al., 2019, Liu et al., 2022] studies
the convergence of GD when the scale of the initializa-
tion and the network width are sufficiently large. Un-
der these assumptions, the network weights remain close
to their initialization during training, and one can show
that GD converges linearly to a global minimum. How-
ever, [Chizat et al., 2019, Chen et al., 2022] show that this
“lazy training” regime is unrealistic in practice as it lim-
its feature learning. A convergence analysis beyond the
so-called lazy regime can be undertaken in the (mean-
field) limit of infinitely wide networks [Mei et al., 2018,
Sirignano and Spiliopoulos, 2020, Chizat and Bach, 2018,
Ding et al., 2022], where suitable assumptions on the ini-
tialization and step size make GD become a Wasserstein
flow; a partial differential equation commonly appearing in
optimal transport theory. However, while such analysis can
guarantee convergence to the global optimum for a wider
range of initializations, it still imposes strong assumptions
on the network width (infinite) and step size (infinitesimal).

Another line of work studies the convergence of gradi-
ent algorithms for over-parametrized networks with finite
width. In this finite-width setting, the vast majority of ex-
isting results consider linear networks trained using gra-
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dient flow (GF). GF can be seen as GD with infinites-
imal step size, but its dynamics in this setting are gen-
erally easier to analyze. For example, [Saxe et al., 2013,
Gidel et al., 2019, Tarmoun et al., 2021] show that under
spectral initialization the dynamics of GF decouple into
several scalar dynamics, which allows them to derive a
linear convergence rate. For non-spectral initialization,
[Tarmoun et al., 2021, Min et al., 2022] show that a large
imbalance or large margin of the initialization can lead
to faster convergence of GF, significantly extending the
range of initializations from which linear convergence of
GF is guaranteed. However, such results require infinites-
imal step size. For finite step size, [Arora et al., 2018,
Du et al., 2018a, Nguegnang et al., 2021] prove linear con-
vergence of GD when there is sufficient margin at initial-
ization and the imbalance is small. However, such assump-
tions rarely hold in practice since commonly used random
initializations have a large imbalance.

Paper contributions. In this work, we derive a linear
convergence rate for GD in the case of over-parametrized,
finite-width, two-layer linear networks with general initial-
ization. Our analysis can be seen as a natural extension
of recent results for GF, which cover finite width and im-
balanced initializations. However, a key challenge in the
case of GD is that quantities such as imbalance, which are
preserved by GF, are no longer preserved by GD. To ad-
dress this challenge, we derive quantities that effectively
bound the deviation of the discrete dynamics from the con-
tinuous dynamics as a function of the step size, thus en-
suring sufficient control (via upper and lower bounds) of
the level of imbalance throughout training. This leads to
a convergence rate that naturally depends on the step size,
as well as other quantities, such as the current loss value.
Moreover, the dependency of the rate on the step size is a
low-degree polynomial, which allows us to easily compute
an optimal step size at each iteration of training. Further-
more, we prove that the resulting time-varying step size
is lower-bounded by the optimal rate of GD for the non-
overparametrized problem. Finally, our numerical results
show that, despite the generality of our analysis, our rate
estimates are significantly tighter than those of prior work.

Notation. We use lower case letters a to denote a scalar,
and capital letters A and A⊤ to denote a matrix and
its transpose. We use λmax(A) and λmin(A) to denote
the largest and smallest eigenvalues of A, σmax(A) and
σmin(A) to denote its largest and smallest singular values,
∥A∥F and ∥A∥2 to denote its Frobenius and spectral norms,
and A[i, j] to denote its (i, j)-th element. Given two matri-
ces A ∈ Rn×m and B ∈ Rk×l, it will be convenient to use

either
(
A
B

)
or (A,B) to represent an element in the prod-

uct space Rn×m × Rk×l, irrespectively of the dimensions.
For a function f(Z), we use ∇f(Z) := ∂

∂Z f(Z) to denote

its gradient, and whenever Z depends on an independent
variable t, we use f(t) := f(Z(t)) and Ż(t) = d

dtZ(t),
dropping the dependence on t when it is implicit from the
context, e.g., Ż = d

dtZ. Finally, we useN (µ, σ2) to denote
a normal distribution with mean µ and variance σ2.

2 Convergence of Gradient Flow for
Two-layer Linear Networks

In this section, we first consider a linear regression prob-
lem and its over-parametrized version, which is equivalent
to training a two-layer linear neural network. We then sum-
marize the convergence results for GF in [Min et al., 2022],
which constitute the starting point of our work. Throughout
this section, we thus consider a continuous time t ∈ R.

Given N training samples (xi, yi)
N
i=1, where xi ∈ Rn, yi ∈

Rm, we consider the following linear regression problem

min
W

ℓ(W ) =
1

2
∥Y −XW∥2F , (1)

where W ∈ Rn×m, X = [x1, · · · , xN ]⊤ ∈ RN×n and
Y = [y1, · · · , yN ]⊤ ∈ RN×m. We are interested in solv-
ing the optimization problem in equation 1 by solving the
following over-parametrized problem

min
W1,W2

L(W1,W2) =
1

2
∥Y −XW1W2∥2F , (2)

where W1 ∈ Rn×h, W2 ∈ Rh×m. This over-parametrized
problem corresponds to training a two-layer linear neural
network with n inputs, h hidden neurons, m outputs, and
weight matrices W1 and W2.

To simplify exposition, we consider the above problems in
the under-determined case, i.e., N ≤ n. We assume that
the input data matrix X is full rank, i.e., rank(X) = N .1

We also assume that h ≥ min{n,m}. These assump-
tions imply that the minimum of both problems is zero, i.e.,
minW ℓ(W ) = 0 and L∗ := minW1,W2

L(W1,W2) = 0.
We note, however, that our results generalize the case
N > n, by properly accounting for a non-zero L∗.

Convergence under GF. Let us consider solving equa-
tion 2 via GF(

Ẇ1

Ẇ2

)
= −∇L(W1,W2) = −

(
∇ℓ(W )W⊤

2

W⊤
1 ∇ℓ(W )

)
, (3)

where ∇ℓ(W ) = X⊤(Y −XW ). Notice that there exists
a linear operator γ(·;W1,W2) : Rn×m → Rn×h ×Rh×m,

γ(∇ℓ(W );W1,W2) :=

(
∇ℓ(W )W⊤

2

W⊤
1 ∇ℓ(W )

)
, (4)

1When X is rank deficient, one can reformulate the problem
into one with full-rank input data matrix (see Appendix A for de-
tails).
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which depends on W1,W2, that maps the gradient of
the loss ∇ℓ(W ) ∈ Rn×m to the gradient of the over-
parametrized loss∇L(W1,W2) ∈ Rn×h × Rh×m.

Then, one can show that the evolution of L under GF is

L̇(W1,W2)

=

〈
∂L

∂W1
(W1,W2), Ẇ1

〉
+

〈
∂L

∂W2
(W1,W2), Ẇ2

〉
= − ⟨γ(∇ℓ(W );W1,W2), γ(∇ℓ(W );W1,W2)⟩
= −⟨∇ℓ(W ), γ∗ ◦ γ(∇ℓ(W );W1,W2)⟩ ,

(5)

where γ∗(·;W1,W2) is the adjoint of γ(·;W1,W2). There-
fore, the dynamics of L are defined by the following posi-
tive semi-definite Hermitian linear operator on∇ℓ(W ):

τ(∇ℓ(W );W1,W2) := γ∗ ◦ γ(∇ℓ(W );W1,W2) (6)

=∇ℓ(W )W⊤
2 W2 +W1W

⊤
1 ∇ℓ(W ).

Then, from equation 5 and the min-max principle of Her-
mitian operators, we have

L̇(t) = −⟨∇ℓ(t), τt(∇ℓ(t))⟩ ≤−λmin(τt)∥∇ℓ(t)∥2F , (7)

where for simplicity we use ℓ(t), L(t) and τt(∇ℓ(t)),
resp., as a shorthand for ℓ(W (t)), L(W1(t),W2(t)) and
τ(∇ℓ(W (t));W1(t),W2(t)). Similarly, we use λmin(τt)
and λmax(τt) as a shorthand for λmin(τ( · ;W1(t),W2(t)))
and λmax(τ( · ;W1(t),W2(t))), respectively.

The core contribution of [Min et al., 2022] is to provide a
lower bound on λmin(τt) using two quantities: imbalance

D(t) = W⊤
1 (t)W1(t)−W2(t)W2(t)

⊤ , (8)

and product W (t) = W1(t)W2(t). Specifically, they show
there exists an non-negative function α(D,σmin(W )) that
depends on imbalance and product, such that for all t ≥ 0,

λmin(τt) ≥ α(D(t), σmin(W (t))). (9)

To find a uniform lower bound on α(D(t), σmin(W (t)))
for all t ≥ 0, they exploit the fact that the imbal-
ance matrix remains constant along the trajectories of
GF [Arora et al., 2018, Du et al., 2018a], i.e., Ḋ ≡ 0 so
that D(t) = D(0). As for the product, [Min et al., 2022]
show (from the fact that the loss L(t) is non-increasing)
that

σmin(W (t)) ≥ p1(:= margin) . (10)

Therefore, we can replace the imbalance D(t) in equation 9
by its initial value D(0). Moreover, it can be shown that
α(D,σ) is a non-decreasing function of the second argu-
ment σ, allowing us to use equations 9 and 10 to show that

λmin(τt) ≥ α(D(t), p1) = α(D(0), p1) :=α0, (11)

where the expression for α0 is shown in Table 2. Observe
that equation 11 yields a uniform lower bound on λmin(τt).

