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ABSTRACT
Electricity markets are cleared by a two-stage, sequential process

consisting of a forward (day-ahead) market and a spot (real-time)

market. While their design goal is to achieve efficiency, the lack

of sufficient competition introduces many opportunities for price

manipulation. To discourage this phenomenon, some Independent

System Operators (ISOs) are planning to sequentially implement

system-level market power mitigation policies that replace non-

competitive bids, based on an estimation of generator costs, a.k.a.

default bids. However, without fully accounting for all participants’

incentives (generators and loads), the application of such a policy

may lead to unintended consequences. In this paper, we model and

study the interactions of generators and inelastic loads in a two-

stage settlement where the system operator imposes default bids,

based on an estimation of generators’ cost function in the day-ahead

market. We show that such policy, when accounting for generator

and load incentives, leads to a generalized Stackelberg-Nash game

where load decisions (leaders) are performed in day-ahead market

and generator decisions (followers) are relegated to the real-time

market. Furthermore, the use of conventional supply function bid-

ding for generators in real-time, does not guarantee the existence

of a Nash equilibrium. This motivates the use of intercept bidding,

as an alternative bidding mechanism for generators in the real-time

market. An equilibrium analysis in this setting, leads to a closed-

form solution that unveils several insights. Particularly, it shows

that, unlike standard two-stage markets, loads are the winners of

the competition in the sense that their aggregate payments are less

than that of the competitive equilibrium. Moreover, heterogeneity

in generators cost has the unintended effect of mitigating loads’

market power. Finally, an analysis on the effect of overestimation

of generation cost and real-time demand uncertainty shows a ten-

dency for generators to benefit from uncertainty in both cases.

Numerical studies validate and further illustrate these insights.
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1 INTRODUCTION
Many Regional Transmission Organizations (RTOs) and Indepen-

dent System Operators (ISOs) conduct auctions to settle electricity

transactions in a wholesale energy market. Typically, suppliers,

e.g., generator owners, offer to sell electricity as a function of price,

while consumers, e.g., utilities, offer to purchase electricity to meet

their energy demand. After all the bids are collected, the market

is cleared achieving supply-demand balance. Such an electricity

market often constitutes of a two-stage settlement, namely day-

ahead and real-time markets [2]. The first stage is the day-ahead

market settlement - which is cleared based on the load forecasts

for the next day on an hourly basis and accounts for the majority

of energy trading in the market. The second stage, the real-time

market settlement, occurs at a faster timescale, typically every five

minutes, and it is used for participants to adjust their commitment

to account for changes in forecasts [19, 22].

Though such a coupled two-stage market was designed, in spirit,

to mitigate any form of speculation and arbitrage, the common

price difference between the two stages in practice signals efficiency

losses [8, 13]. The discrepancies occur, not only due to uncertainty

in load forecast, unscheduled maintenance, or shutdowns, but also

due to market manipulation by strategic participants who influ-

ence the market to their benefit [4, 21]. To discourage this price

manipulation, some operators, like California Independent System

Operator (CAISO), are considering imposing system-level policies

aimed at substituting in, e.g., day-ahead [1], non-competitive bids

with default bids that are based on an estimate of generators costs
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that leverages operator’s knowledge of technology, fuel prices, and

operational constraints [6].
1
Such market rules are straightforward.

However, without accounting for the conflicting interest of individ-

ual participants, the effect of this policy in market outcome remains

unknown. The goal of this paper is to study such possible policy

and mitigate the possible unintended effects.

To this end, we model and study the competition of generators

and loads in a two-stage settlement mechanism where generators’

bids are substituted by default bids in day-ahead. Though in princi-

ple, it seems reasonable to impose such policy in both, day-ahead

and real-time markets, such modifications are being considered

separately. We thus focus here on analyzing the effect of impos-

ing such a mitigation strategy solely in the day-ahead market, and

leave the complementary case of analyzing the constraint in the

real-time market as future work. We show that the introduction

of such mandate, when combined with the loads’ incentive to re-

duce payments across stages, leads to a form of Stackelberg-Nash

game, where loads and generators compete with alike participants,

yet as a group loads lead generator in their decision making. Our

analysis further shows that in the case when generators bid in real-

time using a linear supply function [7, 16, 20], strategic behavior

may lead to the non-existence of a Nash equilibrium. In particular,

leveraging recent analysis [20], we show that even in the setting of

generators with homogeneous costs, a sufficiently large number of

loads and the presence of negative demand in real-time can lead

to unstable behavior signaled by the lack of a Nash equilibrium.

This inability of supply function bidding to guarantee stable market

outcome motivates the use of a different bidding mechanism that

is better suited for participants that in a given market can generate

or consume energy, i.e., prosumers [10, 15].

More precisely, following [10], we propose the use of the inter-

cept of the supply function as the main parameter that generators

are allowed to bid. To better differentiate these two different forms

of supply function bids, we use (from now on) the term intercept

function bidding when generators bid the intercept parameter; for

consistency we also refer to the standard supply function mecha-

nism as slope function bidding. A detailed Nash equilibrium analy-

sis of this new market mechanism illustrates several analytic and

practical advantages of the proposed solution.

Contributions: The main contributions in this paper are summa-

rized below:

(1) We study a sequential game formulation of market competi-

tion among generators/prosumers, that bid the intercept of

the supply function and seek to maximize their profit, and

loads, that bid demand quantities in the two-stages. The pro-

posed policy leads to a generalized Stackelberg-Nash game,

where demand acts as a leader in the day-ahead market, and

generators act as followers in the real-time market.

(2) We characterize the competitive equilibrium of such a game

and show that it is optimal w.r.t the social planner’s problem.

We further show that the Nash equilibrium of this game

always exists, and can be characterized in closed-form.

(3) To understand the impact of strategic behavior in the mar-

ket outcome (Nash equilibrium), we further characterize the

1
Such policies are inspired by existing Local Market Power Mitigation strategies that

CAISO uses today to mitigate local market power in the presence of congestion [3].

market equilibrium for the cases of unilateral strategic be-

havior, i.e., either loads or generators behave strategically.

Our analysis broadly suggest that the combination of de-

fault bid substitution in day-ahead and real-time intercept

bidding successfully limits generators’ market power while

simultaneously guaranteeing stable market outcomes.

(4) We further provide a detailed numerical study to illustrate

several additional insights of the proposed solution, such

as the fact that the (fixed) slope parameter of the intercept

bidding can be tuned to obtain a Nash equilibrium arbitrarily

close to the competitive equilibrium, as well as the odd fact

that heterogeneity in generator cost can limit the market

power of the game leaders, i.e., loads.

(5) Finally, we discuss the impact of uncertainty in cost estima-

tion and demand randomness on the market equilibria. Our

analysis shows that at the Nash equilibrium overestimation

of generation cost, and randomness in real-time demand

tend to penalize demand by increasing their payments and

benefit generators by increasing their revenue.

Related work: Several works have analyzed the competition be-

tween cross-group participants under different market settings. In

particular [10, 14, 16] focus on the strategic behaviors in a single

stage, for example, in the day-ahead market, where participants

maximize their profit or minimize their payment while partici-

pating either as prosumers [10] or as traditional generators and

loads [14]. Another related line of work looks at a two-stage market

setting where generators participate via the widely adopted linear

supply function [7, 16]. In particular, references [11, 18] look at a

perfect competition where participants cannot manipulate market

prices and accept prevailing prices in the market. Reference [12]

analyzes the market competition between cross-group participants

for general strategic behavior but lacks theoretical guarantees on

the existence of equilibrium in such a market. While reference [20]

investigates the impact of strategic participants under the assump-

tion of homogeneous cost functions and symmetric participation.

However, despite the extensive studies, to the best of our knowl-

edge, this work is the first one to formally analyze the effect of

default bid substitution on the market outcome.

Paper organization: The rest of the paper is organized as follows.
In Section 2 we introduce the market model, participants’ behavior

and generalized Stackelberg-Nash game. In Section 3 we charac-

terize the competitive and Nash equilibrium achieved by intercept

function bidding and compare it with the social planner optimal

solution. The market power, comparison of different equilibria, and

numerical study on the role of market parameters are discussed in

Section 4. To streamline the presentation, we relegate the analysis

of the slope bidding function to Section 5 and the impact of uncer-

tain market conditions, like the discrepancy in the cost function of

generators and demand uncertainty, to Section 6. We provide the

conclusions in Section 7.

2 MARKET MODEL
In this section, we first summarize the general market design goal

in a social planer problem. We then lay out the two-stage settle-

ment market setup with our proposed intercept bidding function
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in the real-time market. In the end we formally define different

participants’ behavior as either competitive or strategic participant.

2.1 Social Planner Problem
Consider a single-interval market in which a set G of generators

interact with a set L of inelastic loads to meet aggregate demand

𝑑 ∈ R. The power output for each generator 𝑗 ∈ G is denoted by

𝑔 𝑗 ∈ R and the inelastic demand of each load 𝑙 ∈ L is denoted

by 𝑑𝑙 ∈ R respectively, where

∑
𝑙 ∈L 𝑑𝑙 = 𝑑 . We assume standard

quadratic cost functions for the generators, parameterized by qua-

dratic coefficients 𝑐 𝑗 , 𝑗 ∈ G respectively. Then the social planner

problem that minimizes the cost of dispatching generators to meet

the aggregate demand is given by

SOCIAL PLANNER

min

𝑔𝑗 , 𝑗 ∈G

∑
𝑗 ∈G

𝑐 𝑗

2

(
𝑔 𝑗

)
2

(1a)

s.t.

∑
𝑙 ∈L

𝑑𝑙 =
∑
𝑗 ∈G

𝑔 𝑗 (1b)

where (1b) enforces the power balance over the two-stage settle-

ment operation.

2.2 Two-stage Market Mechanism
In this subsection, we define the market clearing process for the

two stages to be studied in the paper, together with the proposed

intercept function bids.

2.2.1 Day-Ahead Market: In the day-ahead market, the power out-

put of generator 𝑗 is denoted by 𝑔𝐷𝐴
𝑗

and each generator 𝑗 submit

linear supply function as adopted widely in electricity market de-

signs [16]

𝑔𝐷𝐴
𝑗 = ˆ𝛽 𝑗𝜆

𝐷𝐴
(2)

where 𝜆𝐷𝐴
denote the prices in the day-ahead market. The linear

supply function is parameterized by
ˆ𝛽 𝑗 > 0 indicating the willing-

ness of generator 𝑗 to produce 𝑔𝐷𝐴
𝑗

at the price 𝜆𝐷𝐴
. We assume

that the market substitute generators’ bids with the default bids in

the day-ahead market i.e.,

ˆ𝛽 𝑗 =
1

𝑐 𝑗
(3)

such that the linear supply function is equivalent to truthful qua-

dratic cost in the market. Each load 𝑙 ∈ L bids demand 𝑑𝐷𝐴
𝑙

in the

day-ahead market. Given the bids ( ˆ𝛽 𝑗 , 𝑑𝐷𝐴
𝑙

) the market operator

solves the dispatch problem in the day-ahead market:

Day-Ahead Dispatch

min

𝑔𝐷𝐴
𝑗

, 𝑗 ∈G

∑
𝑗 ∈G

𝑐 𝑗

2

𝑔𝐷𝐴
𝑗

2

(4a)

s.t.

∑
𝑗 ∈G

𝑔𝐷𝐴
𝑗 =

∑
𝑙 ∈L

𝑑𝐷𝐴
𝑙

= 𝑑𝐷𝐴
(4b)

where (4b) constraint enforces the power balance constraint. The

optimal solution to the dispatch problem (4) gives the optimal dis-

patch for the participants and the clearing prices 𝜆𝐷𝐴
as function

of dual variables associated with the power balance constraint (4b).

Each generator 𝑗 ∈ G and load 𝑙 ∈ L produces or consumes 𝑔𝐷𝐴
𝑗

and 𝑑𝐷𝐴
𝑙

and are paid 𝜆𝐷𝐴𝑔𝐷𝐴
𝑗

and 𝜆𝐷𝐴𝑑𝐷𝐴
𝑙

as part of the market

settlement.

2.2.2 Real-Time Market: In the real-time market, the power output

of generator 𝑗 is denoted by 𝑔𝑅𝑇
𝑗

and the bid for generator 𝑗 is

specified as

𝑔𝑅𝑇𝑗 = 𝑏𝜆𝑅𝑇 − 𝛽 𝑗 , (5)

where 𝜆𝑅𝑇 denote the prices in the real-time market and 𝑏 > 0 is

the constant slope parameter indicating positive correlation with

prices, i.e., increase in price leads to increase in power supplied.

The intercept bidding function bids are parameterized by 𝛽 𝑗 ∈ R
indicating the willingness of generator 𝑗 to produce 𝑔 𝑗 at the price

𝜆𝑅𝑇 . In comparison to the slope bidding function where slope of the

linear supply function is the parameter, intercept bidding function

has intercept as the parameter taking both positive/negative values.

