
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. CONTROL OPTIM. © 2022 Society for Industrial and Applied Mathematics
Vol. 0, No. 0, pp. S196--S220

RESPECT THE UNSTABLE: DELAYS AND SATURATION IN
CONTACT TRACING FOR DISEASE CONTROL\ast 
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Abstract. Motivated by the novel coronavirus disease (COVID-19) pandemic, this paper aims
to apply Gunter Stein's cautionary message of respecting the unstable to the problem of controlling
the spread of an infectious disease. With this goal, we study the effect that delays and capacity
constraints have in the test, trace, and isolate (TeTrIs) process, and how they impact its ability to
prevent exponential disease spread. Our analysis highlights the critical importance of speed and scale
in the TeTrIs process. Precisely, ensuring that the delay in the TeTrIs process is much smaller than
the doubling time of the disease spread is necessary for achieving acceptable performance. Similarly,
limited TeTrIs capacity introduces a threshold on the size of an outbreak beyond which the disease
spreads almost like the uncontrolled case. Along the way, we provide numerical illustrations to
highlight these points.
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1. Introduction. The opening lines of Gunter Stein's classic paper``Respect the
Unstable"" [23], published 13 years after his inaugural Bode Lecture of the same name,
read as follows:

The practical, physical (and sometimes dangerous) consequences of control
must be respected, and the underlying principles must be clearly and well
taught.

The message to the control engineer and researcher is clear. Not only must the many
benefits of feedback be understood (pedagogically, mathematically, and practically),
but also its limitations. The principle of feedback is after all inherently about trade-
offs, constrained by conservation laws just as fundamental as any law of physics.
While these ``laws of feedback"" apply to the control of all systems, Gunter Stein gave
special attention to unstable systems for three main reasons:

1. Unstable systems are fundamentally, and quantifiably, more difficult to con-
trol than stable ones.

2. Controllers for unstable systems are operationally critical.
3. Closed-loop systems with unstable components are only locally stable.
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In this paper we aim to revisit these points from the perspective of designing contact
tracing policies to mitigate the spread of disease throughout a population.

1.1. Control of disease spread. The control of disease spread is not the tra-
ditional hunting ground of the control engineers, so a degree of caution from our
community is perhaps of even greater relevance than normal. That said, controlling
the spread of a disease has many of the elements of the most challenging control
problems. Accurate models of the spread of a highly infectious disease are at best
controversial, but certainly unstable (at least in a population with high susceptibility
to the disease). The mechanisms for identifying infectious members of the population
may be subject to significant delays and inaccuracies, compromising the quality of
the available information for performing feedback. Finally, the options for mitigating
the spread can be blunt, unpredictable, and subject to severe capacity constraints.

Since emerging in late 2019, the novel coronavirus disease (COVID-19) pandemic
has made abundantly clear the effect that these challenges have on mitigating disease
spread. At the time of writing (October 2020), COVID-19 had reached a significant
global spread (45 million documented cases) [6] and vaccines were not yet available;
this meant that the primary public health tools available to limit the spread were
nonpharmaceutical interventions (NPIs), such as social distancing and contact tracing
[10]. Many NPIs can be understood in terms of feedback control, and as such abide
by the fundamental ``laws of feedback"" that Gunter Stein referred to. This work
illustrates the impact of these limitations, placing a particular emphasis on the role
of delays and saturation. We focus on contact tracing as it exhibits several of the
features described above.

1.2. Contact tracing. Contact tracing is the process of testing, tracing, and
isolating people known to have been in close proximity with infected individuals. All
three of these steps are essential, so for this reason contact tracing is also referred to
by the acronym test, trace, and isolate (TeTrIs). This intervention can disrupt chains
of infection to slow and potentially end the spread of an infectious disease. It has
been employed in the control of sexually transmitted infections [5, 11, 18], in limiting
the severe acute respiratory syndrome (SARS) epidemic [4], and at an unprecedented
scale in the COVID-19 pandemic [22, 24].

The execution of TeTrIs varies significantly from region to region and is rapidly
evolving. Regardless of the specifics, two key characteristics contribute to the success
of TeTrIs. The first is the delay between the moment an individual becomes infected
and the moment that individual becomes isolated from the rest of the population. A
larger delay allows the infected individual to infect more people. The second is the
capacity of the TeTrIs program. We think of this capacity as the number of active
cases the TeTrIs program can process at once without the delay growing significantly.
These characteristics are determined by the structure of the TeTrIs program. But
more practically, achieving sufficient performance in these characteristics must be
used to determine the structure of the TeTrIs program. Thus, in this paper we seek
to characterize sufficient delays and capacity of a TeTrIs program to successfully
control the spread of an infectious disease.

The effects of these characteristics have been studied in the past. Many works
analyze the impacts of contact tracing using computer simulations [17, 9]. Mathe-
matical analysis of TeTrIs has typically relied on two methodologies. In the first, an
ordinary differential equation (ODE) models spread over a certain fixed contact graph
[8, 13]. In the second, the impact of TeTrIs is modeled as a branching process [20, 19].
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1.3. Contributions of this work. In this work, we take a control theoretic
perspective on the impacts of delays and saturation. These two phenomena have
been widely studied in the control systems field. We provide two rules of thumb for
the requisite speed and capacity of a TeTrIs system. First, by analyzing the system
sensitivity function, we show that delays of even just one quarter of the doubling
time of the disease may suffice to overwhelm a TeTrIs system. For infectious diseases
like COVID-19, the optimistic allowable delay to control their initial outbreak is
approximately 1 day. Another implication of the analysis points to the importance of
effective isolation. If we fail to isolate two thirds of the cases, such a system may not
even be stabilizing without delay. Second, we model the contact tracing process and
show that the saturation of its limited capacity may disable an otherwise efficacious
TeTrIs system. With saturation, we identify a threshold behavior of disease spread
that implies stability regions beyond capacity and potentially significant degradation
of performance.

The paper is structured as follows. First, we discuss the effects of delay on
the efficacy of contact tracing. We introduce contact tracing as a feedback loop on
the classic SIR model. We derive an upper bound on delay to prevent exponential
disease spread in this setting. Then we generalize this analysis from the SIR model to
general linear-time-invariant (LTI) and nonlinear system models with an exponentially
unstable mode. This demonstrates that these limitations are fundamental, rather than
an artifact of particular modeling choices. Second, we discuss the effects of saturation
on the efficacy of contact tracing. We introduce two compartmental models that
respectively capture the contact tracing efforts devoted to infected and uninfected
populations and introduce the saturation effects of tracing capacity. Reduced stability
regions are observed based on a nonlinear threshold analysis.