Combining equation 11 with the fact that ℓ(t) satisfies the
PL condition 1

2∥∇ℓ(t)∥
2
F ≥ µℓ(t) with µ = σ2

min(X) > 0,
we show that equation 7 can be further upper-bounded by:

L̇(t) ≤ −λmin(τt)∥∇ℓ(t)∥2F ≤ −α0∥∇ℓ(t)∥2F
≤ −2µα0ℓ(t) = −2µα0L(t),

(12)

where the third inequality follows from the PL condition.
Moreover, if α0 > 0, it follows from Grönwall’s inequal-
ity that L(t) ≤ exp(−2µα0t)L(0), showing that GF con-
verges exponentially with a rate 2µα0.

As discussed in the introduction, the imbalance matrix
D(t) measures the difference of the weights in the two
layers, while the margin p1 depends on the initial error
∥Y − XW1(0)W2(0)∥F (the smaller the error, the larger
the margin). [Min et al., 2022] show that α0 > 0 when
there is either 1) sufficient imbalance ∆ > 0 or 2) sufficient
margin p1 > 0, where ∆ is defined in Table 2. Moreover,
a larger imbalance (as measured by ∆) or a larger margin
p1 improves the rate of convergence α0. In summary, the
convergence of GF is completely determined by the ini-
tialization W1(0),W2(0), and convergence is guaranteed
when the initialization satisfies α0 > 0, which is achieved
by either being imbalanced or having sufficient margin.

3 Convergence of Gradient Descent for
Two-layer Linear Networks

In this section, we analyze the convergence of GD for over-
parametrized two-layer linear networks. We start in §3.1 by
highlighting the challenges of analyzing over-parametrized
GD when compared to (1) the standard GD algorithm
applied to ℓ(W ) and (2) the GF algorithm applied to
L(W1,W2) described in the previous section. Alongside,
we provide a high-level overview of the overall strategy we
use to overcome these challenges. Based on the proposed
approach, we then derive in §3.2 a rigorous convergence
rate that depends on not only the imbalance and margin at
the initialization but also the step size and condition num-
ber of the data. Finally, in §3.3 we propose an adaptive
step size scheme that accelerates convergence. Due to the
discrete nature of our updates, we thus consider t to be dis-
crete, i.e., t ∈ N.

3.1 Challenges in the Analysis of Over-parametrized
Gradient Descent

Standard GD. We start by deriving the convergence rate of
the non-overparametrized regime described in equation 1.
Notice that ℓ(t) is K-smooth and satisfies µ-PL condition,
where K = σ2

max(X), µ = σ2
min(X). Then, the following

smoothness inequality holds for any W (t),W (t+1):

ℓ(t+1) ≤ ℓ(t)+⟨∇ℓ(t),W (t+1)−W (t)⟩

+
K

2
∥W (t+1)−W (t)∥2F

(13)
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After substituting the GD update with fixed step size η

W (t+1) = W (t)− η∇ℓ(t). (14)

into the smoothness inequality in equation 13 we obtain

ℓ(t+1) ≤ ℓ(t)− η∥∇ℓ(t)∥2F +
K

2
η2∥∇ℓ(t)∥2F

= ℓ(t)− η
(
1−K

η

2

)
∥∇ℓ(t)∥2F

(15)

Then, if the step size satisfies η < 2
K , then the loss is

non-increasing. Moreover, if we apply the PL condition
1
2∥∇ℓ(t)∥

2
F ≥ µℓ(t) to equation 15, we obtain

ℓ(t+1) ≤ (1− 2ηµ+Kµη2)ℓ(t), (16)

which suffices to show the linear convergence of GD, for
properly chosen η.

Over-parametrized GD. In the over-parametrized case,
we use the chain rule to write the gradient of L with respect
to W1,W2 in terms of ∇ℓ(W ),W1,W2. The update of
weights in GD is(

W1(t+1)
W2(t+1)

)
=

(
W1(t)
W2(t)

)
− ηγt(∇ℓ(t)) (17)

Thus, the update of the product is

W (t+1) = W1(t+1)W2(t+1)

=
(
W1(t)− η∇ℓ(t)W2(t)

⊤)(W2(t)− ηW1(t)
⊤∇ℓ(t)

)
= W (t)− ητt(∇ℓ(t)) + η2∇ℓ(t)W (t)⊤∇ℓ(t). (18)

In other words, the update of the product is a polynomial
of degree two on the step size η, unlike the update in equa-
tion 14, which is a polynomial of degree one. Substitut-
ing equation 18 into the smoothness inequality 13, and us-
ing the PL condition, we can connect the loss at iteration
t+1 with the loss at iteration t. The following lemma char-
acterizes this property.

Lemma 3.1. If at the t-th iteration of GD applied to the
over-parametrized loss L, the step size η satisfies

λmin(τt)− η∥∇ℓ(t)∥F ∥W (t)∥F

− Kη

2

[
λmax(τt) + η∥∇ℓ(t)∥F ∥W (t)∥F

]2≥ 0 ,
(19)

then the following inequality holds

L(t+1) ≤ ρ(η, t)L(t) , (20)

where

ρ(η, t) = 1− 2ηµλmin(τt) +Kµη2λ2
max(τt)

+ 2η2µσmax(W (t))∥∇ℓ(t)∥F
+ 2η3µKλmax(τt)σmax(W (t))∥∇ℓ(t)∥F
+ η4µKσ2

max(W (t))∥∇ℓ(t)∥2F . (21)

The proof of the above lemma can be found in the Ap-
pendix B.

Comparison with non-overparametrized GD. The dif-
ference between the inequality we derive in Lemma 3.1
and the one in equation 16 is twofold. Firstly, ρ(η, t) in
equation 50 includes a quadratic polynomial of η:

1− 2ηµλmin(τt) +Kµη2λ2
max(τt) (22)

that resembles the one in equation 16. The only difference
is that the second coefficient is now scaled by λmin(τt)
and the third coefficient by λ2

max(τt). Equation 22 comes
from the term ητt(∇ℓ(t)) in the product update in equa-
tion 18, which corresponds to moving the weight W (t)
along the “skewed gradient direction” τt(∇ℓ(t)) instead
of ∇ℓ(t). Secondly, equation 50 has extra second- and
higher-order terms in η which come from the other term
η2∇ℓ(t)W⊤(t)∇ℓ(t) in equation 18. Overall, compared
to equation 16, the over-parametrized GD introduces a
more complicated update on the product W (t), leading to
the inequality in equation 49 that not only is a polyno-
mial of degree four in η, but also depends on the weights
W1(t),W2(t) at the current iteration. These differences
pose additional challenges in deriving a linear convergence
rate for over-parametrized GD.

Towards linear convergence. Lemma 3.1 provides an up-
per bound on L(t+1), ρ(η, t)L(t), which implicitly depends
on W1(t) and W2(t) via λmin(τt), σmax(W (t)), ℓ(t) and
λmax(τt). However, it is unclear whether one can find some
step size η that can simultaneously satisfy equation 48 and
uniformly bound ρ(η, t) ≤ ρ̄ < 1, for all t. Only under
such conditions Lemma 3.1 would lead to

L(t+1) < ρ̄L(t) < (ρ̄)t+1L(0).

We approach this challenge in a similar spirit as it was done
in GF [Min et al., 2022].

Step 1. Spectral bounds for τt and W (t): First, we seek to
find bounds for λmin(τt) and λmax(τt) based on the imbal-
ance D(t) and the singular values of the product, i.e.,

α(D(t), σmin(W (t))) ≤ λmin(τt)

λmax(τt) ≤ β(D(t), σmax(W (t))),
(23)

where both functions α(D,σ) and β(D,σ) are increasing
on the second argument, σ. As a result, if one is able to
control D(t) and the singular values of W (t), one can at-
tempt to upper-bound ρ(η, t) in equation 50.

For the case of σmin(W (t)) and σmax(W (t)), a similar
monotonicity argument as in GF can be done to obtain

p1 ≤ σmin(W (t)) ≤ σmax(W (t)) ≤ p2. (24)

The additional, non-trivial challenge present in GD is
the fact that the imbalance D(t) is no longer preserved,
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i.e., D(t) ̸= D(0), which makes it still difficult control
λmin(τt), λmax(τt) by equation 23. Nevertheless, we show
in Theorem 3.1 that if η is sufficiently small, but not in-
finitesimal, it is possible to control how much the imbal-
ance changes by bounding ∥D(t)−D(0)∥ for all t, which
leads to a uniform bound of the form

α0c1 ≤ λmin(τt) ≤ λmax(τt) ≤ β0c2 , (25)

where β0 := β(D(0), p1), and the parameters 0 < c1 < 1,
c2 > 1 represent an additional level of conservativeness
in the bound that is necessary to accommodate the time
varying nature of D(t) in GD; see discussion after Theorem
3.1 for more details.

Stage 2. Uniform upper-bound on rate ρ(η, t): Once
bounds for the spectrum of W (t) and τt have been es-
tablished, one can then proceed to bound ρ(η, t) in equa-
tion 50. In particular, we will show that ρ(η, t) ≤ f(η, t),
where

f(η, t) := 1− a1η + a2(t)η
2 + a3(t)η

3 + a4(t)η
4 , (26)

and the dependency on time is only through L(t), i.e.,

a1 = 2(c1α0)σ
2
min(X),

a2(t) = 2
√
2κL(t)σ6

min(X)p2 + κσ4
min(X)(c2β0)

2,

a3(t) = 2
√
2κ3L(t)σ10

min(X)c2β0p2,

a4(t) = 2κ2σ6
min(X)p22L(t). (27)

The above bound for ρ(η, t) in equation 26, whose deriva-
tion is provided in Theorem 3.2, can be then leverage in
multiple ways.

