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Abstract

The mathematical notion of a set arises frequently in planning and control of au-

tonomous systems. A common challenge is how to best represent a given set in a

manner that is efficient, accurate, and amenable to computational tools of interest.

For example, ensuring a vehicle does not collide with an obstacle can be generically

posed in multiple ways using techniques from optimization or computational geometry.

However these representations generally rely on executing algorithms instead of

evaluating closed-form expressions. This presents an issue when we wish to represent

an obstacle avoidance condition within a larger motion planning problem which is

solved using nonlinear optimization. These tools generally can only accept smooth,

closed-form expressions. As such our available representations of obstacle avoidance

conditions, while accurate, are not amenable to the relevant tools.

A related problem is how to represent a set in a compact form without sacrificing

accuracy. For example, we may be presented with point-cloud data representing the

boundary of an object that our vehicle must avoid. Using the obstacle avoidance

conditions directly on the point-cloud data would require performing these calculations

with respect to each point individually. A more efficient approach is to first approx-

imate the data with simple geometric shapes and perform later analysis with the

approximation. Common shapes include bounding boxes, ellipsoids, and superquadrics.

These shapes are convenient in that they have a compact representation and we have

good heuristic objectives for fitting the data. However, their primitive nature means

accuracy of representation may suffer. Most notably, their inherent symmetry makes
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them ill-suited for representing asymmetric shapes. In theory we could consider more

complicated shapes given by an implicit function S = {x | f(x) ≤ 1}. However we lack

reliable methods for ensuring a good fit.

This thesis proposes novel approaches to these problems. Throughout, the sets of

interest are described by polynomial inequalities, making them semialgebraic.
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Chapter 1

Introduction

1.1 Motivation

Sets, operations between sets, and constraints on sets are ubiquitous in planning

and control of autonomous systems. A common challenge is how to best represent

a given set in a manner that is efficient, accurate, and amenable to computational

tools. For example, ensuring an autonomous vehicle does not collide with an obstacle

can be generically posed as the constraint V ∩ O = ∅, where V ,O ⊆ Rn represent the

space occupied by the vehicle and obstacle respectively. However, in representing this

condition we have multiple options:

• Minkowski: Require the Minkowski difference does not contain the origin:

V ∩ O = ∅ ⇐⇒ {v − o | v ∈ V , o ∈ O} ∩ 0 = ∅ (1.1)

• Distance: Require a positive distance between the sets:

V ∩ O = ∅ ⇐⇒ min{∥v − o∥ | v ∈ V , o ∈ O} > 0 (1.2)

• Support Function: Require the sets can be separated by a hyperplane:

V ∩ O = ∅ ⇐ ∃ c ∈ Rn, inf
v∈V

cTv > sup
o∈O

cTo (1.3)
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While all of these conditions ensure the vehicle avoids the obstacle, none of these

representations provide closed-form expressions. Instead they require querying a

computational geometry routine (Minkowski) or an optimization solver (Distance,

Support Function) to determine if the condition holds. If we wish to incorporate

this obstacle avoidance condition within a larger nonlinear optimization problem for

motion planning it is not immediately clear how to do so, as these solvers generally

require constraints be expressed in closed-form. As such, these representations are

accurate and can be efficiently calculated, but they are not amenable to the relevant

tools.

A related problem is how to represent a set in a compact form without sacrificing

accuracy. For example, we may be presented with point-cloud data representing the

boundary of an object that our vehicle must avoid. Using the obstacle avoidance condi-

tions directly on the point-cloud data would require performing these calculations with

respect to each point individually. A more efficient approach is to first approximate the

data with simple geometric shapes and perform later analysis with the approximation.

Common shapes include bounding boxes, ellipsoids, and superquadrics. These shapes

are convenient in that they have a compact representation and we have good heuristic

objectives for fitting the data. For example, the minimum volume outer ellipsoid (also

called the outer Löwner-John ellipsoid) can be found via semidefinite optimization.

However, their primitive nature means accuracy of representation may suffer. Most

notably, their inherent axis symmetry makes them ill-suited to representing asymmet-

ric shapes. In theory we could consider more complicated shapes given by an implicit

function S = {x | f(x) ≤ 1}. However we lack reliable methods for ensuring a good fit.

This thesis proposes novel approaches to these problems. Throughout, the sets

of interest are described by polynomial inequalities, making them semialgebraic.

Specifically we address the following questions:

• What is a good heuristic for approximating star-convex sets with an

2



implicit function ?

• How can we efficiently represent sums and products of sets in the

complex plane?

• How can we represent obstacle avoidance constraints in a manner

amenable to nonlinear optimization ?

• How can we ensure obstacle avoidance constraints are satisfied in

continuous-time despite planning with discrete-time models ?

1.2 Thesis Outline

This dissertation is composed of four papers which have been edited for consistency of

presentation.

Inner and Outer Approximations of Star-Convex Semialgebraic Sets

This chapter considers the problem of approximating a semialgebraic set with a

sublevel-set of a polynomial using sum-of-squares optimization. In this setting, it

is standard to seek a minimum volume outer approximation or maximum volume

inner approximation. This is made difficult by the lack of a known relationship

between the coefficients of an arbitrary polynomial and the volume of its sublevel

sets. Previous works have proposed heuristics based on the determinant and trace

objectives commonly used in ellipsoidal fitting. We propose a novel objective which

yields both an outer and an inner approximation while minimizing the ratio of their

respective volumes. This objective is scale-invariant and easily interpreted. We

provide justification for its use in approximating star-convex sets. Numerical examples

demonstrate that the approximations obtained are often tighter than those returned

by existing heuristics when applied to convex and star-convex sets. We also provide

3



algorithms for establishing the star-convexity of a semialgebraic set by finding inner

and outer approximations of its kernel. Published in IEEE Control Systems Letters.

Outer Approximations of Minkowski Operations on Complex Sets via
Sum-of-Squares Optimization

This chapter provides methods for outer approximating operations on sets in the

complex plane. Such operations arise in robust analysis for control systems [1],

geometric optics [2], and convergence analysis of optimization algorithms [3]. Using

polar coordinates, we pose this as an optimization problem in which we find a pair of

contours that give lower and upper bounds on the radial distance at a given angle.

Through a series of variable transformations we rewrite this as a sum-of-squares

optimization problem. Numerical examples are given to demonstrate the performance.

Presented at American Control Conference 2021.

Closed-Form Minkowski Sum Approximations for Efficient Optimization-
Based Collision Avoidance

Motion planning methods for autonomous systems based on nonlinear programming

offer great flexibility in incorporating various dynamics, objectives, and constraints.

One limitation of such tools is the difficulty of efficiently repre senting obstacle

avoidance conditions for non-trivial shapes. For example, it is possible to define

collision avoidance constraints suitable for nonlinear programming solvers in the

canonical setting of a circular robot navigating around M convex polytopes over N

time steps. However, it requires introducing (2 + L)MN additional constraints and

LMN additional variables, with L being the number of halfplanes per polytope, leading

to larger nonlinear programs with slower and less reliable solving time. In this chapter,

we overcome this issue by building closed-form representations of the collision avoidance

conditions by outer-approximating the Minkowski sum conditions for collision. Our

solution requires only MN constraints (and no additional variables), leading to a

4



smaller nonlinear program. On motion planning problems for an autonomous car

and quadcopter in cluttered environments, we achieve speedups of 4.8x and 8.7x

respectively with significantly less variance in solve times and negligible impact on

performance arising from the use of outer approximations. Presented at American

Control Conference 2022.

A Differentiable Signed Distance Representation for Continuous Collision
Avoidance in Optimization-Based Motion Planning

This chapter proposes a new set of conditions for exactly representing collision avoid-

ance constraints within optimization-based motion planning algorithms. The con-

ditions are continuously differentiable and therefore suitable for use with standard

nonlinear optimization solvers. The method represents convex shapes using a support

function representation and is therefore quite general. For collision avoidance involving

polyhedral or ellipsoidal shapes, the proposed method introduces fewer variables and

constraints than existing approaches. Additionally the proposed method can be used

to rigorously ensure continuous collision avoidance as the vehicle transitions between

the discrete poses determined by the motion planning algorithm. Numerical examples

demonstrate how this can be used to prevent problems of corner cutting and passing

through obstacles which can occur when collision avoidance is only enforced at discrete

time steps. Accepted for presentation at IEEE Conference on Decision and Control

2022.

1.3 Additional Publications

Earlier conference publications by the author on power system nonlinear stability [4],

and non-convex model predictive control problems [5, 6] are not included in the thesis

due to the difference in subject matter. We reference them here for completeness.
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Chapter 2

Inner and Outer Approximations of
Star-Convex Semialgebraic Sets

2.1 Introduction

Consider a compact, semialgebraic set X ⊂ Rn given by the intersection of the

1-sublevel sets of m polynomial functions gi(x) ∈ R[x]:

X = {x | gi(x) ≤ 1, i ∈ [m]}. (2.1)

Semialgebraic sets arise naturally in many control applications. The set of coefficients

for which a polynomial is Schur or Hurwitz stable is given by a semialgebraic set.

For Hurwitz stability, the polynomial inequalities can be derived from the Routh

array. These sets are often complicated and cumbersome to analyze. As such, it is

common to seek simpler representations which closely approximate the set but are

more amenable to further analysis [7]. Examples of “simple” representations include

hyperrectangles and ellipsoids.

A number of publications have explored the use of sum-of-squares (SOS) opti-

mization for approximating a semialgebraic set with a simpler representation [7–14].

The most common parameterization is to seek a SOS polynomial whose 1-sublevel

set F = {x | f(x) ≤ 1} provides either an inner (F ⊆ X ) or outer (F ⊇ X ) ap-

proximation of the set X . In this formulation, an open question is the choice of

6
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Figure 2-1. The kernel is the convex set of points p ∈ X such that the line segment
pq ⊆ X for any q ∈ X (left). It is given by the intersection of all linearized active
constraints gi(xb) = 1 defining ∂X (right).

the objective function. For outer (resp. inner) approximations, a natural objective

is to minimize (resp. maximize) the volume of the 1-sublevel set. For an ellipsoid

E = {x |xTAx + bTx + c ≤ 1} where A ⪰ 0, the volume is proportional to detA−1.

Using the logarithmic transform, ellipsoidal volume minimization can be posed as the

convex objective −logdetA [8]. More generally, in the case of homogeneous polynomials

it is possible to find the minimum volume outer approximation by solving a hierarchy

of semidefinite programs [15].

Ellipsoids and homogeneous polynomials are not ideal candidates for approximating

asymmetric shapes due to their inherent symmetry. General polynomials offer a

more flexible basis for approximating sets. The caveat is that we lack expressions

for computing the volume of the 1-sublevel set as a function of the polynomial

coefficients. The most common approach is to mimic the determinant ([8, 10]) or trace

[7] objectives used in ellipsoidal fitting. These objectives often yield qualitatively good

approximations. However, they have no explicit relationship to the volume beyond

upper bounding it in some cases [7]. Thus it is difficult to infer the quality of an

approximation from the objective value attained.
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2.1.1 Contributions

This chapter makes the following contributions:

• We propose and justify an algorithm based on SOS optimization for jointly

finding an inner and outer approximation of a semialgebraic set. The algorithm

minimizes the volume of the outer approximation relative to the volume of the

inner approximation. This objective is easily interpreted and scale-invariant.

• We provide numerical examples showing that our algorithm tends to yield better

approximations than existing methods when applied to star-convex sets.

• We provide algorithms for finding inner and outer approximations of the kernel

of a star-convex set as shown in Figure 2-1.

The chapter is organized as follows. Section II defines the problem we address and

reviews the notion of star-convexity. Section III surveys existing volume heuristics for

SOS-based set approximation. Section IV proposes a new volume heuristic for finding

outer and inner approximations. Section V provides methods for approximating the

kernel of a star-convex set. Section VI provides numerical examples. Section VII

concludes the chapter.

2.1.2 Notation

Let i ∈ [k] := {1, . . . , k}. Let Z+ denote the set of positive integers. Let Sn−1 := {x ∈

Rn | ∥x∥ = 1}. The notation P ⪰ 0 indicates that the symmetric matrix P is positive

semidefinite (PSD). Given a compact set X ⊂ Rn, its volume (formally, Lebesgue

measure) is denoted vol X :=
∫︁

X dx. Let σX (c) := max
x∈X

cTx denote the support

function of X where c ∈ Sn−1. Given sets A,B ⊆ Rn the (bi-directional) Hausdorff

distance is dH(A,B) := max(h(A,B), h(B,A)) where h(A,B) := max
a∈A

min
b∈B
∥a− b∥2.

8



The α-sublevel set of a function f(x) : Rn → R is {x ∈ Rn | f(x) ≤ α}. For x ∈ Rn,

let R[x] denote the set of polynomials in x with real coefficients. Let Rd[x] denote

the set of all polynomials in R[x] of degree less than or equal to d. A polynomial

p(x) ∈ R[x] is a SOS polynomial if there exists polynomials qi(x) ∈ R[x], i ∈ [j] such

that p(x) = q2
1(x) + . . .+ q2

j (x). We use Σ[x] to denote the set of SOS polynomials in x.

A polynomial of degree 2d is a SOS polynomial if and only if there exists P ⪰ 0 (the

Gram matrix) such that p(x) = z(x)TPz(x) where z(x) is the vector of all monomials

of x up to degree d [16]. Letting m :=
(︂

n+d
d

)︂
denote the length of z(x), we have

that P ∈ Rm×m. To minimize notational clutter, we will sometimes list a polynomial

f(x) as a decision variable. It is implied that a degree is specified and matrix P is

introduced as a decision variable such that f(x) = z(x)TPz(x).

2.2 Problem Statement

Definition 2.1 (Star-Convex Set [17]). A set S ⊆ Rn is star-convex if it has a

non-empty kernel. The kernel is

ker S := {x | tx+ (1− t)y ∈ S ∀ t ∈ [0, 1], y ∈ S}. (2.2)

The kernel is the set of points in S from which one can “see” all of S as shown in

Figure 2-1. It is easily shown that the kernel is convex. If S is convex then kerS = S.

We will be interested in approximating the set (2.1) for the case in which it is

star-convex with respect to the origin.

Problem 2.1 (Star-Convex Set Approximation). Given a compact, semialgebraic set

X with 0 ∈ intX ∩ kerX and d ∈ Z+ find a polynomial fo(x) ∈ R2d[x] (fi(x) ∈ R2d[x])

whose 1-sublevel set Fo (Fi) is of minimum (maximum) volume and is an outer (inner)

approximation of X :

min
fo(x)∈R2d[x]

vol Fo s.t. X ⊆ Fo

9



(︄
max

fi(x)∈R2d[x]
vol Fi s.t. Fi ⊆ X

)︄
.

To establish star-convexity of X , we seek polytopic approximations of its kernel.

Problem 2.2 (Kernel Approximation). Given a semialgebraic set X ⊂ Rn find a poly-

tope Ko (Ki) of minimum (maximum) volume that is an outer (inner) approximation

of kerX :

min vol Ko s.t. kerX ⊆ Ko

(max vol Ki s.t. Ki ⊆ kerX ) .

2.3 Existing Volume Heuristics for Set Approxima-
tion

We review existing heuristics for approximating semialgebraic set X using SOS opti-

mization. Each of these methods finds an even-degree polynomial f(x) = z(x)TPz(x).

The variations between the methods largely relate to the objective applied to Gram

matrix P . For general polynomials, there is no known relationship between P and the

volume of the sublevel sets. Thus the following objectives are all heuristics in some

sense.

2.3.1 Determinant Maximization

In [8], the authors propose maximizing the determinant of the Hessian ∇2f(x) of SOS

polynomials. If f is a polynomial of degree 2, this reduces to the ellipsoidal objective

−detA for E = {x |xTAx + bTx + c ≤ 1}, A ⪰ 0. As the Hessian must be PSD, the

outer approximation is convex. This makes it ill-suited to approximating non-convex

shapes.

In [10], the authors propose performing determinant maximization directly on the

Gram matrix P . The Hessian is no longer required to be PSD. This allows non-convex

outer approximations to be found.
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2.3.2 Inverse Trace Minimization

The determinant maximization objective minimizes the product of the eigenvalues of

P−1. In [10], the authors propose an alternative heuristic of minimizing the sum of

the eigenvalues of P−1. This requires an additional matrix variable V and constraint

V ⪰ P−1. Using the Schur complement this can be written as a block matrix constraint

involving V and P (vice P−1). The objective min trV then indirectly minimizes the

sum of the eigenvalues of P−1.

2.3.3 L1 Minimization

In [7] the authors propose minimizing the l1 norm of a polynomial evaluated over a

bounding box B ⊇ X . This approach was first introduced in [18] for approximating

the volume of semialgebraic sets. Using hyperrectangles as bounding boxes, one can

integrate the polynomial over B. The resulting objective l1(f(x)) :=
∫︁

B f(x) dx is

linear in terms of P . The outer approximation consists of the intersection of the

1-superlevel set of f(x) and B:

X ⊆ (B ∩ {x | f(x) ≥ 1}). (2.3)

This differs from other objectives which do not rely on bounding boxes as part of the

set approximation.1 In this setting, f(x) is approximating the indicator function of X

over a compact set B. Convergence of f(x) to the true indicator function in the limit

(as degree d→∞) can be shown by leveraging the Stone-Weierstrass theorem. The

asymptotic rate of convergence is at least O(1/log log d) [19]. Inner approximations

can be found by outer approximating the complement of X .
1One application of approximating semialgebraic sets is to yield a single sufficient condition for

ensuring x ̸∈ X , which can be incorporated into a nonlinear optimization problem (e.g. obstacle
avoidance in motion planning [13]). The presence of the bounding box in the resulting set description
would require logical constraints to represent (f(x) < 1 ∨ x ̸∈ B) =⇒ x ̸∈ X which are generally
unsupported in nonlinear optimization solvers.
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2.4 Inner and Outer Approximations of Star-Convex
Sets

We propose a new volume heuristic for solving Problem 2.1. Our heuristic is inspired

by the following two lemmas.

Lemma 2.1. Let X ,F be compact sets in Rn such that F ⊆ X . Let 0 ∈ int F . Then

there exists a scaling s ≥ 1 such that X ⊆ sF .

Lemma 2.2. Let X ⊂ Rn. Let sX = {sx |x ∈ X} denote the scaled set where s ≥ 0.

Then vol sX = sn · volX .

Thus given an inner approximation F , we can obtain an outer approximation sF

for some s ≥ 1 with relation

vol sF
vol F = sn. (2.4)

By minimizing s we minimize the ratio of the outer approximation volume to the inner

approximation volume. Figure 2-2 visualizes this intuitive heuristic for approximating

a set.

We seek a polynomial f : Rn → R whose 1-sublevel set F = {x | f(x) ≤ 1} is an

inner approximation of X . We turn this into a condition involving the complement of

X :

F ⊆ X ⇐⇒ f(x) > 1∀x ∈ X c. (2.5)

Optimization methods require non-strict inequalities. We approximate the strict

inequality by introducing a small constant ϵ > 0 and working with the closure of the

complement of X . Define the following:

X̄ =
⋃︂

i∈[m]
{x | gi(x) ≥ 1}. (2.6)
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Figure 2-2. 4th-order approximations of star-convex set (left) and non-star-convex set
(right) found by minimizing scaling term s. The non-star-convex set has a lower bound
slb > 1 on the achievable approximation scaling s.

We then use the following approximation of (2.5):

F ⊂ intX ⇐ f(x) ≥ 1 + ϵ ∀x ∈ X̄ . (2.7)

Next, we scale the set F by a scaling variable s > 1 to obtain an outer approxima-

tion:

sF ⊇ X ⇐⇒ f(x
s
) ≤ 1∀x ∈ X . (2.8)

Combining the above we arrive at the following:

min
f(x), s

s

s.t.

f(x) ≥ 1 + ϵ ∀x ∈ X̄ ,

f(x
s
) ≤ 1 ∀x ∈ X .

(2.9)

Remark 2.1. Our scaling heuristic is applicable to approximating any compact set

containing the origin in its interior. However, it is best suited to approximating

star-convex sets in which 0 ∈ intX ∩ kerX as visualized in Figure 2-2. Otherwise

there exists a lower bound slb such that 1 < slb ≤ s in (2.9).
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Lemma 2.3. Let X and F be compact sets in Rn. Let F ⊆ X ⊆ s⋆F for some s⋆ > 1.

Let 0 ∈ int F . Let x, sx ∈ X and tx ̸∈ X ∀ t ∈ (1, s) for some s > 1, x ̸= 0. Then

s⋆ ≥ s.

We let slb denote the greatest lower bound given by Lemma 2.3. This imposes a

minimum volume ratio between the inner and outer approximation. Figure 2-2 (right)

visualizes this result. The set is not star-convex and therefore 0 ̸∈ kerX . The black

line segment connecting the origin to point slbx is not contained in X . This point

imposes a lower bound on s, preventing the inner and outer approximations from

coming closer together.