Notation. Transfer functions of LTI systems will be denoted by boldface letters.
For example, G (s) = 1/ (s+ 1) is the transfer function from u to x for the system
dx
dt =  - x + u, and G (s) = exp ( - sT ) is the transfer function for the delay x (t) =
u (t - T ). The set of all proper real rational transfer functions, i.e., functions of the
form

G (s) =
a0s

n + a1s
n - 1 + \cdot \cdot \cdot + an

sn + b1sn - 1 + \cdot \cdot \cdot + bn
, ai \in R, bk \in R,

will be denoted by R. The H-infinity norm of a transfer function G is defined as

\| G\| \infty := sup \{ | G (s)| : s \in C,Re (s) > 0\} .

The H-infinity norm is a central notion in the robust performance of control systems;
see, for example, [7, sect. 2] for an introduction.

2. Contact tracing: The need for speed. The basic rationale behind TeTrIs
is simple. Disease spreads through the contact between infectious and susceptible
members of a population. So by rapidly isolating infectious individuals as soon as
they are detected, as well as everyone they have recently contacted (who may now be
infectious themselves), it may be possible to shut off all the routes of spread, and stop
an outbreak in its tracks. But how accurate does the testing need to be to ensure
that enough cases are traced? And how fast must the system be to halt an outbreak
before it becomes an epidemic?

In this section we will explore these questions from the control theoretic perspec-
tive, with a particular focus on feedback-based fundamental limitations. TeTrIs is a
feedback process in which infectious people are isolated in response to measurements
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Fig. 1. Trade-off between disturbance amplification and time delay when controlling an unstable
system. Typically \| S\| \infty less than 1.2--2 is necessary for good performance.

about a population. Therefore, TeTrIs is subject to conservation laws and perfor-
mance limitations (see [23, 1] for an introduction). We will discuss the consequences
of these, placing a particular focus on the following inequality:

(2.1) \| S\| \infty \geq 2
Tdelay

Tdoubling .

The precise meanings of all these terms will be made clear when it is derived in
subsection 2.2, but here S is the sensitivity function (in the usual control theoretic
sense), Tdoubling is the doubling time of the unstable process,1 and Tdelay is the sum of
delays in the feedback loop. This inequality imposes a fundamental limit on the size of
the sensitivity function and shows that when very unstable processes (smaller doubling
times) are controlled subject to large delays, the sensitivity function will always be
large. This is illustrated in Figure 1. Since the sensitivity function determines how
disturbances are amplified and attenuated, (2.1) demonstrates that in such systems,
bad performance is inevitable. Indeed the conventional wisdom is that a value of
\| S\| \infty less than 1.2--2 is a prerequisite for acceptable performance (see, e.g., [2, 7]).
The size of \| S\| \infty is also intimately related to many other measures of performance
and robustness, such as gain and phase margins [2, sect. 10.5].

Equation (2.1) gives the implication

Tdelay > Tdoubling log2 kperf =\Rightarrow \| S\| \infty > kperf .

The consequences of this inequality are quite striking in the context of controlling dis-
ease spread using TeTrIs. For example, it shows that given a disease with a doubling
time of 8 days, if the delays between becoming infectious and being isolated are greater

1Here Tdoubling := ln 2
p

, where p > 0 is the location of the unstable pole.
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than 2 days, then \| S\| \infty > 1.2 (picking the more conservative target might be advis-
able when trying to control a highly uncertain system such as disease spread). This
bound holds even under extremely optimistic assumptions about the implementation
of contact tracing. Specific implementations can certainly be worse!

What makes the bound useful is that it provides direct insight into our original
questions. For example, if we set a target of \| S\| \infty \leq 1.2, the system set up to
conduct contact tracing must be at least four times faster than the doubling time of
the disease:

\| S\| \infty \leq 1.2 =\Rightarrow 4Tdelay \leq Tdoubling.

Slower implementations are guaranteed to fail this objective and, as a result, be more
vulnerable to disturbances (e.g., failing to identify an infectious person could result in
a large number of new infections). It is interesting to note that the same rule of thumb
based on more ad-hoc arguments can be found in [3, sect. III.B-4)]. Inequalities such
as (2.1) provide further evidence for the necessity of a fast TeTrIs system.

2.1. Understanding the issue. In this section we will demonstrate the funda-
mental limitation discussed above from the perspective of a simple model of contact
tracing. This will allow us to put these abstract ideas in a more concrete setting, so
as to better understand them. Studying a simple model will also allow us to derive
specialized analysis tools along the way that can provide additional insight. In what
follows we will first outline a simple SIR-based model for contact tracing, before il-
lustrating the fundamental limitations through simulations and additional theoretical
tools.

2.1.1. An SIR-based model for disease control with TeTrIs. The so-called
SIR model is one of the simplest and most widely used models of disease spread [15].
It is centered around three compartments---S (t), I (t), and R (t)---which specify the
proportion of the population that are susceptible, infectious, and recovered at time t.
So if S (0) = 1, then at time t = 0 the entire population is susceptible to the disease,
or if R (1) = 0.5, then half the population has recovered (or died) at time t = 1. The
population shifts between these compartments over time according to two rates, which
model the effect of the infectious population mixing with the susceptible population
and transferring the disease, and the infectious population recovering, respectively.
This can be visualized on a graph with a node for each compartment, and a directed
edge specifying the transition rates between them:

IS R
\beta SI \gamma I

Here \beta is a mixing parameter, specifying the average number of ``significant""
(those that could result in the transmission of the disease) interactions that each
individual has per unit time. Each infectious person then has an average of \beta S such
events with the susceptible population, resulting in \beta SI new infections per unit time.
The second rate is justified by saying that on average it takes 1/\gamma units of time for
an infectious person to recover, which corresponds to members of the I compartment
being transferred to the R compartment with rate \gamma I.