• Uniform linear rate. Under mild conditions no the step
size, here exists η independent of t such that f(η, t) ≤
f(η, 0) (also in Theorem 3.2), leading to

L(t) ≤ Πt
k=0f(η, k)L(0) ≤ (f(η, 0))tL(0). (28)

• Time-varying step size. A natural consequence of equa-
tions 26 and 28 is the possibility to adaptively choose ηt,
using only knowledge of the current loss L(t), so as to
improve the convergence rate. This is explored in §3.3;
call for Algorithm 1.

3.2 General bound on linear convergence rate

In this subsection, we derive conditions under which
Lemma 3.1 is a descent lemma. Based on this result, we
can prove that GD converges linearly to a global minimum
of equation 2. We refer the reader to Table 2 for the defini-
tion of various quantities appearing in this section.

Before stating our main result, we note that prior
work [Arora et al., 2018, Du et al., 2018a] studied optimiz-
ing equation 2 via GD, but their results require the ini-
tial imbalance to have small Frobenius norm and the ini-
tial margin to be sufficiently large. The NTK initializa-
tion [Du and Hu, 2019] does not require small imbalance,

but it does require a large hidden-layer width h, and the
weights needs to be randomly initialized. To the best of
our knowledge, Theorem 3.2 is the first convergence result
for GD which provides an explicit convergence rate without
making the assumption that the initial imbalance is small or
that the width of the network is large.

Table 2: Table of Notation

SYMBOL DEFINITION
ℓ(t) ℓ(W (t))
L(t) L(W1(t),W2(t))
τt(∇ℓ(t)) τ(∇ℓ(W (t));W1(t),W2(t))
λmin(τt) λmin(τ(·;W1(t),W2(t)))
λmax(τt) λmax(τ(·;W1(t),W2(t)))
D(t) W⊤

1 (t)W1(t)−W2(t)W2(t)
⊤

W (t) W1(t)W2(t)
E(t) Y −XW1(t)W2(t)

κ
σ2
max(X)

σ2
min(X)

p1
max{σmin(Y )−∥E(0)∥F ,0}

σmax(X)

p2
∥Y ∥F+∥E(0)∥F

σmin(X)

∆+ max(λmax(D(0)), 0)−max(λn(D(0)), 0)
∆− max(λmax(−D(0), 0))−max(λm(−D(0)), 0)
∆ max(λn(D(0)), 0) + max(λm(−D(0)), 0)
λ+ max(λmax(D(0)), 0)
λ− max(λmax(−D(0)), 0)

α0
−∆++

√
(∆++∆)2+4p21

2
+

−∆−+
√

(∆−+∆)2+4p21
2

β0

λ++
√

λ2
++4p22

2
+

λ−+
√

λ2
−+4p22

2

Theorem 3.1 (Uniform bounds on eigenvalues of τt and
singular values of W (t)). Assume α0 > 0, and choose 0 <
c1 < 1, and c2 > 1. Let ηmax

1 and ηmax
2 be, respectively,

the unique positive roots of the following two polynomials
in η

a4(0)η
3+a3(0)η

2+
(
a2(0)+

4c2L(0)σ
2
max(X)

c2 − 1

)
η=a1,

a4(0)η
3+a3(0)η

2+
(
a2(0)+

8c2β0L(0)σ
2
max(X)

(1− c1)α0

)
η = a1.

(29)

Then, for any 0 < η ≤ ηmax := min{ηmax
1 , ηmax

2 }, the
following holds for all t = 0, 1, . . .

c1α0 ≤ λmin(τt) ≤ λmax(τt) ≤ c2β0

p1 ≤ σmin(W (t)) ≤ σmax(W (t)) ≤ p2.
(30)

The above theorem says that when the step size is small,
we can bound the eigenvalues of τt and the singular val-
ues of W (t) using the initial imbalance and margin. When
α0 > 0, we have a1 > 0, and the LHS of equation 29 is a
monotonically increasing function of η, when η > 0, and
is equal to zero, when η = 0. Therefore, each polynomial
has a unique positive root. The condition η ≤ ηmax is used
to control ∥D(t)−D(0)∥F . We use λmin(τt) as an exam-
ple to illustrate why we need to control ∥D(t) − D(0)∥F .
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In GD, equation 9 still holds. However, since the imbal-
ance is no longer constant, i.e. since D(t) ̸= D(0), we
no longer have α(D(t), p1) = α(D(0), p1). Nonetheless,
after careful analysis, we observe that the change of imbal-
ance at each iteration is of order η2. Moreover, as long as
the loss decreases linearly and η is small (see equation 29),
we can prove that ∥D(t)−D(0)∥F ≤ O(η). Thus, we first
introduce c1 to control the change of the eigenvalues of the
imbalance matrix. Then, if the step size is bounded, i.e.
η ≤ ηmax, we can show that α(D(t), p1) ≥ c1α(D(0), p1).
A similar analysis yields the upper bound for λmax(τt).
When c1, c2 are chosen to be close to one, the change in
eigenvalues of imbalance is guaranteed to be small, but it
requires a smaller step as ηmax is small.

Then, based on Theorem 3.1, we can prove the linear con-
vergence of GD.
Theorem 3.2 (Convergence rate of gradient descent on
two-layer linear networks). Under the assumptions in The-
orem 3.1, for any 0 < η ≤ ηmax := min{ηmax

1 , ηmax
2 }, the

loss function under GD satisfies

L(t+1) ≤ f(η, t)L(t),

for f(η, t) as defined in equation 26, and with

0 < f(η, t) ≤ f(η, 0) < 1, ∀t ≥ 0. (31)

Thus, the loss converges linearly, i.e.,

L(t) ≤ Πt
k=0f(η, k)L(0) ≤ f(η, 0)tL(0). (32)

with rate given by f(η, 0).

In f(η, t), −a1η is an important term that facilitates con-
vergence because it is the only term that is associated with
a negative coefficient. a1 depends on p1, D(0) via α0, and
when α0 > 0, i.e., there is either sufficient margin or im-
balance, we have a1 > 0. The proof Theorem 3.1 and
Theorem 3.2 is presented in Appendix C.

Detailed comparison with SOTA. We compare our
results with other works studying the same prob-
lem [Du et al., 2018a, Arora et al., 2018]. In both works,
the authors make assumptions that the initial imbalance is
small. In our work, Theorem 3.2 holds if there is either
a sufficient imbalance or sufficient margin at initialization,
which is a more general setting. In [Du et al., 2018a], they
prove the loss decreases, and the imbalance remains small
during training, but the paper does not provide an explicit
convergence rate. More importantly, a decay in step size is
needed to control the difference between D(t) and D(0).
In our work, we provide an explicit convergence rate with-
out the need to decrease step size. In [Arora et al., 2018],
the authors provide an explicit convergence rate. However,
their result depends on the property that when step size is
small, ∥D(t)∥F ≤ 2∥D(0)∥F . We think the two used in
their proof is an artifact and improve it by introducing c1
and c2 and characterize the dependence between step size
and c1, c2, which is a more general case.

Comparison with non-overparametrized regime. In
the GF regime, [Min et al., 2022, Tarmoun et al., 2021]
show that if α0 is sufficiently large, the over-parametrized
model can have a faster convergence rate than the non-
overparametrized model. However, as shown in the next
proposition, such a result does not extend to the GD regime.

Proposition 3.1. If α0 > 0, for all 0 < η ≤ ηmax and for
all t = 0, 1, · · · , the following inequality holds

f(η, t) ≥ 1− 1

κ
(33)

where κ = K
µ is the condition number of the non-

overparametrized Problem 1

In Proposition 3.1, 1 − 1
κ is the theoretical optimal con-

vergence rate of solving Problem 1 via GD (see §3.1 for a
derivation of it). As a result, Proposition 3.1 states that the
convergence rate derived in Theorem 3.2, i.e., f(η, t), for
solving the over-parametrized Problem 2 via GD, is always
larger. Nevertheless, we point out that Theorem 3.2 only
provides an upper bound on the rate, and further study is
needed to characterize its tightness.

3.3 Adaptive Step Size Scheme

In Theorem 3.2, we show that a fixed step size η ≤ ηmax

guarantees linear rate of convergence of the loss L(t).
However, our analysis also suggests that faster convergence
can be achieved if we use a time-varying step size ηt at ev-
ery iteration t. Specifically, in Theorem 3.2, we show that
when η ≤ ηmax the following result holds

L(t+1) ≤ f(η, t)L(t),∀t = 0, 1, 2, . . . (34)

At every iteration t, the best choice for the step size, sug-
gested by our theoretical result in equation 34 is the one
that minimizes f(η, t), subject to our constraint for conver-
gence ηt ≤ ηmax:

ηt = arg min
η≤ηmax

f(η, t) . (35)

Finding the solution to equation 35 only requires solving a
third-order polynomial:

Claim 3.1. Suppose α0 > 0. Let η′t be the unique positive
root of the following equation

−a1 + 2a2(t)η + 3a3(t)η
2 + 4a4(t)η

3 = 0. (36)

Then the solution to Problem 35 is ηt = min(η′t, ηmax).