This implies that the intercept bidding function allows generator to

act as both supplier and consumer in the market. Each load 𝑙 ∈ L
partially allocates its inelastic demand 𝑑𝑙 in real-time by submitting

the quantity bids 𝑑𝑅𝑇
𝑙

. Given the bids (𝛽 𝑗 , 𝑗 ∈ G, 𝑑𝑅𝑇
𝑙

, 𝑙 ∈ L) the
operator associates a cost function with generator 𝑗 and solves the

real-time economic dispatch

Real-Time Dispatch

min

𝑔𝑅𝑇
𝑗

, 𝑗 ∈G

∑
𝑗 ∈G

(
1

2𝑏
𝑔𝑅𝑇𝑗

2 +
𝛽 𝑗

𝑏
𝑔𝑅𝑇𝑗

)
(6a)

s.t.

∑
𝑗 ∈G

𝑔𝑅𝑇𝑗 =
∑
𝑙 ∈L

𝑑𝑅𝑇
𝑙

= 𝑑𝑅𝑇 (6b)

where (6b) constraint enforces the power balance constraint and

load balance constraint respectively. Similar to the day-ahead mar-

ket, the optimal solution to the dispatch problem (6) gives the

optimal dispatch for the participants and the market clearing prices

𝜆𝑅𝑇 as function of dual variables associated with the operational

constraints. Each generator 𝑗 ∈ G and load 𝑙 ∈ L produces or con-

sumes 𝑔𝑅𝑇
𝑗

and 𝑑𝑅𝑇
𝑙

and are paid 𝜆𝑅𝑇𝑔𝑅𝑇
𝑗

and 𝜆𝑅𝑇𝑑𝑅𝑇
𝑙

respectively

as part of the real-time market settlement.

2.2.3 Market Goal: In this paper, we are interested in market condi-

tions that lead to market dispatch that also solves the social planner

problem, where

𝑔𝐷𝐴
𝑗

+ 𝑔𝑅𝑇
𝑗

= 𝑔 𝑗 , 𝑗 ∈ G (7a)

𝑑𝐷𝐴
𝑙

+ 𝑑𝑅𝑇
𝑙

= 𝑑𝑙 , 𝑙 ∈ L (7b)∑
𝑗 ∈G 𝑔 𝑗 =

∑
𝑙 ∈L 𝑑𝑙 = 𝑑 (7c)

However this is not always possible in which case, we analyse the

deviation between the market optimal dispatch and social planner

problem.

2.3 Participation Behavior
In this section, for the purpose of our study, we introduce two

different types of participant behavior, price-taking and strategic.

In either case, the participants are assumed to be rational. That

is, generators seek to maximize their profit 𝜋 𝑗 , and loads aim to

minimize their payments 𝜌𝑙 across the two stages. The generator

profit 𝜋 𝑗 is given by:

Generator Profit
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𝜋 𝑗 (𝑔𝐷𝐴
𝑗 , 𝑔𝑅𝑇𝑗 , 𝜆𝐷𝐴, 𝜆𝑅𝑇 ) :=𝜆𝑅𝑇𝑔𝑅𝑇𝑗 + 𝜆𝐷𝐴𝑔𝐷𝐴

𝑗 −
𝑐 𝑗

2

(
𝑔𝐷𝐴
𝑗 + 𝑔𝑅𝑇𝑗

)
2

(8)

The individual payment 𝜌𝑙 for load 𝑙 in the two-stage market is

given by:

Load Payment

𝜌𝑙 (𝑑𝐷𝐴
𝑙

, 𝑑𝑅𝑇
𝑙

, 𝜆𝐷𝐴, 𝜆𝑅𝑇 ) := 𝜆𝐷𝐴𝑑𝐷𝐴
𝑙

+ 𝜆𝑅𝑇𝑑𝑅𝑇
𝑙

(9)

2.3.1 Price-Taking Participants: A price taker is defined below:

Definition 2.1. A market participant is price-taking if it accepts

the given market prices and cannot anticipate how its own bid

affects market prices.

Given the prices in the day-ahead market 𝜆𝐷𝐴
and real-time

market 𝜆𝑅𝑇 , the generator individual problem is given by:

Price-taking Generator Bidding problem

max

𝑔𝑅𝑇
𝑗

𝜋 𝑗 (𝑔𝐷𝐴
𝑗 , 𝑔𝑅𝑇𝑗 , 𝜆𝐷𝐴, 𝜆𝑅𝑇 ) (10)

Substituting the intercept bidding function (5) in (8), we get

𝜋 𝑗 (𝑔𝐷𝐴
𝑗 , 𝛽 𝑗 , 𝜆

𝐷𝐴, 𝜆𝑅𝑇 )

= 𝜆𝑅𝑇 (𝑏𝜆𝑅𝑇 − 𝛽 𝑗 ) + 𝜆𝐷𝐴𝑔𝐷𝐴
𝑗 −

𝑐 𝑗

2

(
𝑔𝐷𝐴
𝑗 + 𝑏𝜆𝑅𝑇 − 𝛽 𝑗

)
2

(11)

Further substituting the linear supply function and the default bid in

the day-ahead market (2),(3) in (11), we can simplify the generator

profit 𝜋 𝑗 as

𝜋 𝑗 (𝛽 𝑗 , 𝜆𝐷𝐴, 𝜆𝑅𝑇 )

=𝜆𝑅𝑇 (𝑏𝜆𝑅𝑇 − 𝛽 𝑗 )+
1

𝑐 𝑗
𝜆𝐷𝐴2−

𝑐 𝑗

2

(
1

𝑐 𝑗
𝜆𝐷𝐴 + 𝑏𝜆𝑅𝑇 − 𝛽 𝑗

)
2

(12)

Therefore the individual problem for generator 𝑗 is given by:

max

𝛽 𝑗

𝜋 𝑗 (𝛽 𝑗 , 𝜆𝐷𝐴, 𝜆𝑅𝑇 ) (13)

Similarly given the prices 𝜆𝐷𝐴, 𝜆𝑅𝑇 , the individual bidding problem

for load is given by:

Price-taking Load Bidding problem

min

𝑑𝐷𝐴
𝑙

,𝑑𝑅𝑇
𝑙

𝜌𝑙 (𝑑𝐷𝐴
𝑙

, 𝑑𝑅𝑇
𝑙

, 𝜆𝐷𝐴, 𝜆𝑅𝑇 ) (14)

Substituting the coupling constraint for the load allocation across

two stages (7b) in (9) we get,

𝜌𝑙 (𝑑𝐷𝐴
𝑙

, 𝜆𝐷𝐴, 𝜆𝑅𝑇 ) := 𝜆𝐷𝐴𝑑𝐷𝐴
𝑙

+ 𝜆𝑅𝑇 (𝑑𝑙 − 𝑑𝐷𝐴
𝑙

) (15)

Therefore the individual problem for load 𝑙 is given by:

min

𝑑𝐷𝐴
𝑙

𝜌𝑙 (𝑑𝐷𝐴
𝑙

, 𝜆𝐷𝐴, 𝜆𝑅𝑇 ) (16)

For each load, 𝑙 ∈ L the allocation in day-ahead market 𝑑𝐷𝐴
𝑙

deter-

mines its allocation in the real-time market 𝑑𝑅𝑇
𝑙

due to the demand

inelasticity in the market. We next define the price-anticipating (or

strategic) participants.

Figure 1: Stackelberg-Nash game between the participants

2.3.2 Price-Anticipating Participants. A strategic participant in the

two-stage settlement market is defined below:

Definition 2.2. A market participant is price anticipating, or

strategic, if it has complete knowledge of other participants’ bids

and the effect of its own bids on the prices in the two stages.

Since the market substitutes the generators’ bids with default

bids in the day-ahead, they behave strategically only in the real-time

market, thus the individual problem is given by:

Strategic Generator Bidding problem

max

𝛽 𝑗

𝜋 𝑗

(
𝛽 𝑗 , 𝜆

𝐷𝐴
(
𝑑𝐷𝐴

)
, 𝜆𝑅𝑇

(
𝛽 𝑗 , 𝛽−𝑗 , 𝑑

𝑅𝑇
))

(17a)

s.t. (4), (6) (17b)

where 𝛽−𝑗 :=
∑
𝑘∈G,𝑘≠𝑗 𝛽𝑘 . The generator 𝑗 maximizes its profit

while anticipating the market clearing prices in the day-ahead

market and real-time market (4),(6), and with complete knowledge

of load bids 𝑑𝐷𝐴
𝑙

, 𝑑𝑅𝑇
𝑙

, 𝑙 ∈ L in the market. Similarly, the individual

problem for strategic load 𝑙 with complete knowledge of prices in

the day-ahead and real-time clearing (4),(6) is given by:

Strategic Load Bidding problem

min

𝑑𝐷𝐴
𝑙

𝜌𝑙

(
𝑑𝐷𝐴
𝑙

, 𝜆𝐷𝐴
(
𝑑𝐷𝐴

)
, 𝜆𝑅𝑇

(
𝛽 𝑗 , 𝛽−𝑗 , 𝑑

𝑅𝑇
))

(18a)

s.t. (4), (6) (18b)

where the load 𝑙 minimizes its payment in the two-stage market.

2.4 Stackelberg-Nash Interpretation of
Sequential Game

We now provide an alternative formulation of the sequential game

between price-anticipating participants, where the day-ahead mar-

ket clears before the real-time market. We analyze the game back-

ward from the real-time market where generators make decisions

while participating as prosumers in the market and compute the

equilibrium path. Since the inelastic loads only make decisions

in the day-ahead market, this two-stage sequential game can be

viewed as a leader-follower Stackelberg-Nash game with gener-

ators as a follower in the real-time market and loads as a leader

in the day-ahead market, while each group of participants com-

petes in the Nash game amongst themselves. Several works under

different names have analyzed similar formulations in various mar-

kets [9, 17]. Though the terminology varies in the literature, here

we follow the terminology used in [17]. The interaction structure

is further illustrated in Figure 1. There, each generator 𝑗 ∈ G

50



Equilibrium Analysis of Electricity Markets with Day-Ahead Market Power Mitigation and Real-Time Intercept Bidding e-Energy ’22, June 28-July 1, 2022, Virtual Event, USA

maximize its individual profit (17a) using only the real-time bid

parameter 𝛽 𝑗 which is used by the real-time market after the loads

decisions 𝑑𝐷𝐴
𝑙

has already been made. The load anticipates the

behaviour of the generator in the real-time stage and allocates its

demand 𝑑𝐷𝐴
𝑙

by accounting for its effect on the real-time prices via

𝜆𝑅𝑇 (𝛽 𝑗 , 𝛽−𝑗 , 𝑑 − 𝑑𝐷𝐴) in (18).

3 MARKET EQUILIBRIUM
In this section, we study the two-stage market equilibrium where

no participant has an incentive to deviate from its current bid and

both stages are cleared, as defined below.

Definition 3.1. We say the participant bids and market clearing

prices (𝑔𝐷𝐴
𝑗

, 𝛽 𝑗 , 𝑗 ∈ G, 𝑑𝐷𝐴
𝑙

, 𝑑𝑅𝑇
𝑙

, 𝑙 ∈ L, 𝜆𝐷𝐴, 𝜆𝑅𝑇 ) in the day-ahead

and real-time respectively form a two-stage market equilibrium if

the following conditions are satisfied:

(1) For each generator 𝑗 ∈ G, the bid 𝛽 𝑗 maximizes their indi-

vidual profit.

(2) For each load 𝑙 ∈ L, the allocation 𝑑𝐷𝐴
𝑙

, 𝑑𝑅𝑇
𝑙

minimizes their

individual payment.

(3) The inelastic demand 𝑑 ∈ R is satisfied with the market-

clearing prices 𝜆𝐷𝐴
given by (4) and 𝜆𝑅𝑇 given by (6) over

the two-stages of the market.

We will analyze particularly cases where all participants are

either price-taking or strategic. These cases respectively lead to a

competitive equilibrium and a Nash equilibrium. We will use the

term strategic equilibrium in this paper to refer to Nash equilibrium.

3.1 Competitive Equilibrium
We first look at the competitive equilibrium when all the partici-

pants are price-takers. Given the market clearing prices 𝜆𝑅𝑇 each

generator 𝑗 ∈ G maximize its profit (13). Similarly, given both

clearing prices 𝜆𝐷𝐴, 𝜆𝑅𝑇 , each load 𝑙 ∈ L minimizes its individual

payment (16). This setting leads to a set of competitive equilibrium,

as characterized below.

Theorem 3.2. The competitive equilibrium in the two-stage mar-
ket mechanism exists as given by:

𝑔𝐷𝐴
𝑗 =

1

𝑐 𝑗

𝑑∑
𝑗 ∈G 𝑐−1

𝑗

, 𝑔𝑅𝑇𝑗 = 0, ∀𝑗 ∈ G (19a)

𝑑𝐷𝐴
𝑙

+ 𝑑𝑅𝑇
𝑙

= 𝑑𝑙 ∀𝑙 ∈ L, 𝑑𝐷𝐴 = 𝑑, 𝑑𝑅𝑇 = 0 (19b)

𝛽 𝑗 = 𝑏
𝑑∑

𝑗 ∈G 𝑐−1
𝑗

, ∀𝑗 ∈ G, 𝜆𝐷𝐴 = 𝜆𝑅𝑇 =
𝑑∑

𝑗 ∈G 𝑐−1
𝑗

(19c)

We provide the proof of the theorem in Appendix A. At the

competitive equilibrium the load allocates all the demand in the

day-ahead market even though the market clearing prices are equal

across the two-stages of the market. This is desired as the majority

of energy trading occurs in the day-ahead market, however it is

not generally satisfied by other mechanisms [20].