When written as a set of differential-algebraic equations, the SIR model is

(2.2)
d

dt

\left[  SI
R

\right]  =

\left[   - 1
1
0

\right]  \beta SI +

\left[  0
 - 1
1

\right]  \gamma I, 1 = S + I +R.
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Of central importance in the study of the SIR model (and disease spread in general)
is the so-called basic reproduction number R0. R0 is defined to be the number of
secondary infections caused by a single primary infection in a population in which
everyone is susceptible to the disease. Consequently if R0 > 1, a small outbreak will
grow, whereas if R0 < 1, it will not. For the SIR model, R0 = \beta /\gamma . This is closely
related to notions of stability and doubling times. For the SIR model

(2.3) Tdoubling =
ln 2

\beta  - \gamma 
=

ln 2/\beta 

1 - 1/R0
.

The SIR model describes the process of disease spread, but not the impact of TeTrIs.
To model this, we first split the infectious population into two groups, Q and Imix,
where Q corresponds to the subpopulation that has been quarantined, and Imix is the
remainder of the infectious population. We can incorporate the effect of quarantining,
by modifying the rate between the susceptible and infectious populations as shown
below. The rationale here is that after taking quarantining into account there should
be \beta SImix new infections per unit time, and that Imix = I  - Q.

Q

Imix
S R

\beta S (I  - Q) \gamma I

The effect of this change is to slightly modify the original SIR equation in (2.2):

(2.4)
d

dt

\left[  SI
R

\right]  =

\left[   - 1
1
0

\right]  \beta S (I  - Q) +

\left[  0
 - 1
1

\right]  \gamma I, 1 = S + I +R.

All that remains is to close the loop and specify how the number of people who are
quarantined at time t depends on the contact tracing. For simplicity, we propose
modeling this process through the equation

(2.5) Q (t) = \alpha e - \gamma TdelayI (t - Tdelay) ,

where 1 \geq \alpha \geq 0 and Tdelay \geq 0. In other words, this equation says that we are able to
test, trace, and isolate a proportion \alpha of those that were infectious Tdelay days ago.2

Together (2.4) and (2.5) constitute a simple model for understanding how TeTrIs can
be used to control disease spread.

2.1.2. Analysis of the simple model. Before performing a theoretical analysis
of the model, it is instructive to run some simulations. The evolution of the infectious
population after an outbreak affecting 0.01\% of the population is shown in Figure 2
for a range of different values of the time delay. The simulation parameters for this
figure are

\bullet \alpha = 0.8, meaning that 80\% of cases are tested, traced, and isolated;
\bullet \gamma = 0.1, meaning the disease has an average recovery time of 10 days;
\bullet \beta = 0.3, giving the disease a basic reproduction number of 3.

The first thing to note is that if the delay is short, the outbreak is contained and
no epidemic ensues. It is also interesting to see the degradation in behavior as the
delay increases. By the time Tdelay is 5 days, an epidemic not dissimilar to that

2We need to include the proportional constant e - \gamma Tdelay since over those Tdelay days, (1  - 
e - \gamma Tdelay ) of those that were infectious will have gone on to recover.
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Fig. 2. Simulation of (2.4) and (2.5) for a range of values of Tdelay.

without TeTrIs occurs. Even more strikingly though is that by the time Tdelay is just
2 days, the initial outbreak sees a tenfold increase before it is brought under control.
This relatively short delay has seemingly brought TeTrIs to the verge of instability.
When you consider that there may be several simultaneous outbreaks, or capacity
constraints on how many people that can be tested and traced, it is clear that short
delays may already be enough to overwhelm a TeTrIs system.

A natural first question is, Are these results in line with the fundamental limitation
discussed at the beginning of this section? A simple calculation shows that at the start
of the outbreak, the doubling time of the disease equals

Tdoubling =
ln 2

\beta  - \gamma 
\approx 3.5 days.

Therefore, to achieve \| S\| \infty \leq 1.2, it is necessary that Tdelay \leq 0.9 days. This seems
to be in good agreement with the simulation, where the case with a one-day delay
is well controlled, with a rapid decline in performance soon after. In fact, given the
simple nature of the model in (2.4) and (2.5) a more detailed analysis is possible.
The following theorem characterizes the stability of the linearization of the model
about the disease-free equilibrium in terms of the system parameters. An intuitive
explanation of this stability criterion is given at the end of the section.

Theorem 2.1. The linearization of the model in (2.4) and (2.5) is stable3 about
the point (I,R,Q) = (0, 0, 0) if and only if

(2.6) Tdelay <
1

\gamma 
ln

\biggl( 
\alpha \beta 

\beta  - \gamma 

\biggr) 
.

Proof. See Appendix A.

3In the sense that I (t) \rightarrow 0 in response to a small perturbation about the initial condition
(I (t) , R (t) , Q (t)) = (0, 0, 0) for t \leq 0.
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Fig. 3. Illustration of the stability boundary in Theorem 2.1. The model of TeTrIs is stabilizing
if and only if

\bigl( 
R0, \gamma Tdelay

\bigr) 
lies below the corresponding \alpha curve. For example, if \alpha = 0.8 and R0 = 3,

the model is stable if and only if \gamma Tdelay < 0.18.

Remark 2.2. While any point with I = 0 (no infected people) is an equilibrium
of (2.4) and (2.5), we focus on the point (I,R,Q) = (0, 0, 0) for two reasons. First,
this equilibrium corresponds to the initial phase of the pandemic (S = 1) and exhibits
the largest unstable growth, thus serving as a natural benchmark for stabilization
purposes. Second, it is also the most desirable equilibrium from a public health
perspective and of high practical value. Indeed, many countries have achieved initial
control of the COVID-19 pandemic through TeTrIs sustaining levels of infections of
several order of magnitude lower than its population. For example, Uruguay, the
home country of several authors of this work, sustained levels of active infections in
at most hundreds for several months, over a population of approximately 3.5 million.

In order to interpret the meaning of Theorem 2.1, it helps to rearrange the bound
a little:

\gamma Tdelay < ln

\biggl( 
\alpha \beta 

\beta  - \gamma 

\biggr) 
= ln

\biggl( 
\alpha 

1 - 1/R0

\biggr) 
.