We introduce SOS polynomials λi(x), µi(x), i ∈ [m] and replace the set-containment

conditions in (2.9) with SOS conditions.2 If s is left as a decision variable, we would

have bilinear terms involving the coefficients of f(x) and s. Instead we perform a

bisection over s, solving a feasibility problem at each iteration as given by (2.10).

Algorithm 1 details the bisection method.

Optimization Problem: FindApprox(s, gi)

min
f(x), λi(x), µi(x)

0

s.t.

f(x)− (1 + ϵ)− λi(x)(gi(x)− 1) ∈ Σ[x], i ∈ [m],

1− f(x
s
)−

m∑︂
i=1

µi(x)(1− gi(x)) ∈ Σ[x],

λi(x), µi(x) ∈ Σ[x], i ∈ [m].

(2.10)

Remark 2.2. The objective is scale-invariant. Let solution (f ∗(x), s∗) define an outer

and inner approximation of X . Scale X by α > 0, replacing constraints gi(x) with
2For the outer approximation of the compact set X , the SOS conditions are necessary and sufficient

by Putinar’s Positivstellensatz when µi(x) is of high-enough degree and the defining polynomials gi

satisfy the Archimedean assumption [20]. The inner approximation constraint involves an unbounded
set. The associated SOS reformulation utilizes the generalized S-procedure which is only sufficient
[16].
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Algorithm 1 Inner and Outer Approximation of X
Input: X = {x ∈ Rn | gi(x) ≤ 1, i ∈ [m]}, stol > 0
Output: F , sF s.t. F ⊆ X ⊆ sF

sub ← 1 + stol, slb ← 1
while FindApprox(sub, gi) = Infeasible do
slb ← sub

sub ← 2sub

while sub − slb > stol do
stry ← 0.5(sub + slb)
if FindApprox(stry, gi) = Infeasible then
slb ← stry

else
sub ← stry

return FindApprox(sub, gi)

gi( x
α
). Then the solution pair (f ∗( x

α
), s∗) defines the new approximation, where the

objective value remains unchanged. The objective is not translation-invariant however.

For example, assume we approximate a star-convex set exactly with (f ⋆(x), s⋆ = 1).

Translate X by t ∈ X \ kerX , replacing gi(x) with gi(x − t). Then 0 ̸∈ kerX and

s⋆ > 1 for any approximation by Lemma 2.3.

Remark 2.3. If F is convex we can relate the scaling s to the Hausdorff distance

between the approximations.

Lemma 2.4. Let F ⊂ Rn be a convex, compact set and s ≥ 1. Then the following

holds:

dH(sF ,F) = (s− 1) ·max
x∈F
∥x∥2. (2.11)

2.5 Sampling-Based Approximations of the Kernel

Algorithm 1 assumed the set X contained the origin in its kernel. If this does not hold,

but there exists a point x⋆ ∈ kerX ∩ intX we can apply Algorithm 1 to the translated

set {x− x∗ |x ∈ X}. As our objective is not invariant with respect to translation, it is

useful to approximate the kernel to establish possible choices for x⋆.3 In this section
3A practical heuristic is to let x⋆ be the Chebyshev center of kerX .
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we provide algorithms for finding polytopic approximations of kerX .

It will be convenient to represent the boundary of X in terms of the inequality

that is active. Define the following:

∂Xi = {x | gi(x) = 1, gj(x) ≤ 1, j ∈ [m] \ i}. (2.12)

The boundary of X is given by the union

∂X =
⋃︂

i∈[m]
∂Xi. (2.13)

Lemma 2.5. Let X be a semialgebraic set as defined in (2.1). Let ∇gi(xb) ̸= 0 ∀xb ∈

∂Xi, i ∈ [m]. The kernel of X is given by the following semialgebraic set:

kerX = {xk | ∇gi(xb)T (xk − xb) ≤ 0 ∀xb ∈ ∂Xi, i ∈ [m]}.

Remark. From Lemma 2.5 we see that the kernel of X is defined by cutting-planes

tangent to the active constraint gi(xb) = 1, xb ∈ ∂X as shown in Figure 2-1.

Remark. Lemma 2.5 assumes the gradient of an active constraint is non-zero. While

restrictive, we note that this assumption is typically satisfied in sets of practical

interest.

We provide sampling-based algorithms for finding outer and inner approximations

of this set. If the outer approximation is empty, this is sufficient to conclude that the

set X is not star-convex. Conversely, if the inner approximation is not empty this is

sufficient to establish that X is star-convex. In the case that the outer approximation

is not empty and the inner approximation is empty we cannot conclude anything

about the star-convexity of the set.

2.5.1 Outer Approximation

We assume the existence of an oracle Sample(∂X ) which allows us to randomly sample

points xb ∈ ∂X and identify the set of active constraints I = {i | i ⊆ [m], gi(xb) = 1}.4

4Starting from a point in the interior of X , one can choose a direction and find a boundary point
via bisection. Alternatively, nonlinear optimization may be used to find boundary points.
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From Lemma 2.5, each sample defines a cutting plane satisfied by kerX . We collect

these constraints to form an outer approximation Ko ⊇ kerX . If at any point, Ko = ∅

(which can be determined using Farkas’ Lemma) we terminate as this implies kerX = ∅.

Algorithm 2 summarizes the method.

Algorithm 2 Outer Approximation of kerX
Input: X = {x ∈ Rn | gi(x) ≤ 1, i ∈ [m]}, ns ≥ 1
Output: Outer Approximation Ko ⊇ kerX
Ko ← Rn

for j = 1 to ns do
xb, I ← Sample(∂X )
Ko ← Ko

⋂︁{x | ∇gT
i (xb)(x− xb) ≤ 0, i ∈ I}

if (Ko = ∅) then
return Ko

return Ko

2.5.2 Inner Approximation

Consider finding a point xk ∈ kerX that maximizes a linear cost cTxk where c ∈ Sn−1

(i.e. the support function of kerX ). From Lemma 2.5, the resulting convex optimization

problem requires set containment constraints:

max
xk

cTxk

s.t.

−∇gi(x)T (xk − x) ≥ 0∀x ∈ ∂Xi, i ∈ [m].

(2.14)

We replace the set containment conditions with SOS conditions using Putinar’s

Positivstellensatz [20].

Optimization Problem: FindSupport(c, gi)

max
xk, λ

(i)
j (x)

cTxk

s.t.

−∇gi(x)T (xk− x)−
m∑︂

j=1
λ

(i)
j (x)(1−gj(x)) ∈ Σ[x], i ∈ [m]

λ
(i)
j (x) ∈ Σ[x], i ∈ [m], j ∈ [m] \ i.

(2.15)
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For a given direction c ∈ Sn−1 this program lower bounds the support function

of kerX . The lower bound monotonically increases with deg(λ(i)
j ). If the problem is

feasible, the maximizing argument xk belongs to kerX and therefore X is star-convex.

If infeasible we cannot make any conclusions about the star-convexity of X . By solving

for random directions ci ∈ Sn−1, i ∈ [ns] the convex hull of points xk provides an inner

approximation of the kernel as given by Algorithm 3.

Algorithm 3 Inner Approximation of kerX
Input: X ={x∈Rn|gi(x)≤1, i∈ [m]}, {ci}⊂Sn−1, i∈ [ns]
Output: Inner Approximation Ki ⊆ kerX
Ki ← ∅
for j = 1 to ns do
xk ← FindSupport(cj, gi)
if FindSupport(cj, gi) = Infeasible then

return Ki = ∅
Ki ← conv(Ki, xk)

return Ki

2.5.3 Kernel of Unions and Intersections

Given sets A,B ⊆ Rn and their kernels, we can find inner approximations of the kernel

of their intersection and union using the following lemma.

Lemma 2.6. Let A,B ⊆ Rn. Then the following holds:

ker(A ∩ B) ⊇ kerA ∩ kerB (2.16)

ker(A ∪ B) ⊇ kerA ∩ kerB. (2.17)

Thus if A,B are star-convex and have kernels that intersect, their union and

intersection is also star-convex. This is useful for establishing star-convexity without

resorting to numerical algorithms.
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2.6 Examples

We evaluate Algorithm 1 on various examples and compare the results to the existing

heuristics reviewed in Section III.5 We focus our comparison on outer approximations

as more heuristics apply to this case. We use percent error as our metric, calculated

as 100 × volFo−volX
volX where Fo is the outer approximation of X . We first consider

approximating two examples from the literature with polynomials of increasing degree.

In all instances, our algorithm yielded the tightest outer approximation as shown in

Figure 2-3.6 Next we consider 100 randomly generated convex polytopes in R2. In the

majority of cases, our heuristic yielded the tightest outer approximation as shown in

Table 2-I. Lastly, we approximate a set that is not star-convex. Our heuristic degrades

with increasing lower bound slb as suggested by Lemma 2.3.

2.6.1 Polynomial matrix inequality

X = {x ∈ R2 |
[︄
1− 16x1x2 x1

x1 1− x2
1 − x2

2

]︄
⪰ 0}.

Using Algorithms 2 and 3 we find the kernel

Ko = Ki = conv{±(−0.1752, 0.3335),±(0.1268, 0.2213)}

as shown in Figure 2-1. Figure 2-2 (left) shows the 4th-order approximation obtained

with Algorithm 1. Figure 2-3 shows the percent error as we increase the degree.

Although each objective value (not shown) decreases monotonically with increasing

degree, the percent error occasionally increases. This demonstrates the heuristic

nature of the objectives for minimizing volume.
5For the bounding box B required by the l1 objective, we used the smallest hyperrectangle B ⊇ X

unless noted otherwise.
6We forego comparing 2nd-order polynomials as the determinant maximization objective exactly

minimizes volume in this case.
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Figure 2-3. Approximation percent error and solve times for examples A and B. Solve
times shown for objective s are for one FindApprox(s, gi) iteration.

2.6.2 Discrete-time stabilizability region

X = {x ∈ R2 | 1 + 2x2 ≥ 0, 2− 4x1 − 3x2 ≥ 0,

10− 28x1 − 5x2 − 24x1x2 − 18x2
2 ≥ 0,

1− x2 − 8x2
1 − 2x1x2 − x2

2 − 8x2
1x2 − 6x1x

2
2 ≥ 0}.

The set contains the origin in its kernel. Figure 2-3 shows the percent error for

increasing degree. Figure 2-4 shows the 6th-order approximations obtained with each

objective. For the l1 approximation we also show the bounding box from [7].

2.6.3 Convex Polytopes

We generate 100 random convex polytopes in R2 with their Chebyshev center at the

origin. We find outer approximations using the different objectives. Table 2-I lists

the number of times each objective obtained the smallest percent error relative to the

other objectives for a given polytope.
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Table 2-I. Instances In Which Objective Obtained Smallest Error

Deg. # Trials s −detP trP−1 l1
4 100 73 13 0 14
6 100 98 0 0 2
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Figure 2-4. 6th-order outer approximations of example B
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Table 2-II. Percent Error of Outer Approximations of Example E

r Degree s(s⋆/slb) −detP trP−1

0.1 4 12.0 (1.096 / 1.025) 13.0 11.8
0.2 4 13.6 (1.104 / 1.104) 16.1 14.0
0.3 4 35.1 (1.250 / 1.250) 18.5 17.8
0.4 4 81.7 (1.492 / 1.492) 17.3 22.9

2.6.4 Non-Star-Convex Set

X = {x ∈ R2 | r2 ≤ (x1 − c)2 + x2
2 ≤ 1, x1 ≤ c}.

Let 0 < r < c < 1 so the origin is in the interior of the set. Figure 2-2 shows the set for

the case in which c = 0.9 and r = 0.4. Points (c,±r) ∈ ∂X yield cutting planes x2 ≥ r

and x2 ≤ −r such that kerX = ∅. Table 2-II gives the outer approximation error for

c = 0.9 and varying r.7 For the scaling objective, we also report the objective value s⋆

and its lower bound slb.8 As slb increases the percent error increases, confirming our

heuristic is best suited to star-convex sets.

2.6.5 Solver Performance

Figure 2-3 shows the solve times for the various objectives on a logarithmic scale.

Applied to a matrix P ∈ Rm×m, the −detP and trP−1 objectives introduce a PSD

matrix H ∈ R2m×2m due to reformulations involving the exponential cone [21] and

Schur complement [10] respectively. In contrast, the scaling (s) and l1 objectives work

directly with P , yielding smaller semidefinite programs. The l1 objective has the best

computational performance. Due to the use of bisection, the total solve time for the

scaling objective is an integer multiple of the time shown in Figure 2-3. Accounting

for this, the scaling objective still remains competitive with the −detP and trP−1

7The l1 objective failed to improve upon the bounding box B supplied.
8The line segments connecting (0, 0) to (c,±r) define the maximum lower bound on s in Lemma 2.3.

It can be shown that slb = ∥p2∥
∥p1∥ where p2 = (c, r), p1 = (c + r cos ϕ, r sin ϕ) and ϕ = π

2 + 2 arctan r
c .
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objectives.

2.6.6 Implementation Details

YALMIP [22] and MOSEK [21] were used to solve the SOS programs. Volumes of

non-star-convex sets were approximated by evaluating the indicator function over

a discrete grid. Volumes of star-convex sets were approximated using numerical

integration in polar coordinates.

2.7 Conclusions

An algorithm for finding approximations of semialgebraic sets using sum-of-squares

optimization was proposed. The algorithm relies on a novel objective which minimizes

the scaling necessary to transform an inner approximation into an outer approximation

of the set. Numerical examples demonstrated this objective often finds tighter approx-

imations compared to existing heuristics when applied to star-convex sets. Applied to

non-star-convex sets, our proposed heuristic performs poorly. A promising direction

to address this is through star-convex decompositions [23]. We leave this exploring

this option for future work.
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Chapter 3

Outer Approximations of
Minkowski Operations on Complex
Sets via Sum-of-Squares
Optimization

3.1 Introduction

Set operations on complex sets naturally arise in many control applications [1, 24].

The most prominent is robustness analysis in which the Nyquist criterion is used to

assess the stability of a control system. Given a plant P (s) and associated controller

C(s), the Nyquist stability criterion involves plotting their product as s travels along

a contour of the right half plane [25]. If both plant and controller are known exactly,

the numerical evaluation of this criterion at a given s involves a simple product of two

points in the complex plane. Uncertainty in the plant and controller leads to these

points becoming sets in the complex plane. Evaluation of the stability criterion then

involves determining all possible complex products of points drawn from the two sets.

Beyond multiplication, forming parallel or feedback connections of uncertain transfer

functions leads to addition and division operations applied to sets. Following [26], we

refer to these various operations on complex sets as Minkowski operations.

Minkowski operations on complex sets are relevant to other domains including
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computer-aided design [27] and geometric optics [2]. More recently, the authors of

[3] use Minkowski products in analyzing the convergence of optimization algorithms.

The authors introduce the Scaled Relative Graph which visualizes nonlinear operators

as sets in the complex plane. Composition of these operators then involves computing

Minkowski products. This can be used to provide formal proofs of convergence with

geometric arguments.

Closed-form expressions of the sets resulting from Minkowski operations are not

known except for cases involving relatively simple sets. The most widely studied case

involves discs in the complex plane which are parameterized by their center and radius.

This is sometimes referred to as complex circular arithmetic [28]. The results of [1–3]

are limited to operations involving such disks.

When exact closed-form expressions are not attainable, one may instead seek

to find an outer approximation. If done through manual derivation, this quickly

becomes a time-intensive process which requires dedicated efforts for each class of sets

considered. For example, in [1], the authors develop an outer approximation for the

sum of two complex discs.

As an alternative to manual derivation, an optimization-based approach offers the

promise of automating this process. A recent body of literature demonstrates the

versatility of sum-of-squares (SOS) optimization for approximating semi-algebraic sets

with polynomial functions. Applications include encapsulating 3D point clouds [10],

bounding regions of stability for PID controllers [7], and representing unions of sets

with a single polynomial [14]. The main contribution of this chapter is a method for

finding outer approximations of Minkowski operations of addition, multiplication, and

division of an arbitrary number of complex sets that belong to a fairly general class.

The rest of the chapter is organized as follows. Section II defines the sets and

Minkowski operations considered and reviews the generalized S-procedure for SOS

optimization. Section III sets up the problem and develops SOS-based optimization
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problems for finding outer approximations to the Minkowski operations. Section IV

provides examples of the resulting outer approximations. Section V concludes the

chapter and discusses future directions.

3.1.1 Notation

Let r = x + iy be a complex number with magnitude r =
√
x2 + y2 and angle

θ = arctan(y/x). For ξ ∈ Rn,R[ξ] is the set of polynomials in ξ with real coefficients.

The subset ∑︁[ξ] = {p = p2
1 + p2

2 + . . .+ p2
n : p1, . . . , pn ∈ R[ξ]} of R[ξ] is the set of SOS

polynomials in ξ. Z (Z+) is the set of non-negative (positive) integers. For convenience,

we define the following sets of indices
H = {0, 1, . . . ,m} ,

J = {1, 2, . . . , n} ,

K = {n+ 1, n+ 2, . . . ,m} .

We use x[j] to denote element j of vector x ∈ Rn. Similarly we use x[j:k] to denote the

vector [x[j] x[j+1] . . . x[k]]T Instead of
n∑︂

j=1
x[j], we use

∑︂
j

x[j], when the dimension n is

implicit from the context.

3.2 Preliminaries

3.2.1 Representation of Complex Sets

Let R denote the set of points in the complex plane between two polar contours,

rl(θ)eiθ and ru(θ)eiθ, evaluated over the angle range θ ∈ [θl, θu], i.e.,

R = {reiθ|0 ≤ rl(θ) ≤ r ≤ ru(θ), θl ≤ θ ≤ θu} . (3.1)

Throughout we use the superscripts l and u to denote lower and upper bounds. We

use subscripts where appropriate to distinguish between different sets of this form.

Figure 3-1 provides an example of this notation for the following set:

R={reiθ|1+ 1
4 sin θ≤r≤ 3

2−
1
4 cos θ, 0≤θ≤ π3 } . (3.2)
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Figure 3-1. Complex set of the form (3.1).

Remark 3.1. Our focus on sets of the form (3.1) is motivated by applications in

robust control where there is uncertainty about the gain (r) and phase (θ) of a transfer

function at a given frequency. Lacking additional insight, a common assumption is

that these variations in gain and phase are independent and are described by simple

interval bounds [25]. In (3.1) this corresponds to constant values for rl and ru. Our

setting is more flexible in that it allows the gain variation to be a function of the

phase.

3.2.2 Minkowski Operations on Complex Sets

Consider a family of n sets of the form (3.1) and let S⨂︁ denote the set obtained by

forming all possible complex products. Following [2] we refer to this as the Minkowski

product

S⨂︁ = {
∏︂
j∈J

rj|rj ∈ Rj, j ∈ J } . (3.3)
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Similarly, we define Minkowski division as the set obtained by forming all possible

pair-wise complex divisions between two sets:

S÷ = {r1r−1
2 |r1 ∈ R1, r2 ∈ R2}. (3.4)

The Minkowski sum is defined as follows:

S⨁︁ = {
∑︂
j∈J

rj|rj ∈ Rj, j ∈ J } (3.5)

In this work we focus on two operations that often arise in control applications.

The first operation contains multiplication and division as special cases:

S⨂︁⨂︁ = {
∏︂
j∈J

rj

∏︂
k∈K

r−1
k , rj ∈ Rj, rk ∈ Rk, j ∈ J , k ∈ K} (3.6)

The second operation extends the Minkowski sum to allow inversion of some sets.

S⨁︁+
⨁︁−1 = {

∑︂
j∈J

rj +
∑︂
k∈K

r−1
k |rj ∈ Rj, rk ∈ Rk, j ∈ J , k ∈ K} (3.7)

3.2.3 Generalized S-Procedure and SOS Optimization

In the development that follows, we will be interested in solving optimization problems

of the following form:

min
αh

j∑︂
h=1

cT
hα

h

s.t. g1(ξ1, α
1)d1(ξ1)− f1(ξ1) ≥ 0 ∀ ξ1 ∈ X1

g2(ξ2, α
2)d2(ξ2)− f2(ξ2) ≥ 0 ∀ ξ2 ∈ X2

...

gj(ξj, α
j)dj(ξj)− fj(ξj) ≥ 0 ∀ ξj ∈ Xj

(3.8)

where

Xh = {ξh|hh,k(ξh) ≥ 0, k = 1, . . . , nh}. (3.9)

In each constraint, ξj ∈ Rnj is a vector of free variables and gj(ξj, α
j), dj(ξj), fj(ξj),

hj,k(ξj) ∈ R[ξj ] are polynomials of these variables. The coefficients αj of gj(ξj, α
j) are
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explicitly listed to highlight that they are decision variables. The objective is linear

with each cj being a given weighting of the decision variable vector αj . The constraints

consist of non-negativity conditions that must hold for all ξj in the semi-algebraic

set Xj which is described by polynomial inequalities of ξj. This is a set-containment

condition.