Moreover, the equilibrium attains the desirable social planner

objective in the market, as summarized below.

Corollary 3.3. The competitive equilibrium (19) corresponds to
an optimal solution to the social planner problem (1).

The corollary uses the fact that the competitive equilibrium sat-

isfies the KKT conditions associated with the convex social planner

problem (1). We also consider the competitive equilibrium as a

benchmark and compare it with the outcome of other forms of

participation.

3.2 Nash Equilibrium
We next analyze the interplay between strategic generators 𝑗 ∈ G
and the strategic loads 𝑙 ∈ L in the two-stage market setting. We

first propose a theorem that will enable us to characterize the Nash

equilibrium in the real-time market. In this generalized Stackelberg-

Nash game, each strategic generator 𝑗 ∈ G with dispatch 𝑔𝑅𝑇
𝑗

also

solves the underlying augmented convex social planner problem as

defined:

Theorem 3.4. Assume that there are at least two generators par-
ticipating in the market, i.e., |G| ≥ 2. Given the day-ahead dispatch
𝑔𝐷𝐴
𝑗

, the real-time subgame equilibrium (𝑔𝑅𝑇
𝑗

, 𝜆𝑅𝑇 ) also corresponds
to the optimal primal-dual solution of an augmented convex social
planner problem and associated power balance constraint are given
by:

min

𝑔𝑅𝑇
𝑗

∑
𝑗 ∈G

(
1

2𝑏 (𝐺 − 1)𝑔
𝑅𝑇
𝑗

2 +
𝑐 𝑗

2

(
𝑔𝐷𝐴
𝑗 + 𝑔𝑅𝑇𝑗

)
2

)
(20a)

s.t. (6b) (20b)

We provide the proof of the theorem in Appendix B. The real-

time subgame shifts the dispatch of the generators compared to the

competitive equilibrium (19) due to the strategic participation of

generators. Hence the resulting Nash equilibrium is not socially

optimal. Notice that the optimization problem is strongly convex

since (20a) is a quadratic function of𝑔𝑅𝑇
𝑗

which implies that the real-

time dispatch 𝑔𝑅𝑇
𝑗

is unique. We use the closed-form dual solution

for 𝜆𝑅𝑇 in characterizing the closed-form Nash equilibrium.

The load in the day-ahead market anticipates the prices in the

real-time subgame played by the follower and minimizes its pay-

ment while acting as leader in the Stackelberg-Nash game as shown

in the Figure 1. The following theorem characterize the two-stage

Nash equilibrium that satisfies the Definition (3.1).

Theorem 3.5. If there are at least two generators participating in
the market, i.e., |G| ≥ 2, then the two-stage Nash equilibrium exists
and is uniquely given by:

𝑔𝐷𝐴
𝑗 =

1

𝑐 𝑗

(
1 − 1

𝐿 + 1

∑
𝑗 ∈G 𝐶−1

𝑗∑
𝑗 ∈G 𝑐−1

𝑗

)
𝑑∑

𝑗 ∈G 𝑐−1
𝑗

,∀𝑗 ∈ G (21a)

𝑔𝑅𝑇𝑗 =
1

𝐶 𝑗

1

𝐿 + 1

𝑑∑
𝑗 ∈G 𝑐−1

𝑗

, (21b)

𝑑𝐷𝐴
𝑙

= 𝑑𝑙 +
(

1

𝐿 + 1

𝑑 − 𝑑𝑙

) ∑
𝑗 ∈G 𝐶−1

𝑗∑
𝑗 ∈G 𝑐−1

𝑗

, ∀𝑙 ∈ L (21c)

𝑑𝑅𝑇
𝑙

=

(
𝑑𝑙 −

1

𝐿 + 1

𝑑

) ∑
𝑗 ∈G 𝐶−1

𝑗∑
𝑗 ∈G 𝑐−1

𝑗

, ∀𝑙 ∈ L (21d)

𝛽 𝑗 =

(
𝑏 − 𝑏

𝐿 + 1

∑
𝑗 ∈G 𝐶−1

𝑗∑
𝑗 ∈G 𝑐−1

𝑗

− 1

𝐶 𝑗

1

𝐿 + 1

)
𝑑∑

𝑗 ∈G 𝑐−1
𝑗

, ∀𝑗 ∈ G (21e)
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𝜆𝐷𝐴 =
𝑑∑

𝑗 ∈G 𝑐−1
𝑗

− 1

𝐿 + 1

∑
𝑗 ∈G 𝐶−1

𝑗∑
𝑗 ∈G 𝑐−1

𝑗

𝑑∑
𝑗 ∈G 𝑐−1

𝑗

, (21f)

𝜆𝑅𝑇 =
𝑑∑

𝑗 ∈G 𝑐−1
𝑗

+ 1

𝐿 + 1

(
1 −

∑
𝑗 ∈G 𝐶−1

𝑗∑
𝑗 ∈G 𝑐−1

𝑗

)
𝑑∑

𝑗 ∈G 𝑐−1
𝑗

(21g)

where 𝐶 𝑗 =
1

𝑏 (𝐺−1) + 𝑐 𝑗 .

We provide the proof the theorem in Appendix C. Here 𝐶 𝑗 =
1

𝑏 (𝐺−1) + 𝑐 𝑗 > 𝑐 𝑗 can be understood as the augmented cost coeffi-

cient of dispatching generators in the real-time market. The strate-

gic generators manipulate the market by increasing the clearing

prices in the real-time market. However, this ability to manipulate

the market eventually diminishes as the number of generators in-

creases in the market as discussed in the next section. Moreover,

when there is only one firm, no Nash equilibrium exists and such

a case reflects monopoly of generators in the market. In a monop-

oly the unique generator can bid arbitrarily large bids and earn

arbitrarily large profit from the inflated prices it generates in the

market.

Corollary 3.6. The load allocation across the two stages at the
Nash equilibrium (21) is given by:∑

𝑙 ∈L 𝑑𝐷𝐴
𝑙

=

(
1 − 1

𝐿+1

∑
𝑗∈G 𝐶−1

𝑗∑
𝑗∈G 𝑐−1

𝑗

)
𝑑 ∈

(
𝑑
2
, 𝑑

)
(22a)∑

𝑙 ∈L 𝑑𝑅𝑇
𝑙

= 1

𝐿+1

∑
𝑗∈G 𝐶−1

𝑗∑
𝑗∈G 𝑐−1

𝑗

𝑑 ∈
(
0, 𝑑

2

)
(22b)

The proof uses the individual demand allocation at the Nash

equilibrium (21) and the fact that 𝐶 𝑗 > 𝑐 𝑗 .

4 MARKET ANALYSIS
In this section, we study the impact of participants’ strategic behav-

ior as well as market parameters. We start by benchmarking market

equilibria against the competitive equilibrium (19) as we toggle a

particular group of participants, generators or loads, between price-

taking and strategic. Although some equilibria are of no practical

relevance, they allows us to separately understand the potential

capability of different participants in market manipulation. We then

analyze the impact of the market supply elasticity and the generator

heterogeneity on market outcomes, and illustrate our analysis via

numerical case studies.

4.1 Equilibrium Comparison For Different
Participant Behaviours

We first propose two theorems that characterize the market equi-

libria when only one group of generators or loads is strategic while

the other remains price-taking.

Theorem 4.1. (Generator Side Nash Equilibrium) The market
equilibrium with strategic generators and price-taking loads in the
two-stage market exists and is uniquely given by:

𝑔𝐷𝐴
𝑗 =

1

𝑐 𝑗

𝑑∑
𝑗 ∈G 𝑐−1

𝑗

, 𝑔𝑅𝑇𝑗 = 0, ∀𝑗 ∈ G (23a)

𝑑𝐷𝐴
𝑙

+ 𝑑𝑅𝑇
𝑙

= 𝑑𝑙 , ∀𝑙 ∈ L (23b)

𝛽 𝑗 = 𝑏
𝑑∑

𝑗 ∈G 𝑐−1
𝑗

, ∀𝑗 ∈ G, 𝜆𝐷𝐴 = 𝜆𝑅𝑇 =
𝑑∑

𝑗 ∈G 𝑐−1
𝑗

(23c)

Theorem 4.2. (Load Side Nash Equilibrium) The market equilib-
rium with strategic loads and price-taking generators in the two-stage
market exists and is uniquely given by:

𝑔𝐷𝐴
𝑗 =

𝐿

𝐿 + 1

1

𝑐 𝑗

𝑑∑
𝑗 ∈G 𝑐−1

𝑗

, 𝑔𝑅𝑇𝑗 =
1

𝐿 + 1

1

𝑐 𝑗

𝑑∑
𝑗 ∈G 𝑐−1

𝑗

,∀𝑗 ∈ G (24a)

𝑑𝐷𝐴
𝑙

=
1

𝐿 + 1

𝑑, 𝑑𝑅𝑇
𝑙

= 𝑑𝑙 −
1

𝐿 + 1

𝑑, ∀𝑙 ∈ L (24b)

𝛽 𝑗 =

(
𝑏 − 1

𝐿 + 1

1

𝑐 𝑗

)
𝑑∑

𝑗 ∈G 𝑐−1
𝑗

, ∀𝑗 ∈ G (24c)

𝜆𝐷𝐴 =
𝐿

𝐿 + 1

𝑑∑
𝑗 ∈G 𝑐−1

𝑗

, 𝜆𝑅𝑇 =
𝑑∑

𝑗 ∈G 𝑐−1
𝑗

(24d)

We provide the proof of both theorems in Appendix D and Ap-

pendix E, respectively.

We now analyze the shift in the market outcome and efficiency

loss due to the strategic bidding of participants as compared to the

competitive equilibrium. For this we use the widely accepted metric

like the social cost, aggregate profit of participants, and aggregate

payment of participants as shown in Table 1.

4.1.1 Insights:

Generator Side Nash Equilibrium: In the case of only strategic

generators, the market equilibrium found in Theorem 4.1 shows

that generators cannot take advantage of their ability to manipulate

prices (23c), since price-taking loads tend to allocate all the demand

in the day-ahead market (23b). Though generators are the only

participants with bidding flexibility in the real-time market, their

strategic decisions cannot earn them any extra profit. This is partly

attributed to their required truthfulness in the day-ahead market.

Bidding in only one stage grant them no market opportunity, in

the presence of price-taking loads.

Load Side Nash Equilibrium: On the contrary, with only strategic

loads, i.e., the load side Nash equilibrium, the allocation (24) deviates

from the competitive equilibrium (19) and favors loads. This is

because in both stages the market clearing prices reflect marginal

generations costs, with generators default bid in the day-ahead

market and price-taking in the real-time market. The implication

that the real-time price always equals the final systemmarginal cost

𝑑∑
𝑗∈G 𝑐−1

𝑗

is taken advantage of by loads to strategically participate

in the day-ahead market with a lower price. However, more demand

will raise the day-ahead price and the dilemma drives loads to reach

the equilibrium where each of them allocates the same amount of

day-ahead demand𝑑𝐷𝐴
𝑙

in (24b), regardless of sizes. As a whole, this

change of market outcome is mainly reflected as a shift in surplus

allocation, as shown in the third row of Table 1. The social cost

remains the samewhile part of generators’ profit is shifted to reduce

loads’ payment. However, we notice that as the number of loads

increases, the increasing competition diminishes such a shift and

the load side market equilibrium (24) converges to the competitive

equilibrium (19). Remarkably, the number of generators does not

contribute to the competition.
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Table 1: Comparison between Competitive Equilibrium (CE), Generator Side Nash Equilibrium (GNE), Load Side Nash Equi-
librium (LNE) and Nash Equilibrium (NE)

Instance Social Cost Generators Aggregate Profit Loads Aggregate Payment

CE
1

2

𝑑2∑
𝑗∈G 𝑐−1

𝑗

1

2

𝑑2∑
𝑗∈G 𝑐−1

𝑗

𝑑2∑
𝑗∈G 𝑐−1

𝑗

GNE
1

2

𝑑2∑
𝑗∈G 𝑐−1

𝑗

1

2

𝑑2∑
𝑗∈G 𝑐−1

𝑗

𝑑2∑
𝑗∈G 𝑐−1

𝑗

LNE
1

2

𝑑2∑
𝑗∈G 𝑐−1

𝑗

1

2

𝑑2∑
𝑗∈G 𝑐−1

𝑗

(
1 − 2𝐿

(𝐿+1)2
)