The specific trade-off between parameters and delay implied by the above is shown in
Figure 3. This figure can be used to quickly assess the amount of delay that can be
tolerated before instability occurs. For example, in the simulations we used a model
with R0 = 3 and \gamma = 0.1, with feedback parameter \alpha = 0.8. Therefore, from the
figure we see that we require

Tdelay\gamma < 0.18 =\Rightarrow Tdelay < 1.8 days

for the policy to be stabilizing. This captures precisely the behavior we saw in the
simulation, where Tdelay = 2 seemed to be right on the cusp of instability. We also
see the importance of tracing enough cases. By the time \alpha < 1 - R - 1

0 = 2/3, that is,
we only detect and isolate at most 66\% of the cases, the policy isn't even stabilizing
with Tdelay = 0.
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The stability criterion in Theorem 2.1 also has a nice interpretation through the
effective reproduction number Re. Suppose that \alpha in (2.5) is the probability that
an infectious individual is detected and isolated. The amount of time T that each
infectious person is mixing with the susceptible population is then a random variable

T =

\Biggl\{ 
Tr w.p. 1 - \alpha ,

min \{ Tdelay, Tr\} w.p. \alpha .

In the above Tr \sim Exp (\gamma ) is the time it takes the given person to recover from the
disease. Therefore, the expected time that each infectious person is in the mix is given
by

E [T ] = (1 - \alpha ) E [Tr] + \alpha E [min \{ Tdelay, Tr\} ] = (1 - \alpha )
1

\gamma 
+ \alpha 

\int Tdelay

0

exp ( - \gamma s) ds

=
1

\gamma 
(1 - \alpha exp ( - \gamma Tdelay)) .

The effective reproduction number is then the expected number of secondary infections
generated by an individual:

Re = \beta E [T ] =
\beta 

\gamma 
(1 - \alpha exp ( - \gamma Tdelay)) = R0 (1 - \alpha exp ( - \gamma Tdelay)) .

The condition that Re < 1, which would correspond to an outbreak dying out, is thus
equivalent to

1 > R0 (1 - \alpha exp ( - \gamma Tdelay)) \Leftarrow \Rightarrow Tdelay <
1

\gamma 
ln

\biggl( 
\alpha 

1 - R - 1
0

\biggr) 
,

which is precisely the stability condition from Theorem 2.1.

2.2. Fundamental limitations. A natural concern with the results from sub-
section 2.1.2 is that they are seemingly based on a set of highly contentious modeling
assumptions. For example, why use the SIR model to capture the effect of disease
spread in (2.4), rather than the SEIR model or indeed any of the other more com-
plex compartmental variants? What about other models for TeTrIs? Will the same
conclusions hold if we use something more realistic than (2.5)? In this section we will
demonstrate that the limitations we observed through Theorem 2.1 and the simula-
tions of (2.4) and (2.5) are really a consequence of the interplay between instability
and delay.

The main result of this section is to derive the inequality (2.1). For simplicity
we will stick to the LTI case, though we will show in Appendix B that a natural
analogue of (2.1) holds in the nonlinear case also. To this end, consider the feedback
interconnection of n subsystems described by

(2.7)
\^ei = Gi\^ei - 1 + \^di, i \in \{ 1, . . . , n\} ,
\^e0 =  - \^en.

In the above the variables \^di and \^ei denote the Laplace transforms of a set of scalar
disturbances and error signals, and Gi is the transfer function of the ith subsystem.
The basic setup is illustrated in Figure 4. This is a general framework for describing
feedback systems, and many models for the control of a disease using TeTrIs can be
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G1 G2 Gn

 - 1

e1 e2 \cdot \cdot \cdot en

d1 d2 dn - 1 dn

Fig. 4. Feedback interconnection in (2.7).

put in this framework. For example, after linearization about the point (I,R,Q) =
(0, 0, 0), the model in (2.4) and (2.5) can be captured by setting n = 2, and

(2.8) G1 (s) =
\beta 

s - (\beta  - \gamma )
, G2 (s) = \alpha exp ( - sTdelay) .

Variants with, for example, more complicated compartmental models of disease spread
can be similarly handled by substituting in the corresponding transfer function for
G1.

The advantage of the abstract formulation in (2.8) is that it allows general prop-
erties of feedback interconnections to be studied for entire classes of models. When
studying the properties of this feedback interconnection, the central objects are the
sensitivity functions. These are the transfer functions from di to ei, which we denote
by Si. In the scalar LTI case, the sensitivity functions are all equal to each other and
given by

(2.9) Si =
1

1 +G1G2 \cdot \cdot \cdot Gn
=: S, i \in \{ 1, . . . , n\} .

These functions determine how the internal signals \^ei depend on the external
disturbances \^di. Hence the size of S determines how disturbances are attenuated.
Indeed every single closed-loop transfer function in (2.8) contains S (for example, the

transfer function from \^d1 to \^e3 is given by G3G2S). Given its central importance to
the process of feedback, the sensitivity function has been extensively studied both in
theory and in practice. Indeed the requirement that the size of \| S\| \infty be less than
1.2--2 is widely used and is arguably of more importance than criteria based on the
gain margin and phase margin4 [2, sect. 7.2].

The following theorem shows that when the feedback loop contains a system with
an unstable pole p and a time delay of Tdelay, \| S\| \infty \geq exp (pTdelay). This places
a fundamental limit on the size of the sensitivity function. Surprisingly this result
doesn't seem to be known (for example, the lower bound \| S\| \infty \geq exp (pTdelay)  - 1
is presented in [2, sect. 14.3, Table 14.1]), though the existence of such a bound is
certainly implicit in the work on sensitivity optimization from the 1980s [16, 12]. We
give a simple proof based on the maximum modulus principle.

4Indeed it can be shown that [2, sect. 7.2]

gain margin \geq 
\| S\| \infty 

\| S\| \infty  - 1
, phase margin \geq 2 arcsin

\biggl( 
1

2 \| S\| \infty 

\biggr) 
,

whereas no guarantees in the converse direction hold (positive gain and phase margins only guarantee
that \| S\| \infty < \infty ).
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Theorem 2.3. If L =
exp( - sTdelay)

s - p H, where Tdelay > 0, p > 0, and H \in R, then\bigm\| \bigm\| \bigm\| \bigm\| 1

1 + L

\bigm\| \bigm\| \bigm\| \bigm\| 
\infty 

\geq exp (pTdelay) .

Proof. Let a > 1, and note that the M\"obius transform f (z) = (1 - az) / (a - z)
maps the closed unit disc into the closed unit disc. This implies that, given any
transfer function G, we have the equivalence

\| G\| \infty \leq 1 \Leftarrow \Rightarrow \| f (G)\| \infty \leq 1.