The proof is in Appendix E. This suggests that one can find
ηt very efficiently at each iteration. We present the GD
algorithm with adaptive step size scheduling below:
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Figure 1: Tightness check for upper bound in Theorem 3.2 versus reconstruction error. We run the simulations three times.
The solid line is the log10 of the mean reconstruction error L(t), and the shaded area is the mean plus and minus one
standard deviation. For different ratios α0

β0
, and σ (c.f. §4.1) we select two step sizes: Fixed Step Size Thm3.2 is the

minimum of f(η, 0) s.t. η ≤ ηmax, and Adaptive Step Size Algo1 is the step size proposed in Algorithm 1. The solid lines
are actual training loss. Dashed lines are theoretical upper bound in equation 32, i.e. Πt

k=0f(η, k)L(0).

Algorithm 1: GD with Adaptive Step Size Scheme
Data: X,Y , and initial W1(0),W2(0)
Result: W ∗

1 ,W
∗
2 which minimize 1

2∥Y −XW1W2∥2F .
for t = 0, 1, 2 · · · do

/* adaptive step size */
ηt ← argminη≤ηmax

f(η, t)
/* GD update with ηt */(
W1(t+1)
W2(t+1)

)
=

(
W1(t)
W2(t)

)
− ηtγt(∇ℓ(t)).

end

Convergence rate under adaptive step size. Notice that
f(η, t) depends on the iteration t via the loss function L(t).
As the training proceeds, the adaptive step size scheme en-
sures f(η, t) < 1 such that the loss L(t) converges to zero.
This in turn affects the asymptotic expression for f(η, t).
Specifically, when t is sufficiently large (so that L(t) ≃ 0),
we have

f(η, t) ≃ 1− 2(c1α0)σ
2
min(X)η + κσ4

min(X)(c2β0)
2η2 .
(37)

Under a proper choice of c1, c2 such that

ηmax ≥
c1α0

c22β
2
0κσ

2
min(X)

(38)

the adaptive step size scheduler yields a rate

f(ηt, t) ≃ 1− (c1α0)
2

(c2β0)2
1

κ
. (39)

In this case, the asymptotic convergence rate of GD with
adaptive size depends on both α0

β0
and 1

κ . In Appendix E,
we show that there always exists such choice of c1, c2 such
that equation 38 holds. Our numerical simulations show

that GD with the adaptive step size strategy achieves faster
convergence than GD with a fixed step size. Please refer to
Section 4.1 for details.

4 Simulations

In this section, we first present empirical evidence that
Theorem 3.2 provides a good characterization of the ac-
tual convergence rate of the loss under several different ini-
tializations. Moreover, we compared the convergence rate
of GD using the step sizes presented in Theorem 3.2 and
Algorithm 1 with those using step size proposed in pre-
vious work [Arora et al., 2018, Du et al., 2018a], and our
step sizes achieve considerably faster convergence rate.
Throughout the experiments, we fix c1 = 0.5 and c2 = 1.5
in our choice of step sizes. The details of the simulations
are presented in Appendix F.

4.1 Evaluation of the tightness of the theoretical
bound on the convergence rate

We train a two-layer linear network using GD on the
squared loss in equation 2. We generate the data matrix
as follows: X ∈ R20×20, X[i, j] ∼ N (0, 1), and Y = XΘ
where Θ ∈ R20×20,Θ[i, j] ∼ N (0, 1). The initial weight
matrices are generated as W1(0) = σU0,W2(0) = 1

σV0,
where U0, V0 have entry-wise i.i.d. samples drawn from a
standard gaussian N (0, 1). We choose different values of
σ to test our convergence rate in different regimes.

Figure 1 compares the convergence rate predicted by The-
orem 3.2 with the actual convergence rate of L(t), under
different values of σ and approximately similar values of
α0

β0
. In all scenarios, our theoretical bounds follow the

empirical results relatively well. Moreover, we see, on



Manuscript under review by AISTATS 2023

Figure 2: Comparison between different step sizes is presented here. We run the simulations three times. On the left
plot, the solid line is the log10 of the mean reconstruction error L(t), and the shaded area is the mean plus and minus one
standard deviation. We select step sizes in [Arora et al., 2018, Du et al., 2018a] and the other two step sizes are the same
as previous experiment. On the right plot, how each choice of step size changes during training is presented.

the one hand, that the rate of convergence of the adap-
tive step size regime is relatively insensitive to the value
of σ in the initialization. This is not surprising, given the
discussion in §3.3 on the asymptotic rate of the adaptive
step size regime, which mostly depends on α0

β0
. On the

other hand, the rate of the fixed step size value in Theo-
rem 3.2 varies significantly with σ. As a result, this ex-
periment suggests a certain level of robustness provided
by the adaptive step size scheme. Finally, in this experi-
ment, the initial margin is 0 and the there is large initial im-
balance. Those initial conditions violate the assumptions
in [Arora et al., 2018, Du et al., 2018a], but still enjoys lin-
ear convergence.

4.2 Comparison between different learning rates
presented in previous work

In this section, we compare the step sizes proposed in
Theorem 2 of [Arora et al., 2018] and Theorem 3.1 of
[Du et al., 2018a] to the step size of Theorem 3.2 and
the adaptive step size proposed in Section 3.3. We note
that the analyses in [Arora et al., 2018, Du et al., 2018a]
assume that the initialization is approximately balanced
(∥D(0)∥F is small). In addition, [Arora et al., 2018] re-
quires the initialization to have sufficient margin (∥Y −
XW1(0)W2(0)∥F is small). Therefore, we compare our
results with [Arora et al., 2018, Du et al., 2018a] under ini-
tialization that is balanced (D(0) = 0) and has a suffi-
ciently large margin. In order to do so, we generate the
training data using the following:

X = I20, Y = XW (0) + 0.01ε ,

W (0) ∈ R20×1,W (0)[i, j] ∼ N (0, 1/4) ,

ε ∈ R20×1, ε[i, j] ∼ N (0, 1) .

(40)

Here we first randomly initialize the product W (0) and
the construction ensures that ∥Y − XW (0)∥F is small

so that there is a sufficiently large margin. Then, we ini-
tialize weights W1(0),W2(0) of the linear networks such
that W1(0)W2(0) = W (0). To construct a balanced
initialization, we compute the SVD of the initial prod-
uct W (0) = UΣV ⊤. Then, we initialize the weights as
W1(0) = UΣ1/2,W2(0) = Σ1/2V ⊤.

Figure 2 shows the step size proposed in our paper achieves
the fastest convergence compared with other SOTA meth-
ods [Arora et al., 2018, Du et al., 2018a]. On the right plot,
step sizes proposed in this work is larger than the one pro-
posed in [Arora et al., 2018, Du et al., 2018a].

5 Conclusions

This paper studied the convergence of GD for optimizing
two-layer linear networks. In particular, we derived a con-
vergence rate for networks of finite width that are initial-
ized in a non-NTK regime. Our results build upon recent
work for GF, which derived convergence rates that depend
on the imbalance and margin of the initialization. How-
ever, a key challenge in the GD regime is that the imbal-
ance of the weights changes with the iterations of GD. In
this paper, we show that when the step size is small, the
imbalance at iteration t is close to its value at initializa-
tion. Moreover, we show that under this constraint on the
step size, the loss is decreasing. In addition, we derive an
explicit convergence rate that depends on the margin, im-
balance, and condition number of the data matrix. Finally,
based on the convergence rate, we propose an adaptive step
size scheme that accelerates convergence compared with a
constant step size. Empirically, we show the convergence
rate derived in our work is tighter than in previous work.
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Appendix

As we were preparing the supplement material, we find the following typos in the main paper:

• In equation 30 and the correct singular value bounds on W (t) is p1 ≤ σmin(W (t)) ≤ σmax(W (t)) ≤ p2.

• In equation equation 27, the correct definition for a3(t) is a3(t) = 2
√

2κ3L(t)σ10
min(X)c2β0p2.

• In equation 38, the correct lower bound on ηmax is c1α0

c22β
2
0κσ

2
min(X)

.

• In Lemma 3.1, there are typos in the definition of ρ(η, t). We restate the correct Lemma 3.1 in Appendix B.

We sincerely apologize for any confusion you may have while reading the main paper.

A Case when Data Matrix is rank deficient

Here, we show for any data matrix X of arbitrary dimensions and rank, the over-parametrized problem

min
W1,W2

L(W1,W2) =
1

2
∥Y −XW1W2∥2F , (41)

can be reparametrized into the following problem

min
W̃1,W̃2

L(W̃1, W̃2) =
1

2
∥Ỹ − X̃W̃1W̃2∥2F , (42)

where X̃ is a square matrix of full rank.