𝑑2∑
𝑗∈G 𝑐−1

𝑗

(
1 − 𝐿

(𝐿+1)2
)

NE
1

2

𝑑2∑
𝑗∈G 𝑐−1

𝑗

(
1 + 1∑

𝑗∈G 𝑐−1
𝑗

Δ
(𝐿+1)2

)
1

2

𝑑2∑
𝑗∈G 𝑐−1

𝑗

(
1 − 2𝐿

(𝐿+1)2
)
+ 𝑑2∑

𝑗∈G 𝑐−1
𝑗

((
1 −

∑
𝑗∈G 𝐶−1

𝑗∑
𝑗∈G 𝑐−1

𝑗

)
𝐿

(𝐿+1)2 −
1

2

1∑
𝑗∈G 𝑐−1

𝑗

Δ
(𝐿+1)2

)
𝑑2∑

𝑗∈G 𝑐−1
𝑗

(
1 − 𝐿

(𝐿+1)2
)
+ 𝑑2∑

𝑗∈G 𝑐−1
𝑗

(
1 −

∑
𝑗∈G 𝐶−1

𝑗∑
𝑗∈G 𝑐−1

𝑗

)
𝐿

(𝐿+1)2

where Δ :=
©­«∑𝑗 ∈G

𝑐 𝑗

𝐶2

𝑗

−
(∑

𝑗∈G 𝐶−1
𝑗

)
2∑

𝑗∈G 𝑐−1
𝑗

ª®¬, 𝐶 𝑗 =
1

𝑏 (𝐺−1) + 𝑐 𝑗

Nash Equilibrium: Our main result points to the Nash equilib-

rium (21) that features the strategic interplay of generators and

loads. Compared with the load side market equilibrium (24), gen-

erators do strive for more profit by bidding strategically in the

real-time market as in (21e), which leads to an inflated real-time

price beyond the system marginal cost
𝑑∑

𝑗∈G 𝑐−1
𝑗

. As a result, de-

mand is driven towards the day-ahead market that also raises the

day-ahead price in (21f). Market-wise, the Nash equilibrium incurs

a higher social cost (the fourth row of Table 1) due to generators’

strategic bidding.

Corollary 4.3. The aggregate profit of generators at Nash equi-
librium (21) is always less than that at competitive equilibrium (19).

We finally remark on the impact of generator heterogeneity.

Corollary 4.4. With homogeneous generators, i.e. 𝑐 𝑗 = 𝑐 , ∀𝑗 ∈
G, the market achieves the minimum social cost compared to the
competitive equilibrium.

The corollary follows from the fact of Δ = 0 in Table 1 when

generators are homogeneous.

4.2 Numerical Study: Impact of Market
parameters

We now analyze the impact of market parameters on the Nash

equilibrium in Theorem 3.5 using a numerical case study. For ease

of analysis, we consider the test case of 2 strategic generators and

4 strategic loads in two-stage market setting. The individual aggre-

gate inelastic demand bids for a mix of smaller and larger loads are

given by 𝑑𝑙 = [0.2, 25.6, 106.6, 199.6]𝑇𝑀𝑊 from the Pennsylvania,

New Jersey, and Maryland (PJM) data miner day-ahead demand

bids [5] with total aggregate inelastic demand 𝑑 = 332𝑀𝑊 .

First we look at the impact of the homogeneous slope constant

𝑏 of the intercept bidding function (5) on the Nash equilibrium (21).

Figure 2 illustrates the payment of loads and profit of generators

as we increase the parameter 𝑏 in the top panel and bottom panel

respectively. In this case we fix the heterogeneous cost coefficients

of the generators to be 𝑐 = [0.1, 0.11]𝑇 $/(𝑀𝑊 )2 corresponding

to the cost coefficients from the IEEE 300-bus system [21, 23]. As

𝑏 increases, 𝐶 𝑗 → 𝑐 𝑗 and loads payment decreases, see bottom

row in Table 1. This decrease in payment is attributed to the lower

profit of generators in the market as shown in top and bottom panel

in Figure 2. Though the larger value of 𝑏 impacts the individual

interests, its impact on social cost diminishes as 𝐶 𝑗 → 𝑐 𝑗 and

Figure 2: Individual load payment and generator profit w.r.t
market parameter 𝑏 for Nash Equilibrium (NE) and Compet-
itive Equilibrium (CE).

Δ → 0 as shown in Table 1. Interestingly, the social cost at Nash

equilibrium further aligns with the competitive equilibrium for

smaller values of 𝑏 as𝐶−1
𝑗

→ 0 and Δ → 0. This alignment suggests

that market operator can possibly optimize for the parameter 𝑏 to

reduce efficiency loss in the case of Nash equilibrium and restore

market efficiency.

In Figure 3 we show the demand allocation and generators dis-

patch in the two-stage as we change the parameter 𝑏 in the left and

right panel respectively. For this case also, we keep the same cost

coefficients of generators 𝑐 = [0.1, 0.11]𝑇 $/(𝑀𝑊 )2. The allocation
at Nash equilibrium deviates from the competitive equilibrium due

to price manipulation by participants. As 𝑏 increase 𝐶 𝑗 → 𝑐 𝑗 and

prices in the real-time market decreases (21g) leading to higher

allocation of loads (21d) and higher generator dispatch (21b) in the

real-time market. Amongst all the loads, smaller loads increase their

allocation in the day-ahead market leading to negative demand allo-

cation in the real-time stage at the expense of lower generator profit,

and therefore as 𝑏 increases, it earns money instead of making pay-

ments owing to higher prices in the real-time stage as shown in the

Figure. 3. This also implies that loads have an incentive to break

their demand into multiple smaller units, we skip such analysis in

this paper for future work.
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Figure 3: Day-Ahead and Real-Time load allocation and gen-
erator dispatch w.r.t parameter 𝑏 at Nash Equilibrium (NE)
and Competitive Equilibrium (CE).

Figure 4: Ratio of Nash Equilibrium (NE) and Competitive
Equilibrium (CE) for aggregate individual profit or payment
w.r.t 𝜎2; 𝑐1 ∼ N(0.1, 𝜎2), 𝑐2 ∼ N(0.1, 𝜎2) sampled 10,000 times.

Now we analyze the impact of heterogeneity of generators in

terms of different cost coefficients on Nash equilibrium (21). The co-

efficients are sampled 10, 000 times from a normal distribution with

mean 0.1 as we increase 𝜎2, i.e. 𝑐1 ∼ N(0.1, 𝜎2), 𝑐2 ∼ N(0.1, 𝜎2) for
fixed value of parameter 𝑏 = 10. The top panel and bottom panel

in Figure 4 plot mean value and 95% confidence interval for aggre-

gate payment of loads and aggregate profit of generators at Nash

equilibrium normalized with aggregate value of the competitive

equilibrium, respectively. As 𝜎2 increases, we see two phenomena

overlapping. First, it is more likely to obtain instances where gener-

ators are highly heterogeneous. Second, it also more likely to obtain

different absolute values for

∑
𝑗 ∈G 𝑐−1

𝑗
. This interplay leads to op-

portunities for generators (resp. loads) to increase (resp. decrease)

their profit (resp. payments) and vice versa. The exact mechanism

of this phenomena is further discussed below.

Figure 5: Ratio of Nash Equilibrium (NE) and Competitive
Equilibrium (CE) for aggregate profit or payment w.r.t Δ;
𝑐1 ∼ N(0.1, 0.035), 𝑐2 ∼ N(0.1, 0.035) sampled 10,000 times.

We next analyze the relation between the aggregate profit or ag-

gregate payment of participants w.r.t Δ, which serves as measure of

the heterogeneity of the generators. The cost coefficients are again

sampled 10, 000 times from a normal distribution with mean 0.1

and fixed variance 0.035, i.e. 𝑐1 ∼ N(0.1, 0.035), 𝑐2 ∼ N(0.1, 0.035)
for fixed value of parameter 𝑏 = 10. The parameter Δ associated

with the generators depends non-linearly on the cost coefficients

as shown in Table 1 and approaches to 0 as the difference between

the cost coefficients |𝑐1 − 𝑐2 | → 0. In such a case, the ratio of aggre-

gate profit of generators at the Nash equilibrium and competitive

equilibrium is given by:

1 −
(
1 − 1

1 + 𝑏𝑐 (𝐺 − 1)

)
2𝐿

(𝐿 + 1)2

Observe that as 𝑐 → 0, the aggregate profit of generators aligns

with the competitive equilibrium and misalignment increase with

increase in cost coefficient 𝑐 . Similar observations can bemade in the

case of heterogeneous generators also. In particular, if |𝑐1−𝑐2 | ≈ 𝑐1,

or equivalently one of the generator is extremely cheap (𝑐2 << 𝑐1),

then

(
1

/∑
𝑗 ∈G 𝑐−1

𝑗

)
→ 0 and the ratio of profit as mentioned in

Table 1 and given by:(
1 − 2𝐿

(𝐿 + 1)2

)
+
((
1 −

∑
𝑗 ∈G 𝐶−1

𝑗∑
𝑗 ∈G 𝑐−1

𝑗

)
2𝐿

(𝐿 + 1)2
− 1∑

𝑗 ∈G 𝑐−1
𝑗

Δ

(𝐿 + 1)2

)
aligns with competitive equilibrium. The left panel of the Figure 5

illustrates the ratio as Δ increases signaling higher levels of hetero-

geneity in generator cost. This implies that market with even one

cheap generator can counter the market power of all the strategic

participants.

5 EQUILIBRIUM COMPARISON WITH SLOPE
BIDDING FUNCTION

In this section, we compare the intercept function bidding with the

conventional linear supply function or as we call it, slope function
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bidding for the real-time market [7, 16]. More formally, in the case

of linear supply function or the slope function bidding, the bid for

generator 𝑗 in real-time is specified as

𝑔𝑅𝑇𝑗 = ˆ𝛽 𝑗𝜆
𝑅𝑇

(25)

where 𝜆𝑅𝑇 denote the prices in the real-time market. The supply

function bids are parameterized by
ˆ𝛽 𝑗 ∈ R indicating the willing-

ness of generator 𝑗 to produce 𝑔 𝑗 at the marginal price. We first

characterize the competitive equilibrium of the two-stage market.

Theorem 5.1 (Proposition 1 [20]). The competitive equilibrium
in the two-stage market mechanism exists and is given by:

𝑔𝐷𝐴
𝑗 =

1

𝑐 𝑗

𝑑∑
𝑗 ∈G 𝑐−1

𝑗

, 𝑔𝑅𝑇𝑗 = 0, ∀𝑗 ∈ G (26a)

𝑑𝐷𝐴
𝑙

+ 𝑑𝑅𝑇
𝑙

= 𝑑𝑙 , ∀𝑙 ∈ L, 𝑑𝐷𝐴 = 𝑑, 𝑑𝑅𝑇 = 0 (26b)

ˆ𝛽 𝑗 = 0, 𝜆𝐷𝐴 = 𝜆𝑅𝑇 =
𝑑∑

𝑗 ∈G 𝑐−1
𝑗

(26c)

The competitive equilibrium characterized in Theorem 5.1 is

ill-defined. In particular, the individual bids
ˆ𝛽 𝑗 and demand in the

real-timemarket𝑑𝑅𝑇 are both zero. Therefore prices in the real-time

market given by,

𝜆𝑅𝑇 =
𝑑𝑅𝑇∑
𝑗 ∈G ˆ𝛽 𝑗

are not well defined and assumed to be same as prices in the day-

ahead market [20].

For the case of Nash equilibrium, we assume that participants

are homogeneous in the sense that they share the same cost func-

tion, i.e. 𝑐 𝑗 := 𝑐,∀𝑗 ∈ G and bid symmetrically or take identical

positions in the market i.e. 𝛽 𝑗 := 𝛽,∀𝑗 ∈ G to compare the two

mechanisms, since the closed-form analysis is otherwise hard for

slope bidding function without these assumptions. The following

theorem characterize the two-stage Nash equilibrium or strategic

equilibrium in such a market that satisfies the Definition (3.1).