Therefore, \| 1/ (1 + L)\| \infty \leq a if and only if

1 \geq 
\bigm\| \bigm\| \bigm\| \bigm\| f \biggl( 

1

a

1

1 + L

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| 
\infty 

=

\bigm\| \bigm\| \bigm\| \bigm\| aL

a2L+ a2  - 1

\bigm\| \bigm\| \bigm\| \bigm\| 
\infty 

=

\bigm\| \bigm\| \bigm\| \bigm\| aH exp ( - sTdelay)

a2H exp ( - sTdelay) + (s - p) (a2  - 1)

\bigm\| \bigm\| \bigm\| \bigm\| 
\infty 

.

Now recall that, given any transfer function G, \| G exp ( - sTdelay)\| \infty = \| G\| \infty (de-
laying the input to a transfer function doesn't affect its norm). Therefore,\bigm\| \bigm\| \bigm\| \bigm\| aH exp ( - sTdelay)

a2H exp ( - sTdelay) + (s - p) (a2  - 1)

\bigm\| \bigm\| \bigm\| \bigm\| 
\infty 
=

\bigm\| \bigm\| \bigm\| \bigm\| aH

a2H exp ( - sTdelay) + (s - p) (a2  - 1)

\bigm\| \bigm\| \bigm\| \bigm\| 
\infty 

\geq 1

a exp ( - pTdelay)
,

where the inequality follows from the maximum modulus principle applied at the
point s = p (see, e.g., [7, sect. 6.2]). This demonstrates that \| 1/ (1 + L)\| \infty \leq a only
if a \geq exp (pTdelay), as required.

It is readily verified that this bound is equivalent to the inequality presented
earlier in (2.1) by substituting in the relationship between p and Tdoubling. That is,
setting p = ln (2) /Tdoubling shows that

\| S\| \infty \geq exp (pTdelay) = 2
Tdelay

Tdoubling .

Theorem 2.3 shows that if the transfer function G1G2 \cdot \cdot \cdot Gn (typically referred
to as the return ratio) can be written in the form

(2.10) G1G2 \cdot \cdot \cdot Gn =
exp ( - sTdelay)

s - p
H,

where H is any transfer function in R, then \| S\| \infty \geq exp (pTdelay). We therefore
see from (2.8) that Theorem 2.3 applies to our simple model for disease control with
TeTrIs (set H = \alpha \beta ). However, the true power of Theorem 2.3 is that it holds for
any feedback interconnection of the form of (2.7) that satisfies (2.10). This means
that the same fundamental limits on performance hold even if we replace our simple
model of disease spread from (2.4) with a general compartmental model which predicts
an initial period of exponential spread of the disease (if there is no spread, TeTrIs
is not really necessary anyway). To see this, suppose that the linearization of our
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compartmental model of choice can be written in the general form5

(2.11)
dx

dt
= Ax+BQ, I = Cx.

If the model predicts a period of exponential spread of the disease, then the A matrix
will have an eigenvalue p > 0. Provided this mode is observable and controllable
(which would also be necessary for there to be any chance of controlling it through
TeTrIs), the transfer function associated with (2.11) will have a pole at p. That is,

\^I =
1

s - p
M \^Q.

Assuming the same model for TeTrIs, we can now write the linearization of the
feedback interconnection of (2.5) and (2.11) in the framework of (2.7) by setting
G1 = 1/ (s - p)M, and leaving G2 = \alpha exp ( - sTdelay). The transfer functions in this
interconnection also satisfies (2.10), so the same fundamental limit holds. In fact it
will continue to hold even if we use more complex models for TeTrIs, provided they
still include a total time delay of Tdelay. We conclude the section with some final
remarks on Theorem 2.3.

Remark 2.4. The bound from Theorem 2.3 also applies to the complementary
sensitivity function. That is, under the conditions of Theorem 2.3, \| L/ (1 + L)\| \infty \geq 
exp (pTdelay).

Remark 2.5. Theorem 2.3 continues to hold in the nonlinear setting under the
assumption that the feedback interconnection in question has a linearization. This
essentially follows from the fact that the induced L2-norm of a nonlinear system
(the natural generalization of the H-infinity norm) is always greater than the induced
L2-norm of its linearization. This effectively shows that by considering the nonlinear
effects in more realistic models, performance (as measured using sensitivity functions)
can only get worse. This makes it all the more important to aim for performance
requirements on the conservative end (i.e., \| S\| \infty \leq 1.2 rather than \| S\| \infty \leq 2),
necessitating a speedier response. This is discussed in Appendix B.

2.3. Discussion. The purpose of this section has been to expose fundamental
limits in epidemic control that arise from the combination of two factors: the natural
open-loop instability of the system, and the existence of delays in the feedback loop.
Some of our results were stated in general form, but the main motivating example
is the stabilization and regulation of an epidemic by means of testing, tracing, and
isolation of infections. The bounds derived apply to any control strategy of this kind
and can be summarized in ``the need for speed"": if the delays involved in identifying,
testing, and isolating cases are not very tight, the success of the entire approach is in
jeopardy.

There are other strategies for an epidemic control, which are also subject to
fundamental limits of this kind. The most commonly deployed one is social distancing
of the entire population. In the context of the classical SIR models, this means making

5This is the general form of the linearization of a compartmental model

dx

dt
= f (x,Q) , I = g (x) .

It may seem restrictive that g doesn't depend on Q. However, if it did, this would mean that the
effect of quarantining someone would instantly affect whether or not they are infectious, which is
rather implausible.
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the parameter \beta itself a control variable, attempting to stabilize the dynamics at a
nonzero number of infections, compatible with the capacity of the health care system.
Of course, a model of social behavior that would cover the control of \beta is not easy
to obtain and will not be pursued here. We remark, nonetheless, that for instance a
strategy of ordering a lockdown when infections hit a certain threshold is also subject
to time delays (due to disease latency times) which will compromise performance.

Staying within the realm of contact tracing--based control, there is another fun-
damental limit that will be analyzed in the following section.

3. Track-and-trace: The need for scale. The analysis of the preceding sec-
tion sets the focus on the effect of feedback delays in limiting the performance of the
TeTrIs strategy for epidemic control. Here we will address a different limitation of
the control strategy that manifests in the presence of disturbances. That is, TeTrIs
relies on scarce resources: the availability of technology and trained personnel for
taking samples and laboratory testing, for the proactive tracking down of potential
infections, and for ensuring appropriate quarantine.