Let singular value decomposition of X be

X = [U1, U2]

[
ΣX 0
0 0

] [
V ⊤
1

V ⊤
2

]
, (43)

where ΣX contains all non-zero singular values of X . Then, we have X = U1ΣXV ⊤
1 . The GD update of W1,W2 is

W1(t+1) = W1(t) + ηX⊤E(t)W⊤
2 (t) = W1(t) + ηV1ΣXU⊤

1 E(t)W⊤
2 (t),

W2(t+1) = W2(t) + ηW⊤
1 (t)X⊤E(t) = W2(t) + ηW⊤

1 (t)V1ΣXU⊤
1 E(t). (44)

We project W1 onto the space spanned by V1, V2,

W11 = V ⊤
1 W1,

W12 = V ⊤
2 W1. (45)

Furthermore, we define Ẽ(t) = U⊤
1 E(t). Based on above, one has

W11(t+1) = W11(t) + ηΣXẼ(t)W2(t),

W12(t+1) = W12(t),

W2(t+1) = W2(t) + ηW⊤
11(t)ΣXẼ(t). (46)

The update of W11,W2 is the same to the following problem

min
W11,W2

L(W11,W2) =
1

2
∥U⊤

1 Y − ΣXW11W2∥2F , (47)

where ΣX is a sqaure matrix of full rank. The above problem takes the same form as equation 42 where Ỹ = U⊤
1 Y, X̃ =

ΣX , W̃1 = W11, W̃2 = W2.
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B Proof of Lemma 3.1

Lemma B.1. If at the t-th iteration of GD applied to the over-parametrized loss L, the step size η satisfies

λmin(τt)− η∥∇ℓ(t)∥Fσmax(W (t))

− Kη

2

[
λmax(τt) + η∥∇ℓ(t)∥Fσmax(W (t))

]2≥ 0 ,
(48)

then the following inequality holds
L(t+1) ≤ ρ(η, t)L(t) , (49)

where

ρ(η, t) = 1− 2ηµλmin(τt) +Kµη2λ2
max(τt)

+ 2η2µσmax(W (t))∥∇ℓ(t)∥F
+ 2η3µKλmax(τt)σmax(W (t))∥∇ℓ(t)∥F
+ η4µKσ2

max(W (t))∥∇ℓ(t)∥2F . (50)

Proof. Applying smoothness equation 13to the update of the product in equation 18, we get

L(t+1) ≤ L(t)− η⟨∇ℓ(t), τt(∇ℓ(t))− η∇ℓ(t)W (t)⊤∇ℓ(t)⟩

+
K

2
η2∥τt(∇ℓ(t))− η∇ℓ(t)W (t)⊤∇ℓ(t)∥2F

= L(t)− η⟨∇ℓ(t), τt(∇ℓ(t))⟩
+ η2

(
⟨∇ℓ(t),∇ℓ(t)W (t)⊤∇ℓ(t)⟩+ K

2 ∥τt(∇ℓ(t))∥
2
F

)
− η3K⟨τt(∇ℓ(t)),∇ℓ(t)W (t)⊤∇ℓ(t)⟩

+
K

2
η4∥∇ℓ(t)W (t)⊤∇ℓ(t)∥2F

(51)

Then, we upper bound each term in the above inequality separately. First, since τt is a positive semi-definite operator, we
have

⟨∇ℓ(t), τt(∇ℓ(t))⟩ ≥ λmin(τt)∥∇ℓ(t)∥2F
∥τt(∇ℓ(t))∥2F ≤ λ2

max(τt)∥∇ℓ(t)∥2F (52)

Then, using the sub-multiplicative property of Frobenius norm and Cauchy Schwartz inequality, we can bound the rest
terms in equation 51

|⟨∇ℓ(t),∇ℓ(t)W (t)⊤∇ℓ(t)⟩| ≤ ∥∇ℓ(t)∥F ∥∇ℓ(t)W (t)⊤∇ℓ(t)∥F ≤ ∥∇ℓ(t)∥3Fσmax(W (t))

|⟨τt(∇ℓ(t)),∇ℓ(t)W (t)⊤∇ℓ(t)⟩| ≤ ∥∇ℓ(t)∥Fσmax(W (t))⟨∇ℓ(t), τt(∇ℓ(t))⟩ ≤ λmax(τt)σmax(W (t))∥∇ℓ(t)∥3F
∥∇ℓ(t)W (t)⊤∇ℓ(t)∥2F ≤ σ2

max(W (t))∥∇ℓ(t)∥4F . (53)

Based on above results, we can further upper bound equation 51

L(t+1) ≤ L(t)− η⟨∇ℓ(t), τt(∇ℓ(t))⟩ (54)

+ η2
(
⟨∇ℓ(t),∇ℓ(t)W (t)⊤∇ℓ(t)⟩+ K

2 ∥τt(∇ℓ(t))∥
2
F

)
(55)

− η3K⟨τt(∇ℓ(t)),∇ℓ(t)W (t)⊤∇ℓ(t)⟩ (56)

+
K

2
η4∥∇ℓ(t)W (t)⊤∇ℓ(t)∥2F (57)

≤ L(t)− ηλmin(τt)∥∇ℓ(t)∥2F (58)

+ η2(σmax(W (t))∥∇ℓ(t)∥3F +
K

2
λ2
max(τt)∥∇ℓ(t)∥2F ) (59)

+ η3Kλmax(τt)σmax(W (t))∥∇ℓ(t)∥3F (60)
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+ η4
K

2
σ2
max(W (t))∥∇ℓ(t)∥4F (61)

= L(t)− η∥∇ℓ(t)∥2F g(η) (62)

where

g(η) = λmin(τt)− η(σmax(W (t))∥∇ℓ(t)∥F +
K

2
λ2
max(τt))

− η2Kλmax(τt)σmax(W (t))∥∇ℓ(t)∥F − η3
K

2
σ2
max(W (t))∥∇ℓ(t)∥2F .

(63)

When g(η) > 0, which is assumed in equation 48, we apply PL condition 1
2∥∇ℓ(t)∥

2
F ≥ µℓ(t) to the above equation to get

L(t+1) ≤ L(t)×
{
1− 2ηµλmin(τt)

+ 2η2µ
(
σmax(W (t))∥∇ℓ(t)∥F +

K

2
λ2
max(τt)

)
+ 2η3µKλmax(τt)σmax(W (t))∥∇ℓ(t)∥F

+ η4µKσ2
max(W (t))∥∇ℓ(t)∥2F

}
= ρ(η, t)L(t).

(64)

C Proof of Theorem 3.1 and Theorem 3.2

Here we prove a new Theorem which implies Theorem 3.1 and Theorem 3.2.

Theorem C.1. Under the assumptions in Theorem 3.1, for any 0 < η ≤ ηmax := min{ηmax
1 , ηmax

2 }, the following four
properties hold for all t = 0, 1, 2, · · · .

• A1(t) : L(t) ≤ f(η, t)L(t−1), where f(η, t) = 1− a1η + a2(t)η
2 + a3(t)η

3 + a4(t)η
4 < 1.

• A2(t) : p1 ≤ σmin(W (t)) ≤ σmax(W (t)) ≤ p2.

• A3(t) : ∥D(t)−D(0)∥F ≤ 2c2β0σ
2
max(X)L(0)η2

1−f(η,0) when η < ηmax.

• A4(t) : c1α0 ≤ σ2
min(W1(t)) + σ2

min(W2(t)) ≤ λmin(τt) ≤ λmax(τt) ≤ σ2
max(W1(t)) + σ2

max(W2(t) ≤ c2β0.

Notice Theorem 3.1 is Property A2(t), A4(t), and Theorem 3.2 is implied by Property A1(t) because when L(k) ≤ L(0)
hold for all k = 0, 1, · · · , t, we have a2(k) ≤ a2(0), a3(k) ≤ a3(0), a4(k) ≤ a4(0). Thus, f(η, k) ≤ f(η, 0). As a result,
the following inequality holds

L(t) ≤ f(η, t)L(t− 1) ≤ L(0)

t−1∏
k=0

f(η, k) ≤ f(η, 0)tL(0). (65)

Before proving Theorem C.1, we first present several preliminary lemmas.

Lemma C.1. For matrix A,B, we have

σ2
min(A)∥B∥2F ≤ ∥AB∥2F ≤ σ2

max(A)∥B∥2F
σ2
min(B)∥A∥2F ≤ ∥AB∥2F ≤ σ2

max(B)∥A∥2F . (66)

Proof.

∥AB∥2F = tr
(
ABB⊤A⊤)

= tr
(
A⊤ABB⊤) use cyclic property of trace
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≤ λmax

(
A⊤A

)
∥B∥2F use trace inequality

= σ2
max(A)∥B∥2F . (67)

For the other way

∥AB∥2F = tr
(
ABB⊤A⊤)

= tr
(
A⊤ABB⊤)

≤ λmax

(
BB⊤) ∥A∥2F

= σ2
max(B)∥A∥2F . (68)

The lower bound is similar.

Lemma C.2. Let X ∈ RN×n, Y ∈ RN×m. Assume N ≤ n and rank(X) = N . For arbitrary W ∈ Rn×m, the following
holds for ℓ(W ) = 1

2∥Y −XW∥2F

2σ2
min(X)ℓ(W ) ≤ ∥∇ℓ(W )∥2F ≤ 2σ2

max(X)ℓ(W ). (69)

Proof. The first inequality is PL inequality. We then prove the second

∥∇ℓ(W )∥2F = ∥X⊤(Y −XW )∥2F gradient calculation

≤ σ2
max(X)∥Y −XW∥2F use Lemma C.1

= 2σ2
max(X)ℓ(W ). (70)

Lemma C.3. The difference of the imbalance between iteration t+ 1 and t can be upper bounded by

∥D(t+1)−D(t)∥F ≤ 2η2σ2
max(X)

(
σ2
max(W1(t)) + σ2

max(W2(t))
)
L(t). (71)

Proof. Notice the definition of imbalance is D(t) := W⊤
1 (t)W1(t)−W2(t)W

⊤
2 (t) and the update of GD is given in equa-

tion 4. Thus, using both results, one has

D(t+1) =
(
W1(t)− η∇ℓ(t)W2(t)

⊤)⊤(W1(t)− η∇ℓ(t)W2(t)
⊤) plug in GD update

−
(
W2(t)− ηW1(t)

⊤∇ℓ(t)
)(
W2(t)− ηW1(t)