The generalized S-procedure provides a sufficient condition for the set-containment

to hold [16]. For each polynomial inequality hj,k(ξj) describing the set Xj , we introduce

a non-negative polynomial sj,k(ξj, β
j,k) with coefficients βj,k as decision variables. We

can then remove the set-containment conditions and solve the following problem.

min
αh,βj,k

j∑︂
h=1

cT
hα

h

s.t. g1(ξ1, α
1)d1(ξ1)− f1(ξ1)

−
∑︂

k

s1,k(ξ1, β
1,k)h1,k(ξ1) ≥ 0 ∀ ξ1 ∈ Rn1

s1,k(ξ1, β
1,k) ≥ 0 ∀ ξ1 ∈ Rn1 , k ∈ 1, . . . , n1

g2(ξ2, α
2)d2(ξ2)− f2(ξ2)

−
∑︂

k

s2,k(ξ2, β
2,k)h2,k(ξ2) ≥ 0 ∀ ξ2 ∈ Rn2

s2,k(ξ2, β
2,k) ≥ 0 ∀ ξ2 ∈ Rn2 , k ∈ 1, . . . , n2

...

gj(ξj, α
j)dj(ξj)− fj(ξj)

−
∑︂

k

sj,k(ξj, β
j,k)hj,k(ξj) ≥ 0 ∀ ξj ∈ Rnj

sj,k(ξj, β
j,k) ≥ 0 ∀ ξj ∈ Rnj , k ∈ 1, . . . , nj

(3.10)

The left hand side of each inequality j describes a polynomial of free variables ξj with

decision variables αj and βj,k entering linearly. We can replace each non-negativity

constraint with the more restrictive condition that the polynomial be a SOS polynomial.

The resulting optimization problem can then be written as a semidefinite program

and solved.

Although we only show inequality constraints above, any equality constraint
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h(ξ) = 0 can be represented by two constraints h(ξ) ≥ 0, h(ξ) ≤ 0. In the development

that follows we focus on transforming problems of interest into the form of (3.8). Once

in this form, the subsequent application of the S-procedure and SOS conditions is

straight-forward. Due to page limits we do not explicitly include this step.

3.3 Main Results

We now develop a method for finding outer approximations of sets arising from the

Minkowski operations defined in Section 3.2.2. Through a series of variable trans-

formations we pose this as a polynomial optimization problem with set-containment

constraints. The generalized S-procedure outlined in Section 3.2.3 is then applied to

obtain a convex optimization problem which is readily solved.

3.3.1 Problem Setup

In general, closed-form expressions do not exist for the sets S• resulting from the

Minkowski operation denoted by •. Here we focus on finding a set R• of the form

(3.1) that provides an outer approximation of S•. A natural objective is to minimize

the area of R• subject to the set-containment condition S• ⊆ R•. This can be posed

as an optimization problem:

min
rl(θ),ru(θ)

∫︂ θu

θl
ru(θ)− rl(θ)dθ

s.t. S• ⊆ R•

(3.11)

where

R• ={reiθ|0≤rl(θ)≤r≤ru(θ), θl≤θ≤θu}. (3.12)

We wish to transform (3.11) into a polynomial optimization problem which we can

solve. To do so, we must choose a basis for the functions rl(θ) and ru(θ) which form

our outer approximation R•. We additionally assume the sets being operated on are

represented by contours which share this chosen basis.
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Assumption 3.1. We assume that each contour r(θ, α) is a function of cos θ and

sin θ with associated real coefficient vector α, i.e.,

r(θ, α) = α[1] + α[2] cos θ + α[3] sin θ + α[4](cos θ)2 + . . .

=
∑︂

j

α[j](cos θ)uj (sin θ)vj , α[j] ∈ R, uj, vj ∈ N.

We will sometimes refer to this parameterization as a polynomial of cos θ and sin θ,

as introducing independent variables for each would yield a polynomial expression.

This parameterization readily admits an upper bound which we will utilize.

Lemma 3.1. Let r(θ, α) be a polynomial function of cos θ and sin θ with associated

real coefficient vector α. The following inequality holds:

r(θ, α) ≤ r̄ (3.13)

where:

r̄ =
∑︂

j

⃓⃓⃓
α[j]

⃓⃓⃓
(3.14)

Proof. Note the following inequality:

⃓⃓⃓
α[j](cos θ)m(sin θ)n

⃓⃓⃓
≤
⃓⃓⃓
α[j]

⃓⃓⃓
∀ θ ∈ R,m, n ∈ N (3.15)

The inequality for the polynomial follows immediately.

Assumption 3.2. We assume that any set which is inverted has a known, positive

lower bound for rl(θ) which we denote rl.

rl(θ) ≥ rl > 0 ∀ θl ≤ θ ≤ θu (3.16)

Assumption 3.2 ensures the set does not contain the origin and therefore its inverse

is bounded. The sets resulting from the introduced Minkowski operations are then

bounded as well. This is important as seeking an outer approximation of an unbounded

set would be trivially infeasible. Knowledge of the constant rl allows us to calculate

an upper bound as given by the following lemma.
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Lemma 3.2. Let r be a point in S⨁︁+
⨁︁−1 as defined by (3.7). Let Assumptions 3.1

and 3.2 hold. Then the following inequality holds:

|r| ≤
∑︂
j∈J

(r̄u
j ) +

∑︂
k∈K

(rl
k)−1, ∀ r ∈ S⨁︁+

⨁︁−1 . (3.17)

Proof. Given that r ∈ S⨁︁+
⨁︁−1 , there exists points rj ∈ Rj, rk ∈ Rk, j ∈ J , k ∈ K

such that the following equality holds:

|r| =

⃓⃓⃓⃓
⃓⃓∑︂
j∈J

rj +
∑︂
k∈K

r−1
k

⃓⃓⃓⃓
⃓⃓

≤
∑︂
j∈J

⃓⃓⃓
rj

⃓⃓⃓
+
∑︂
k∈K

⃓⃓⃓
r−1

k

⃓⃓⃓
≤
∑︂
j∈J

(r̄u
j ) +

∑︂
k∈K

(rl
k)−1 Lem. 1, Asm. 2

(3.18)

Assumption 3.3. Let Θ denote the set of angles in S•:

Θ = {arctan(r)|r ∈ S•} (3.19)

We assume that we know Θ exactly so that we can specify the lower and upper bounds

θl, θu in our objective.

The range of possible angles is easy to calculate for the product and division of

complex sets as angles simply add and subtract. For Minkowski sums of complex sets

the set of possible angles is not easily calculated. We discuss methods for doing so in

section 3.3.4.
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3.3.2 Minkowski Product and Division of Complex Sets

We seek to minimize the area of an outer approximation of S⨂︁⨂︁ . This can be posed

as follows:

min
αu,αl

∫︂ θu

θl
ru(θ, αu)− rl(θ, αl)dθ

s.t. rl(θ0, α
l) ≤

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓
∏︂
j∈J

rje
iθj

∏︂
k∈K

rke
iθk

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓ ≤ ru(θ0, α

u)

∀(θ[0:m], r[1:m]) ∈ X

(3.20)

where X is the semi-algebraic set:

X ={(θ[0:m], r[1:m]) : θ0 =
∑︂
j∈J

θj −
∑︂
k∈K

θk,

rl
j(θj) ≤ rj ≤ ru

j (θj), θl
j ≤ θj ≤ θu

j , j ∈ J

rl
k(θk) ≤ rk ≤ ru

k(θk), θl
k ≤ θk ≤ θu

k , k ∈ K}

(3.21)

Given that we know the bounds θl, θu, we can evaluate the integral within our

objective to eliminate the dependency on θ. This yields a linear objective in terms of

the coefficients.

∫︂ θu

θl
ru(θ, αu)− rl(θ, αl)dθ = cT

l α
l + cT

uα
u

We introduce intermediate variables ϕj such that the sum of angles defining θ0 can be

written as the sum of two angles.

ϕj =
m∑︂

h=j

chθh (3.22)

where

ch =

⎧⎨⎩+1, if h ∈ J
−1, if h ∈ K

(3.23)
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The angle summation can then be replaced with the following semi-algebraic set:

Z = {(θ[0:m], ϕ[2:m−1])|θ0 = c1θ1 + ϕ2,

ϕ2 = c2θ2 + ϕ3,

. . .

ϕm−2 = cm−2θm−2 + ϕm−1,

ϕm−1 = cm−1θm−1 + cmθm}

(3.24)

We then obtain a superset of Z by replacing each equality constraint with two

constraints involving cos and sin.

Y = {(θ[0:m], ϕ[2:m−1])|

cos θ0 = cos(c1θ1 + ϕ2) ,

sin θ0 = sin(c1θ1 + ϕ2) ,

cosϕ2 = cos(c2θ2 + ϕ3) ,

sinϕ2 = sin(c2θ2 + ϕ3) ,

. . .

cosϕm−2 = cos(cm−2θm−2 + ϕm−1) ,

sinϕm−2 = sin(cm−2θm−2 + ϕm−1) ,

cosϕm−1 = cos(cm−1θm−1 + cmθm) ,

sinϕm−1 = sin(cm−1θm−1 + cmθm)}

(3.25)

Remark 3.2. Y is a superset of Z as the trigonometric identities still hold when

angles have multiples of 2π added. Given we are working with periodic functions

(Assumption 3.1) this is a subtlety of no consequence.

Recall the following trigonometric identities involving angles a and b with signs

ca, cb ∈ {−1, 1}:

cos(caa+ cbb) = cos a cos b− cacb sin a sin b , (3.26)

sin(caa+ cbb) = ca sin a cos b+ cb cos a sin b . (3.27)
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Applying these identities we can write the constraints defining Y in terms of cos θh, sin θh,

cosϕl, sinϕl. We then eliminate the trigonometric terms by introducing new variables

along with a quadratic equality constraint.

zcθh
= cos θh, zsθh

= sin θh, z
2
cθh

+ z2
sθh

= 1

∀h ∈ 0 ∪ J ∪ K

zcϕl
= cosϕl, zsϕl

= sinϕl, z
2
cϕl

+ z2
sϕl

= 1

∀ l = 2, . . . ,m− 1

Next, we rewrite the angle constraints θl
h ≤ θh ≤ θu

h in terms of zcθh
, zsθh

. In the

new variables, the points satisfying the angle interval constraint can be represented

by the intersection of the quadratic equality constraint and a halfplane that passes

through the points (cos θl
h, sin θl

h) and (cos θu
h, sin θu

h). Figure 3-2 visualizes this for

θl = 0, θu = π
3 . Defining the midpoint angle θm

h = 1
2(θl

h + θu
h), it can be shown that

the halfplane is the set of points (zcθh
, zsθh

) satisfying:

ac
hzcθh

+ as
hzsθh

≥ bh (3.28)

where

ac
h = cos θm

h , a
s
h = sin θm

h , bh = cos θm
h cos θu

h + sin θm
h sin θm

h (3.29)

With this change of variables, the optimization problem is rewritten as follows:

min
αl,αu

cT
l α

l + cT
uα

u

s.t. rl(zcθ0 , zsθ0 , α
l)
∏︂
k∈K

rk ≤
∏︂
j∈J

rj

ru(zcθ0 , zsθ0 , α
u)
∏︂
k∈K

rk ≥
∏︂
j∈J

rj

∀(zcθ[0:m] , zsθ[0:m] , zcϕ[2:m−1] ,zsϕ[2:m−1] , r[1:m]) ∈ W

(3.30)
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Figure 3-2. Constraints for angle interval.

where:

W = {(zcθ[0:m] , zsθ[0:m] , zcϕ[2:m−1] , zsϕ[2:m−1] , r[1:m]) :

zcθ0 = zcθ1zcϕ2 − c1zsθ1zsϕ2

zsθ0 = c1zsθ1zcϕ2 + zcθ1zsϕ2

zcϕl
= zcθl

zcϕl+1 − clzsθl
zsϕl+1 , l ∈ 2, . . . ,m− 2

zsϕl
= clzsθl

zcϕl+1 + zcθl
zsϕl+1 , l ∈ 2, . . . ,m− 2

zcϕm−1 = zcθm−1zcθm − cm−1cmzsθm−1zsθm

zsϕm−1 = cm−1zsθm−1zcθm + cmzcθm−1zsθm

z2
cθh

+ z2
sθh

= 1 h ∈ 0, . . . ,m

z2
cϕl

+ z2
sϕl

= 1 l ∈ 2, . . . ,m− 1

rl
h(zcθh

, zsθh
) ≤ rh ≤ ru

h(zcθh
, zsθh

) h ∈ 1, . . . ,m

ac
hzcθh

+ as
hzsθh

≥ bh h ∈ 1, . . . ,m}

(3.31)

This is a polynomial optimization problem with set-containment constraints of

the form (3.8). As outlined in section 3.2.3, applying the S-procedure and replacing
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non-negativity conditions with SOS constraints yields a semidefinite optimization

problem which can be solved.

3.3.3 Minkowski Sum of Complex Sets

Calculating the Minkowski sum of complex sets is more involved as we must convert

between polar and Euclidean coordinates. In (3.7), points from sets Rj, j ∈ J are

directly summed while points from sets Rk, k ∈ K are first inverted and then summed.

The resulting Euclidean coordinates (x, y) are given by:

xj = rj cos θj, yj = rj sin θj, ∀ rj ∈ Rj, j ∈ J ,

xk = cos θk/rk, yk = − sin θk/rk, ∀ rk ∈ Rk, k ∈ K.

We sum the Euclidean coordinates to obtain the point (x0 + iy0) ∈ S⨁︁+
⨁︁−1 . We

must then determine the angle θ0 and non-negative radial distance of this point. This

is achieved with the following equations:

x0 =
∑︂

h∈J ∪K
xh, y0 =

∑︂
h∈J ∪K

yh

x0 = r0 cos θ0, y0 = r0 sin θ0, r0 ≥ 0

The optimization problem is then:

min
αl,αu

∫︂ θu

θl
ru(θ, αu)− rl(θ, αl)dθ

s.t. rl(θ0, α
l) ≤ r0 ≤ ru(θ0, α

u) ,

∀ (θ[0:m], r[0:m], x[0:m], y[0:m]) ∈ X

(3.32)
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where X is the semi-algebraic set

X = {(θ[0:m], r[0:m], x[0:m], y[0:m]) :

r0 ≥ 0, r0 cos θ0 = x0, r0 sin θ0 = y0

x0 =
∑︂

h∈J ∪K
xh, y0 =

∑︂
h∈J ∪K

yh

rj cos θj = xj, rj sin θj = yj∀ j ∈ J

rkxk = cos θk, rkyk = − sin θk∀ k ∈ K

rl
j(θj) ≤ rj ≤ ru

j (θj), θl
j ≤ θj ≤ θu

j ,∀ j ∈ J

rl
k(θk) ≤ rk ≤ ru

k(θk), θl
k ≤ θk ≤ θu

k , ∀ k ∈ K}

(3.33)

Following a similar procedure as before, we first integrate the objective to eliminate

the dependence on θ. We then introduce new variables for the trigonometric terms:

zcθh
= cos θh, zsθh

= sin θh

z2
cθh

+ z2
sθh

= 1 ∀h ∈ 0 ∪ J ∪ K

With this change of variables the optimization problem is rewritten as:

min
αl,αu

cT
l α

l + cT
uα

u

s.t. rl(zcθ0 , zsθ0 , α
l) ≤ r0

ru(zcθ0 , zsθ0 , α
u) ≥ r0

∀ (zcθ[0:m] , zsθ[0:m] , r[0:m], x[0:m], y[0:m]) ∈ W

(3.34)
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where W is the semialgebraic set:

W = {(zcθ[0:m] , zsθ[0:m] , r[0:m], x[0:m], y[0:m]) :

r0 ≥ 0, x0 =
∑︂

h∈J ∪K
xh, y0 =

∑︂
h∈J ∪K

yh

r0zcθ0 = x0, r0zsθ0 = y0,

rjzcθj
= xj, rjzsθj

= yj, ∀ j ∈ J

rkxk = zcθk
, rkyk = −zsθk

, ∀ k ∈ K

z2
cθh

+ z2
sθh

= 1 h ∈ 0, . . . ,m

rl
h(zcθh

, zsθh
) ≤ rh ≤ ru

h(zcθh
, zsθh

) h ∈ 1, . . . ,m

ac
hzcθh

+ as
hzsθh

≥ bh h ∈ 1, . . . ,m}

(3.35)

As before, applying the S-procedure followed by replacing the non-negativity

conditions with SOS constraints yields a semidefinite optimization problem which can

be solved.

3.3.4 Determining the Angle Interval

As stated in Assumption 3-2, we assume that we know the exact set of angles Θ

contained in the set S•. For the Minkowski sum this is not readily calculated. Here

we outline an iterative approach for conservatively bounding Θ within an interval

Θ̃ = [θ̃l, θ̃u] such that Θ ⊆ Θ̃.

We initialize our estimate to Θ̃ = [0, 2π]. If Θ is a strict subset of this interval, then

there exists an angle ψ such that ψ ∈ Θ̃ \Θ. Along this angle, there is no element of

S• constraining rl(ψ, αu) and ru(ψ, αu). Thus our objective which minimizes ru(θ, αu)

and maximizes rl(θ, αl) would be unbounded. To resolve this, we add a known upper

bound on rl(θ, αl) and a known lower bound on ru(θ, αu). For ru(θ, αu) we use the

trivial lower bound of zero. For rl(θ, αl) we make use of the bound provided by Lemma

3.2. To enforce these bounds, we augment problem (3.34) with the following conditions
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in which θ is replaced by zcθ0 , zsθ0 :

rl(zcθ0 , zsθ0 , α
l) ≤

∑︂
j∈J

(r̄u
j ) +

∑︂
k∈K

(rl
k)−1 ∀ (zcθ0 , zsθ0) ∈ V

ru(zcθ0 , zsθ0 , α
u) ≥ 0 ∀ (zcθ0 , zsθ0) ∈ V

(3.36)

where

V = {(zcθ0 , zsθ0)|z2
cθ0 + z2

sθ0 = 1}. (3.37)

We solve this augmented problem and then examine the bounding contours rl(θ, αl),

ru(θ, αu). For any angles ψ at which the lower bound exceeds the upper bound

(rl(ψ) > ru(ψ)), we can conclude that ψ ̸∈ Θ and update our angle interval Θ̃

appropriately. We then repeat this process, solving the augmented problem with the

tighter approximation of Θ, examining the resulting bounds to further tighten the

interval Θ̃ and repeating. We stop once the returned bounds satisfy rl(θ) ≤ ru(θ)∀ θ ∈

Θ̃.

As an aside we note that determining the range of angles in S⨁︁+
⨁︁−1 can also

be solved via global optimization methods using branch-and-bound techniques. Our

initial experience with this approach yielded solutions in under a second for the

examples considered herein.

3.4 Examples

3.4.1 Minkowski Product Example

Consider the following set formed from Minkowski products and division:

S = R1
⨂︂R2

⨂︂(R3
⨂︂R4)−1 (3.38)

where each set Rj is as shown in Figure 3-1.

Rj ={reiθ|1+ 1
4 sin θ≤r≤ 3

2−
1
4 cos θ, 0≤θ≤ π3 }

j = 1, 2, 3, 4
(3.39)
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Figure 3-3. Outer bound of Minkowski product (3.38).

By inspection, the possible angles of S are Θ ∈ [−2π
3 ,

2π
3 ]. Limiting ourselves to

4th-order contours we solve the SOS form of (3.30). Figure 3-3 plots the resulting

contour along with points sampled from S. Empirically the outer approximation is

close to the true contour suggested by the sampled points.

3.4.2 Minkowski Sum Example

Using the same sets as in the previous example, we now find an outer approximation

for the following Minkowski sum

S = R1
⨁︂R2

⨁︂(R3)−1⨁︂(R4)−1 (3.40)

We do not know the possible range Θ of S so we use the iterative approach previously

outlined. For the given set operation, it is straight-forward to obtain an upper bound

on r of 2 × 1.75 + 2 × (0.75)−1 = 6.1667. We impose the conditions rl(θ) ≤ 6.1667

and ru(θ) ≥ 0. We then solve the SOS form of (3.34) conservatively assuming

θl = 0, θu = 2π and augmenting the problem with the bounds of (3.36). Figure 3-4

plots the resulting bounds as a function of θ. Examining the plot it is seen that
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Figure 3-4. Iterative bounds of Minkowski sum.

rl(θ) ≤ ru(θ) for θ ∈ [−27.1◦, 40.6◦]. Outside of this interval, rl(θ) approaches its

upper bound of 6.1667 and ru(θ) approaches its lower bound of zero. We again solve

the problem now with θl = −27.1◦, θu = 40.6◦ and obtain the dashed lines in Figure

3-4. With the new bounds, rl(θ) ≤ ru(θ) for θ ∈ [−27.1◦, 40.4◦]. We again solve

the problem with our slightly tightened angle interval. The resulting bounds have

rl(θ) ≤ ru(θ) for all θ ∈ [−27.1◦, 40.4◦]. At this point we can no longer improve our

estimate of Θ so we stop. Figure 3-5 plots the resulting contour along with points

sampled from S. Empirically the outer approximation is close to the true contour

suggested by the sampled points.