These resources are usually orders of magnitude smaller than the full scale of
the population, and thus often saturate in a widespread epidemic such as COVID-19.
The question we wish to address is the characterization of these limitations in math-
ematical models for the epidemic under TeTrIs-based control. To accommodate the
nonlinear effect of saturation in a tractable way, we simplify the delay-to-quarantine
model to finite-dimensional dynamics instead of a pure delay. This alternative is nat-
ural in the context of compartmental models: rather than assume that the TeTrIs
process takes a fixed amount of time to remove infected people, we assume a rate of
removal is given; this can be seen as the macroscopic aggregate of the random times
involved in the contract tracing process.

3.1. A model for contact tracing. We thus introduce a compartmental model
that incorporates as a state the number of people in quarantine Q, in addition to the
standard susceptible (S), infected (I), and removed (R) populations. We assume
that people in quarantine effectively isolate and thus are no longer producing new
infections.

IS R

Q

\beta SI \gamma I

\mu I \gamma Q

The TeTrIs control strategy is modeled as follows: Infected people are individually
tracked, tested, and isolated at a rate \mu , meaning that on average, we need a time
1/\mu to effectively put these people into quarantine.

Under these assumptions, the dynamics become

(3.1)
d

dt

\left[    
S
I
Q
R

\right]    =

\left[    
 - 1
1
0
0

\right]    \beta SI +

\left[    
0
 - 1
1
0

\right]    \mu I +

\left[    
0
 - 1
0
1

\right]    \gamma I +

\left[    
0
0
 - 1
1

\right]    \gamma Q.

This model was already proposed in [21] and its analysis is simple, since quaran-
tined people can be considered as ``early recoveries."" More formally, if we consider the
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dynamics in \~S = S, \~I = I, \~R = Q + R, then the model becomes a simple SIR model
with recovery rate \gamma + \mu , and therefore the critical reproduction rate parameter is

(3.2) R\mu :=
\beta 

\gamma + \mu 
.

In the model without quarantine, the open-loop critical rate is R0 = \beta /\gamma (cor-
responding to the case \mu = 0). The net effect of contact tracing is to reduce the
reproduction rate: R\mu < R0. In particular, if the contact tracing rate \mu \rightarrow 0 (contact
tracing is extremely slow), it is as if contact tracing is not operating. If contact tracing
is extremely fast (\mu \rightarrow \infty ), it can stabilize any open-loop transmission rate.

In fact, the above analysis gives a first rule of thumb to determine the contact
tracing speed. That is, provided that the open-loop system is unstable (R0 > 1), we
need

(3.3)
1

\mu 
<

1

\beta  - \gamma 
,

i.e., the average isolation time must be controlled. Equation (3.3) can be compared
with (2.6); the main difference stems from the fact that here we are continuously
isolating people after a random delay, instead of a fixed one. As an example, if we fix
the average recovery time in 1/\gamma = 10 days and R0 = 3 (\beta = 0.3), the average time
to isolate is bounded by 5 days.

While this family of quarantining models is well known, we would like to analyze
the effect of saturating the contact tracing capability. To this end, consider that there
is a maximum fraction of the population K that can be tested, tracked, and isolated
simultaneously. This can be due to a limit in the total test processing capability, the
number of contact tracing agents that are deployed, or any combination thereof.

In such a scenario, if the number of infected people is low, then the quarantining
rate should be \mu I, since every infected person is being tracked (equivalently there
exists idle tracking and testing capacity). However, if the number of infected people
is high (I > K), then the quarantining rate should be \mu K because of the saturation
of the control capabilities.

Under these assumptions, the dynamics become

(3.4)
d

dt

\left[    
S
I
Q
R

\right]    =

\left[    
 - 1
1
0
0

\right]    \beta SI +

\left[    
0
 - 1
1
0

\right]    \mu min\{ K, I\} +

\left[    
0
 - 1
0
1

\right]    \gamma I +

\left[    
0
0
 - 1
1

\right]    \gamma Q.

Note that if K \geq 1 in (3.4), we recover the first model.

3.2. Understanding the issue. To highlight the issues introduced by this sat-
uration, we first analyze the dynamics (3.4) under the assumption that S \approx 1 (i.e.,
at the beginning of the epidemic). In that case, the important part of the dynamics
is the evolution of infected people, which becomes autonomous:

(3.5)
d

dt
I = \beta I  - \gamma I  - \mu min\{ K, I\} .

The above differential equation is extremely simple to analyze. However, it yields
an important insight into the effect of saturation in these kinds of dynamics. Consider
the case where R0 > 1, i.e., the system is open-loop unstable, but R\mu < 1, meaning
that the system can be stabilized by an ``infinite"" contact tracing capability, as in
(3.1). Then the phase diagram becomes

D
ow

nl
oa

de
d 

04
/2

7/
22

 to
 1

62
.1

29
.2

50
.1

0 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

S210 PATES, FERRAGUT, PIVO, YOU, PAGANINI, AND MALLADA

I
0 I\ast K

saturated region

The new unstable equilibrium that emerges in the approximate dynamics can be
readily computed by imposing dI/dt = 0 in (3.5) to yield

(3.6) I\ast =
\mu K

\beta  - \gamma 
.

The appearance of this new equilibrium means that the saturation of contact
tracing measures leads to a threshold behavior in the number of infected people,
a phenomenon already observed in several countries that have lost track of disease
spread [14]. Of course, the value I\ast is not an equilibrium of the full nonlinear dynamics
(3.4), but it should operate as a threshold value. We revisit this more formally below.

In addition, using that R\mu < 1, we have \mu > \beta  - \gamma and thus I\ast > K. This means
that the stability region is larger than the saturation point of the contact tracing
capability. One way to interpret the threshold is to rearrange (3.6) in the following
manner:

(3.7) K =

\biggl( 
\beta 

\mu 
 - \gamma 

\mu 

\biggr) 
I\ast .

Here the factor \beta 
\mu  - \gamma 

\mu acts as a reproduction number: it can be interpreted as the
number of ``children"" a single infected individual generates until it is traced, minus the
ones that recover in that same period. If the total number of new infections generated
by a pool I of infected people is larger than the tracing capacity, then the disease will
spread in the long run.