⊤∇ℓ(t)
)⊤

= D(t) + η2
(
W2(t)∇ℓ(t)⊤∇ℓ(t)W2(t)

⊤ −W1(t)
⊤∇ℓ(t)∇ℓ(t)⊤W1(t)

)
. (72)

Then, we can upper bound ∥D(t+1)−D(t)∥F using Lemma C.1 and Lemma C.2

∥D(t+1)−D(t)∥F = η2∥W2(t)∇ℓ(t)⊤∇ℓ(t)W2(t)
⊤ −W1(t)

⊤∇ℓ(t)∇ℓ(t)⊤W1(t)∥F
≤ η2

(
∥W2(t)∇ℓ(t)⊤∇ℓ(t)W2(t)

⊤∥F + ∥W1(t)
⊤∇ℓ(t)∇ℓ(t)⊤W1(t)∥F

)
≤ η2

(
∥W2(t)∇ℓ(t)⊤∥2F + ∥W1(t)

⊤∇ℓ(t)∥2F
)

by Lemma C.1

≤ η2
(
σ2
max(W1(t)) + σ2

max(W2(t))
)
∥∇ℓ(t)∥2F by Lemma C.2

≤ 2η2σ2
max(X)

(
σ2
max(W1(t)) + σ2

max(W2(t))
)
L(t). (73)

Lemma C.4. Suppose h > min{r,m}. Given any A ∈ Rr×h, B ∈ Rh×m that satisfy A⊤A−BB⊤ = D, we have

λm(B⊤B) ≥ −λ̄+ λ+
√
(λ̄+ λ)2 + 4σ2

m(AB)

2
(74)

where λ̄ = max{λ1(D), 0} and λ = max{λm(−D), 0}.

Lemma C.4 is cited from [Min et al., 2022] and the proof can be found in [Min et al., 2022] Lemma 8.
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Lemma C.5. Suppose h > min{r,m}. Given any A ∈ Rr×h, B ∈ Rh×m that satisfy A⊤A−BB⊤ = D, we have

λmax(B
⊤B) ≤

max(λmax(−D), 0) +
√
max(λmax(−D), 0)2 + 4σ2

max(AB)

2
(75)

Proof. We first choose z ∈ Rm with ∥z∥2 = 1 s.t.

z⊤B⊤Bz = λmax(B
⊤B). (76)

Then, we have

λ2
max(B

⊤B)− z⊤B⊤A⊤ABz = z⊤B⊤BB⊤Bz − z⊤B⊤A⊤ABz

= z⊤(B⊤BB⊤B −B⊤A⊤AB)z

= z⊤B⊤(BB⊤ −A⊤A)Bz

= z⊤B⊤(−D)Bz. (77)

Notice

λ2
max(B

⊤B)− z⊤B⊤A⊤ABz ≥ λ2
max(B

⊤B)− σ2
max(AB)

z⊤B⊤(−D)Bz ≤ max(λmax(−D), 0)∥Bz∥22 ≤ max(λmax(−D), 0)λmax(B
⊤B). (78)

Thus, we have
λmax(B

⊤B)2 − σ2
max(AB) ≤ max(λmax(−D), 0)λmax(B

⊤B). (79)

The solution to the above inequality gives us the results.

Then, we begin the proof of Theorem C.1.

Proof. Assume A1(k), A2(k), A3(k), A4(k) hold at iteration k = 1, 2, · · · , t, then we prove they all hold at iteration t+1.

First, we prove A1(t+1) hold. According to Lemma 3.1, we have

L(t+1) ≤ L(t)×
{
1− 2ηµλmin(τt)

+ 2η2µ
(
σmax(W (t))∥∇ℓ(t)∥F +

K

2
λ2
max(τt)

)
+ 2η3µKλmax(τt)σmax(W (t))∥∇ℓ(t)∥F

+ η4µKσ2
max(W (t))∥∇ℓ(t)∥2F

}
(80)

Since A2(t), A4(t) hold, we can further upper bound the above inequality

L(t+1) ≤ L(t)×
{
1− 2ηµc1α0 + 2η2µ

(
p2∥∇ℓ(t)∥F +

K

2
(c1β0)

2
)

+ 2η3µKc1β0p2∥∇ℓ(t)∥F + η4µKp22∥∇ℓ(t)∥2F
}

(81)

Apply Lemma C.2

L(t+1) ≤ L(t)×
{
1− 2ηµc1α0 + 2η2µ

(
p2
√

2σ2
max(X)L(t) +

σ2
max(X)

2
(c2β0)

2
)

+ 2η3µσ2
max(X)c2β0p2

√
2σ2

max(X)L(t) + 2η4µσ4
max(X)p22L(t)

}
= L(t)×

{
1− 2ησ2

min(X)c1α0 + 2η2
(
p2

√
2κσ6

min(X)L(t) +
κσ4

min(X)

2
(c2β0)

2
)

+ 2η3c2β0p2

√
2κ3σ10

min(X)L(t) + 2η4p22κ
2σ6

min(X)L(t)

}
= L(t)× [1− a1η + a2(t)η

2 + a3(t)η
3 + a4(t)η

4]

(82)
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Finally, we show when 0 < η ≤ ηmax, f(η, t) < 1. Notice f(η, t) is a decreasing functions in t, it suffices to show
f(η, 0) < 1

f(η, 0) < 1 ⇐⇒ a4(0)η
3 + a3(0)η

2 + a2(0)η < a1. (83)

Compare the above inequality with equation 29, one has

a4(0)η
3 + a3(0)η

2 + a2(0)η < a4(0)η
3+a3(0)η

2+
(
a2(0)+

4c2L(0)σ
2
max(X)

c2 − 1

)
η

a4(0)η
3 + a3(0)η

2 + a2(0)η < a4(0)η
3+a3(0)η

2+
(
a2(0)+

8c2β0L(0)σ
2
max(X)

(1− c1)α0

)
η. (84)

Thus, when 0 < η ≤ ηmax, we have

a4(0)η
3 + a3(0)η

2 + a2(0)η < a4(0)η
3+a3(0)η

2+
(
a2(0)+

4c2L(0)σ
2
max(X)

c2 − 1

)
η ≤ a1

a4(0)η
3 + a3(0)η

2 + a2(0)η < a4(0)η
3+a3(0)η

2+
(
a2(0)+

8c2β0L(0)σ
2
max(X)

(1− c1)α0

)
η ≤ a1. (85)

which is equivalent to f(η, 0) < 1. Thus, A1(t+1) is proved.

Then, we prove A2(t+1) hold. Since loss is decreasing, i.e. L(t+1) ≤ L(t) ≤ L(0), we have

∥Y −XW (t+1)∥F ≤ ∥E(0)∥F . (86)

equation 86 is equivalent to

∥Y ∥F − ∥E(0)∥F ≤ ∥XW (t+1)∥F ≤ ∥Y ∥F + ∥E(0)∥F . (87)

In [Min et al., 2022], Theorem 3, the lower bound is proved. For the upper bound,

σmax(W (t+1))σmin(X) ≤ ∥W (t+1)∥Fσmin(X) ≤ ∥XW (t+1)∥F ≤ ∥Y ∥F + ∥E(0)∥F , (88)

Thus,

σmax(W (t+1)) ≤ ∥Y ∥F + ∥E(0)∥F
σmin(X)

=: p2. (89)

Then, we prove A3(t+1) hold.

∥D(t+1)−D(0)∥F ≤
t∑

k=0

∥D(K+1)−D(k)∥F use Lemma C.3

≤
t∑

k=0

2η2σ2
max(X)

(
σ2
max(W1(k)) + σ2

max(W2(k))
)
L(k) use A4(k)

≤ 2η2σ2
max(X)c2β0

t∑
k=0

L(k) use A1(k)

≤ 2η2c2β0σ
2
max(X)

t∑
k=0

(1− a1η + a2(k)η
2 + a3(k)η

3 + a4(k)η
4)kL(0) (90)

≤ 2η2c2β0σ
2
max(X)

t∑
k=0

(1− a1η + a2(0)η
2 + a3(0)η

3 + a4(0)η
4)kL(0)

≤ 2η2c2β0σ
2
max(X)L(0)

1− f(η, 0)
. (91)

where we upper bound ai(k) by ai(0) in equation 90 for i = 1, 2, 3, 4.
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Finally, we prove A4(t+1) hold. λmin(τ) ≤ λmax(τ) is obvious. We begin with the second inequality

λmin(τ) = min
∥W∥F=1

⟨W,WW⊤
2 W2 +W1W

⊤
1 W ⟩ definition of operator norm

≥ min
∥W∥F=1

⟨W,WW⊤
2 W2⟩+ min

∥W∥F=1
⟨W,W1W

⊤
1 W ⟩

= σ2
min(W1) + σ2

min(W2). (92)

The fourth inequality can be proved similarly

λmax(τ) = max
∥W∥F=1

⟨W,WW⊤
2 W2 +W1W

⊤
1 W ⟩

≤ max
∥W∥F=1

⟨W,WW⊤
2 W2⟩+ max

∥W∥F=1
⟨W,W1W

⊤
1 W ⟩

= σ2
max(W1) + σ2

max(W2) (93)

Then, we prove the first inequality and last inequality holds. According to Lemma C.4, we have

σ2
min(W1(t+1)) ≥

−λ̄ (t+1) + λ+(t+1) +

√(
λ̄ (t+1) + λ+(t+1)

)2
+ 4σ2

n (W (t+1))

2
.