3.4.3 Implementation Details

All examples were solved on a MacBook Pro with a 2.6 GHz 6-Core Intel Core i7

CPU. The SOS module of YALMIP [22] was used in conjunction with MOSEK [21].

Solving the Minkowski product example took 53 seconds. Solving the Minkowski sum

example took 801 seconds for a single iteration (three iterations total).
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Figure 3-5. Outer bound of Minkowski sum (3.40).

3.4.4 Computational Complexity

Our current implementation utilizes a dense monomial basis for each multiplier s(ξ, β).

This consists of all possible monomials formed from the free variables ξ up to a

given degree (2 in the examples herein). This grows combinatorially as we introduce

more sets (and associated free variables). The resulting increase in the semidefinite

program size limits scalability. This can be partially improved by using a more

informed approach to selecting the underlying basis [29]. More promisingly, our chosen

problem formulation provides a natural decomposition method. As each operation

(sum, product) returns a set that is of the same form as the input, we can easily

decompose a problem consisting of many terms by first forming outer approximations

of sub-expressions. We can then solve the full problem with the sub-expressions

replaced by their outer approximations.

43



3.5 Conclusions

In this work we developed optimization-based methods for finding outer approximations

of Minkowski sums and products of complex sets. These operations are relevant to

problems arising in robust control. Through appropriate variable transformations we

posed this as a sum-of-squares optimization problem which is readily solved by off-the-

shelf solvers. Examples provided empirical evidence that the resulting approximations

are good.

In the future we plan to improve the scalability of our method by considering

problem decompositions. Additionally, while our current form assumes the sets are

modeled with polar coordinates, we plan to extend our method to supports sets that

are more naturally described using Euclidean coordinates. Lastly we plan to use these

techniques as building blocks for certifying the robust stability of networked dynamic

systems.
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Chapter 4

Closed-Form Minkowski Sum
Approximations for Efficient
Optimization-Based Collision
Avoidance

4.1 Introduction

Motion planning is a central task of most autonomous systems, including robots, drones,

and autonomous vehicles. Of the many approaches to motion planning, techniques

based on nonlinear programming (NLP) such as direct multiple shooting [30] and direct

collocation [31] generally offer the most flexibility in regards to choice of objectives

and constraints imposed. As high-quality NLP solvers and supporting automatic

differentiation tools have become available, it has become feasible to utilize these

optimization-based approaches for real-time motion planning or trajectory generation

[32].

Despite the flexibility that NLP solvers provide, it can be difficult to efficiently

represent obstacle avoidance constraints. Due to their reliance on gradient and

Hessian information, most NLP solvers require the objective and constraints to be

twice continuously differentiable expressions. This presents a challenge for collision

avoidance constraints which often cannot be represented in smooth closed-forms. We
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Figure 4-1. Obstacle avoidance in workspace (left) and C-space (right).

briefly review two viable approaches and discuss their advantages and limitations.

Distance Formulation: Collision avoidance can be viewed as ensuring the minimum

distance between an obstacle O and a vehicle V is greater than zero. In robotics this

would be classified as performing collision checking directly in the workspace [33] as

shown in the left subplot of Figure 4-1. When the obstacle and the vehicle have convex

shapes, the distance between these sets can be computed through convex optimization

[34]. Using this formulation as a constraint leads to a bi-level NLP for which we lack

reliable solvers. By leveraging strong duality [35], it is possible to reformulate the

collision avoidance conditions into expressions amenable to a NLP solver. This is done

at the expense of introducing new variables and constraints. In practice, the solver

performance can be highly sensitive to the initialization of these variables [36] and

the resulting increase in problem complexity can be problematic for real-time motion

planning in cluttered environments. Similar remarks hold for collision avoidance

reformulations based on Farkas’ Lemma [37] or polar set representations [38].

Minkowski Sum Formulation: Collision avoidance can alternatively be viewed

through the lens of computational geometry as shown in the right subplot of Figure

4-1. Given the vehicle position d ∈ Rn, and shapes B,O ⊂ Rn of vehicle and

obstacle, respectively, collision avoidance can be posed as ensuring d ̸∈ M where
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M = O ⊕ (−B), with ⊕ being the Minkowski sum operation [33]. In robotics this is

often referred to as the configuration-space (C-space) approach. Incorporating this

as a constraint in an NLP solver would require a closed-form, smooth representation

of the indicator function of this set. In general, this does not exist as the sets are

semialgebraic, involving multiple polynomial (in)equalities. A notable exception is

the case of bodies whose boundary surface are smooth and admit both implicit and

parametric representations [39], which includes ellipsoids and convex superquadrics

[40]. However, many implicit surfaces do not admit a parametric representation and

for others obtaining one is an open problem [41]. Additionally, this approach cannot

address the practical case of non-smooth boundaries such as convex polytopes.

4.1.1 Contributions

In this work we propose efficient collision avoidance conditions based on closed-form,

outer approximations ˜︂M ⊇M of the Minkowski sum. We focus on the important

case in which the obstacle is a bounded, convex polytope and the vehicle is represented

by Euclidean balls (possibly multiple). Building upon recent successes of sum-of-

squares (SOS) optimization for outer approximating semialgebraic sets [7, 8, 10, 12,

42], we develop SOS programs for finding ˜︂M. Figure 4-1 shows an example of the

resulting outer approximations. We then use ˜︂M to perform optimization-based motion

planning of an autonomous car and quadcopter navigating cluttered environments.

Compared to the exact method [35], our approximate method solves 4.8x (car) and

8.7x (quadcopter) faster while introducing minimal conservatism arising from the use

of outer approximations.

The rest of the chapter is organized as follows. Section II reviews relevant aspects

of convex sets, Minkowski sums, and SOS optimization. Section III defines the

motion planning problem. Section IV poses the obstacle avoidance constraints using

Minkowski sums and provides methods for outer approximating the set. Section V
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applies our approach to motion planning for an autonomous car and quadcopter.

Section VI concludes the chapter with a discussion of future directions.

4.2 Preliminaries

We briefly review some basic properties of convex sets, Minkowski sums, and sum-of-

squares polynomials. This is mostly done to setup our notation. The reader is referred

to [16, 34, 43] for proofs and further details.

4.2.1 Set Definitions

Definition 4.1 (Convex Hull). The convex hull of a set B is defined as: conv B =

{θ1x1 + . . .+ θkxk |xi ∈ B, θi ≥ 0, i = 1, . . . , k,∑︁k
i=1 θi = 1}. Let C be any convex set

that contains B. The convex hull is the smallest convex set that contains B:

B ⊆ C ⇔ conv B ⊆ C (4.1)

Definition 4.2 (α-sublevel Set). The α-sublevel set of a function f : Rn → R is:

Bα = {x | f(x) ≤ α}. We denote the boundary of the set as ∂Bα = {x | f(x) = α}.

Lemma 4.1. Let Bα be a convex set that is the α-sublevel set of a function f : Rn → R.

Then Bα = conv ∂Bα.

We use the notation −B = {−b | b ∈ B} to represent the set B reflected about the

origin. Note that −B is convex if and only B is convex.

Definition 4.3 (Polytope). A polytope P is defined as the solution set of j linear

inequalities in Rn. This set is convex by construction. We impose the additional

requirement that the set is bounded. The linear inequalities give the halfspace

representation

P = {x |Ax ≤ b} (4.2)
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where A ∈ Rj×n, b ∈ Rj . Alternatively, the polytope can be represented by the convex

hull of its k vertices

P = conv {v1, v2, . . . , vk} (4.3)

where vi ∈ Rn, i ∈ [k] := {1, . . . , k}.

4.2.2 Minkowski Sum Properties

Definition 4.4 (Minkowski Sum). Given two sets A,B, their Minkowski sum is

defined as follows:

A⊕ B = {a+ b | a ∈ A, b ∈ B} (4.4)

Lemma 4.2. If A and B are convex sets then A⊕B is convex.

Lemma 4.3. For any sets A,B the following equality holds:

conv (A⊕B) = conv (A)⊕ conv (B) (4.5)

4.2.3 Sum-of-Squares Optimization

For x ∈ Rn, let R[x] denote the set of polynomials in x with real coefficients.

Definition 4.5 (Sum-of-Squares Polynomial). A polynomial p(x) ∈ R[x] is a sum-

of-squares (SOS) polynomial if there exists polynomials qi(x) ∈ R[x], i ∈ [j] such

that p(x) = ∑︁
i∈[j]

q2
i (x). We use Σ[x] to denote the set of SOS polynomials in x. A

polynomial of degree 2d is a SOS polynomial if and only if there exists a positive

semi-definite matrix P (the Gram matrix) such that p(x) = z(x)TPz(x) where z(x) is

the vector of all monomials of x up to degree d [16].

Note that a polynomial being SOS is a sufficient condition for the polynomial to

be non-negative (i.e. p(x) ≥ 0 ∀x).
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Definition 4.6 (SOS-Convex). A polynomial p(x) is SOS-convex if the following

holds

uT∇2p(x)u ∈ Σ[x, u] (4.6)

where u, x ∈ Rn. SOS-convexity is a sufficient condition for the Hessian of p(x) to be

positive semi-definite and therefore p(x) to be convex.

In the development that follows, we will be interested in solving slight variations

of the following problem.

min
P

− log detP (4.7a)

s.t.

P ⪰ 0, p(x) = z(x)TPz(x), (4.7b)

1− p(x) ≥ 0 ∀x ∈ X , (4.7c)

Here X is a semialgebraic set defined by ni polynomial inequalities and nj polynomial

equalities.

X = {x | gi(x) ≥ 0, i ∈ [ni], hj(x) = 0, j ∈ [nj]} (4.8)

Equation (4.7b) constrains p(x) to be a SOS polynomial. Equation (4.7c) is a set-

containment condition. The generalized S-procedure provides a sufficient condition for

the set-containment to hold [16]. For each polynomial equality gi(x) or inequality hj(x)

describing the set X , we introduce a non-negative polynomial λi(x) or polynomial

µj(x) respectively. The generalized S-procedure involves replacing (4.7c) with the

following:

1− p(x)−
∑︂

i

λi(x)gi(x)−
∑︂

j

µj(x)hj(x) ≥ 0, (4.9)

λi(x) ≥ 0 i ∈ [ni] (4.10)

By replacing the non-negativity constraints in (4.9), (4.10) with the more restrictive

condition that the expressions be SOS polynomials, we obtain a semidefinite program
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which is readily solved.

min
P, λ[1:ni](x), µ[1:nj ](x)

− log detP

s.t.

P ⪰ 0, p(x) = z(x)TPz(x),

1− p(x)−
∑︂

i

λi(x)gi(x)−
∑︂

j

µj(x)hj(x) ∈
∑︂

[x],

λi(x) ∈ Σ[x], i ∈ [ni] .

(4.11)

Note when a polynomial is listed as a decision variable, e.g., λ[1:ni](x) and µ[1:nj ](x)

underneath the min, it is implied that the monomial basis is specified and the

coefficients are decision variables.

Remark 4.1. Representing an equality constraint requires introducing a polynomial

µ(x). In contrast, representing an inequality requires introducing a SOS polynomial

λ(x) which has a smaller feasible set and creates an additional semidefinite constraint.

As such, it is generally advantageous to represent sets using equalities when applying

the generalized S-procedure.

In the development that follows we focus on transforming problems of interest

into the form of (7). Once in this form, the subsequent application of the generalized

S-procedure is mechanical.

4.3 Problem Statement

We now setup the problem of optimization-based motion planning with collision

avoidance constraints. For convenience, our notation closely follows that of [36].

4.3.1 Vehicle and Obstacle Models

Consider a vehicle with states xk ∈ Rnx and inputs uk ∈ Rnu at time step k. The

dynamics evolve according to xk+1 = f(xk, uk) where f : Rnx × Rnu → Rnx . The
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vehicle occupies space in Rn. The vehicle’s shape is assumed to be represented by nb

Euclidean balls with radii r(i).

B(i) = {y ∈ Rn | ∥y∥2 ≤ r(i)}, i ∈ [nb]. (4.12)

The center of each ball is a function of the vehicle’s state as given by t(i) : Rnx → Rn.

At time index k, the space occupied by ball i is given by:

V(i)(xk) = B(i) + t(i)(xk) . (4.13)

The union ⋃︁
i
V(i)(xk) gives the total space occupied by the vehicle at time index k. For

ease of exposition, in what follows we focus w.l.o.g. on the case when the vehicle is

represented by a single ball and drop the superscript (i).

We assume there are M obstacles present in the environment indexed by m ∈ [M ].

Each obstacle O(m) is a polytope (closed, convex) with k(m) vertices {v1, . . . , vk(m)}

defining the convex hull as in (4.3). Equivalently represented in halfspace form (4.2),

the obstacle m is defined by j(m) constraints given by A(m) ∈ Rj(m)×n, b(m) ∈ Rj(m) .

4.3.2 Optimal Control Problem

We consider an optimal control problem of controlling the vehicle over N steps. The

vehicle starts at state xS and must end at final state xF . Let X,U denote the vector

of all states and controls respectively, X = [xT
0 , . . . , x

T
N ]T , U = [uT

0 , . . . , uN−1]T . We

seek to minimize an objective l(X,U) where l : X × U → R. Additionally, the vehicle

is subject to nh constraints given by h(X,U) ≤ 0 where h : X × U → Rnh and

the inequality is interpreted element-wise. We assume that l(X,U) and h(X,U) are

continuously differentiable and therefore suitable for nonlinear programming solvers

which utilize gradient and Hessian information. Lastly, we enforce collision avoidance

constraints between each obstacle and the vehicle. The resulting optimization problem

takes the following form:
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min
X,U

l(X,U) (4.14a)

s.t.

x0 = xS, xN = xF , (4.14b)

xk+1 = f(xk, uk), k = 0, . . . , N − 1 (4.14c)

h(X,U) ≤ 0, (4.14d)

V(xk) ∩ O(m) = ∅, k ∈ [N ], m ∈ [M ]. (4.14e)

Equation (4.14e) represents the collision avoidance constraints which are non-convex

and non-smooth in general. In [35], the authors provide an exact, smooth reformulation

of these constraints. As the distance between two convex shapes can be computed

using convex optimization, the authors leverage strong duality to develop necessary

and sufficient conditions for a Euclidean ball of radius r to not intersect a given

convex shape. This requires introducing dual variables associated with the halfspace

constraints representing each obstacle λ(m)
k ∈ Rj(m) , k ∈ [N ], m ∈ [M ] and replacing

(4.14e) with the following constraints.

(A(m)t(xk)− b(m))Tλ
(m)
k > r,

∥A(m)T

λ
(m)
k ∥2

2 ≤ 1,

λ
(m)
k ≥ 0,

k ∈ [N ], m ∈ [M ].

(4.15)

If each obstacle has L halfspace constraints, this method introduces (2 + L)MN

constraints and LMN dual variables which can result in a large nonlinear program that

is computationally intensive. In the following, we present a method for approximating

the collision avoidance constraints while introducing only MN constraints and no

additional variables.
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4.4 Collision Avoidance via Minkowski Sums

We will utilize Minkowski sums to represent the collision avoidance constraints between

a closed, convex polytope obstacle O = {y ∈ Rn | aT
i y ≤ bi, i ∈ [L]} and a vehicle

with shape given by the Euclidean ball B = {w ∈ Rn |wTw ≤ r2}. We first review a

fundamental result from computational geometry.

Lemma 4.4. Let O and B be sets in Rn. Let V = B + d be the set B translated by

d ∈ Rn. Then the following relation holds:

O ∩ V ̸= ∅ ⇔ d ∈ O ⊕ (−B) (4.16)

Proof. See, e.g. [33, 44]

In words, when B is located at position d, it makes contact with O if and only if d

is in the Minkowski sum O ⊕ (−B). Thus collision avoidance with respect to obstacle

O is equivalent to ensuring d ̸∈ O ⊕ (−B).

When O is a polytope and B is a Euclidean ball, the set O⊕ (−B) is semialgebraic.

As such we cannot directly include the condition d ̸∈ O ⊕ (−B) as a constraint in

a nonlinear optimization problem which requires closed-form, twice differentiable

expressions.

Instead we propose to find an outer approximation O ⊕ (−B) ⊆ ˜︂M⊂ Rn where
˜︂M is defined as the 1-sublevel set of a function p : Rn → R. Recall in our setting the

translation of the ball at time index k is a function of the vehicle’s state xk as given by

t : Rnx → Rn. Collision avoidance with respect to obstacle O can then be ensured by

imposing the constraint p(t(xk)) > 1⇔ t(xk) ̸∈ ˜︂M⇒ t(xk) ̸∈ O⊕ (−B)⇔ O∩V = ∅.

If multiple obstacles O(m),m ∈ [M ] are present, we repeat this process for each

obstacle and denote the associated function as p(m)(x). In our trajectory optimization

problem we replace (4.14e) with MN constraints.

p(m)(t(xk)) > 1, k ∈ [N ], m ∈ [M ]. (4.17)
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4.4.1 Outer Approximations of the Minkowski Sum

We would like our outer approximations to closely approximate the true set. To do

so, we pose an optimization problem in which we minimize the volume of the outer

approximation.

min
p(x)

vol ˜︂M
s.t.

1− p(x) ≥ 0 ∀x ∈ O ⊕ (−B),

˜︂M = {x | p(x) ≤ 1}

(4.18)

In general we cannot solve this optimization problem. To arrive at a tractable

formulation, we apply the generalized S-procedure. We first parameterize the polyno-

mial as p(x) = z(x)TPz(x) where z(x) is a monomial basis chosen by the user and P

is a positive semi-definite matrix of appropriate dimension. For arbitrary polynomials,

we lack an expression for minimizing the volume of the 1-level set. Various heuristics

have been proposed [7, 8, 10, 42]. We have found maximizing the determinant of P ,

as proposed in [10], to work well for the problems herein. The resulting optimization

problem is
min
P

− log detP

s.t.

p(x) = z(x)TPz(x), P ⪰ 0,

1− p(x) ≥ 0 ∀x ∈ {y − w | aT
i y ≤ bi,

wTw ≤ r2, i ∈ [L]}

(4.19)

where we have explicitly written the set resulting from the Minkowski sum in terms of

y and w along with inequalities that ensure y ∈ O and w ∈ B.

We apply the S-procedure to replace the set-containment condition with a sufficient

condition. This requires introducing multipliers λ(y, w). We then replace the non-

negativity conditions with the sufficient condition that the expression admits a SOS
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decomposition in terms of variables y and w.

Optimization Problem 1: Outer Approximation

min
P, λ[0:L](y, w)

− log detP

s.t.

p(x) = z(x)TPz(x), P ⪰ 0, (OA)

1− p(y − w)− λ0(y, w)(r2 − wTw)

−
L∑︂

i=1
λi(y, w)(bi − aT

i y) ∈
∑︂

[y, w]

λi(y, w) ∈ Σ[y, w] i = 0, . . . , L

The formulation given by (OA) is viable but computationally expensive because the

SOS decompositions involve both w and y giving 2n free variables for x ∈ Rn. As we

seek higher-order approximations, the monomial basis grows rapidly in size leading to

large semidefinite programs. We now develop a computationally cheaper program by

leveraging convexity.

4.4.2 Convex Outer Approximations of the Minkowski Sum

In developing an efficient method for outer approximating the Minkowski sum, we

will utilize the following Lemma.

Lemma 4.5. Let O ⊂ Rn be a polytope with K vertices {vi}, i ∈ [K]. Let B ⊂ Rn be

a convex set that is the α-sublevel set of a function f : Rn → R. Let S be any convex

set in Rn. Then the following relation holds:

O ⊕ (−B) ⊆ S ⇔ {vi} ⊕ (−∂B) ⊆ S (4.20)

Proof. First represent O ⊕ (−B) in terms of its convex hull.