Theorem 5.2. Assume that generators are homogeneous and bid
symmetrically in the market. If there are at least three generators
participating in the market i.e. |G| ≥ 3 and number of individual load
satisfies 𝐿 < 𝐺 − 2, then the symmetric strategic market equilibrium
of the market with homogeneous participants in such a two-stage
setting exists and is uniquely given by:

𝑔𝐷𝐴
𝑗 =

𝐿

𝐿 + 1

𝐺 − 1

𝐺 − 2

𝑑

𝐺
, 𝑔𝑅𝑇𝑗 =

(
1 − 𝐿

𝐿 + 1

𝐺 − 1

𝐺 − 2

)
𝑑

𝐺
, ∀𝑗 ∈ G (27a)

𝑑𝐷𝐴
𝑙

=
1

𝐿 + 1

𝐺 − 1

𝐺 − 2

𝑑, 𝑑𝑅𝑇
𝑙

=

(
𝑑𝑙 −

1

𝐿 + 1

𝐺 − 1

𝐺 − 2

𝑑

)
, ∀𝑙 ∈ L (27b)

ˆ𝛽 𝑗 =
1

𝑐

(
𝐺 − 2

𝐺 − 1

− 𝐿

𝐿 + 1

)
, ∀𝑗 ∈ G (27c)

𝜆𝐷𝐴 =
𝐿

𝐿 + 1

𝐺 − 1

𝐺 − 2

𝑐𝑑

𝐺
, 𝜆𝑅𝑇 =

𝐺 − 1

𝐺 − 2

𝑐𝑑

𝐺
. (27d)

Theorem 5 is an immediate result of Proposition 4 in [20] with

truthful bids of generators in the day-ahead market. However, if

the number of generators and loads satisfies

𝐿 ≥ 𝐺 − 2

then no symmetric Nash equilibrium exists and demand is non-

positive in the real-time market. In such a case, the first order

condition implies that the optimal bid
ˆ𝛽 𝑗 < 0 and the clearing price

in real-time 𝜆𝑅𝑇 > 0 which means generators act as load and each

generator 𝑗 pays 𝜆𝑅𝑇𝑔𝑅𝑇
𝑗

as part of the market settlement. However

assuming all the generators bid
ˆ𝛽 𝑗 > 0, then each generator 𝑗

dispatch 𝑔𝑅𝑇
𝑗

< 0 at the clearing prices 𝜆𝑅𝑇 < 0 which leads to

positive revenue as compare to earlier case. The symmetric bid
ˆ𝛽 𝑗 >

0 fails to satisfy the first order condition and symmetric equilibrium

does not exist. Since the individual bid
ˆ𝛽 𝑗 also depends on the given

bids from other participants, the closed-form analysis is not easy

to deal with and equilibrium existence cannot be guaranteed.

However in the case of intercept bidding with strategic partic-

ipants, the equilibrium exists uniquely and no participant has an

incentive to deviate from it. It also limits generators’ market power,

a property usually desired by system operators, and the motivat-

ing factor for substituting generators’ bids with default bids in

day-ahead. Moreover as a byproduct, our analysis shows that the

intercept bidding mechanism also gives the equilibrium in the case

of a duopoly among generators (𝐺 = 2), which is not the case for

slope bidding function [20].

6 IMPACT OF MARKET UNCERTAINTY
In this section, we summarize the impact of uncertainties on market

equilibrium. We consider respectively two sources — discrepancy in

the generator dispatch cost (across stages) and demand uncertainty.

6.1 Discrepancy in Cost of Generator Dispatch
The discrepancy in the cost of generator dispatch can be under-

stood as either due to inaccurate estimation of the truthful cost

function in the day-ahead by the operator or high dispatch cost in

real-time due to unplanned ramping of generator resources. We

capture this discrepancy with a parameter 𝜖 𝑗 ∈ R that denotes the

error in estimation or the difference in the cost function in the two

stages such that given the bids 𝑑𝐷𝐴
𝑙

, the market operator solves the

dispatch problem in the day-ahead market as:

Day-Ahead Dispatch

min

𝑔𝐷𝐴
𝑗

, 𝑗 ∈G

∑
𝑗 ∈G

𝑐 𝑗 + 𝜖 𝑗

2

𝑔𝐷𝐴
𝑗

2

(28a)

s.t. (4b) (28b)

The generators submit the intercept function bidding (5) in the

real-time market such that the real-time dispatch problem is still (6).

Moreover, each generator 𝑗 (load 𝑙 ) maximizes its profit (minimizes

its payment) as introduced in Section 2.3.

For brevity, we assume 𝜖 𝑗 = 𝜖𝑐 𝑗 , ∀𝑗 ∈ G, for a constant parame-

ter 𝜖 ∈ R. However, the results generalize for any arbitrary 𝜖 𝑗 . We

denote by (𝑔𝐷𝐴
𝑗 , 𝑔𝑅𝑇𝑗 , 𝛽 𝑗 ∀𝑗 ∈ G, 𝑑𝐷𝐴

𝑙 , 𝑑
𝑅𝑇

𝑙 ∀𝑙 ∈ L, 𝜆
𝐷𝐴

, 𝜆
𝑅𝑇 ) the

market equilibrium in Theorem 3.2 and Theorem 3.5 for the case of

𝜖 = 0. We first characterize the competitive equilibrium

Theorem 6.1. The competitive equilibrium in the two-stage mar-
ket mechanism exists, and is given by:

𝑔𝐷𝐴
𝑗 =

1

1 + 𝜖
𝑔𝐷𝐴
𝑗 , 𝑔𝑅𝑇𝑗 =

𝜖

1 + 𝜖

1

𝑐 𝑗

𝑑∑𝐺
𝑗=1 𝑐

−1
𝑗

, ∀𝑗 ∈ G (29a)
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𝑑𝐷𝐴
𝑙

+ 𝑑𝑅𝑇
𝑙

= 𝑑𝑙 ; 𝑑
𝐷𝐴 =

1

1 + 𝜖
𝑑
𝐷𝐴

, 𝑑𝑅𝑇 =
𝜖

1 + 𝜖
𝑑 (29b)

𝛽 𝑗 = 𝛽 𝑗 −
1

𝑐 𝑗

𝜖

1 + 𝜖

𝑑∑𝐺
𝑗=1 𝑐

−1
𝑗

, ∀𝑗 ∈ G (29c)

𝜆𝐷𝐴 = 𝜆𝑅𝑇 = 𝜆
𝐷𝐴

= 𝜆
𝑅𝑇

=
𝑑∑

𝑗 ∈G 𝑐−1
𝑗

(29d)

We provide the proof of the theorem in Appendix F. The competitive

equilibrium in Theorem 6.1 still aligns with the social optimum (1),

but the parameter 𝜖 𝑗 reallocates load partially into the real-time

market, as shown in (29b). At the equilibrium, the load enforces

equal prices in the two stages. However, due to the existence of 𝜖 in

the day-ahead, the generator’s marginal cost is cheaper (expensive)

when 𝜖 < 0 (> 0), which leads to a higher (lower) day-ahead

load allocation to guarantee equal prices at the equilibrium. The

following theorem characterizes the two-stage Nash equilibrium.

Theorem 6.2. If there are at least two generators participating in
the market, i.e., |G| ≥ 2, then the two-stage Nash equilibrium exists
and is uniquely given by

𝑔𝐷𝐴
𝑗 =

(
1 + 𝜖

∑
𝑗 ∈G 𝐶−1

𝑗∑𝐺
𝑗=1 𝑐

−1
𝑗

)−1
𝑔𝐷𝐴
𝑗 ,∀𝑗 ∈ G (30a)

𝑔𝑅𝑇𝑗 = ((1 + 𝜖 (𝐿 + 1))
(
1 + 𝜖

∑
𝑗 ∈G 𝐶−1

𝑗∑𝐺
𝑗=1 𝑐

−1
𝑗

)−1
𝑔𝑅𝑇𝑗 ,∀𝑗 ∈ G (30b)

𝑑𝐷𝐴
𝑙

=

(
1 + 𝜖

∑
𝑗 ∈G 𝐶−1

𝑗∑𝐺
𝑗=1 𝑐

−1
𝑗

)−1
𝑑
𝐷𝐴

𝑙 , ∀𝑙 ∈ L (30c)

𝑑𝑅𝑇
𝑙

=

(
1 + 𝜖

∑
𝑗 ∈G 𝐶−1

𝑗∑𝐺
𝑗=1 𝑐

−1
𝑗

)−1 (
𝜖

∑
𝑗 ∈G 𝐶−1

𝑗∑
𝑗 ∈G 𝑐−1

𝑗

+ 𝑑𝑅𝑇𝑙

)
, ∀𝑙 ∈ L (30d)

𝜆𝐷𝐴 = ((1 + 𝜖)
(
1 + 𝜖

∑
𝑗 ∈G 𝐶−1

𝑗∑𝐺
𝑗=1 𝑐

−1
𝑗

)−1
𝜆
𝐷𝐴

, (30e)

𝜆𝑅𝑇 = 𝜖

(
1 + 𝜖

∑
𝑗 ∈G 𝐶−1

𝑗∑𝐺
𝑗=1 𝑐

−1
𝑗

)−1
𝑑 +

(
1 + 𝜖

∑
𝑗 ∈G 𝐶−1

𝑗∑𝐺
𝑗=1 𝑐

−1
𝑗

)−1
𝜆
𝑅𝑇

(30f)

where 𝐶 𝑗 =
1

𝑏 (𝐺−1) + 𝑐 𝑗 .

We provide the proof the theorem in Appendix G. Similarly, the

parameter 𝜖 𝑗 partially shifts the demand to the real-time market,

yet with a price increase (for 𝜖 > 0) in the day-ahead market due to∑
𝑗 ∈G 𝐶−1

𝑗∑𝐺
𝑗=1 𝑐

−1
𝑗

< 1

We use an example with 2 generators and 4 loads to numerically

illustrate the individual profit and payment for each generator 𝑗 and

load 𝑙 that depends non-linearly on the parameter 𝜖 , respectively,

in Figure 6 . In this case, we fix the cost coefficients of generators as

𝑐 = [0.1, 0.11]𝑇 $/𝑀𝑊 2
and slope parameter 𝑏 = 0.5. As 𝜖 changes,

the generators in the day-ahead market become relatively cheaper

(expensive) — indicated by the left (right) region of the x-axis in

Figure 6. The overestimation of generation cost penalizes demand

in the market by increasing demand payment shown in the top

Figure 6: Individual load payment and generator profit w.r.t
market threshold parameter 𝜖 at Nash Equilibrium.

panel and increasing generators’ revenue shown in the bottom

panel in Figure 6.

6.2 Demand Uncertainty
To understand the impact of demand uncertainty, we assume that

demand of each individual load 𝑙 is denoted by
˜𝑑𝑙 := 𝑑𝑙 + 𝛿𝑙 , 𝑑𝐷𝐴

𝑙
+

𝑑𝑅𝑇
𝑙

= ˜𝑑𝑙 ∀𝑙 ∈ L, where 𝛿𝑙 ∀𝑙 ∈ L is a random variable. Assuming

that default bids are used for generators in the day-ahead market,

and intercept function bids are received in the real-time market, the

market operator solves the dispatch problem (4) and (6) in the two

stages, respectively. Each load 𝑙 minimizes its expected payment

𝜌𝑙 (𝑑𝐷𝐴
𝑙

, 𝜆𝐷𝐴, 𝜆𝑅𝑇 ) := E
[
𝜆𝐷𝐴𝑑𝐷𝐴

𝑙
+ 𝜆𝑅𝑇 ( ˜𝑑𝑙 − 𝑑𝐷𝐴

𝑙
)
]

(31)

where we take the expectation with respect to the uncorrelated

random variable 𝛿𝑙 , ∀𝑙 ∈ L. Each generator 𝑗 assumes 𝑑𝐷𝐴, 𝑑𝑅𝑇

as a parameter where 𝑑𝑅𝑇 =
∑
𝑙 ( ˜𝑑𝑙 − 𝑑𝐷𝐴

𝑙
), and its individual

problem remains the same. The following theorem characterizes

the competitive equilibrium -

Theorem 6.3. Assuming that E[𝜆𝑅𝑇 ] is known to participants in
the day-ahead market. The competitive equilibrium in the two-stage
market mechanism exists, and given by:

𝑔𝐷𝐴
𝑗 =

1

𝑐 𝑗

(𝑑 + ∑
𝑙 E[𝛿𝑙 ])∑
𝑗 𝑐

−1
𝑗

, 𝑔𝑅𝑇𝑗 =
1

𝑐 𝑗

∑
𝑙 (𝛿𝑙 − E[𝛿𝑙 ])∑

𝑗 𝑐
−1
𝑗

,∀𝑗 ∈ G (32a)

𝑑𝐷𝐴
𝑙

+ 𝑑𝑅𝑇
𝑙

= ˜𝑑𝑙 ; 𝑑
𝐷𝐴 =𝑑 +

∑
𝑙

E[𝛿𝑙 ], 𝑑𝑅𝑇 =
∑
𝑙

(𝛿𝑙−𝐸 [𝛿𝑙 ]) (32b)

𝜆𝐷𝐴 =
(𝑑 + ∑

𝑙 E[𝛿𝑙 ])∑
𝑗 𝑐

−1
𝑗

, 𝜆𝑅𝑇 =
(𝑑 + ∑

𝑙 𝛿𝑙 )∑
𝑗 𝑐

−1
𝑗

(32c)

We provide the proof the theorem in Appendix H. The compet-

itive equilibrium aligns with the social planner (1). At the equi-

librium mean demand is allocated in the day-ahead market with
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uncertain deviations handled in the real-time market (32a). We next

characterize the Nash equilibrium.