σ2
min(W2(t+1)) ≥

−λ̄+(t+1) + λ−(t+1) +

√(
λ̄+(t+1) + λ−(t+1)

)2
+ 4σ2

m (W (t+1))

2
. (94)

where

λ̄+(t) = max (λ1(D(t)), 0)

λ−(t) = max (λm(−D(t)), 0)

λ̄−(t) = max (λ1(−D(t)), 0)

λ+(t) = max (λn(D(t)), 0)

(95)

We define

h1(∆1,∆2) :=
−λ̄−(0) + ∆1 + λ+(0) + ∆2 +

√(
λ̄−(0) + λ+(0) + ∆1 +∆2

)2
+ 4p21

2

h2(∆3,∆4) =
−λ̄+(0) + ∆1 + λ−(0) + ∆2 +

√(
λ̄+(0) + λ−(0) + ∆1 +∆2

)2
+ 4p21

2
(96)

where

∆1 = λ̄−(t+1)− λ̄ (0)

∆2 = λ+(t+1)− λ+(0)

∆3 = λ̄+(t+1)− λ̄+(0)

∆4 = λ−(t+1)− λ−(0).

(97)

Then, we use σmin(W (t+1)) ≥ p1 to lower bound equation 94

σ2
min(W1(t+1)) ≥

−λ̄ (t+1) + λ+(t+1) +

√(
λ̄ (t+1) + λ+(t+1)

)2
+ 4σ2

n (W (t+1))

2
.

≥
−λ̄ (t+1) + λ+(t+1) +

√(
λ̄ (t+1) + λ+(t+1)

)2
+ 4p21

2
.

:= h1(∆1,∆2). (98)

Similarly, we have
σ2
min(W2(t+1)) ≥ h2(∆3,∆4). (99)
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Notice h1(0, 0) + h2(0, 0) = α0 which is independent of t. Our goal is to lower bound h1(∆1,∆2) + h2(∆3,∆4) using
h1(0, 0)+ h2(0, 0). A natural solution is that if we can quantify how large |∆k|, k = 1, 2, 3, 4 is, i.e.|∆k| ≤ ∆h, and if we
can show h1(·, ·), h2(·, ·) are both Lh-Lipschitz continuous. Using these two ingredients, one can show

|h1(∆1,∆2)− h1(0, 0)|≤ Lh

√
∆2

1 +∆2
2

⇒ h1(∆1,∆2) ≥ h1(0, 0)− Lh

√
∆2

1 +∆2
2 ≥ h1(0, 0)−

√
2Lh∆h. (100)

Similarly, we have

h2(∆3,∆4) ≥ h2(0, 0)−
√
2Lh∆h. (101)

Based on above two equations, one has

h1(∆1,∆2) + h2(∆3,∆4) ≥ h1(0, 0) + h2(0, 0)− 2
√
2Lh∆h. (102)

Next, we show the above two assumptions hold

1. h1(·, ·), h2(·, ·) are both Lh-Lipschitz continuous.

2. |∆k| ≤ ∆h hold for all k = 1, 2, 3, 4.

For the first one, using Weyl’s inequality and Property A3(t+1), we can upper bound |∆k|

|∆1| =
∣∣max(λ1(−D(t+1)), 0)−max(λ1(−D(0)), 0)

∣∣
≤

∣∣λ1(−D(t+1))− λ1(−D(0)), 0)
∣∣ use Weyl’s inequality

≤ ∥D(t+1)−D(0)∥F use Lemma C.3

≤ 2η2c2β0σ
2
max(X)L(0)

1− f(η, 0)
. (103)

Similarly, we have

|∆2|, |∆3|, |∆4| ≤ ∥D(t+1)−D(0)∥F ≤
2η2c2β0σ

2
max(X)L(0)

1− f(η, 0)
. (104)

What’s more, ∣∣∣∣dh1(x, y)

dx

∣∣∣∣ = ∣∣∣∣−1

2
+

x+ y + λ̄−(0) + λ+(0)

2

√(
λ̄−(0) + λ+(0) + x+ y

)2
+ 4p21

∣∣∣∣
≤ 1

2
+

∣∣∣∣ x+ y + λ̄−(0) + λ+(0)

2

√(
λ̄−(0) + λ+(0) + x+ y

)2
+ 4p21

∣∣∣∣
≤ 1

2
+

1

2
≤ 1.

(105)

Similarly, we have
∣∣dh1(x,y)

dy

∣∣, ∣∣dh2(x,y)
dx

∣∣, ∣∣dh2(x,y)
dy

∣∣≤ 1. Combine with equation 105, we have h1(·, ·), h2(·, ·) are
√
2-

Lipschitz continuous. Thus, we have

σ2
min(W1(t)) + σ2

min(W2(t)) ≥ h1(∆1,∆2) + h2(∆3,∆4)

≥ α0 − 2Lh

√
2∥D(t+1)−D(0)∥F Lh =

√
2

≥ α0 −
8η2c2β0σ

2
max(X)L(0)

1− f(η, 0)
. (106)

Although the above lower bound is smaller than α0, it is close to α0 when η is small. This motivates us to introduce
0 < c1 < 1 so that when η is small, the above inequality is lower bounded by c1α0. To derive the upper bound on η, it is
equivalent to ensure

α0 −
8η2c2β0σ

2
max(X)L(0)

1− f(η, 0)
≥ c1α0
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⇐⇒ (1− c1)α0 ≥
8η2c2β0σ

2
max(X)L(0)

1− f(η, 0)

⇐⇒ (1− c1)α0 ≥
8ηc2β0σ

2
max(X)L(0)

a1 − a2(0)η − a3(0)η2 − a4(0)η3

⇐⇒ a4(0)η
3 + a3(0)η

2 +
(
a2(0) +

8c2β0L(0)σ
2
max(X)

(1− c1)α0

)
η ≤ a1 (107)

which is ensured when 0 < η < ηmax. The proof for the fourth inequality σ2
max(W1(t+1)) + σ2

max(W2(t+1)) ≤ c2β0 in
A4(t+1) is similar. According to Lemma C.5, we have

σ2
max(W1(t+1)) + σ2

max(W2(t+1))

≤
max(λmax(D(0)), 0) + ∆3 +

√
4σ2

max(W (t+1)) + [max(λmax(D(0)), 0) + ∆3]2

2

+
max(λmax(−D(0)), 0) + ∆4 +

√
4σ2

max(W (t+1) + [max(λmax(−D(0)), 0) + ∆4]2

2

≤ max(λmax(D(0)), 0) + ∆3 +
√
4p22 + [max(λmax(D(0)), 0) + ∆3]2

2

+
max(λmax(−D(0)), 0) + ∆4 +

√
4p22 + [max(λmax(−D(0)), 0) + ∆4]2

2
:= h3(∆5,∆6), (108)

where

∆5 = max(λmax(D(t+1)), 0)−max(λmax(D(0)), 0)

∆6 = max(λmax(−D(t+1)), 0)−max(λmax(−D(0)), 0).
(109)

Since ∣∣dh3(x, y)

dx

∣∣= ∣∣1
2
+

x+max(λmax(D(t+1)), 0)

2
√
4p22 + [max(λmax(D(t+1)), 0) + ∆5]2

∣∣≤ 1. (110)

Similarly, |dh3(x,y)
dy | ≤ 1. What’s more, Weyl’s inequality gives us

|∆5| = |max(λmax(D(t+1)), 0)−max(λmax(D(0)), 0)|
≤ |λmax(D(t+1))− λmax(D(0))|
≤ ∥D(t+1)−D(0)∥F (111)

Similarly, we have |∆6| ≤ ∥D(t+1)−D(0)∥F . Thus, we have

σ2
max(W1(t+1)) + σ2

max(W2(t+1)) = h3(∆5,∆6)

≤ h3(0, 0) +
√
2
√

∆2
5 +∆2

6

≤ β0 +
4η2c2β0σ

2
max(X)L(0)

1− f(η, 0)

≤ β0c2

(112)

where the last inequality holds if and only if

a4η
3 + a3η

2 +
(
a2 +

4c2L(0)σ
2
max(X)

c2 − 1

)
η ≤ a1. (113)
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D Proof of Proposition 3.1

Proposition D.1. If α0 > 0, for all 0 < η ≤ ηmax and for all t = 0, 1, · · · , the following inequality holds

f(η, t) ≥ 1− 1

κ
(114)

where κ = K
µ is the condition number of the non-overparametrized Problem 1

Proof. The theoretical optimal convergence rate for non-overparametrized regime is 1− 1
κ . Then

f(η, t)− (1− 1

κ
) =

1

κ
− a1η + a2(t)η

2 + a3(t)η
3 + a4(t)η

4 drop last two terms which are non-negative

≥ 1

κ
− 2c1α0σ

2
min(X)η +

(
2
√
2κL(t)σ6

min(X)p2 + κµ2c22β
2
0

)
η2

≥ 1

κ
− 2c1α0σ

2
min(X)η + κσ4

min(X)c22β
2
0η

2 use β0 ≥ α0 to lower bound last term

≥ 1

κ
− 2c1α0σ

2
min(X)η + κσ4

min(X)c22α
2
0η

2

= (
1√
κ
−
√
κσ2

min(X)c2α0η)
2

≥ 0. (115)

Thus, the results are proved.

E Proof of Claim 3.1

Claim E.1. Suppose α0 > 0. Let η′t be the unique positive root of the following equation

−a1 + 2a2(t)η + 3a3(t)η
2 + 4a4(t)η

3 = 0. (116)

Then the solution to Problem 35 is ηt = min(η′t, ηmax).