O ⊕ (−B) = conv{vi} ⊕ conv(−∂B), Lemma 4.1

= conv[{vi} ⊕ (−∂B)], Lemma 4.3
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Next apply the property of the convex hull (4.1).

conv[{vi} ⊕ (−∂B)] ⊆ S ⇔ {vi} ⊕ (−∂B) ⊆ S

Lemma 4.5 provides a more efficient condition for outer approximating the

Minkowski sum with a set ˜︂M = {x | p(x) ≤ 1} as we only have to consider the

vertices of O and the boundary of B in our set-containment constraint as follows.

1− p(x) ≥ 0 ∀x ∈ vi ⊕ (−∂B) i ∈ [K]. (4.21)

However, it requires the condition that ˜︂M be a convex set. We argue that this

is a reasonable constraint as O ⊕ (−B) is itself convex. It is difficult to impose the

condition that the 1-sublevel set of p(x), i.e., ˜︂M, is convex. Recalling Definition 4.6,

we will instead impose the sufficient condition that the function p(x) be sos-convex.

As done previously, we rewrite the set-containment conditions using the generalized

S-procedure. We then replace the non-negativity conditions with SOS conditions.

Optimization Problem 2: Convex Outer Approximation

min
P, µ[1:K](w)

− log detP

s.t.

P ⪰ 0, p(x) = z(x)TPz(x) (COA)

1− p(vi − w)− µi(w)(r2 − wTw) ∈ Σ[w], i ∈ [K]

uT∇2p(x)u ∈ Σ[x, u]

Remark 4.2. The formulation of (COA) is advantageous in that the multipliers µ(w)

do not have to be SOS and they only depend on n free variables (w ∈ Rn). In contrast,

(OA) requires SOS multipliers λ(w, y) which depend on 2n free variables (w, y ∈ Rn).

The former leads to smaller semidefinite programs which scale better with respect

to the dimension n or the complexity of O. This is numerically illustrated in the

following example.
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Figure 4-2. Outer approximation of Minkowski sum.

4.4.3 2D Example

We generate 1000 random test cases in R2. For each case we generate a polytope O

with n ∈ {3, 4, . . . , 12} vertices vi ∈ [−1, 1]2, i ∈ [n] along with a disk B with radius

r ∈ [0, 1]. We form outer approximations ˜︂M = {x | p(x) ≤ 1} of the setM = O⊕(−B)

using both (OA) and (COA). For each we consider polynomials p(x) of degree 2, 4 and

6. To assess the accuracy of our outer approximations, we compute the approximation

error as 100 × Area(˜︂M)−Area(M)
Area(M) . Table 4-I lists the mean approximation error of the

1000 test cases. Empirically, as we increase the polynomial order, the approximation

error is reduced, indicating we are getting better outer approximations. Table 4-II

lists the mean solve times. As expected, (COA) has significantly faster solve times

than (OA) due to the smaller semidefinite program. Figure 4-2 provides an example

of the results.

Table 4-I. Mean Approximation Error of Minkowski Sums

Polynomial Degree 2 4 6
Outer Approximation 40% 9% 3%

Convex Outer Approximation 25% 9% 5%

Remark. For the case when p(x) is a quadratic, the resulting minimum volume ˜︂M
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Table 4-II. Mean Solve Times (s) of Optimization Problems 1 & 2

Polynomial Degree 2 4 6
Outer Approximation 0.020 0.174 0.925

Convex Outer Approximation 0.004 0.014 0.049

can be found exactly using the semidefinite program for finding the minimum volume

outer ellipsoid (MVOE) covering a union of ellipsoids [34]. In this case each ellipsoid is

a ball of radius r centered at vertex vi. Our convex formulation (COA) can be seen as

a generalized form of this result. The non-convex case (OA) has a smaller feasible set

due to the reliance on SOS multipliers and does not return the minimum volume outer

ellipsoid in general. Thus (OA) is only advantageous when seeking non-ellipsoidal

approximations.

4.5 Motion Planning Examples

We demonstrate our proposed obstacle avoidance conditions on an autonomous car

and quadcopter example. We solve (14) using both the exact representation (4.15)

and the approximate representation (4.17) of the collision avoidance constraints. We

compute the sub-optimality of the approximate method relative to the exact method

as 100× Japprox−Jexact

Jexact
where Japprox, Jexact are the value of the objective function l(X,U)

for the respective solutions.

In each example, the dynamic constraints (14c) are implemented using a 4th-order

Runge-Kutta integrator with a time-step of 0.02s over N = 150 steps giving a 3s time

horizon. We use A⋆ [45] to find a minimum-distance collision free path on a discretized

representation of the environment.1 This path does not consider the dynamics and

is generally not kinematically feasible. We use this to initialize our guess for the
1The A⋆ computation time takes an average of 7ms in the case of 10 obstacles for the car example

and 41ms for the quadcopter example. In both cases the A⋆ step is less than 1/10th the NLP runtime.
Bypassing this guess generation and using a naive initialization by linearly interpolating from the
initial state xS to the final state xF resulted in poor solver reliability.
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Figure 4-3. Autonomous car navigating obstacles in workspace (upper) and configuration
space (lower).

vehicle’s states over time. The approximate representation utilizes 4th-order, convex

polynomials to represent the Minkowski sums. For the exact method, similar to [35],

we initialize the dual variables λ to 0.05.

4.5.1 Autonomous Car

We adopt the autonomous racing car model from [32]. The model has 6 states, x =[︂
px py ψ vx vy ω

]︂T
consisting of position (px, py), orientation (ψ), body velocities

(vx, vy) and yaw rate (ω). The inputs are motor duty cycle (d) and steering angle (δ).

We represent the vehicle’s shape as a single disk B of radius r = 0.05m. The center of

the disk at time step k is the (px,k, py,k) position of the vehicle: t(xk) =
[︂
px,k py,k

]︂T
.

We consider a situation in which the vehicle is making forward progress along a

straight track while navigating obstacles. The objective is to minimize the 2-norm of

the input, l(X,U) = ∥U∥2
2. The vehicle starts at state xS =

[︂
0 py,S 0 1 0 0

]︂T
and must end at position (3, py,F ). At each step k = 0, . . . , N − 1, the vehicle is

subject to box constraints on the position px,k ∈ [0, 3], py,k ∈ [0, 0.3] and inputs

dk ∈ [−0.1, 1], δk ∈ [−1, 1].

We consider scenarios consisting of M ∈ {1, 2, . . . , 10} obstacles. For each scenario,

we generate 100 random test cases in which we vary the start and final y position,
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py,S, py,F ∈ [0, 0.3] along with the placement and shapes of the M obstacles. Figure 4-3

shows a scenario in which the vehicle navigates ten obstacles. We plot the obstacles

along with the exact and approximate Minkowski sums of each obstacle and the

vehicle B. As the exact method is equivalent to ensuring the vehicle’s position (px, py)

remains outside the exact Minkowski sumsM, this helps to visualize the conservatism

of our outer approximations. The 4th-order approximate representations ˜︂M4 are

quite tight and are only visible as thin yellow borders around the exact Minkowski

sums in gray. For reference, we also plot 2nd-order, ellipsoidal approximations ˜︂M2

which are unacceptably conservative as the vehicle cannot progress beyond px = 1.9

without violating constraints. As the objective penalizes large steering and acceleration

commands, the vehicle naturally makes tight maneuvers around the obstacles. The

exact method returns a slightly better trajectory because the configuration-space

obstacles it must avoid are smaller, requiring less maneuvering. The approximate

method makes slightly wider turns, resulting in a 4% sub-optimal trajectory. However

the difference is minor and the resulting trajectories are nearly identical.

Figure 4-4 shows the solve time statistics of the approximate and exact methods

as we vary the number of obstacles present. Comparing median solve times, the

approximate method solves 1.6x faster than the exact method when just one obstacle

is present. With ten obstacles present, the approximate method solves 4.8x faster. The

approximate method shows less variability in the solve times, with a maximum solve

time of 0.84s and no failed instances.2 For the exact method, 240 of the 1000 cases

either did not converge or exceeded the maximum allowed solve time of 5s. For 746

of the 760 cases in which the exact method was successfully solved, the approximate

method returned a trajectory less than 5% sub-optimal. The worst-case sub-optimality
2The solver times reported for the approximate method only reflect the time spent solving the

nonlinear program. We do not include the time required to compute the outer approximations.
In a real-time motion planning problem, these approximations would only be performed once per
obstacle, either offline or online. We note that based on Table 4-II, approximating an obstacle with a
4th-order convex polynomial takes 0.014s. If this computation time were included in Figure 4-4, the
approximate method would still be consistently faster than the exact method.
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Figure 4-4. Solve time statistics for autonomous car example.

was 18%.

4.5.2 Quadcopter

We consider the quadcopter model from [46]. The model has 12 states consisting of

position (px, py, pz), velocity (vx, vy, vz), Euler angles (ϕ, θ, ψ), and body rates (p, q, r).

The inputs are the four rotor speeds ωi, i ∈ [4] in scaled values. We represent the

quadcopter’s shape as a single ball B of radius r = 0.25m. The center of the ball at

time step k is the position of the quadcopter: t(xk) =
[︂
px,k py,k pz,k

]︂T
.

We consider a situation in which the quadcopter is navigating a cluttered room

with dimensions 10× 10× 5. The quadcopter starts at the origin with state xS = 012

and must end at state xF =
[︂
px,F py,F pz,F 09

]︂T
while avoiding any obstacles. Here

0i denotes the zero vector in Ri. The objective is to minimize the 2-norm of the rotor

speed deviation from a trim condition l(X,U) = ∥U − 4.5∥2
2 where ωi = 4.5, i ∈ [4]

achieves a steady-state, hover condition. At each step k = 0, . . . , N − 1, the vehicle is
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Table 4-III. Solve Times Statistics for Quadcopter Example

Collision Avoidance Min. (s) Median (s) Max. (s)
Approximate (4th-Order) 0.47 0.74 2.76

Exact 2.37 6.48 18.89

subject to box constraints on the position px,k ∈ [0, 10], py,k ∈ [0, 10], pz,k ∈ [0, 5] and

inputs ωi,k ∈ [1.2, 7.8], i ∈ [4].

The environment contains 30 obstacles. We consider 174 different final positions.

Table 4-III lists the resulting solve times of the nonlinear program. The approximate

method solved 8.7x faster than the exact method with respect to median solve times.

In 9 instances the exact method failed or exceeded the maximum solve time of 20s.

The approximate method was less than 5% sub-optimal for 155 of the remaining

165 test cases. The worst-case was 16% sub-optimal. The upper plot of Figure 4-5

shows the quadcopter navigating the cluttered environment. The lower plot gives the

configuration-space view with the Minkowksi sum approximations shown in yellow.

4.5.3 Autonomous Car with Multiple-Disc Geometry

The previous examples used vehicle geometries consisting of a single Euclidean ball.

We briefly demonstrate how our method can handle vehicle geometries consisting of

multiple Euclidean balls. Returning to the autonomous car example, we introduce

two additional discs, each with radius 0.05m, to form an “L” shape. The center of

each disc is a function of the vehicle’s position (px, py) and orientation ψ:

t(i)(x) =
[︄
px

py

]︄
+
[︄
cosψ − sinψ
sinψ cosψ

]︄ [︄
l(i)x

l(i)y

]︄
(4.22)

where

l(1)
x,y =

[︄
0
0

]︄
, l(2)

x,y =
[︄
0.05

0

]︄
, l(3)

x,y =
[︄

0
0.05

]︄
, (4.23)

Because the radius of each disc is identical, we can reuse the same approximation
˜︂M = {y ∈ R2 | p(m)(y) ≤ 1} for the Minkowski sum of a given obstacle m and a disc
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Figure 4-5. Quadcopter navigating in workspace (upper) and C-space (lower).
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Figure 4-6. L-shaped autonomous car navigating obstacles in workspace.
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of radius 0.05m.3 We simply change the argument t(i)(x) supplied to p, representing

the center of the ball i as a function of the vehicle’s state x. In this setting (4.17) is

replaced with the following:

p(m)(t(i)(xk)) > 1, k ∈ [N ], m ∈ [M ], i ∈ [3]. (4.24)

Figure 4-6 shows the L-shaped vehicle navigating obstacles.

4.5.4 Scaling

One caveat of using SOS polynomials to approximate indicator functions of sets is

that the polynomial may return large values for points far outside of the set. This

may be problematic for NLP solvers which are often sensitive to the scaling of the

problem. To improve the scaling, we can apply any smooth function q(z) : R≥0 → R

to (4.17) which is strictly-increasing for z ≥ 0. In the examples shown we have utilized

q(z) = −exp(−z), replacing (4.17) with:

− exp(−p(m)(t(xk))) > −exp(−1), k ∈ [N ], m ∈ [M ]. (4.25)

As p is a SOS polynomial, the left-hand side of this equivalent formulation takes on

values in the range [−1, 0].

4.5.5 Implementation Details

All examples were solved on a MacBook Pro with a 2.6 GHz 6-Core Intel Core i7 CPU.

YALMIP [22] was used in conjunction with MOSEK [21] to solve the SOS optimization

problems. IPOPT [47] with the MA27 linear solver was used to solve the nonlinear

optimization problems with exact gradients and Hessians supplied by CasADi [48].
3If this were not the case we would have to compute separate approximations for each unique

radius value.
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4.6 Conclusions

This work presented novel obstacle avoidance conditions based on outer approxima-

tions of Minkowski sums. This method is advantageous in that it yields a much

smaller nonlinear program compared to exactly representing the collision avoidance

conditions. On motion planning problems for an autonomous vehicle and quadcopter,

the approximate method solved 4.8x and 8.7x faster respectively when navigating

cluttered environments. The resulting trajectories exhibited minimal sub-optimality

compared to using exact collision avoidance conditions. Currently our method is

limited to cases in which the vehicle is represented by a union of Euclidean balls

and the obstacle is a bounded, convex polytope. In future work we plan to consider

representations of non-convex obstacles.
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Chapter 5

A Differentiable Signed Distance
Representation for Continuous
Collision Avoidance in
Optimization-Based Motion
Planning

5.1 Introduction

The previous chapter introduced the problem of representing collision avoidance

constraints within motion planning algorithms based on nonlinear optimization. This

is challenging as we generally lack smooth, closed-form representations of the condition

V ∩ O = ∅, where V represents the vehicle’s occupied space and O represents the

obstacle. A solution was proposed based on approximating the indicator function of

the Minkowski sum condition for collision avoidance. This approach is appealing as it

does not require introducing additional variables.

A series of works have shown how collision avoidance conditions can be suitably

represented within an NLP problem by introducing a set of differentiable conditions

and auxiliary variables that collectively ensure V ∩ O = ∅. All of these methods focus

on specific classes of convex sets and then leverage various results from convex analysis

which provide certificates that two sets do not intersect. In [38] the authors utilize a
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polar set representation of polyhedrons to establish differentiable conditions for ensur-

ing a point mass vehicle does not make contact with a polyhedral obstacle. In [37] the

authors leveraged Farkas’ Lemma to arrive at conditions ensuring collision avoidance

between a polyhedral robot and polyhedral obstacle. In [35] the authors utilized the

dual formulation of distance calculations as given in [34] to ensure a minimum signed

distance (a generalization of collision avoidance) between convex objects modeled

as the intersection of linear and second-order cone constraints. All of these works

require introducing additional variables and constraints into the problem. Generally

the number of variables is proportional to the complexity of the geometry being

represented. The resulting growth in problem size can quickly become burdensome.

Beyond the challenge of computational complexity, all of these methods only

address collision avoidance at discrete time instances arising from the transcription

method utilized. The solver may exploit this discrete approximation of a continuous-

time problem and return solutions which cut corners or pass through thin walls in an

attempt to minimize the objective. In computational geometry this is a well-studied

problem known as “tunneling" as it can occur when a fast-moving bullet in a video

game passes through thin walls. Continuous collision detection refers to the class of

algorithms in computational geometry which ensure robust collision checking at all

time instances, not just discrete time points (e.g. between frame updates in a video

game). These methods often rely on various approximations of the swept volume [49].

Ensuring continuous collision detection within optimization-based motion planners

is an open issue. In [50], the authors present an exact approach for a specific class

of dynamic models controlling point-mass vehicles navigating circles and cylinders.

In [51] the authors develop a trajectory optimization algorithm that approximately

ensures continuous collision detection for polyhedral robots navigating polyhedral

obstacles. The method utilizes a linear approximation of the non-differentiable

signed distance function. At points of non-differentiability, the resulting gradient

68



information is inaccurate making the method ill-suited for use with standard NLP

solvers which expect exact gradients. Instead the authors provide a custom solver

based on sequential convex optimization. Beyond this, to the author’s knowledge, no

other methods exist for rigorously addressing continuous collision avoidance within

optimization-based motion planners. Instead, various heuristic fixes are generally

utilized. The most common is to inflate obstacles along with introducing velocity

constraints on the vehicle to prevent it from passing through an obstacle in one time

step [33]. However, this artificially reduces the configuration space of the problem,

making tight maneuvering infeasible. Additionally it typically requires a smaller time

step, leading to more decision variables in the transcription method and therefore

larger (slower) optimization problems.

5.1.1 Contributions

In this work, we propose a novel formulation of signed distance constraints for collision

avoidance by deriving necessary and sufficient conditions related to the support

function representation of convex sets. These conditions are continuously differentiable

and can be utilized within standard optimization-based motion planning algorithms

based on nonlinear programming. Compared to existing approaches [35, 37, 38],

our method introduces fewer variables and constraints leading to smaller nonlinear

programs. Additionally our formulation allows us to represent sets given by the

convex hull of other sets. We utilize this capability to develop sufficient conditions for

ensuring continuous collision avoidance within an optimization-based motion planning

algorithm. To our knowledge, this is the first method for rigorously ensuring continuous

collision avoidance within optimization-based motion planners for arbitrary vehicle

dynamics and full-dimensional (vice point mass) geometries. We demonstrate its use

on an autonomous vehicle model performing tight maneuvering around obstacles in

which a discrete collision avoidance approach fails.
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5.2 Background

5.2.1 Notation

Let [n] := {1, 2, . . . , n}. Let Sn
++ denote the set of n×n positive definite matrices. Let

SO(n) denote the special-orthogonal group in dimension n. Let ∥c∥ := ∥c∥2, denote

the Euclidean norm of c ∈ Rn. Let Br := {x | ∥x∥2 ≤ r}. Given A ⊂ Rn, R ∈ Rn×n,

and v ∈ Rn, let RA+ v := {Rx+ v |x ∈ A}.

5.2.2 Signed Distance

Let V ,O ⊂ Rn be compact sets. The distance between the two objects is

dist(V ,O) := min
v
{∥v∥ | (V + v) ∩ O ≠ ∅}. (5.1)

If both V and O are convex, the distance can be calculated using convex optimization.

The penetration depth is

pen(V ,O) := min
v
{∥v∥ | (V + v) ∩ (O \ ∂O) = ∅}. (5.2)

The penetration depth is the minimum translation needed for V to not touch the

interior of O. Unlike distance calculations involving convex sets, calculating the

penetration depth of two convex sets is a non-convex optimization problem with

possibly multiple local minima. The signed distance combines the notions of distance

and penetration and is given by

sd(V ,O) := dist(V ,O)− pen(V ,O). (5.3)

A positive signed distance indicates two objects are separated, a negative signed

distance indicates they overlap, and a signed distance of zero indicates their boundaries

touch.
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5.2.3 Support and Cost Functions

Let A ⊆ Rn and c ∈ Rn \ 0. The support function of A is

σA(c) := sup
x∈A

cTx. (5.4)

We will find it convenient to define the following function, which we refer to as the

cost function of A:

µA(c) := inf
x∈A

cTx. (5.5)

These are related by µA(c) = −σA(−c). When A is a convex set, the support and

cost functions are convex optimization problems parameterized by the vector c.

The support and cost functions have a number of useful properties which we will

utilize in our development.

Proposition 1. Let A,B ⊂ Rn be convex sets. Let t, c ∈ Rn, R ∈ Rm×n, k ∈ R≥0.

The support and cost functions satisfy the following properties [43]:

• Scaling:

σkA(c) = kσA(c), µkA(c) = kµA(c)

• Linear Transformation:

σRA(c) = σA(RT c), µRA(c) = µA(RT c)

• Translation:

σA+v(c) = σA(c) + cTv

µA+v(c) = µA(c) + cTv

• Minkowski Sum:

σA⊕B(c) = σA(c) + σB(c)

µA⊕B(c) = µA(c) + µB(c)
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• Convex Hull:

σco({A,B})(c) = sup{σA(c), σB(c)}

µco({A,B})(c) = inf{µA(c), µB(c)}.

The following lemmas will prove useful in relating the signed distance between two

sets to their respective support and cost functions.