Theorem 6.4. If there are at least two generators participating in
the market, i.e., |G| ≥ 2, then the two-stage Nash equilibrium exists
and is uniquely given by:

𝑔𝐷𝐴
𝑗 =

1

𝑐 𝑗

1∑
𝑗 𝑐

−1
𝑗

(
1 − 1

(𝐿 + 1)

∑
𝑗 ∈G 𝐶−1

𝑗∑
𝑗 𝑐

−1
𝑗

) (
𝑑 +

∑
𝑙

E[𝛿𝑙 ]
)

(33a)

𝑔𝑅𝑇𝑗 =
𝐶−1
𝑗∑

𝑗 𝐶
−1
𝑗

(
(𝑑 + ∑

𝑙 E[𝛿𝑙 ])
(𝐿 + 1)

∑
𝑗 ∈G 𝐶−1

𝑗∑
𝑗 𝑐

−1
𝑗

−
∑
𝑙

(E[𝛿𝑙 ] − 𝛿𝑙 )
)
(33b)

𝑑𝐷𝐴
𝑙

=𝑑𝑙 + E[𝛿𝑙 ] +
(
𝑑 + ∑

𝑙 E[𝛿𝑙 ]
(𝐿 + 1) −𝑑𝑙 − E[𝛿𝑙 ]

) ∑
𝑗 ∈G 𝐶−1

𝑗∑
𝑗 𝑐

−1
𝑗

(33c)

𝑑𝑅𝑇
𝑙

=

(
𝑑𝑙 + E[𝛿𝑙 ]−

𝑑 + ∑
𝑙 E[𝛿𝑙 ]

(𝐿 + 1)

) ∑
𝑗 ∈G 𝐶−1

𝑗∑
𝑗 𝑐

−1
𝑗

− (𝐸 [𝛿𝑙 ] − 𝛿𝑙 ) (33d)

𝜆𝐷𝐴 =
1∑
𝑗 𝑐

−1
𝑗

(
1 − 1

(𝐿 + 1)

∑
𝑗 ∈G 𝐶−1

𝑗∑
𝑗 𝑐

−1
𝑗

) (
𝑑 +

∑
𝑙

E[𝛿𝑙 ]
)
, (33e)

𝜆𝑅𝑇 =
1∑
𝑗 𝐶

−1
𝑗

(
(𝑑 + ∑

𝑙 E[𝛿𝑙 ])
(𝐿 + 1)

∑
𝑗 ∈G 𝐶−1

𝑗∑
𝑗 𝑐

−1
𝑗

−
∑
𝑙

(E[𝛿𝑙 ] − 𝛿𝑙 )
)

+ 1∑
𝑗 𝑐

−1
𝑗

(
1 − 1

(𝐿 + 1)

∑
𝑗 ∈G 𝐶−1

𝑗∑
𝑗 𝑐

−1
𝑗

) (
𝑑 +

∑
𝑙

E[𝛿𝑙 ]
)
(33f)

where 𝐶 𝑗 =
1

𝑏 (𝐺−1) + 𝑐 𝑗 .

We provide the proof the theorem in Appendix I. Interestingly,

the generation dispatch, demand allocation and prices in the day-

ahead stage at the market equilibrium (33a), (33c), and (33e) only

depend on the mean of the distribution of the random variable 𝛿𝑙 .

The demand allocation, prices and generator dispatch in real-time

now become random quantities at the time of day-ahead settlement,

yet they are realized for the real-time settlement. Moreover, the

Nash equilibrium (33) aligns in expectation with the Nash equi-

librium (21), but the expected payment and expected revenue of

participants still increases relatively, with the variance of the distri-

bution, meaning uncertainty penalizes the demand by increasing

its payment in the market.

We next compare the aggregate profit of generators and the

aggregate payment of loads at the Nash equilibrium in Theorem 6.4.

For this, we keep the same cost coefficient and parameter 𝑏, but

for ease of analysis, we fix the error parameter 𝜖 = 0. Moreover,

we assume that 𝛿𝑙 = 𝛿𝑑𝑙 where 𝛿 ∼ 𝑁 (0, 𝜎2) is a random variable

sampled 10, 000 times from a normal distribution with mean 0

and different variances. In Figure. 7 we plot the ratio of aggregate

profit (payment) at Nash equilibrium between the case with random

demand and without random demand, i.e. 𝛿𝑙 = 0, ∀𝑙 ∈ L. Although

the mean ratio is approximately the same, the confidence interval

grows as variance increases. The uncertainty does not significantly

impact the equilibrium of the market, provided that it has zero bias.

7 CONCLUSIONS
In this paper, we model the competition of generators and loads

across two clearing stages comprising a day-ahead market and the

Figure 7: Ratio of Nash Equilibrium (NE) with 𝛿 and
Nash Equilibrium (NE) without 𝛿 for aggregate individual
profit/payment w.r.t 𝜎2; 𝛿 ∼ N(0, 𝜎2) sampled 10,000 times.

real-time market. Following proposed industry policies, e.g., CAISO,

we assume that the generators bids are substituted by default bids

in the day-ahead market, and model generators as prosumers in

the real-time stage that fulfills the positive and negative devia-

tions from the day-ahead bids. Generators bid as both, supplier and

consumer, in real-time, while the load allocates its demand across

the two stages. By focusing on generator real-time bids based on

supply function intercept, we study the market equilibrium of the

two-stage sequential game. The resulting competitive equilibrium

aligns with the social planner problem, and is thus considered to be

efficient. However, when participants are strategic, a Nash equilib-

rium analysis shows that generators have limited opportunities to

manipulate market prices as they act as a follower in a generalized

Stackelberg-Nash game where demand acts as a leader. Numerical

case studies illustrate the impact of market parameters and reveals

how heterogeneity across generator cost hurts loads ability to ben-

efit from price manipulation. We further show that, unlike slope

bidding that fails to lead to an equilibrium for most settings, the

intercept bidding mechanism can guarantee the existence of a Nash

equilibrium, irrespectively of the number of market participants.

Finally, in case of market uncertainty, at the Nash Equilibrium over-

estimation of generation cost, and demand uncertainty increases

demand payments and generators revenue, i.e., loads are penalized

in the presence of market uncertainty.
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A PROOF OF THEOREM 3.2
Under price-taking behaviour, the individual problem for loads (16)

is a linear program with the closed-form solution given by:
𝑑𝐷𝐴
𝑙

= ∞, 𝑑𝑅𝑇
𝑙

= −∞, 𝑑𝐷𝐴
𝑙

+ 𝑑𝑅𝑇
𝑙

= 𝑑𝑙 , if 𝜆
𝐷𝐴 < 𝜆𝑅𝑇

𝑑𝐷𝐴
𝑙

= −∞, 𝑑𝑅𝑇
𝑙

= ∞, 𝑑𝐷𝐴
𝑙

+ 𝑑𝑅𝑇
𝑙

= 𝑑𝑙 , if 𝜆
𝐷𝐴 > 𝜆𝑅𝑇

𝑑𝐷𝐴
𝑙

+ 𝑑𝑅𝑇
𝑙

= 𝑑𝑙 , if 𝜆𝐷𝐴 = 𝜆𝑅𝑇
(34)

where loads prefer the lower price in the market. Also the market-

clearing in the day-ahead market (4) require the following KKT

conditions

𝑐 𝑗𝑔
𝐷𝐴
𝑗 = 𝜆𝐷𝐴,

∑
𝑗 ∈G

𝑔𝐷𝐴
𝑗 = 𝑑𝐷𝐴

(35)

whereas the market-clearing in the real-time market (6) requires:

1

𝑏
𝑔𝑅𝑇𝑗 + 1

𝑏
𝛽 𝑗 = 𝜆𝑅𝑇 ,

∑
𝑗 ∈G

𝑔𝑅𝑇𝑗 = 𝑑𝑅𝑇 (36)

Further solving the individual bidding problem for generators in

real-time market (13) by taking the derivative of the concave profit

function, we get

− 𝜆𝑅𝑇 + 𝑐 𝑗 (𝑔𝐷𝐴
𝑗 + 𝑏𝜆𝑅𝑇 − 𝛽 𝑗 ) = 0 (37a)

=⇒ − 𝜆𝑅𝑇 + 𝑐 𝑗 (𝑔𝐷𝐴
𝑗 + 𝑔𝑅𝑇𝑗 ) = 0

=⇒
∑
𝑗 ∈G

1

𝑐 𝑗
𝜆𝑅𝑇 =

∑
𝑗 ∈G

(𝑔𝐷𝐴
𝑗 + 𝑔𝑅𝑇𝑗 ) = (𝑑𝐷𝐴 + 𝑑𝑅𝑇 ) = 𝑑

=⇒ 𝜆𝑅𝑇 =
𝑑∑

𝑗 ∈G 𝑐−1
𝑗

(37b)

where we substitute (35) and (36) in (37a). Also from the day-ahead

market clearing equations (35) we have

𝜆𝐷𝐴 =
𝑑𝐷𝐴∑
𝑗 ∈G 𝑐−1

𝑗

(38)

At the competitive equilibrium the conditions (34),(35),(36),(37a)

holds simultaneously and this is only possible if the market price

are equal in the two-stages, i.e.,

𝜆𝑅𝑇 = 𝜆𝐷𝐴 =
𝑑∑

𝑗 ∈G 𝑐−1
𝑗

Using (37b) andd (38) for such a price in the market implies

𝑑𝐷𝐴 = 𝑑, 𝑑𝑅𝑇 = 0; 𝑑𝐷𝐴
𝑙

+ 𝑑𝑅𝑇
𝑙

= 𝑑𝑙 ,∀𝑙 ∈ L
and

𝑔𝐷𝐴
𝑗 =

1

𝑐 𝑗

𝑑∑
𝑗 ∈G 𝑐−1

𝑗

, 𝑔𝑅𝑇𝑗 = 0, ∀𝑗 ∈ G

Thus the competitive equilibrium exists.

B PROOF OF THEOREM 3.4
Given the parameter (𝑔𝐷𝐴

𝑗
, 𝑑 − 𝑑𝐷𝐴) from market-clearing in the

day-ahead market, each generator 𝑗 maximizes their profit (17) for

the optimal decision 𝛽 𝑗 with complete knowledge of the market

clearing in the real-time stage as characterized below:∑
𝑗 ∈G

𝑔𝑅𝑇𝑗 = 𝑑𝑅𝑇=⇒
∑
𝑗 ∈G

(𝑏𝜆𝑅𝑇 − 𝛽 𝑗 ) = 𝑑𝑅𝑇=⇒ 𝜆𝑅𝑇 =
𝑑𝑅𝑇 + 𝛽G

𝑏𝐺
(39)

where 𝛽G =
∑

𝑗 ∈G 𝛽 𝑗 . Substituting (39) in the individual prob-

lem (10) gives the concave strategic individual problem of genera-

tors:

max

𝛽 𝑗 ≥0

(
𝑑𝑅𝑇 + 𝛽G

𝑏𝐺

) (
𝑏
𝑑𝑅𝑇 + 𝛽G

𝑏𝐺
− 𝛽 𝑗

)
+ 𝜆𝐷𝐴𝑔𝐷𝐴

𝑗

−
𝑐 𝑗

2

(
𝑔𝐷𝐴
𝑗 + 𝑏

(
𝑑𝑅𝑇 + 𝛽G

𝑏𝐺

)
− 𝛽 𝑗

)2
(40)

Hence, taking the derivative of (40) with respect to bid 𝛽 𝑗 we get:

𝜕𝜋 𝑗

𝜕𝑏 𝑗
= 0

=⇒ 1

𝑏𝐺

(
𝑑𝑅𝑇 + 𝛽G

𝐺
− 𝛽 𝑗

)
− 𝐺 − 1

𝐺

(
𝑑𝑅𝑇 + 𝛽G

𝑏𝐺

)
+ 𝑐 𝑗

(
𝑔𝐷𝐴
𝑗 + 𝑑𝑅𝑇 + 𝛽G

𝐺
− 𝛽 𝑗

)
𝐺 − 1

𝐺
= 0

=⇒ 1

𝑏𝐺

(
𝑔𝑅𝑇𝑗

)
− 𝐺 − 1

𝐺

(
𝜆𝑅𝑇

)
+ 𝑐 𝑗

(
𝑔𝐷𝐴
𝑗 + 𝑔𝑅𝑇𝑗

) 𝐺 − 1

𝐺
= 0

=⇒ 1

𝑏 (𝐺 − 1)𝑔
𝑅𝑇
𝑗 − 𝜆𝑅𝑇 + 𝑐 𝑗

(
𝑔𝐷𝐴
𝑗 + 𝑔𝑅𝑇𝑗

)
= 0 (41)

where we substitute (5) and (39). The equation (41) is the required

KKT condition of the convex dispatch problem (20), with 𝜆𝑅𝑇 as

the dual variable of the constraint (20b).