Proof. We first observe the derivative of f(η, t) with respect to η is monotonically increasing when η > 0

df(η, t)

dη
= −a1 + 2a2(t)η + 3a3(t)η

2 + 4a4(t)η
3, (117)

and d2f(η,t)
dη2 > 0. Thus, if η′t ≤ ηmax, the minimizer of Problem 35 is ηmax. If η′t ≥ ηmax, since df(η,t)

dη is negative when
0 < η ≤ ηmax ≤ η′t, f(η, t) is decreasing in the same range. Thus, the minimizer is ηmax. Combing the above two cases,
the minimizer of Problem 35 is

ηt = min(η′t, ηmax). (118)

Claim E.2. Given some 0 < c1 < 2
3 , pick any

c2 ≥ max

 M + 16L(0)
β0

c1α0σ2
min(X)

,

√√√√M + 8α0L(0)
β2
0

α0σ2
min(X)

, 2

 , (119)

where M =
2α3

0p
2
2L(0)

β6
0κ

+
2
√

2σ2
min(X)L(0)p2α

2
0√

κβ3
0

+
2
√

2L(0)σ2
min(X)p2α0

β2
0

√
κ

.

Such choice of c1, c2 ensures ηmax ≥ η′t for all t = 0, 1, 2, · · · .
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Remark E.1. Claim E.2 implies for proper choice of c1, c2, one has ηmax ≥ η′t for all t = 0, 1, 2, · · · . In the limiting case
when t→∞, one has

lim
t→∞

f(η, t) = 1− 2(c1α0)σ
2
min(X)η + κσ4

min(X)(c2β0)
2η2 (120)

With the choice of c1, c2 specified, we have η′∞ ≤ ηmax. Thus, the asymptotic convergence rate is

f(η′∞,∞) = 1− (c1α0)
2

(c2β0)2
1

κ
(121)

The asymptotic convergence rate is determined by c1α0

c2β0
and condition number κ. The smaller κ is, the faster convergence

rate is. What’s more, since λmin(τt)
λmax(τt)

≥ c1α0

c2β0
, we can view c1α0

c2β0
as a lower bound on the condition number of the operator

τt. The more ill-conditioned τt is, i.e. c1α0

c2β0
is small, the slower the convergence rate is.

Proof. Notice a2(t), a3(t), a4(t) depends on L(t) and L(t) decreases as t increases, so a2(t), a3(t), a4(t) decrease as t
increase. From equation 117, we can see η′t increases as t increases. Thus, to prove η′t ≤ ηmax, it suffices to show

lim
t→∞

η′t =
c1α0

c22β
2
0κσ

2
min(X)

≤ ηmax. (122)

which is equivalent to the following inequalities

a4(0)

(
c1α0

c22β
2
0κσ

2
min(X)

)3

+a3(0)

(
c1α0

c22β
2
0κσ

2
min(X)

)2

+
(
a2(0)+

4c2L(0)σ
2
max(X)

c2 − 1

) c1α0

c22β
2
0κσ

2
min(X)

≤a1, (123)

a4(0)

(
c1α0

c22β
2
0κσ

2
min(X)

)3

+a3(0)

(
c1α0

c22β
2
0κσ

2
min(X)

)2

+
(
a2(0)+

8c2β0L(0)σ
2
max(X)

(1− c1)α0

) c1α0

c22β
2
0κσ

2
min(X)

≤ a1. (124)

For equation 123 to hold, we study its LHS

LHS of equation 123 =
2c31α

3
0p

2
2L(0)

c62β
6
0κ

+
2
√
2L(0)σ2

min(X)p2c
2
1α

2
0√

κc32β
3
0

+
4c1α0L(0)

(c2 − 1)c2β2
0

+
2
√
2L(0)σ2

min(X)p2c1α0

c22β
2
0

√
κ

+ c1α0σ
2
min(X)

=
2c31α

3
0p

2
2L(0)

c62β
6
0κ

+
Pc21α0

c32β0
+

4c1α0L(0)

(c2 − 1)c2β2
0

+
Pc1
c22

+ c1α0σ
2
min(X)

where

P =
2
√
2L(0)σ2

min(X)p2α0√
κβ2

0

. (125)

Since c2 ≥ 2, so c2 − 1 ≥ c2
2 . Then, we upper bound the above equality by substituting higher order terms of ck1 , k ≥ 2

with c1 in the numerator by one except for the last term and replace higher order terms of ck2 , k ≥ 3 with c22,

LHS of equation 123 =
2c31α

3
0p

2
2L(0)

c62β
6
0κ

+
Pc21α0

c32β0
+

4c1α0L(0)

(c2 − 1)c2β2
0

+
Pc1
c22

+ c1α0σ
2
min(X)

≤ 2c31α
3
0p

2
2L(0)

c62β
6
0κ

+
Pc21α0

c32β0
+

8c1α0L(0)

c22β
2
0

+
Pc1
c22

+ c1α0σ
2
min(X) use c2 − 1 ≥ c2

2
in the first term

≤ 2c1α
3
0p

2
2L(0)

c22β
6
0κ

+
Pc1α0

c22β0
+

8c1α0L(0)

c22β
2
0

+
Pc1
c22

+ c1α0σ
2
min(X)

use c1 ≥ ck1 , k ≥ 2 in the numerator and c22 ≤ ck2 , k ≥ 3 in denominator

=
c1
c22

[
2α3

0p
2
2L(0)

β6
0κ

+
Pα0

β0
+

8α0L(0)

β2
0

+ P

]
+c1α0σ

2
min(X)

=
c1
c22

(M +
8α0L(0)

β2
0

) + c1α0σ
2
min(X) use second condition in equation 119
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≤ c1α0σ
2
min(X) + c1α0σ

2
min(X) = a1. (126)

For equation 124 to hold, we study its LHS

LHS of equation 124 =
2c31α

3
0p

2
2L(0)

c62β
6
0κ

+
Pc21α0

c32β0
+

8L(0)c1
(1− c1)c2β0

+
Pc1
c22

+ c1α0σ
2
min(X). (127)

Since 0 < c1 < 2
3 , we have 1 − c1 ≥ c1

2 . Then, we upper bound the above equality by substituting c1 with 1 in the
numerator by one except for the last term and replace higher order terms of ck2 , k ≥ 2 with c2,

LHS of equation 124 =
2c31α

3
0p

2
2L(0)

c62β
6
0κ

+
Pc21α0

c32β0
+

8L(0)c1
(1− c1)c2β0

+
Pc1
c22

+ c1α0σ
2
min(X)

≤ 2c31α
3
0p

2
2L(0)

c62β
6
0κ

+
Pc21α0

c32β0
+

16L(0)

c2β0
+

Pc1
c22

+ c1α0σ
2
min(X) use 1− c1 ≥

c1
2

≤ 2α3
0p

2
2L(0)

c2β6
0κ

+
Pα0

c2β0
+

16L(0)

c2β0
+

P

c2
+ c1α0σ

2
min(X)

use c1 ≤ 1 in the numerator and c2 ≥ ck2 , k ≥ 1 in the numerator

=
1

c2

[
2α3

0p
2
2L(0)

β6
0κ

+
Pα0

β0
+

16L(0)

β0
+ P

]
+c1α0σ

2
min

=
1

c2
[M +

16L(0)

β0
] + c1α0σ

2
min use first condition in equation 119

≤ c1α0σ
2
min(X) + c1α0σ

2
min(X) = a1. (128)

F Simulations

In Section 4.2, we compare the step sizes proposed in [Arora et al., 2018, Du et al., 2018a], Theorem 3.2 and Algorithm 1.
In [Du et al., 2018a], they choose an adaptive step size

ηt =

√
ϵ/r

100(t+1)∥Y ∥
3
2

F

, (129)

where 0 < ϵ < ∥Y ∥F is the final precision we want to achieve, r is the rank of Y . When comparing, we set ϵ = ∥Y ∥F to
select the largest step size possible in their work.

In [Arora et al., 2018], they choose constant step size which satisfies

η ≤ p31
6144× 23 × ∥Y ∥4F

, (130)

When comparing, we select the largest step size possible, i.e. η =
p3
1

6144×23×∥Y ∥4
F

.

In [Arora et al., 2018, Du et al., 2018a], the authors make assumptions that there is sufficient margin and zero imbalance at
initialization. What’s more, they both choose the setting of matrix factorization and claim it’s equivalent to linear networks.
To make fair comparison, we generate X using identity matrix. For initialization of the network, we follow Proposition F.1
in [Arora et al., 2018] to create a balanced initialization. The magnitude 0.05 of noise added to Y is a hyperparameter
which ensures there is sufficient margin at initialization. The procedure to ensure there is zero imbalance at initialization
is given below
Proposition F.1 (Balanced Initialization). Given d0, d1, . . . , dN ∈ N such that min{d1, . . . , dN−1} ≥ min{d0, dN} and
a distribution D over dN × d0 matrices, a balanced initialization of Wj ∈ Rdj×dj−1 , j=1, . . . , N , assigns these weights
as follows:

1. Sample A ∈ RdN×d0 according to D.

2. Take singular value decomposition A = UΣV ⊤, where U ∈ RdN×min{d0,dN}, V ∈ Rd0×min{d0,dN} have orthonor-
mal columns, and Σ ∈ Rmin{d0,dN}×min{d0,dN} is diagonal and holds the singular values of A.

3. Set WN ≃ UΣ1/N ,WN−1 ≃ Σ1/N , . . . ,W2 ≃ Σ1/N ,W1 ≃ Σ1/NV ⊤, where the symbol “≃” stands for equality up
to zero-valued padding.
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