Lemma 5.1. Let α, β ∈ R and c ∈ Rn, ∥c∥ = 1. Given halfspaces H+ = {x | cTx ≥ α},

H− = {x | cTx ≤ β}, then

sd(H+,H−) = α− β. (5.6)

Lemma 5.2. Given V ⊆ V+ ⊆ Rn, O ⊆ O+ ⊆ Rn, then

sd(V ,O) ≥ sd(V+,O+). (5.7)

5.3 Problem Description

5.3.1 Vehicle Dynamics

Consider a continuous-time model of a vehicle with state x ∈ Rnx , control input

u ∈ Rnu , and dynamics f : Rnx × Rnu → Rnx satisfying

ẋ = f(x, u). (5.8)

In numerical optimal control, it is common to approximate continuous-time dynamics

with a discrete-time model. The discrete model is obtained by applying a numerical

integration method (e.g. Euler, Runge-Kutta) to the continuous-time dynamics over a

fixed time interval ∆T . The state and control values are then represented at indices

k ∈ Z+ corresponding to their values in continuous time at tk = k∆T . Let xk and uk

denote the state and control respectively at time tk. The value uk represents a constant

control input applied for t ∈ [tk, tk+1). Let ϕ(xi, ū, ti, t) := xi +
∫︁ t

ti
f(x(s), ū)ds denote
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the solution of (5.8) at time t ≥ ti with initial state xi and constant control input

u = ū. The resulting discrete-time model is given by1

xk+1 = ϕ(xk, uk, tk, tk + ∆T )

: = f∆T (xk, uk).
(5.9)

We refer to f∆T : Rnx × Rnu → Rnx as the discrete-time model of (5.8) with step-size

∆T .

5.3.2 Vehicle Geometry

Let A ⊂ Rn be a compact convex set describing the shape of the vehicle with dynamics

(5.8). Let

V(x) := R(x)A+ p(x) (5.10)

denote the space occupied by the vehicle where R : Rnx → SO(n), p : Rnx → Rn define

the rotation and translation respectively. We refer to V(x) as the state-dependent

geometry of the vehicle. The swept volume is defined as the total space occupied

(temporarily) by the vehicle over a time interval [ti, tf ]:

svV,f (xi, ū, ti, tf ) :=
⋃︂

t∈[ti,tf ]
V(ϕ(xi, ū, ti, t)). (5.11)

If the vehicle only undergoes linear translation the swept volume is the convex hull

of the start and end poses.

Lemma 5.3. Let the vehicle have continuous-time dynamics (5.8) with associated

geometry (5.10). Given initial state xi and control input ū, let x(t) := ϕ(xi, ū, ti, t)

denote the resulting state trajectory for t ∈ [ti, tf ]. Let xf := ϕ(xi, ū, ti, tf). Assume

R(x(t)) = R(xi)∀ t ∈ [ti, tf ]. Assume p(x(t)) = (1− ξ(t))p(xi) + ξ(t)p(xf )∀ t ∈ [ti, tf ]

where ξ : [ti, tf ]→ [0, 1] is a continuous function with ξ(ti) = 0, ξ(tf ) = 1. Then

svV,f (xi, ū, ti, tf ) = co({V(xi),V(xf )}). (5.12)
1Throughout this work, we assume this relation holds exactly such that the discrete-time model

has no integration error.

73



If the vehicle undergoes rotation or nonlinear translation, the resulting swept

volume is, in general, non-convex. Further, we cannot determine the swept volume

solely from the start and end poses. This presents a challenge for representing the

swept volume within a numerical optimal control problem which only models the

vehicle pose at discrete time steps. We assume the existence of a function that allows

us to outer approximate the swept volume given the start and end poses and control

input applied.

Assumption 5.1 (Swept Volume of Vehicle). Let the vehicle have continuous-time

dynamics (5.8), discrete-time dynamics (5.9) and associated geometry (5.10). Let the

swept volume be given by (5.11). Assume there exists a C2 function r : Rnx×Rnu → R≥0

satisfying

svV,f (xk, uk, tk, tk+1) ⊆ co({V(xk),V(xk+1)})⊕Br(xk,uk) (5.13)

where

Br(xk,uk) := {y ∈ Rn | ∥y∥ ≤ r(xk, uk)}. (5.14)

Figure 5-1 visualizes this outer approximation. The ball Br(xk,uk) accounts for

the amount by which the convex hull underapproximates the true swept volume. By

making the ball’s radius a function of the vehicle state and input, we can minimize

the extent to which we overapproximate the swept volume. For example, when the

vehicle is moving in a straight line, ideally we would have r(xk, uk) = 0.

5.3.3 Obstacle Geometry

Let B ⊂ Rn be a closed convex set describing the shape of an obstacle. Let

O(t) := S(t)B + d(t) (5.15)
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Figure 5-1. Swept volume of vehicle. As the vehicle turns more, the swept volume
deviates more from the convex hull of the start and end poses.

denote the space occupied by the obstacle at time t where S : R→ SO(n), d : R→ Rn

define the rotation and translation respectively.2 We refer to O(t) as the time-

dependent geometry of the obstacle. The swept volume of the obstacle is defined as

the total space occupied over a time interval [ti, tf ]:

svO(ti, tf ) :=
⋃︂

t∈[ti,tf ]
O(t). (5.16)

In our setting, we are only given the obstacle’s pose at tk := k∆T, k ∈ Z+, where ∆T

is the time step-size. For convenience, let Sk := S(tk), dk := d(tk) and Ok := O(tk)

such that the obstacle’s pose at time index k is

Ok = SkB + dk. (5.17)

We assume that the obstacle’s swept volume belongs to the convex hull of the start

and end poses inflated by ball Bwk
.

Assumption 5.2 (Swept Volume of Obstacle). Let the obstacle have continuous-time

geometry (5.15) and discrete-time geometry (5.17). Let the swept volume be given by
2Our notation is chosen to support moving obstacles. For stationary objects we replace S(t) and

d(t) with constants.
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(5.16). Let wk ∈ R≥0 satisfy

svO(tk, tk+1) ⊆ co({Ok,Ok+1})⊕Bwk
. (5.18)

5.3.4 Optimization-Based Motion Planning

Consider generating a motion plan over a time horizon t ∈ [0, Tf ] for a vehicle with

continuous dynamics and geometry given by (5.8) and (5.10) respectively. We use

a discrete representation of the dynamics as given by (5.9) with N∆T = Tf and

k ∈ {0, . . . , N} for some N ∈ Z+. The vehicle starts at state xS and ends at final state

xF . The vehicle must maintain a minimum signed distance of γ to an obstacle with

geometry given by (5.15).3 Let X := [xT
0 , . . . , x

T
N ]T and U := [uT

0 , . . . , uN−1]T denote

the vector of all states and controls respectively. We seek to minimize an objective

l(X,U) where l : X×U → R. The vehicle is subject to constraints h(X,U) ≤ 0 where

h : X × U → Rnh and the inequality is interpreted element-wise. We assume that

l(X,U) and h(X,U) are C2 functions. The resulting optimization problem is given by

min
X,U

l(X,U)

s.t.

x0 = xS, xN = xF ,

xk+1 = f∆T (xk, uk), k = 0, . . . , N − 1,

h(X,U) ≤ 0,

sd(V ,O) ≥ γ.

(5.19)

The signed distance function is in general, non-smooth and lacks a closed-form

representation. We focus on establishing C2 conditions that can equivalently represent

the signed distance constraints. We first address the case in which the signed distance

constraint is imposed at discrete time steps.
3We consider a single obstacle to minimize notational clutter. This is without loss of generality as

the conditions developed can be repeatedly applied to address the case of multiple obstacles.
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Problem 5.1 (Discrete Collision Avoidance). Consider the motion planning problem

given by (5.19). Find a set of C2 constraints that ensure a minimum signed distance of

γ at discrete time step tk using the vehicle state xk and additional variables y ∈ Rny :

sd(V(xk),Ok) ≥ γ ⇐⇒ ∃xk, y |h(xk, y) ≤ 0 (5.20)

where h : Rnx × Rny → Rnc is C2 and the inequality constraint is interpreted element-

wise.

Problem 5.1 only ensures the signed distance constraint is satisfied at time tk.

To ensure the continuous-time trajectory satisfies the signed distance constraint, we

evaluate the signed distance using the swept volumes of the vehicle and obstacle over

the interval t ∈ [tk, tk+1].

Problem 5.2 (Continuous Collision Avoidance). Consider the motion planning prob-

lem given by (5.19). Let the vehicle and obstacle swept volumes satisfy Assumptions

5.1 and 5.2. Find a set of C2 constraints that ensure a minimum signed distance of γ

for t ∈ [tk, tk+1] using the vehicle state xk, input uk and additional variables y ∈ Rny :

sd(svV,f (xk, uk, tk, tk+1), svO(tk, tk+1)) ≥ γ

⇐ ∃xk, uk, y |h(xk, uk, y) ≤ 0
(5.21)

where h : Rnx × Rnu × Rny → Rnc is C2 and the inequality constraint is interpreted

element-wise.

5.4 A Differentiable Signed Distance Representa-
tion

We now develop differentiable representations of the signed distance constraints. We

focus on establishing this representation for one time step tk or time interval [tk, tk+1].

This is without loss of generality as these conditions can be repeatedly applied to

address multiple time steps or intervals.
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5.4.1 Discrete Collision Avoidance

The following lemmas relate the signed distance between two convex sets C and D to

their cost and support function respectively evaluated for a given vector c.

Lemma 5.4. Given C,D ⊆ Rn, c ∈ Rn, ∥c∥ = 1 then

sd(C,D) ≥ µC(c)− σD(c). (5.22)

Lemma 5.5. Let C,D ⊆ Rn be closed convex sets. Let C and/or D be bounded. Then

there exists c ∈ Rn, ∥c∥ = 1 such that

sd(C,D) = µC(c)− σD(c). (5.23)

Lemma 5.4 suggests a simple method for representing signed distance constraints

within a nonlinear program. We introduce a decision variable c ∈ Rn, ∥c∥ = 1 along

with constraints that make c define a certificate that sd(V(xk),Ok) ≥ γ. Lemma 5.5

guarantees that such a certificate exists.

We will find it convenient to rewrite the cost and support of V(xk) and Ok in

terms of the base shape A and B. Using the properties listed in Proposition 1 yields

µV(xk)(c)− σOk
(c)

= µR(xk)A+p(xk)(c)− σSkB+dk
(c)

= (µR(xk)A(c) + cTp(xk))− (σSkB(c) + cTdk)

= µA(R(xk)T c)− σB(ST
k c) + cT (p(xk)− dk).

(5.24)

Lemma 5.6. Let the vehicle geometry V(xk) be given by (5.10). Let the obstacle

geometry Ok be given by (5.17). Then sd(V(xk),Ok) ≥ γ if and only if there exists

c ∈ Rn satisfying:

γ ≤ µA(R(xk)T c)− σB(ST
k c) + cT (p(xk)− dk), (5.25)

1 = ∥c∥. (5.26)
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Proof. ⇐: From Lemma 5.4, µV(xk)(c)− σOk
(c) ≥ γ =⇒ sd(V(xk),Ok) ≥ γ. ⇒: Let

sd(V(xk),Ok) = η where η ≥ γ. From Lemma 5.5, there exists c ∈ Rn, ∥c∥ = 1 such

that µV(xk)(c)− σOk
(c) = η.

Remark. If γ > 0 we can relax (5.26) to the convex constraint ∥c∥ ≤ 1. To see this,

first note that c = 0 cannot satisfy (5.25) for γ > 0 as the right-hand side will evaluate

to zero. Now consider a solution c in which 0 < ∥c∥ < 1. Multiplying (5.25) by 1
∥c∥ we

obtain

1
∥c∥

γ ≤ 1
∥c∥

(µA(R(xk)T c)− σB(ST
k c) + cT (p(xk)− dk)

= µA(R(xk)T c

∥c∥
)− σB(ST

k

c

∥c∥
) + cT

∥c∥
(p(xk)−dk).

Let c̃ = c
∥c∥ . From Lemma 5.4, c̃ provides a certificate that sd(V(xk),Ok) ≥ 1

∥c∥γ > γ.

Lemma 5.6 provides conditions for ensuring a minimum signed distance between

the vehicle and obstacle. In some applications, it may be desired to also ensure

a maximum distance or fixed distance to an obstacle. For example, in surveillance

applications we may wish to navigate an environment while remaining within range of a

communication tower. Lemma 5.6 can be extended to allow for maximum (or constant)

distance constraints. This requires introducing additional variables o ∈ Ok, v ∈ V(xk)

which provide a certificate of the minimum distance between the objects.

Lemma 5.7. Let the vehicle geometry V(xk) be given by (5.10). Let the obstacle

geometry Ok be given by (5.17). Let γlb, γub ∈ R satisfy 0 ≤ γlb ≤ γub. Then
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sd(V(xk),Ok) = γ if and only if there exists γ ∈ R, c, o, v ∈ Rn satisfying:

γ = µA(R(xk)T c)− σB(ST
k c) + cT (p(xk)− dk), (5.27)

1 = ∥c∥, (5.28)

o ∈ Ok, (5.29)

v ∈ V(xk), (5.30)

v = o+ γc, (5.31)

γlb ≤ γ ≤ γub. (5.32)

Proof. ⇐: From Lemma 5.4, µV(xk)(c)− σOk
(c) = γ =⇒ sd(V(xk),Ok) ≥ γ. Given

∥c∥ = 1 and v = o + γc =⇒ ∥o − v∥ = γ =⇒ dist(V(xk),O) ≤ γ =⇒

sd(V(xk),Ok) ≤ γ. Thus sd(V(xk),Ok) = γ. ⇒: Let sd(V(xk),Ok) = γ for some

γ ≥ 0 =⇒ dist(V(xk),Ok) = γ. From Lemma 5.5, there exists c ∈ Rn, ∥c∥ = 1 such

that µV(xk)(c)−σOk
(c) = γ. Given dist(V(xk),Ok) = γ =⇒ ∃ o ∈ Ok, v ∈ V(xk) such

that ∥o − v∥ = γ =⇒ v = o + γd for some d ∈ Rn, ∥d∥ = 1. Assume d ̸= c =⇒

cTd < 1 =⇒ cT (v − o) = γcTd < γ. However, cT (v − o) ≥ µV(xk)(c)− σOk
(c) = γ a

contradiction. Thus d = c and there exists c, o, v satisfying v = o+ γc.

Lemmas 5.6 and 5.7 provide differentiable representations of signed distance

constraints in the case that µA(c), σB(c) are given by C2 functions. Points and

ellipsoids satisfy this condition. We handle more general convex sets using the dual

form of the optimization problems defining the cost and support functions.

Lemma 5.8. Let the vehicle geometry V(xk) be given by (5.10). Let the obstacle

geometry Ok be given by (5.17). Let A and B have non-empty interior. Assume the

dual form of the cost function of A and support function of B is given by

µdual
A (c) := sup

zµ

{fµ(c, zµ) |hµ(c, zµ) ≤ 0}, (5.33)

σdual
B (c) := inf

zσ
{fσ(c, zσ) |hσ(c, zσ) ≤ 0} (5.34)
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respectively where zµ ∈ Rnzµ , zσ ∈ Rnzσ , fµ : Rn × Rnzµ → R, fσ : Rn × Rnzσ → R, hµ :

Rn × Rnzµ → Rmµ , hσ : Rn × Rnzσ → Rmσ . Then sd(V(xk),Ok) ≥ γ if and only if

there exists c ∈ Rn, zµ ∈ Rnzµ , zσ ∈ Rnzσ satisfying:

γ ≤ fµ(R(xk)T c, zµ)− fσ(ST
k c, zσ) + cT (p(xk)− dk), (5.35)

0 ≥ hµ(R(xk)T c, zµ), (5.36)

0 ≥ hσ(ST
k c, zσ), (5.37)

1 = ∥c∥. (5.38)

Proof. Given A and B have non-empty interior, the convex optimization problems

defining the cost and support functions satisfy Slater’s condition for zero duality

gap [34]. Thus there exists zµ, zσ such that µdual
A (c) = µA(c) and σdual

B (c) = σB(c)

respectively. Given zero duality gap, the stated conditions are equivalent to those of

Lemma 5.6.

If the functions fµ, hµ, fσ, hσ are C2, then Lemma 5.8 provides a differentiable

representation of the signed distance constraints. Lastly, we leverage the convex hull

property of the cost and support functions to represent shapes defined by the convex

hull of multiple convex sets.

Theorem 5.1. Let the vehicle geometry V(xk) be given by (5.10). Let the obstacle

geometry Ok be given by (5.17). Let A = co({A(i), i ∈ [nA]}) and B = co({B(j), j ∈

[nB]}) where each A(i),B(j) is a convex set. Then sd(V(xk),Ok) ≥ γ if and only if

there exists c ∈ Rn, α, β ∈ R satisfying

α ≤ µA(i)(R(xk)T c), i ∈ [nA],

β ≥ σB(j)(ST
k c), j ∈ [nB],

γ ≤ α− β + cT (p(xk)− dk),

1 = ∥c∥.
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Proof. Note that α ≤ µA(i)(R(xk)T c), i ∈ [nA] =⇒ α ≤ µA(R(xk)T c) by the convex

hull property of the cost function. Similarly, β ≥ σB(j)(ST
k c), j ∈ [nB] =⇒ β ≥

σB(ST
k c). The remainder of the proof follows the same arguments as Lemma 5.6.

Remark. If nA = 1 in Theorem 5.1 then we can set α = µA(R(xk)T c) without loss of

generality. The variable α can be eliminated (replaced with µA(R(xk)T c)). Similarly,

if nB = 1 we can eliminate the variable β. If nA = 1 and nB = 1, Theorem 5.1 reduces

to Lemma 5.6.

5.4.2 Examples

We now apply Theorem 5.1 to obtain collision avoidance conditions for polyhedral

and ellipsoidal shapes. In doing so, we will see that this formulation introduces

fewer variables and constraints than the duality-based formulation of [35]. This can

be beneficial for reducing the computational complexity of the nonlinear program.

Although our examples are limited to cases in which the vehicle and obstacle shape

are of the same class, it is straight-forward to extend these results to cases in which

different classes are present (e.g. polyhedral vehicle and ellipsoidal obstacle).

5.4.2.1 Polyhedrons

Consider the case in which both the vehicle shape and obstacle shape are convex,

compact polyhedrons in Rn with nA and nB vertices respectively:

A = co({ai ∈ Rn, i ∈ [nA]}),

B = co({bj ∈ Rn, j ∈ [nB]}).

Note that for a single point q ∈ Rn we have µq(c) = σq(c) = cT q. Using Theorem

5.1 we obtain conditions to ensure a minimum signed distance of γ between two
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polyhedrons:

α ≤ cTR(xk)ai, i ∈ [nA]

β ≥ cTSkbj, j ∈ [nB]

γ ≤ α− β + cT (p(xk)− dk),

1 = ∥c∥

Remark. We contrast this with the method of [35] which assumes a halfspace-

representation (vice vertex representation) of a compact polyhedron. Let mA,mB be

the number of linear constraints necessary to describe A,B respectively. The dual

approach introduces (mA + mB) variables and (2 + n + mA + mB) constraints to

represent the signed distance constraint. Note we must have mA,mB ≥ n+ 1 for A,B

to be compact with non-empty interior. Our formulation introduces (2 + n) variables

and (2 + nA + nB) constraints. For the case in which nA = mA, nB = mB, our method

introduces fewer variables and fewer constraints.4

5.4.2.2 Ellipsoids

Let the vehicle shape and obstacle shape be ellipsoids given by matrices P,Q ∈ Sn
++:

A = {x ∈ Rn |xTP−1x ≤ 1},

B = {x ∈ Rn |xTQ−1x ≤ 1}.

Recall that ellipsoids have a closed-form cost and support function given by µA(c) =

−
√
cTPc and σB(c) =

√︂
cTQc. As nA = 1 and nB = 1, Theorem 5.1 reduces to Lemma

5.6 yielding:

γ ≤ −
√︂
cTR(xk)PR(xk)T c−

√︂
cTSkQST

k c

+ cT (p(xk)− dk),

1 = ∥c∥.
4A similar remark applies to the method of [37] which uses Farkas’ Lemma. This requires

introducing (mA + mB) variables and (2(mA + mB) + 1) constraints.
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Remark. The dual formulation in [35] uses second-order cone constraints to represent

ellipsoids. Each second-order cone constraint introduces a dual variable pair λ ∈

R, u ∈ Rn and the constraint λ ≥ ∥u∥. In total the dual formulation introduces

2(n + 1) variables and (4 + n) constraints. Our formulation introduces n variables

and two constraints.

Remark. The support function of an ellipsoid involves the square root, which is not

differentiable at the origin. Given P ≻ 0, the argument only evaluates to zero for

c = 0 which cannot be a solution. However, we may experience issues if the solver is

initialized with c = 0. We can add a small smoothing term ϵ > 0 to address this case.