Example. To demonstrate the validity of the approximation S \approx 1 at the begin-
ning of the epidemic, consider the following scenario: Let \gamma = 1/10, i.e., recovery time
around 10 days and R0 = 3 (\beta = 0.3), so the system is open-loop unstable. Assume
that we need two days on average to test, trace, and isolate people, which amounts to
a choice of \mu = 1/2. In that case, I\ast = \mu 

\beta  - \gamma K = 2.5K, that is, every unit of tracing
capability can deal with up to 2.5 simultaneous infections without crossing the thresh-
old. Let us simulate the system for an initial condition with S \approx 1. In particular
we choose K = 10 - 3, meaning that 1 in 1000 people can be tracked simultaneously.
With this choice of K, I\ast = 2.5 \times 10 - 3 and we choose I(0) slightly below or above
I\ast . Results are shown in Figure 5. We can see that the simulated (nonlinear) system
indeed enters the exponential phase immediately after reaching the threshold.

The above analysis, albeit simplistic, illustrates the effects of local nonlinearities
in the stability behavior of epidemics. Namely, a stable region appears around the
extinction equilibrium, but instability can be reinstated if the number of infected
people grows large, overwhelming the control capabilities. We now analyze this further
in the complete dynamics (3.4), and then extend the framework to consider the case
where the tracing effort is in part spent on contacts that do not become infected.

3.3. Nonlinear analysis. To understand the effect of the saturation without
approximating S \approx 1, it is of use to first understand the behavior of S(t). Since, by
(3.4), d

dtS \leq 0, S(t) is a decreasing function of time. This allows us to derive the
following monotonicity property for I(t).
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Fig. 5. Simulation of the system in (3.4) with I(0) = 2\times 10 - 3 < I\ast and I(0) = 3\times 10 - 3 > I\ast .
Note the different scales in the y-axis. (Color available online.)

Proposition 3.1 (monotonicity of I(t) under (3.4)). Consider the dynamics (3.4).
Then the following property holds:

(3.8)
d

dt
I(t0) < 0 =\Rightarrow d

dt
I(t) < 0 \forall t \geq t0.

Proof. Without loss of generality we assume I(t0) > 0. We first consider the
case I(t0) \leq K. In this case, it follows from (3.4) that S(t0) < 1/R\mu . This is the
standard scenario where the number of susceptible people is not enough to sustain
the epidemic, and thus we expect d

dtI(t) < 0 for all t > t0.

Indeed, if we assume by contradiction that there is a time t1 such that d
dtI(t1) = 0,

then we get

0 =
d

dt
I(t1) = (\beta S(t1) - \gamma  - \mu )I(t1) =\Rightarrow S(t1) =

1

R\mu 
> S(t0),

which contradicts the fact that S(t) is decreasing in time.
The analysis for the case I(t0) \geq K follows similar reasoning. Indeed, by consid-

ering the saturated version of (3.4), i.e.,

(3.9)
d

dt
I = \beta SI  - \gamma I  - \mu K,

we get that d
dtI(t0) < 0 implies

(\beta S(t0) - \gamma )I(t0) < \mu K.(3.10)

Thus, assuming again by contradiction the existence of t1, being the first time d
dtI(t) =

0 for t > t0, we obtain

(\beta S(t0) - \gamma )I(t0) < \mu K = (\beta S(t1) - \gamma )I(t1) \leq (\beta S(t0) - \gamma )I(t1),(3.11)

where the first inequality follows from d
dtI(t0) < 0 and the second from the mono-

tonicity of S(t). It follows then that I(t1) > I(t0), and therefore

0 < I(t1) - I(t0) =

\int t1

t0

d

dt
I(t)dt < 0,

where the last inequality holds by the definition of t1. Thus, such a time t1 cannot
exist.
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Fig. 6. S-I region of the phase plane. Trajectories for uncontrolled evolution (green), unsatu-
rated TeTrIs (purple), and TeTrIs with K = 0.01 (red) are presented for two initial conditions. On
the left, I(0) is above the nullcline and the pandemic spreads. On the right, I\ast < I(0) < \~I(S(0))
and the pandemic is contained successfully. The \~I(S) nullcline (solid black) thus acts as a threshold
between successful and unsuccessful TeTrIs. (Color available online.)

The preceding proposition illustrates the critical role of the nullcline d
dtI = 0

in (3.4) in understanding the threshold behavior in the nonlinear case. To simplify
exposition and further understand the role of the nullcline, we consider only the most
relevant case when R\mu < 1 and R0 > 1, as before.

In this case, the nullcline is fully within the saturated region, and Proposition 3.1
leads to the simple condition

(3.12) I \leq \~I(S) :=
\mu K

\beta S  - \gamma 
=

\mu K

\beta (S  - 1
R0

)

for the disease to dissipate without a major outbreak. Indeed, for the number of
infectious people to increase, d

dtI(t) must be positive, thus violating (3.12).
A few remarks are in order. First, the threshold is only valid for the range

0 \leq \~I(S) \leq 1. Outside such a range, the disease dies out. In particular, \~I(S) \geq 0
leads to the already known S \leq 1/R0 condition, and \~I(S) \geq 1 \geq I guarantees d

dtI < 0

for all I. Second, the nonlinear threshold \~I(S) is a decreasing function of S (see
Figure 6), which implies that the most conservative bound is obtained at S = 1,
which leads to

\~I(S) =
\mu K

\beta S  - \gamma 
\geq \mu K

\beta  - \gamma 
= I\ast > K,

where the last inequality follows from our assumption R\mu < 1. Thus, the analysis
of the previous section leads to a lower bound on the critical threshold, which, as
expected, is quite accurate when S \approx 1.

Example. Consider again the set of parameters \beta = 0.3, \gamma = 1/10, and \mu = 1/2.
As mentioned before, since in this case R\mu < 1 < R0, \~I(S) \geq I\ast > K holds for all S.
Figure 6 considers the case of K = 0.01 (red) and compares its trajectory on the (S, I)
plane with two additional cases, the unsaturated dynamics (UnSat TeTrIs, purple)
and the regular dynamics with no track-and-trace (No TeTrIs, red). On the left,
an initial condition I(0) = 0.65, S(0) = 1 - I(0), with I(0) above the threshold \~I(S)
(solid black), is considered. On the right, a similar setting but with I(0) = 0.0255
between \~I(S(0)) = \~I(0.974) = 0.026 and I\ast = 0.025 is considered. This therefore
validates the very slight conservativeness in the I\ast threshold.
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3.4. Modeling the tracing of uninfected contacts. One thing the preceding
models do not capture is that the resources of a contact tracing system are also
invariably used to test and trace people that have been in contact with infected
individuals, but have not developed the infection. As we analyze in this section,
the stability region obtained by TeTrIs control policy will be reduced because of this
phenomenon.