C PROOF OF THEOREM 3.5
Using the market-price in the real-time stage 𝜆𝑅𝑇 as given by the

KKT conditions (41) we get,

𝑔𝑅𝑇𝑗 =
𝜆𝑅𝑇 − 𝑐 𝑗𝑔

𝐷𝐴
𝑗

𝐶 𝑗
=⇒

∑
𝑗 ∈G

𝑔𝑅𝑇𝑗 =
∑
𝑗 ∈G

𝜆𝑅𝑇 − 𝑐 𝑗𝑔
𝐷𝐴
𝑗

𝐶 𝑗

=⇒𝑑𝑅𝑇 =
∑
𝑗 ∈G

𝜆𝑅𝑇 − 𝑐 𝑗𝑔
𝐷𝐴
𝑗

𝐶 𝑗
=⇒𝜆𝑅𝑇 =

𝑑𝑅𝑇 + ∑
𝑗 ∈G

𝑐 𝑗𝑔
𝐷𝐴
𝑗

𝐶 𝑗∑
𝑗 ∈G 𝐶−1

𝑗

(42)

where 𝐶 𝑗 = 1

𝑏 (𝐺−1) + 𝑐 𝑗 and we use (6b) in the second equality

equation. Substituting (42) in (41) we get

𝑔𝑅𝑇𝑗 =
𝑑𝑅𝑇 + ∑

𝑗 ∈G
𝑐 𝑗𝑔

𝐷𝐴
𝑗

𝐶 𝑗∑
𝑗 ∈G 𝐶−1

𝑗
𝐶 𝑗

−
𝑐 𝑗𝑔

𝐷𝐴
𝑗

𝐶 𝑗
(43)

From the market-clearing in the day-ahead stage (4) we have the

following relation

𝜆𝐷𝐴 = 𝑐 𝑗𝑔
𝐷𝐴
𝑗 =⇒ 𝑔𝐷𝐴

𝑗 =
1

𝑐 𝑗
𝜆𝐷𝐴, and

∑
𝑗 ∈G

𝑔𝐷𝐴
𝑗 = 𝑑𝐷𝐴

=⇒ 𝜆𝐷𝐴 =
𝑑𝐷𝐴∑𝐺
𝑗=1 𝑐

−1
𝑗

=⇒ 𝑔𝐷𝐴
𝑗 =

1

𝑐 𝑗

𝑑𝐷𝐴∑𝐺
𝑗=1 𝑐

−1
𝑗

(44)

Substituting (44) in the expression (42) and (43) we get

𝜆𝑅𝑇 =
𝑑𝑅𝑇∑
𝑗 ∈G 𝐶−1

𝑗

+ 𝑑𝐷𝐴∑𝐺
𝑗=1 𝑐

−1
𝑗

, 𝑔𝑅𝑇𝑗 =
1

𝐶 𝑗

𝑑𝑅𝑇∑
𝑗 ∈G 𝐶−1

𝑗

(45)
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Substituting (44) and (45) in the individual problem of load 𝑙 (18)

we get

min

𝑑𝐷𝐴
𝑙

𝑑𝐷𝐴∑
𝑗 ∈𝐺 𝑐−1

𝑗

𝑑𝐷𝐴
𝑙

+
(
𝑑 − 𝑑𝐷𝐴∑
𝑗 ∈G 𝐶−1

𝑗

+ 𝑑𝐷𝐴∑𝐺
𝑗=1 𝑐

−1
𝑗

)
(𝑑𝑙 − 𝑑𝐷𝐴

𝑙
) (46)

Therefore taking the derivative of the convex individual prob-

lem (46) wrt 𝑑𝐷𝐴
𝑙

we get,

𝑑𝐷𝐴 + 𝑑𝐷𝐴
𝑙∑

𝑗 ∈𝐺 𝑐−1
𝑗

− 𝑑 − 𝑑𝐷𝐴∑
𝑗 ∈G 𝐶−1

𝑗

− 𝑑𝐷𝐴∑𝐺
𝑗=1 𝑐

−1
𝑗

+
𝑑𝑙 − 𝑑𝐷𝐴

𝑙∑𝐺
𝑗=1 𝑐

−1
𝑗

−
𝑑𝑙 − 𝑑𝐷𝐴

𝑙∑
𝑗 ∈G 𝐶−1

𝑗

= 0

=⇒ − 𝑑 − 𝑑𝐷𝐴∑
𝑗 ∈G 𝐶−1

𝑗

+ 𝑑𝑙∑𝐺
𝑗=1 𝑐

−1
𝑗

− 𝑑𝑙∑
𝑗 ∈G 𝐶−1

𝑗

+
𝑑𝐷𝐴
𝑙∑

𝑗 ∈G 𝐶−1
𝑗

= 0

=⇒
∑
𝑙 ∈L

(
− 𝑑 − 𝑑𝐷𝐴∑

𝑗 ∈G 𝐶−1
𝑗

+ 𝑑𝑙∑𝐺
𝑗=1 𝑐

−1
𝑗

− 𝑑𝑙∑
𝑗 ∈G 𝐶−1

𝑗

+
𝑑𝐷𝐴
𝑙∑

𝑗 ∈G 𝐶−1
𝑗

)
= 0

=⇒ 𝑑𝐷𝐴 =

(
1 − 1

𝐿 + 1

∑
𝑗 ∈G 𝐶−1

𝑗∑𝐺
𝑗=1 𝑐

−1
𝑗

)
𝑑 (47a)

Therefore we get unique Nash equilibrium (21)

D PROOF OF THEOREM 4.1
From the discussion in the proof of Theorem 3.5 we get

𝜆𝐷𝐴 =
𝑑𝐷𝐴∑
𝑗 ∈G 𝑐−1

𝑗

=⇒ 𝑔𝐷𝐴
𝑗 =

1

𝑐 𝑗

𝑑𝐷𝐴∑
𝑗 ∈G 𝑐−1

𝑗

(48)

𝜆𝑅𝑇 =
𝑑𝑅𝑇∑
𝑗 ∈G 𝐶−1

𝑗

+ 𝑑𝐷𝐴∑
𝑗 ∈G 𝑐−1

𝑗

, 𝑔𝑅𝑇𝑗 =
1

𝐶 𝑗

𝑑𝑅𝑇∑
𝑗 ∈G 𝐶−1

𝑗

(49)

where

∑
𝑗 ∈G 𝐶−1

𝑗
=

∑
𝑗 ∈G

1

𝐶 𝑗
, 𝐶 𝑗 =

1

𝑏 (𝐺−1) + 𝑐 𝑗 and
∑

𝑗 ∈G 𝑐−1
𝑗

=∑𝐺
𝑗=1

1

𝑐 𝑗
. Similarly under price-taking behaviour, the individual

problem for loads (14) is a linear program with solution given by:
𝑑𝐷𝐴
𝑙

= ∞, 𝑑𝑅𝑇
𝑙

= −∞, 𝑑𝐷𝐴
𝑙

+ 𝑑𝑅𝑇
𝑙

= 𝑑𝑙 , if 𝜆
𝐷𝐴 < 𝜆𝑅𝑇

𝑑𝐷𝐴
𝑙

= −∞, 𝑑𝑅𝑇
𝑙

= ∞, 𝑑𝐷𝐴
𝑙

+ 𝑑𝑅𝑇
𝑙

= 𝑑𝑙 , if 𝜆
𝐷𝐴 > 𝜆𝑅𝑇

𝑑𝐷𝐴
𝑙

+ 𝑑𝑅𝑇
𝑙

= 𝑑𝑙 , if 𝜆
𝐷𝐴 = 𝜆𝑅𝑇 .

(50)

where loads prefer the lower price in the market. At the Nash

equilibrium the conditions (6b),(7b),(48),(49), and (50) holds simul-

taneously and this is only possible if the market price are equal in

the two-stages, i.e.

𝜆𝑅𝑇 = 𝜆𝐷𝐴 =
𝑑∑

𝑗 ∈G 𝑐−1
𝑗

Using (48) and (49) for such a price in the market implies

𝑑𝐷𝐴 = 𝑑, 𝑑𝑅𝑇 = 0; 𝑑𝐷𝐴
𝑙

+ 𝑑𝑅𝑇
𝑙

= 𝑑𝑙 ,∀𝑙 ∈ L

and

𝑔𝐷𝐴
𝑗 =

1

𝑐 𝑗

𝑑∑
𝑗 ∈G 𝑐−1

𝑗

, 𝑔𝑅𝑇𝑗 = 0, ∀𝑗 ∈ G

Thus the Nash equilibrium aligns with the competitive equilibrium.

E PROOF OF THEOREM 4.2
Taking the derivative of the individual concave profit function (13)

we get

− 𝜆𝑅𝑇 + 𝑐 𝑗 (𝑔𝐷𝐴
𝑗 + 𝑏𝜆𝑅𝑇 − 𝛽 𝑗 ) = 0 (51a)

=⇒ − 𝜆𝑅𝑇 + 𝑐 𝑗 (𝑔𝐷𝐴
𝑗 + 𝑔𝑅𝑇𝑗 ) = 0

=⇒
∑
𝑗 ∈G

1

𝑐 𝑗
𝜆𝑅𝑇 =

∑
𝑗 ∈G

(𝑔𝐷𝐴
𝑗 + 𝑔𝑅𝑇𝑗 ) = (𝑑𝐷𝐴 + 𝑑𝑅𝑇 ) = 𝑑

=⇒ 𝜆𝑅𝑇 =
𝑑∑

𝑗 ∈G 𝑐−1
𝑗

,
∑
𝑗 ∈G

𝑐−1𝑗 =
∑
𝑗 ∈G

1

𝑐 𝑗
(51b)

where we substitute (35) and (36) in (51a). Also from the day-ahead

market clearing equations (35) we have

𝜆𝐷𝐴 =
𝑑𝐷𝐴∑
𝑗 ∈G 𝑐−1

𝑗

,
∑
𝑗 ∈G

𝑐−1𝑗 =
∑
𝑗 ∈G

1

𝑐 𝑗
(52)

=⇒ 𝑔𝐷𝐴
𝑗 =

1

𝑐 𝑗

𝑑𝐷𝐴∑
𝑗 ∈G 𝑐−1

𝑗

(53)

Substituting (51b) and (53) in (51a) we get,

𝛽 𝑗 =
1

𝑐 𝑗

(
−𝜆𝑅𝑇 + 𝑐 𝑗 (𝑏𝜆𝑅𝑇 + 𝑔𝐷𝐴

𝑗 )
)

=
1

𝑐 𝑗

(
− 𝑑∑

𝑗 ∈G 𝑐−1
𝑗

+ 𝑐 𝑗

(
𝑏

𝑑∑
𝑗 ∈G 𝑐−1

𝑗

+ 1

𝑐 𝑗

𝑑𝐷𝐴∑
𝑗 ∈G 𝑐−1

𝑗

))
=
1

𝑐 𝑗

(
(𝑏𝑐 𝑗 − 1)𝑑∑

𝑗 ∈G 𝑐−1
𝑗

+ 𝑑𝐷𝐴∑
𝑗 ∈G 𝑐−1

𝑗

)
(54)

This implies that

𝑔𝑅𝑇𝑗 =𝑏𝜆𝑅𝑇 − 𝛽 𝑗 = 𝑏
𝑑∑

𝑗 ∈G 𝑐−1
𝑗

− 1

𝑐 𝑗

(
(𝑏𝑐 𝑗 − 1)𝑑∑

𝑗 ∈G 𝑐−1
𝑗

+ 𝑑𝐷𝐴∑
𝑗 ∈G 𝑐−1

𝑗

)
=
1

𝑐 𝑗

𝑑 − 𝑑𝐷𝐴∑
𝑗 ∈G 𝑐−1

𝑗

(55)

Substituting (51b) and (52) in the individual problem of load 𝑙 (18)

we get

min

𝑑𝐷𝐴
𝑙

𝑑𝐷𝐴∑
𝑗 ∈G 𝑐−1

𝑗

𝑑𝐷𝐴
𝑙

+ 𝑑∑
𝑗 ∈G 𝑐−1

𝑗

(𝑑𝑙 − 𝑑𝐷𝐴
𝑙

)

⇐⇒ min

𝑑𝐷𝐴
𝑙

𝑑𝐷𝐴𝑑𝐷𝐴
𝑙

+ 𝑑 (𝑑𝑙 − 𝑑𝐷𝐴
𝑙

) (56a)

taking the derivative of this convex optimization problem (56a) we

get

𝑑𝐷𝐴 + 𝑑𝐷𝐴
𝑙

− 𝑑 = 0 =⇒
∑
𝑙 ∈L

(
𝑑𝐷𝐴 + 𝑑𝐷𝐴

𝑙
− 𝑑

)
= 0

=⇒ 𝑑𝐷𝐴 =
𝐿

𝐿 + 1

𝑑 =⇒ 𝑑𝑅𝑇 =
1

𝐿 + 1

𝑑 (57)