Noting that −
√
cTPc+ ϵ < −

√
cTPc it is seen that this modification is conservative

in that satisfying the conditions of Lemma 5.6 means µV(xk)(c) − σOk
(c) > γ. The

signed distance constraint is then strictly satisfied.

5.4.2.3 General Convex Sets

Let the vehicle and obstacle geometry be convex sets of the form

A = {x ∈ Rn | pi(x) ≤ 0, i ∈ [nA]} (5.39)

B = {x ∈ Rn | qj(x) ≤ 0, j ∈ [nB]} (5.40)

where pi : Rn → R, i ∈ [nA] and qj : Rn → R, j ∈ [nB] are smooth, convex functions.

It can be shown that the cost and support functions in dual form are given by:

µdual
A (c) = max

xA,λAi

{cTxA +
∑︂

i∈[nA]
λAi

pi(xA) | c+
∑︂

i∈[nA]
λAi
∇pi(xA) = 0, λAi

≥ 0, i ∈ [nA]}

(5.41)
σdual

B (c) = min
xB,λBj

{cTxB −
∑︂

j∈[nB]
λBj

qj(xB) | c−
∑︂

j∈[nB]
λBj
∇qj(xB) = 0, λBj

≥ 0, j ∈ [nB]}

(5.42)

Using Theorem 5.6, we obtain the following conditions which collectively ensure a

minimum signed distance of γ.
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γ ≤
(︂
cTR(x)xA +

∑︂
i∈[nA]

λipi(xA)
)︂
−
(︂
cTSxB −

∑︂
j∈[nB]

qj(xB)
)︂

+ cT (p(x)− d) (5.43)

0 = R(x)T c+
∑︂

i∈[nA]
λAi
∇pi(xA) (5.44)

0 ≤ λAi
, i ∈ [nA] (5.45)

0 = ST c−
∑︂

j∈[nB]
λBj
∇qj(xB) (5.46)

0 ≤ λBj
, j ∈ [nB] (5.47)

1 = ∥c∥ (5.48)

Remark. To our knowledge no other collision avoidance formulations address the

case in which the geometries are of the form (5.39), (5.40). This formulation is useful

for its generality. Given raw data such as a point cloud representing a shape, methods

based on sum-of-squares optimization can be leveraged to turn the data into a model

of the form (5.39) [13, 52].

5.4.2.4 Convex Sets with Linear and Second-Order Cone Constraints

Let the vehicle geometry be a convex set given by nA linear constraints and mA

second-order cone constraints. Let the obstacle geometry be a convex set given by nB

linear constraints and mB second-order cone constraints. The sets have the form

A = {x ∈ Rn | 0 ≤ Cx+ d, ∥Aix+ bi∥ ≤ cT
i x+ di, i ∈ [mA]}, (5.49)

B = {x ∈ Rn | 0 ≤ Gx+ h, ∥Ejx+ fj∥ ≤ gT
j x+ hj, j ∈ [mB]}. (5.50)

where C ∈ RnA×n, d ∈ RnA , Ai ∈ Rn×n, bi ∈ Rn, ci ∈ Rn, di ∈ R, i ∈ [mA] and

G ∈ RnB×n, h ∈ RnB , Ej ∈ Rn×n, fj ∈ Rn, gj ∈ Rn, hj ∈ R, j ∈ [mB].

For the dual form of µA(c) we introduce dual variables λ ∈ RnA for the linear

constraints and (λi, ui) ∈ R × Rn, i ∈ [mA] for the second-order cone constraints.

Similarly, for the dual form of σB(c) we introduce dual variables ξ ∈ RnB for the linear

constraints and (ξj, wj) ∈ R× Rn, j ∈ [mB] for the second-order cone constraints.
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µdual
A (c) = max

λ,λi,ui

{−dTλ+
∑︂

i∈[mA]
bT

i ui − diλi | c− CTλ+
∑︂

i∈[mA]
AT

i ui − ciλi = 0,

λ ≥ 0, λi ≥ ∥ui∥, i ∈ [mA]}
(5.51)

σdual
B (c) = min

ξ,ξj ,wj

{hT ξ −
∑︂

j∈[mB]
fT

j wj + hjξj | c+GT ξ −
∑︂

j∈[mB]
ET

j wj + gjξj = 0,

ξ ≥ 0, ξj ≥ ∥wj∥, j ∈ [mB]}
(5.52)

Using the dual forms in conjunction with Lemma 5.8 we can readily obtain

differentiable signed distance constraints.

5.4.3 Continuous Collision Avoidance

Theorem 5.1 provides differentiable conditions for representing signed distance con-

straints between a vehicle and obstacle at discrete time steps tk, k ∈ Z+. As the vehicle

and obstacle transition between these discrete poses, the signed distance constraint

may not be satisfied. This can be resolved by enforcing signed distance constraints

with respect to the swept volume of the vehicle and obstacle over the time interval

t ∈ [tk, tk+1].

Assumptions 5.1 and 5.2 define outer approximations of the swept volume of the

vehicle and obstacle respectively. These approximations utilize the convex hull and

Minkowski sum operators. To account for the Minkowski sum operator we will make

use of the following lemma.

Lemma 5.9. Let C,D ⊂ Rn be closed convex sets. Let C and/or D be bounded. Let

rC, rD ∈ R≥0. Then

sd(C ⊕BrC ,D ⊕BrD) = sd(C,D)− rC − rD. (5.53)

The following relation results from applying Lemma 5.2 with Assumptions 5.1 and
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5.2 followed by Lemma 5.9:

sd(svV,f (xk, uk, tk, tk+1), svO(tk, tk+1)) ≥ γ

⇐ sd(co({V(xk),V(xk+1)})⊕Br(xk,uk), co({Ok,Ok+1})⊕Bwk
) = γ

⇐⇒ sd(co({V(xk),V(xk+1)}), co({Ok,Ok+1})) = γ + r(xk, uk) + wk.

(5.54)

From this relation, we can extend Theorem 5.1 to obtain sufficient conditions for

continuous collision avoidance.

Theorem 5.2. Let the vehicle dynamics and geometry satisfy Assumption 5.1. Let

the obstacle geometry satisfy Assumption 5.2. Let A = co({A(i), i ∈ [nA]}) and

B = co({B(j), j ∈ [nB]}) where each A(i),B(j) is a convex set.

Then sd(svV,f(xk, uk, tk, tk+1), svO(tk, tk+1)) ≥ γ if there exists c ∈ Rn, α, β ∈ R

satisfying

α ≤ µA(i)(R(xk)T c), i ∈ [nA]

α ≤ µA(i)(R(xk+1)T c) + cT (p(xk+1)− p(xk)), i ∈ [nA]

β ≥ σB(j)(ST
k c), j ∈ [nB]

β ≥ σB(j)(ST
k+1c) + cT (dk+1 − dk), j ∈ [nB]

γ ≤ α− β + cT (p(xk)− dk)− r(xk, uk)− wk

1 = ∥c∥.

Proof. The stated conditions arise from applying the necessary and sufficient conditions

of Theorem 5.1 to ensure a signed distance of γ + r(xk, uk) + wk between the sets

co({V(xk),V(xk+1)}) and co({Ok,Ok+1}). From (5.54), this is sufficient for ensuring

a signed distance of γ between svV,f (xk, uk, tk, tk+1) and svO(tk, tk+1).

Remark. Theorem 5.2 is only sufficient because we are outer-approximating non-

convex swept volumes with convex sets. For example, in Figure 5-1, the right subplot

shows an aggressive turn in which our outer approximation introduces noticeable

conservatism. Here we are intentionally using a large integration step size (∆T = 0.77s)
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to highlight this aspect. In practical applications, one can reduce the integration step

size until this conservatism is acceptable.

5.5 Examples

We demonstrate our method using a car model navigating in R2 [35]. The vehicle

state consists of positions (px, py), orientation (ψ), velocity (v), and steering angle (δ).

The inputs are acceleration (a) and steering rate (s). The parameter L = 2.7 is the

wheelbase. The continuous-time dynamics are:

ṗx = v cosψ

ṗy = v sinψ

ψ̇ = v
tan δ
L

v̇ = a

δ̇ = s

(5.55)

The vehicle’s shape is a polyhedron A = co({(±2.5,±1)}). The space occupied by

the vehicle is given by

V(x) = R(x)A+ p(x) (5.56)

where

p(x) =
[︄
px

py

]︄
, R(x) =

[︄
cosψ − sinψ
sinψ cosψ

]︄
. (5.57)

5.5.1 Swept Volume Approximation Model

The continuous collision avoidance conditions require a C2 function r : Rnx×Rnu → R≥0

satisfying Assumption 5.1. We outline out a practical method for doing so. We first

simulate the continuous dynamics over a time interval t ∈ [0,∆T ] where ∆T is the

discrete time step used in the optimal control problem. We do this for various initial

states x(i)
k and control inputs u(i)

k within expected ranges. For each sample (x(i)
k , u

(i)
k )
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Figure 5-2. Autonomous car navigating obstacles. Discrete collision avoidance incorrectly
passes through walls (upper left) and cuts corners (lower left). Continuous collision
avoidance prevents these erroneous behaviors by checking collision with respect to an outer
approximation of the swept volume.

we compute the convex hull of the resulting swept volume. We then compute the

minimum radius r(i) such that co({V(x(i)
k ),V(x(i)

k+1)})⊕Br(i) ⊇ co(svV,f (xk, uk, 0,∆T )).

Finally we fit a non-negative function to the resulting data samples {x(i)
k , u

(i)
k , r

(i)}.

This can be done using sum-of-squares (SOS) optimization [16]. In our examples

we utilized an 8th-order SOS polynomial r(vk, δk) to represent the ball radius as a

function of vehicle velocity and steering angle.

5.5.2 Results

5.5.2.1 Thin Wall

We first consider navigating around a thin wall and require sd(V(x),O) ≥ 0. The

vehicle begins at (px = 0, py = 25, ψ = 0) and must end at (px = 100, py = 25, ψ = 0)

while minimizing the squared-norm of the control effort l(X,U) = ∥U∥2
2. We set the

time horizon to 10s and use N = 13 steps, giving a discrete-time step of ∆T = 10
13 .

We use a 4th-order Runge-Kutta method to obtain the discrete dynamic model

xk+1 = f∆T (xk, uk). We solve (5.19) using both the discrete collision avoidance

conditions (Theorem 5.1) and the continuous collision avoidance conditions (Theorem

5.2). When solving with the discrete collision avoidance conditions, the trajectory

passes through the wall in order to minimize the control effort. We note that other
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methods for optimization-based collision avoidance such as [35] are susceptible to

this behavior. By utilizing the continuous collision avoidance conditions, the solver is

prevented from exploiting the discrete approximation and returns a trajectory which

successfully avoids the wall. Figure 5-2 shows the results in the upper subplots. We

note that the outer approximation of the swept volume is only slightly conservative

compared to the true swept volume as shown by the blue borders.

5.5.2.2 Corner Cutting

Another issue commonly faced by optimization-based motion planners is corner cutting.

To demonstrate this, we replace the thin obstacle with a wide obstacle. Due to the

velocity constraints on the vehicle, it is not possible for the discrete-time trajectory to

“jump over" the obstacle. Instead, the discrete collision avoidance constraints yield a

trajectory that turns to avoid the obstacle. However, it cuts the corner at (40, 40) to

minimize the necessary maneuvering. The continuous collision avoidance conditions

again prevent this from happening. Figure 5-2 shows the results in the lower subplots.

5.5.2.3 Parallel Parking

We now consider a parallel parking problem from [35]. Figure 5-3 is reproduced from

[35] which only considered discrete collision avoidance. Notably, although the discrete

poses avoid the obstacles, it is clear that the continuous trajectory would cut the corner

at (3,5). We solve this problem using a time-step of ∆T = 1.0s and time horizon of

40 seconds. Figure 5-4 shows the results with both discrete collision avoidance and

continuous collision avoidance. As expected, the discrete collision avoidance trajectory

cuts the corner at (3, 5). In contrast, the continuous collision avoidance does not.

Figure 5-5 provides a closer view.

Figure 5-6 shows the velocity and steering profiles for the 40-second parallel parking

maneuver. The velocity profile of the discrete collision avoidance solution switches
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Figure 5-3. Parallel parking example reproduced from [35].

Figure 5-4. Parallel parking with discrete (left) and continuous (right) collision avoidance.

direction two times (i.e. the vehicle initially moves forward, then reverses, then moves

forward again). In contrast, the continuous collision avoidance solution switches

direction five times in order to avoid the obstacles. The latter is notable for its

complexity. In this tightly constrained environment ensuring continuous collision

avoidance cannot be achieved by simply turning more aggressively (note that the

steering angle is already saturated for portions of the maneuver). Instead, the car must

make multiple, small forward-reverse adjustments once it is approximately within the

parking spot, similar to what a human driver would naturally do. This demonstrates

the power of optimization-based motion planning for tackling difficult maneuvering

situations for autonomous systems.
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Figure 5-5. Parallel parking with discrete (left) and continuous (right) collision avoidance.
Discrete collision avoidance clips the corner.
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Figure 5-6. Steering and velocity profiles for parallel parking maneuver.

5.5.2.4 Constant Distance

Lastly, we briefly demonstrate the use of Lemma 5.7 for imposing a maximum distance

constraint (vice just a lower bound). The vehicle begins at position (px = −10, py =

3, ψ = π
2 ) and must navigate to position (px = 10, py = 3, ψ = 3π

2 ) while maintaining

a constant distance of 6m from an obstacle. Figure 5-7 shows the resulting profile.

The green line segments connect a pair of points (o, v) identified by the solver as a

certificate of the minimum distance. We note that this pair is not necessarily unique.

The right subplot shows the minimum distance during the 20s profile. As expected,

the car maintains a constant distance of 6m to the obstacle.
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Figure 5-7. Maneuvering while maintaining a constant distance to an obstacle.

5.5.3 Implementation Details

All examples were solved on a MacBook Pro with a 2.6 GHz 6-Core Intel Core i7 CPU.

IPOPT [47] with the MA27 linear solver was used to solve the nonlinear optimization

problems with exact gradients and Hessians supplied by CasADi [48].

5.6 Conclusion

A novel formulation of collision avoidance based on signed distance constraints was

proposed for convex-shaped vehicles navigating convex obstacles. This formulation is

continuously differentiable and therefore suitable for incorporation within optimization-

based motion planning algorithms. For the important case of polyhedral and ellipsoidal

shapes, this representation is more compact than existing formulations as it introduces

fewer additional variables and constraints. Additionally, this formulation can be used

to ensure the continuous-time trajectory satisfies the collision avoidance constraints

despite being planned in a discrete setting. This provides a rigorous means of

preventing “tunneling" and corner-cutting which can occur when collision avoidance

is only enforced at discrete time steps. Further we provided a novel extension that

allows one to impose upper bounds on the distance between a vehicle and an obstacle.
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Chapter 6

Future Work

Chapter 5 developed a novel approach for representing signed distance constraints as

a set of differentiable conditions. The method relied on using the support function

representation of convex sets. Beyond signed distance constraints, variations of this

approach can be used to address a number of challenging problems in optimization-

based motion planning. We conclude this dissertation by briefly outlining some of

these extensions.

6.1 Robust Motion Planning

In the optimization-based motion planning algorithms considered so far, the dynamics

are assumed to be known exactly. However, there is typically a mismatch between the

assumed model and that of reality. The dynamics model may be an approximation

and/or there may be uncontrolled inputs arising from the environment (e.g. wind

blowing on a quadcopter). We generically account for model mismatch by introducing

a disturbance term w into our standard dynamic model

ẋ = f(x, u, w) (6.1)

along with the constraint w ∈ W where W is the set of all possible disturbances.

Without loss of generality, we can assume this set contains the origin and we refer to

the case w = 0 as the nominal (undisturbed) model.
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Traditional optimization-based planning algorithms do not account for the impact

of these disturbances. Instead, it is assumed that closed-loop feedback control is used

to compensate for disturbances. Heuristics are used in the planning stage to obtain

solutions that provide enough operating margin for the controllers to successfully

reject disturbances. For example, it is common to use objectives that penalize the

control effort utilized. This indirectly keeps the control commands away from their

limits so the lower-level feedback control can make small adjustments to account for

disturbances.

Robust motion planning algorithms explicitly account for disturbances. One

popular method is DIRTREL (DIRect TRanscription with Ellipsoidal disturbances

and Linear feedback) [53]. DIRTREL accounts for the impact of disturbances by

propagating them through linearized approximations of the system dynamics in a

manner similar to an extended Kalman filter. This yields ellisoidal approximations of

the system state distribution at a given time index k,

xk ∈ x̄k + {δx | δxTE−1δx ≤ 1} (6.2)

where x̄k ∈ Rn is the nominal state and E ∈ Sn
++ defines the uncertainty. The main

contribution of DIRTREL is a method for generating the uncertainty matrices E

within a motion planning algorithm.

DIRTREL does not provide a means to ensure that the constraints are satisfied

for all possible realizations of the uncertainty. Instead, the authors propose sampling

from this uncertainty by extracting the extreme values of the ellipsoid which are given

by the columns of the matrix square root

xk ∈ x̄k ± (col E 1
2 ). (6.3)

Robust motion planning is then approximately achieved by ensuring that the con-

straints are satisfied at the given sample points. This approach has two main drawbacks.

First, other realizations of the uncertainty (beyond the extreme points) may still
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violate the constraints. Second, extracting these extreme points requires embedding

a differentiable representation of the matrix square root operation within a non-

linear program. This is computationally intensive and the available methods (e.g.

Denman-Beavers, Babylonian) are not guaranteed to converge.

In motion planning problems, most state constraints of practical interest can be

posed as ensuring x ∈ G or x ̸∈ G where G is a convex set. Under uncertainty, the

point x becomes a set X and robust motion planning requires ensuring X ⊆ G or

X ∩ G = ∅. If X and G are convex sets, we can use the methods of chapter 5 to

represent these set constraints in a differentiable manner. For example, we can exactly

represents the ellipsoidal uncertainty of DIRTREL instead of approximating it with

samples obtained from the matrix square root operation.

To briefly demonstrate this we consider motion planning of a Dubin’s car model

navigating around two circular obstacles. The vehicle is subject to disturbances which

push it off the nominal trajectory planned. Figure 6-1 shows the trajectory obtained

with DIRTREL. The blue line shows the nominal trajectory. The red ellipsoids

represented the uncertainty bounds at each discrete time index. DIRTREL ensures

the extreme points (green dots) of these ellipsoid do not touch the obstacle.1 However,

other realizations of the uncertainty may still violate the constraints. We simulate the

system with 100 different realizations of the uncertainty and plot the continuous time

trajectories in gray. Of these samples, 10 instances violate the constraints (touch the

yellow obstacles).

Figure 6-2 shows the same example but exactly representing the ellipsoidal un-

certainty sets using the methods of chapter 5. Similar to our method for continuous

collision avoidance, we approximately ensure robustness between discrete time points

by enforcing constraints using the convex hull of neighboring ellipsoids. This yields the

connected tube shown in red. We simulate the system with the same 100 realizations
1The system has 3 states (x, y, θ) so our 2D plots of (x, y) show 6 extreme points per ellipsoid.

96



Figure 6-1. DIRTREL with sampled ellipsoid approximation.

of the uncertainty. All samples satisfy the constraints (no trajectories touch the

yellow obstacles). Further, by eliminating the problematic Denman-Beavers algorithm

we obtain a more efficient nonlinear program. The original DIRTREL formulation

took 5.3 seconds to solve. With the revised formulation this is reduced to 0.7s using

the same solver settings. We note that Denman-Beavers requires matrix inversion

operations which prevent us from using the fast scalar symbolic math (SX variables)

within the automatic differentiation tool CasADi [48]. Instead we must use the slower,

matrix symbolic math (MX variables). Our formulation allows us to use either. Using

SX variables, the computation time is further reduced from 0.7s down to 130ms, a

40x-speedup relative to the original DIRTREL formulation.

6.2 Bilevel Optimization with Convex Subproblems

Bilevel optimization refers to hierarchical optimization problems consisting of two

levels. An upper-level optimization problem (the leader) determines the value of

decision variable x. Based on the value of x a lower-level optimization problem (the

follower) determines the value of decision variable y. These variables are linked through

the objectives F (x, y), f(x, y) and “coupling constraints” G(x, y) and g(x, y).
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Figure 6-2. DIRTREL with exact ellipsoid representation.

min
x ∈ X , y ∈ Y

F (x, y)

s.t.

G(x, y) ≤ 0

y ∈ arg min{f(x, y) : g(x, y) ≤ 0}

(6.4)

Many subtle variations exist in the bilevel literature. Here we are showing the

most common formulation. If the minimizing argument of the lower-level problem is

non-unique, the upper-level optimization problem is free to choose the preferred value

of y. For this reason, this formulation is sometimes referred to as “optimistic” bilevel

optimization.