This implies

𝑔𝐷𝐴
𝑗 =

𝐿

𝐿 + 1

1

𝑐 𝑗

𝑑∑
𝑗 ∈G 𝑐−1

𝑗

, 𝑔𝑅𝑇𝑗 =
1

𝐿 + 1

1

𝑐 𝑗

𝑑∑
𝑗 ∈G 𝑐−1

𝑗

,∀𝑗 ∈ G

𝑑𝐷𝐴
𝑙

=
1

𝐿 + 1

𝑑, 𝑑𝑅𝑇
𝑙

= 𝑑𝑙 −
1

𝐿 + 1

𝑑, ∀𝑙 ∈ L
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𝛽 𝑗 =

(
𝑏 − 1

𝐿 + 1

1

𝑐 𝑗

)
𝑑∑

𝑗 ∈G 𝑐−1
𝑗

, ∀𝑗 ∈ G

𝜆𝐷𝐴 =
𝐿

𝐿 + 1

𝑑∑
𝑗 ∈G 𝑐−1

𝑗

, 𝜆𝑅𝑇 =
𝑑∑

𝑗 ∈G 𝑐−1
𝑗

F PROOF OF THEOREM 6.1
Under price-taking behaviour, the closed-form solution of the in-

dividual problem for loads (16) is given by (34). Also the market-

clearing in the day-ahead market (28) require the following KKT

conditions

(1 + 𝜖)𝑐 𝑗𝑔𝐷𝐴
𝑗 = 𝜆𝐷𝐴,

∑
𝑗 ∈G

𝑔𝐷𝐴
𝑗 = 𝑑𝐷𝐴

(58)

whereas the market-clearing in the real-time market (6) requires:

1

𝑏
𝑔𝑅𝑇𝑗 + 1

𝑏
𝛽 𝑗 = 𝜆𝑅𝑇 ,

∑
𝑗 ∈G

𝑔𝑅𝑇𝑗 = 𝑑𝑅𝑇 (59)

Using (37b) we have

𝜆𝑅𝑇 =
𝑑∑

𝑗 ∈G 𝑐−1
𝑗

Also from the day-ahead market clearing equations (58) we have

𝜆𝐷𝐴 =
(1 + 𝜖)𝑑𝐷𝐴∑

𝑗 ∈G 𝑐−1
𝑗

(60)

At the competitive equilibrium the conditions (34),(37a),(58),(59)

holds simultaneously and this is only possible if the market price

are equal in the two-stages, i.e.,

𝜆𝑅𝑇 = 𝜆𝐷𝐴 =
𝑑∑

𝑗 ∈G 𝑐−1
𝑗

Using (37b) andd (60) for such a price in the market implies

𝑑𝐷𝐴
𝑙

+ 𝑑𝑅𝑇
𝑙

= 𝑑𝑙 , ∀𝑙 ∈ L;𝑑𝐷𝐴 =
1

1 + 𝜖
𝑑 ;𝑑𝑅𝑇 =

(
1 − 1

1 + 𝜖

)
𝑑

and

𝑔𝐷𝐴
𝑗 =

1

𝑐 𝑗

1

1 + 𝜖

𝑑∑𝐺
𝑗=1 𝑐

−1
𝑗

, 𝑔𝑅𝑇𝑗 =
1

𝑐 𝑗

(
1 − 1

1 + 𝜖

)
𝑑∑𝐺

𝑗=1 𝑐
−1
𝑗

Thus the competitive equilibrium exists.

G PROOF OF THEOREM 6.2
Using (42),(43), we have the generator dispatch and prices in the

real-time market as

𝑔𝑅𝑇𝑗 =
𝑑𝑅𝑇 + ∑

𝑗 ∈G
𝑐 𝑗𝑔

𝐷𝐴
𝑗

𝐶 𝑗∑
𝑗 ∈G 𝐶−1

𝑗
𝐶 𝑗

−
𝑐 𝑗𝑔

𝐷𝐴
𝑗

𝐶 𝑗
(61a)

𝜆𝑅𝑇 =
𝑑𝑅𝑇 + ∑

𝑗 ∈G
𝑐 𝑗𝑔

𝐷𝐴
𝑗

𝐶 𝑗∑
𝑗 ∈G 𝐶−1

𝑗

(61b)

From the market-clearing in the day-ahead stage (58) we have

the following relation

𝜆𝐷𝐴 =
(1 + 𝜖)𝑑𝐷𝐴∑𝐺

𝑗=1 𝑐
−1
𝑗

=⇒ 𝑔𝐷𝐴
𝑗 =

1

𝑐 𝑗

𝑑𝐷𝐴∑𝐺
𝑗=1 𝑐

−1
𝑗

(62)

Substituting (62) in the expression (61) we get

𝜆𝑅𝑇 =
𝑑𝑅𝑇∑
𝑗 ∈G 𝐶−1

𝑗

+ 𝑑𝐷𝐴∑𝐺
𝑗=1 𝑐

−1
𝑗

, 𝑔𝑅𝑇𝑗 =
1

𝐶 𝑗

𝑑𝑅𝑇∑
𝑗 ∈G 𝐶−1

𝑗

(63)

Substituting (62) and (63) in the individual problem of load 𝑙 (18)

we get

min

𝑑𝐷𝐴
𝑙

(1 + 𝜖)𝑑𝐷𝐴∑
𝑗 ∈𝐺 𝑐−1

𝑗

𝑑𝐷𝐴
𝑙

+
(
𝑑 − 𝑑𝐷𝐴∑
𝑗 ∈G 𝐶−1

𝑗

+ 𝑑𝐷𝐴∑𝐺
𝑗=1 𝑐

−1
𝑗

)
(𝑑𝑙 − 𝑑𝐷𝐴

𝑙
) (64)

Therefore taking the derivative of the convex individual prob-

lem (64) wrt 𝑑𝐷𝐴
𝑙

we get,

𝜖
𝑑𝐷𝐴 + 𝑑𝐷𝐴

𝑙∑
𝑗 ∈𝐺 𝑐−1

𝑗

− 𝑑 − 𝑑𝐷𝐴∑
𝑗 ∈G 𝐶−1

𝑗

+ 𝑑𝑙∑𝐺
𝑗=1 𝑐

−1
𝑗

− 𝑑𝑙∑
𝑗 ∈G 𝐶−1

𝑗

+
𝑑𝐷𝐴
𝑙∑

𝑗 ∈G 𝐶−1
𝑗

= 0

Summing over 𝑙 ∈ L we get

𝑑𝐷𝐴 =

∑𝐺
𝑗=1 𝑐

−1
𝑗

− 1

𝐿+1
∑

𝑗 ∈G 𝐶−1
𝑗∑𝐺

𝑗=1 𝑐
−1
𝑗

+ 𝜖
∑

𝑗 ∈G 𝐶−1
𝑗

𝑑𝑇

Therefore we get unique Nash equilibrium (30)

H PROOF OF THEOREM 6.3
Under price-taking behaviour, the individual problem for loads (31)

is a linear program with the closed-form solution given by:
𝑑𝐷𝐴
𝑙

= ∞, 𝑑𝑅𝑇
𝑙

= −∞, 𝑑𝐷𝐴
𝑙

+ 𝑑𝑅𝑇
𝑙

= ˜𝑑𝑙 , if 𝜆
𝐷𝐴 < E[𝜆𝑅𝑇 ]

𝑑𝐷𝐴
𝑙

= −∞, 𝑑𝑅𝑇
𝑙

= ∞, 𝑑𝐷𝐴
𝑙

+ 𝑑𝑅𝑇
𝑙

= ˜𝑑𝑙 , if 𝜆
𝐷𝐴 > E[𝜆𝑅𝑇 ]

𝑑𝐷𝐴
𝑙

+ 𝑑𝑅𝑇
𝑙

= ˜𝑑𝑙 , if 𝜆𝐷𝐴 = E[𝜆𝑅𝑇 ]
(66)

where loads prefer the lower price in the market. Also the market-

clearing in the day-ahead market (4) require the following KKT

conditions

𝑐 𝑗𝑔
𝐷𝐴
𝑗 = 𝜆𝐷𝐴,

∑
𝑗 ∈G

𝑔𝐷𝐴
𝑗 = 𝑑𝐷𝐴

(67)

whereas the market-clearing in the real-time market (6) requires:

1

𝑏
𝑔𝑅𝑇𝑗 + 1

𝑏
𝛽 𝑗 = 𝜆𝑅𝑇 ,

∑
𝑗 ∈G

𝑔𝑅𝑇𝑗 = 𝑑𝑅𝑇 (68)

Further solving the individual bidding problem for generators in

real-time market (13), we get

− 𝜆𝑅𝑇 + 𝑐 𝑗 (𝑔𝐷𝐴
𝑗 + 𝑏𝜆𝑅𝑇 − 𝛽 𝑗 ) = 0 (69a)

=⇒ − 𝜆𝑅𝑇 + 𝑐 𝑗 (𝑔𝐷𝐴
𝑗 + 𝑔𝑅𝑇𝑗 ) = 0

=⇒
∑
𝑗 ∈G

1

𝑐 𝑗
𝜆𝑅𝑇 =

∑
𝑗 ∈G

(𝑔𝐷𝐴
𝑗 + 𝑔𝑅𝑇𝑗 ) = (𝑑𝐷𝐴 + 𝑑𝑅𝑇 ) = 𝑑 +

∑
𝑙

𝛿𝑙

=⇒ 𝜆𝑅𝑇 =
𝑑 + ∑

𝑙 𝛿𝑙∑
𝑗 ∈G 𝑐−1

𝑗

(69b)

where we substitute (67) and (68) in (69a). Also from the day-ahead

market clearing equations (67) we have

𝜆𝐷𝐴 =
𝑑𝐷𝐴∑
𝑗 ∈G 𝑐−1

𝑗

(70)
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At the competitive equilibrium the conditions (66),(67),(68),(69a)

holds simultaneously and this is only possible if the market price

are equal in the two-stages, i.e.,

E[𝜆𝑅𝑇 ] = 𝜆𝐷𝐴 =
𝑑 + ∑

𝑙 E[𝛿𝑙 ]∑
𝑗 ∈G 𝑐−1

𝑗

Using (69b) and (70) for such a price in the market implies

𝑑𝐷𝐴 = 𝑑+
∑
𝑙

E[𝛿𝑙 ], 𝑑𝑅𝑇 =
∑
𝑙

(𝛿𝑙 − E[𝛿𝑙 ]) ;𝑑𝐷𝐴
𝑙

+𝑑𝑅𝑇
𝑙

= ˜𝑑𝑙 ,∀𝑙 ∈ L

and

𝑔𝐷𝐴
𝑗 =

1

𝑐 𝑗

𝑑 + ∑
𝑙 E[𝛿𝑙 ]∑

𝑗 ∈G 𝑐−1
𝑗

∀𝑗 ∈ G

Thus the competitive equilibrium exists.

I PROOF OF THEOREM 6.4
Using (42),(43), we have the generator dispatch and prices in the

real-time market as

𝑔𝑅𝑇𝑗 =
𝑑𝑅𝑇 + ∑

𝑗 ∈G
𝑐 𝑗𝑔

𝐷𝐴
𝑗

𝐶 𝑗∑
𝑗 ∈G 𝐶−1

𝑗
𝐶 𝑗

−
𝑐 𝑗𝑔

𝐷𝐴
𝑗

𝐶 𝑗
(71a)

𝜆𝑅𝑇 =
𝑑𝑅𝑇 + ∑

𝑗 ∈G
𝑐 𝑗𝑔

𝐷𝐴
𝑗

𝐶 𝑗∑
𝑗 ∈G 𝐶−1

𝑗

(71b)

From the market-clearing in the day-ahead stage (44) we have

the following relation

𝜆𝐷𝐴 =
𝑑𝐷𝐴∑𝐺
𝑗=1 𝑐

−1
𝑗

=⇒ 𝑔𝐷𝐴
𝑗 =

1

𝑐 𝑗

𝑑𝐷𝐴∑𝐺
𝑗=1 𝑐

−1
𝑗

(72)

Substituting (44) in the expression (71) we get

𝜆𝑅𝑇 =
𝑑𝑅𝑇∑
𝑗 ∈G 𝐶−1

𝑗

+ 𝑑𝐷𝐴∑𝐺
𝑗=1 𝑐

−1
𝑗

, 𝑔𝑅𝑇𝑗 =
1

𝐶 𝑗

𝑑𝑅𝑇∑
𝑗 ∈G 𝐶−1

𝑗

(73)

Using (44) and (73) to minimize individual payment of load 𝑙 (31)

we get

min

𝑑𝐷𝐴
𝑙

E

[
𝑑𝐷𝐴𝑑𝐷𝐴

𝑙∑
𝑗 ∈𝐺 𝑐−1

𝑗

+
(
𝑑 + ∑

𝑙 𝛿𝑙 − 𝑑𝐷𝐴∑
𝑗 ∈G 𝐶−1

𝑗

+ 𝑑𝐷𝐴∑𝐺
𝑗=1 𝑐

−1
𝑗

)
(𝑑𝑙 + 𝛿𝑙 − 𝑑𝐷𝐴

𝑙
)
]

(74)

Taking the derivative of the convex individual problem (74) w.r.t

𝑑𝐷𝐴
𝑙

and summing over 𝑙 ∈ L we get,

𝑑𝐷𝐴 =

(
1 − 1

(𝐿 + 1)

∑
𝑗 ∈G 𝐶−1

𝑗∑
𝑗 𝑐

−1
𝑗

)
(𝑑 +

∑
𝑙

E[𝛿𝑙 ]) (75a)

Hence we get unique Nash equilibrium (33).
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