Solving bilevel problems typically requires reformulating the lower-level problem

to obtain a “single-level” problem which is accepted by optimization solvers. In many

applications, the lower-level problem is convex. Under appropriate constraint qualifi-

cations (e.g. Slater’s), the implicitly-defined lower-level problem can be equivalently

represented by the Karush-Kuhn-Tucker (KKT) conditions. This requires introducing

additional decision variables representing the Lagrange multipliers. This is by far the

most common reformulation.

Besides the algebraic conditions of optimality given by the KKT conditions, we
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can also define optimal points geometrically in terms of a supporting hyperplane. Let

f be a differentiable convex function and Z = {z | g(z) ≤ 0} be a convex set. Then

z∗ ∈ arg min{f(z) : g(z) ≤ 0} ⇐⇒ z∗ ∈ Z,∇f(z∗)T (z − z∗) ≥ 0 ∀z ∈ Z. (6.5)

Here −∇f(z∗) defines a supporting hyperplane to the feasible set at z∗ [34]. Note the

following trivial relation

∇f(z∗)T (z − z∗) ≥ 0 ∀z ∈ Z ⇐⇒ ∇f(z∗)T z∗ ≤ min
z∈Z
∇f(z∗)T z. (6.6)

The right-hand-side of this expression involves the cost function that was introduced

in chapter 5

µZ(c) := min
z∈Z

cT z. (6.7)

There we developed differentiable representations of this cost function for a variety of

convex sets. We can utilize this same machinery to reformulate our convex lower-level

problem into algebraic conditions. Letting Y(x) := {y | g(x, y) ≤ 0} we obtain

y∗ ∈ arg min{f(x, y) : g(x, y) ≤ 0} ⇐⇒ y∗ ∈ Y(x),∇f(x, y∗)Ty∗ ≤ µY(x)(∇f(x, y∗)).
(6.8)

The latter can be represented using the methods of chapter 5. The resulting expressions

are distinct from those obtained from the KKT conditions. Appealingly, for simple

convex sets such as ellipsoids and polyhedrons, no dual variables are required leading

to compact representations. Surprisingly, a recent survey of methods for solving bilevel

problems with convex lower-level problems makes no mention of this formulation [54].

Bilevel problems arise naturally in economics and operations research. More

recently their use has become popular in planning and control of robotics [55]. Chal-

lenging physical properties such as friction and other non-smooth mechanics can be

represented implicitly by an optimization problem. Similarly, the actions of other

intelligent agents in a scenario may be defined by an optimization problem. Modeling

these implicitly-defined systems within a motion planning problem leads to a bilevel
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formulation. We briefly demonstrate these formulations using the optimality conditions

given by (6.8).

6.2.1 Modeling of Pursuit-Evasion

Consider the classic problem of pursuit-evasion between two agents. The evader wishes

to reach a target while ensuring a pursuer does not intercept them prior to arriving

at the target. One simple model of the pursuer’s behavior would be to minimize the

distance of its position pP
k ∈ Rn to the evader’s position pE

k ∈ Rn at time index k.

We assume the pursuer can only move a finite distance between discrete time steps,

pP
k − pP

k−1 ∈ R, where R ⊆ Rn is a convex set. This leads to a simple projection

representation of the pursuer’s behavior

pP
k ∈ arg min{∥pP

k − pE
k ∥ : pP

k − pP
k−1 ∈ R}. (6.9)

For example, assume that R = {y | ||y|| ≤ r}. Using the results of chapter 5 along

with (6.8), we can model the pursuer’s behavior at time index k as satisfying

∥pP
k − pP

k−1∥ ≤ r (6.10)

(pP
k − pE

k )TpP
k ≤ −r

√︂
(pP

k − pE
k )T (pP

k − pE
k ). (6.11)

We utilize this formulation to solve a basic pursuit-evasion problem. The evader is

modeled as a Dubin’s car which must travel from (0, 0) to (10, 0) over a 2-second time

horizon. It must ensure a given minimum distance from a pursuer that is initially

located at (10, 0) and moves according to the guidance law (6.9). We model the

dynamics using a time step of 0.02s. The pursuer is able to move 0.1m per time step

such that R = {y | ∥y∥ ≤ 0.1} in (6.9). The evader’s objective is to minimize the

control effort utilized to evade the pursuer while still reaching the target. We pose

this as a numerical optimal control problem using the constraints (6.10) and (6.11) to

model the pursuer’s implicitly-defined guidance law. Figure 6-3 shows the resulting

evasive maneuvers that ensure minimum distances of 1 and 3 to the pursuer.
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Figure 6-3. Minimum effort evasion for ensuring distance of 1 (upper) and 3 (lower) to
pursuer.

6.2.2 Modeling the Pusher-Slider System

The pusher-slider system is a popular model for studying planar pushing of objects

through frictional contacts. The system consists of a planar object with position (x, y)

and orientation θ. A pusher makes contact with one edge of the object along which it

can slide. The position of the pusher along its sliding axis is given by py. The pusher

can apply a non-negative normal force fn in the body-frame of the object along with

a tangential force ft that is constrained by a friction cone

− µpfn ≤ ft ≤ µpfn (6.12)

where µp > 0 is the coefficient of friction. The pusher can slide (ṗy ̸= 0) only when

the tangential force is at the boundary of the friction cone as shown by Figure 6-4.

For further details of the model we refer the reader to [56].
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Figure 6-4. Friction model of pusher-slider.

The friction model in Figure 6-4 can be represented as

ft ∈ arg min{−ṗyft : −µpfn ≤ ft ≤ µpfn}. (6.13)

This is a linear program parameterized by fn and ṗy. Using the results of chapter 5

along with (6.8), we can represent ft equivalently as belonging to the set of points

satisfying

−ṗyft ≤ −ṗyµpfn (6.14a)

−ṗyft ≤ ṗyµpfn (6.14b)

−µpfn ≤ ft ≤ µpfn. (6.14c)

Alternatively we could equivalently represent ft in terms of the KKT conditions for the

linear program. However this yields a larger set of constraints along with introducing

dual variables associated with the inequalities.

We pose a problem of moving an object from (0, 0) to (0, 0.4) while avoiding

three obstacles. Obstacle avoidance conditions are enforced using the method of

Chapter 5. We use a time step of 0.1s and a time horizon of 5s. With the friction

model represented by (6.14) we obtain a solution in 3.3s using IPOPT. With the
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Figure 6-5. Pusher-slider system moving block from (0, 0) to (0, 0.4) over 5 seconds.

friction model represented in terms of the KKT conditions IPOPT failed to converge.

Figure 6-5 shows the resulting trajectory with the friction modeled based on the

proposed reformulation. Figure 6-6 shows the forces applied and slider position. For

the tangential force we also plot the bounds given by the friction cone. During time

intervals in which the pusher position changes the tangential force is on the boundary

of the friction cone as expected.
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Figure 6-6. Pusher-slider force and position profile for moving block from (0, 0) to (0, 0.4)
over 5 seconds.

6.3 Conclusion

This dissertation developed new methods for representing various semialgebraic sets

that arise in planning and control of autonomous systems. Chapters 2-4 relied on

sum-of-squares optimization to find inner or outer approximations of sets of interest.

In contrast, Chapter 5 utilized the support function representation of sets to obtain

exact reformulations of signed distance constraints between convex sets. In this closing

chapter it was shown how this method can be extended to address motion planning

when uncertainty is present or the dynamics are defined implicitly by an optimization

problem. We plan to further pursue these directions in future work.
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Appendix A

Proofs

A.1 Proof of Lemma 2.3

Proof. Assume 1 < s⋆ < s satisfies F ⊆ X ⊆ s⋆F . Let x, sx ∈ X , x ̸= 0 such

that tx ̸∈ X ∀ t ∈ (1, s). Given sx ∈ X =⇒ sx ∈ s⋆F =⇒ s
s⋆x ∈ F . However,

1 < s
s⋆ < s =⇒ s

s⋆x ̸∈ F , a contradiction. Thus s⋆ ≥ s.

A.2 Proof of Lemma 2.4

Proof. Recall the Hausdorff distance between two compact, convex sets can be written

in terms of their support functions.

dH(sF ,F) = max
c∈Sn−1

|σsF(c)− σF(c)| (A.1)

= max
c∈Sn−1

|sσF(c)− σF(c)| (A.2)

= (s− 1) · max
c∈Sn−1

σF(c) (A.3)

= (s− 1) ·max
x∈F
∥x∥2. (A.4)
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A.3 Proof of Lemma 2.5

Proof. For convenience, define the following:

H := {p | ∇gi(q)T (p− q) ≤ 0∀ q ∈ ∂Xi, i ∈ [m]}.

We show that kerX ⊆ H and kerX ⊇ H and therefore kerX = H.

⇒ (kerX ⊆ H): Assume p ∈ kerX but there exists a point q ∈ ∂Xi for some i ∈ [m]

such that ∇gi(q)T (p− q) > 0. Recall the definition of the directional derivative:

lim
t→0

gi(tp+ (1− t)q)− gi(q)
t

= ∇gi(q)T (p− q).

Given gi(q) = 1 and ∇gi(q)T (p − q) > 0 implies there exists an open interval t ∈

(0, α), α > 0 in which gi(tp+ (1− t)q) > 1. The line segment over this open interval

does not belong to X . Thus p ̸∈ kerX , a contradiction.

⇐ (kerX ⊇ H): Let p ∈ H. Assume p ̸∈ kerX =⇒ ∃ q ∈ X such that l(t) ̸∈ X for

some t ∈ (0, 1] where l(t) := tp+(1−t)q.1 As X is compact, l(t) ̸∈ X =⇒ gi(l(t)) > 1

for some i ∈ [m] and open interval t ∈ (a, b) satisfying 0 ≤ a < b with a < 1. Without

loss of generality, let a = 0 such that q ∈ ∂Xi and gi(l(0)) = 1. Applying the definition

of the directional derivative yields:

lim
t→0

gi(l(t))− gi(l(0))
t

= ∇gi(q)T (p− q).

The left-hand side of this relation is non-negative. The right-hand side is non-positive

per the definition of H. Thus both sides must equal zero. As ∇gi(q) ̸= 0, this implies

(p− q) ⊥ ∇gi(q). (A.5)

Assume w.l.o.g. that ∇gi(q) is aligned with coordinate n:

∇gi(q) =
[︂
0T

n−1 r
]︂T
, r > 0. (A.6)

1We have not yet shown that H ⊆ X so we are not assuming p ∈ X .
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If this does not hold we can introduce an appropriate change of variables. Together,

(A.5) and (A.6) =⇒ (pn − qn)r = 0 =⇒ ln(t) = qn. From this we have

l(t) =
[︄
tp[n−1] + (1− t)q[n−1]

qn

]︄
. (A.7)

Define the following parameterized curve ϕ : R → Rn which moves along the

boundary gi(x) = 1, starting from p:

ϕ(t) =
[︄
tp[n−1] + (1− t)q[n−1]

h(tp[n−1] + (1− t)q[n−1])

]︄
. (A.8)

Given ∂gi

∂xn
(q) ̸= 0, from the implicit function theorem there exists an open set

U ⊂ Rn−1 with q[n−1] ∈ U and C1 function h : U → R such that h(q[n−1]) = qn and

gi(x[n−1], h(x[n−1])) = 1 for all x[n−1] ∈ U . Here we are restricting coordinates x[n−1] to

the line segment parameterized by t. Thus gi(ϕ(t)) = 1 for all t such that ϕ[n−1](t) ∈ U .

Let t ∈ (−c, d), c > 0, d > 0 denote this interval.

The line l(t) and curve ϕ(t) only differ in coordinate n. Given gi(l(t)) > 1, t ∈ (0, b)

and gi(ϕ(t)) = 1, t ∈ (−c, d) =⇒ qn ̸= ϕn(t)∀ t ∈ (0,min(b, d)).

Given ∂gi

∂xn
(q) > 0 =⇒ ∂gi

∂xn
> 0 for some open ball around q as gi is smooth.

Assuming ϕn(t) > qn =⇒ gi(ϕ(t)) > gi(l(t)) > 1 for points sufficiently close to q, a

contradiction. Thus ϕn(t) < qn for some interval t ∈ (0, e), e > 0. From this we have

∂gi(ϕ(t))
∂xn

(qn − ϕn(t)) > 0,∀t ∈ (0, e). (A.9)

Given qn = ϕn(0) > ϕn(t) for some interval t ∈ (0, e), by the mean value theorem

there exists t⋆ ∈ (0, e) such that dϕn

dt
(t⋆) < 0. This yields the following relation:

∂gi(ϕ(t⋆))
∂xn

dϕn(t⋆)
dt

< 0. (A.10)

Given gi(ϕ(t)) = 1∀ t ∈ (−c, d) =⇒ dgi

dt
(ϕ(t)) = 0. We expand this at the point

t⋆ obtaining

0 = ∂gi(ϕ(t⋆))
∂x[n−1]

T dϕ[n−1](t⋆)
dt

+ ∂gi(ϕ(t⋆))
∂xn

dϕn(t⋆)
dt

= ∂gi(ϕ(t⋆))
∂x[n−1]

T

(p[n−1] − q[n−1]) + ∂gi(ϕ(t⋆))
∂xn

dϕn(t⋆)
dt

.

(A.11)
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From equations (A.10) and (A.11) we obtain

∂gi(ϕ(t⋆))
∂x[n−1]

T

(p[n−1] − q[n−1]) > 0. (A.12)

Finally, we evaluate the stated constraint on p ∈ H at the boundary point ϕ(t⋆) giving

∇gi(ϕ(t⋆))T (p− ϕ(t⋆)) = ∂gi(ϕ(t⋆))
∂xn

(pn − ϕn(t⋆)) +

∂gi(ϕ(t⋆))
∂x[n−1]

T

(p[n−1] − q[n−1])(1− t⋆).
(A.13)

From (A.9) and (A.11) and noting that (1− t⋆) > 0 and qn = pn gives

∇gi(ϕ(t⋆))T (p− ϕ(t⋆)) > 0. (A.14)

Thus p ̸∈ H, a contradiction.

A.4 Proof of Lemma 2.6

ker(A ∩ B) ⊇ kerA ∩ kerB: Let l(x, y) = {λx + (1 − λ)y |λ ∈ [0, 1]} for some x ∈

kerA ∩ kerB and y ∈ A ∩ B. As x ∈ kerA, y ∈ A =⇒ l(x, y) ⊆ A and similarly,

x ∈ kerB, y ∈ B =⇒ l(x, y) ⊆ B, we see that x ∈ ker(A ∩ B).

ker(A ∪ B) ⊇ kerA ∩ kerB: Let l(x, y) = {λx + (1 − λ)y |λ ∈ [0, 1]} for some

x ∈ kerA ∩ kerB and y ∈ A ∪ B. For the case when y ∈ A, then x ∈ kerA =⇒

l(x, y) ⊆ A =⇒ l(x, y) ⊆ A ∪ B. Similarly, for the case when y ∈ B, then

x ∈ kerB =⇒ l(x, y) ∈ B =⇒ l(x, y) ⊆ A ∪ B. Therefore x ∈ ker(A ∪ B).

Remark. Note that there is no relation between ker(A∩B) and ker(A∪B) in general.

We gives examples in which one set is a subset of the other.

ker(A ∪ B) ⊃ ker(A ∩ B): Let A \ B ̸= ∅ and B \ A ̸= ∅. Let A ∪ B be a convex set.

Then ker(A ∪ B) = A ∪ B ⊃ (A ∩ B) ⊇ ker(A ∩ B).

ker(A ∪ B) ⊂ ker(A ∩ B): Let A be a compact set that is not star-convex with

non-empty interior. Let B be a non-empty convex set satisfying B ⊂ A. Then

ker(A ∩ B) = B ⊃ ∅ = ker(A ∪ B).
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A.5 Proof of Lemma 5.1

Proof. We prove this for the α < β case. The α > β and α = β cases can be shown

using similar arguments. Let t = (β−α)c and x ∈ H+ =⇒ cT (x+ t) ≥ α+(β−α) =

β =⇒ x+t ̸∈ (H−\∂H−) =⇒ pen(H+,H−) ≤ (β−α) =⇒ sd(H+,H−) ≥ (α−β).

Assume sd(H+,H−) > α− β =⇒ pen(H+,H−) < β − α =⇒ ∃ t ∈ Rn, ∥t∥ < β − α

such that (H+ + t) ∩ (H− \ ∂H−) = ∅. Let x ∈ H+ satisfy cTx = α =⇒ cT (x+ t) =

α + cT t ≤ α + ∥c∥∥t∥ < β =⇒ x + t ∈ (H− \ ∂H−) a contradiction. Therefore

sd(H+,H−) = α− β.

A.6 Proof of Lemma 5.2

Let sd(V+,O+) = −a ≤ 0 =⇒ pen(V+,O+) = a =⇒ ∃ t ∈ Rn, ∥t∥ = a such that

(V+ + t) ∩ (O+ \ ∂O+) = ∅ =⇒ (V + t) ∩ (O \ ∂O) = ∅ =⇒ pen(V ,O) ≤ a =⇒

sd(V ,O) ≥ −a. The sd(V+,O+) > 0 case can be shown using similar arguments.

A.7 Proof of Lemma 5.3

Proof. Note that any V(x(t)) ∈ svV,f (xi, ū, ti, tf ) satisfies

V(x(t)) = R(xi)A+ (1− ξ(t))p(xi) + ξ(t)p(xf )

= (1− ξ(t))V(xi) + ξ(t)V(xf ).
(A.15)

Given ξ(t) is continuous with ξ(ti) = 0, ξ(tf ) = 1 =⇒ ∀λ ∈ [0, 1]∃ t ∈ [ti, tf ] | ξ(t) =

λ. It follows that

svV,f (xi, ū, ti, tf ) = co({V(xi),V(xf )}). (A.16)
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A.8 Proof of Lemma 5.4

Proof. Define the following halfspaces:

H+ = {x | cTx ≥ µC(c)} (A.17)

H− = {x | cTx ≤ σD(c)} (A.18)

From Lemma 5.1 sd(H+,H−) = µC(c) − σD(c). Noting that C ⊂ H+ and D ⊂ H−

yields the stated inequality.

A.9 Proof of Lemma 5.5

We prove this for the case in which sd(C,D) < 0. The sd(C,D) ≥ 0 case can be shown

using similar arguments.

sd(C,D) = γ < 0 =⇒ pen(C,D) = |γ| =⇒ ∃ t ∈ Rn, ∥t∥ = |γ| such that

(C + t) ∩ (D \ ∂D) = ∅. As these are disjoint convex sets there exists a separating

hyperplane µC(c) ≥ σD\∂D(c) for some c ∈ Rn \ 0. By the scaling properties of the

cost and support function we can take ∥c∥ = 1 w.l.o.g. Noting that σD\∂D(c) = σD(c)

we obtain µC(c) + cT t ≥ σD(c) for some ∥c∥ = 1. Assume c ̸= t
∥t∥ =⇒ cT t < ∥t∥.

Let κ = (cT t) =⇒ µC(c) + cT (κc) ≥ σD(c) =⇒ µC+κc(c) ≥ σD(c) =⇒ (C +

κc) ∩ (D \ ∂D) = ∅ =⇒ pen(C,D) ≤ κ < ∥t∥ = |γ| a contradiction. Thus c = t
∥t∥ .

Assume µC(c) + cT t > σD(c) =⇒ µC(c) + |γ| > σD(c) =⇒ sd(C,D) > −|γ| by

Lemma 5.4 a contradiction. Thus µC(c) + cT t = σD(c) for some ∥c∥ = t
∥t∥ where

(C + t) ∩ (D \ ∂D) = ∅.

A.10 Proof of Lemma 5.9

Proof. From Lemma 5.5 there exists c ∈ Rn, ∥c∥ = 1 such that µC(c) − σD(c) =

sd(C,D) =⇒ µC(c)−rC
√
cT c−σD(c)−rD

√
cT c = sd(C,D)−rC−rD =⇒ µC⊕BrC

(c)−
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σD⊕BrD
(c) = sd(C,D)−rC−rD. From Lemma 5.4, this implies sd(C⊕BrC ,D⊕BrD) ≥

sd(C,D) − rC − rD. Assume sd(C ⊕ BrC ,D ⊕ BrD) > sd(C,D) − rC − rD =⇒ ∃ c ∈

Rn, ∥c∥ = 1 such that µC⊕BrC
(c)−σD⊕BrD

(c) > sd(C,D)−rC−rD =⇒ µC(c)−rC
√
cT c−

σD(c)− rD
√
cT c > sd(C,D)− rC − rD =⇒ µC(c)− σD(c) > sd(C,D) =⇒ sd(C,D) >

sd(C,D) a contradiction. Thus sd(C ⊕BrC ,D ⊕BrD) = sd(C,D)− rC − rD.
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