Consider the following compartmental model for the epidemic spread. As usual,
I denotes the infected population at a given time. These infected individuals have
multiple contacts which generate secondary infections at rate \beta , but also have other
contacts, say at rate \beta 1, which do not generate infection. Since this classification
can only be ascertained by testing, the TeTrIs capability is in part spent on these
noninfected contacts. We will denote the population of potential infections by P and
separate it from the rest of the susceptible population for which we use the variable
S.

For our model, we choose \beta 1 = \nu \beta . Here \nu can be thought as the ``odds ratio"" that
a contacted individual does not develop the infection. If \nu = 0, all potential contacts
are infected and the model operates as before, but typically \nu > 0, meaning that not
all contacts are infected. In particular, in Uruguay, where we have access to fine-
grained data, its value is around \nu = 10, meaning that for each infected individual,
10 more people should be tracked.

The open-loop model given below carries out the classification of susceptible in-
dividuals into the P and S categories, before incorporating contact tracing:

(3.13)
d

dt

\left[    
S
P
I
R

\right]    =

\left[    
 - 1 - \nu 

\nu 
1
0

\right]    \beta IS +

\left[    
0
 - 1
1
0

\right]    \beta IP +

\left[    
0
0
 - 1
1

\right]    \gamma I.

Of course, if we combine both categories of susceptibles into one class, \~S = S+P ,
the model reduces to a classical SIR model with infection rate \beta and recovery rate
\gamma . Thus the reproduction number for the model in (3.13) is given as before by

R0 =
\beta 

\gamma 
.

Consider now that the contact tracing effort u is split between uP and uI , mean-
ing that the tracking is performed over the whole potentially infected population.
Those that are tracked and are infected are isolated, the others are simply ``cleared""
and return to the normal susceptible class. Adding as before a state variable for
quarantined population, we obtain the model
(3.14)

d

dt

\left[      
S
P
I
Q
R

\right]      =

\left[      
 - 1 - \nu 

\nu 
1
0
0

\right]      \beta IS+

\left[      
0
 - 1
1
0
0

\right]      \beta IP +

\left[      
1
 - 1
0
0
0

\right]      uP +

\left[      
0
0
 - 1
1
0

\right]      uI +

\left[      
0
0
 - 1
0
1

\right]      \gamma I+

\left[      
0
0
0
 - 1
1

\right]      \gamma Q.

Following the analysis in the previous sections, in the case where there is no limit
to the tracing capabilities, we can assume

(3.15) uP = \mu P, uI = \mu I,
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where 1/\mu is the average time to trace and test one individual, either potential or
infected.

I

S

R

Q

P

\beta SI \gamma I

\mu I \gamma Q

\nu \beta SI

\beta PI\mu P

Substituting this control law in (3.14), we can easily observe that, since there
is no coupling between uP and uI , the model reduces to the contact tracing and
quarantining model of section 3.1. Namely, the state \~S = S + P, \~I = I, \~Q = Q, and
\~R = R follows exactly the dynamics in (3.1). In particular, the reproduction rate for
a given value of \mu is the same as in (3.2):

(3.16) R\mu =
\beta 

\mu + \gamma 
.

Again with sufficiently fast contact tracing, one can cope with any transmission rate.
The interesting case, however, is when contact tracing is limited by the total

number of trackers or simultaneous tests that can be performed. Since these tests are
performed before knowing if a person is a potential infection or an infected individual,
the coupling between uP and uI becomes

(3.17) uP + uI \leqslant \mu K.

In particular, if we assume that the effort is equally split between all P + I
potentially infected individuals, then

uP (P, I) = \mu 
P

P + I
min\{ P + I,K\} = \mu P min

\biggl\{ 
1,

K

P + I

\biggr\} 
,(3.18)

uI(P, I) = \mu 
I

P + I
min\{ P + I,K\} = \mu Imin

\biggl\{ 
1,

K

P + I

\biggr\} 
.(3.19)

Note that uP + uI = \mu min\{ K,P + I\} and thus satisfies (3.17). Also when I and P
are near zero, the feedback law reduces to (3.15).

3.5. Threshold analysis. In comparison with (3.4), a full nonlinear analysis
in this case is more involved. Therefore, we resort to the strategy of analyzing the
behavior of the saturated policy around the disease-free equilibrium where S \approx 1.
In this setting, P \ll 1 and I \ll 1 so the product term IP can be disregarded.6

Substituting this condition and the control law (3.18) in (3.14), the dynamics become
autonomous in P and I with

(3.20)
d

dt

\biggl[ 
P
I

\biggr] 
=

\biggl[ 
0 \nu \beta 
0 \beta  - \gamma 

\biggr] \biggl[ 
P
I

\biggr] 
 - \mu min

\biggl\{ 
1,

K

P + I

\biggr\} \biggl[ 
P
I

\biggr] 
.

We have the following.

6This is equivalent to considering that every potential contact only arises from a single infected
interaction.
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Proposition 3.2. Under the condition R0 > 1 (uncontrolled open loop) and
R\mu < 1, the dynamics in (3.20) have a locally asymptotically stable disease-free equi-
librium P = I = 0, and a further unstable equilibrium emerges at

(3.21) P \ast =
\nu \beta 

((1 + \nu )\beta  - \gamma )(\beta  - \gamma )
\mu K, I\ast =

1

(1 + \nu )\beta  - \gamma 
\mu K.

Proof. We begin by analyzing the disease-free case, which is readily verified to be
an equilibrium after substitution in (3.20). The Jacobian matrix in this case retains
a diagonal term  - \mu since the saturation is not in effect near the origin. Thus the
Jacobian is

J1 =

\biggl[ 
 - \mu \nu \beta 
0 \beta  - \gamma  - \mu 

\biggr] 
.

The Jacobian has two negative eigenvalues,  - \mu and \beta  - \gamma  - \mu ; the latter is negative
due to the assumption that R\mu < 1. Hence the equilibrium is locally stable.

To find the second equilibrium, we assume that the saturation is active and im-
poses equilibrium in (3.20):\biggl[ 

0 \nu \beta 
0 \beta  - \gamma 

\biggr] \biggl[ 
P \ast 

I\ast 

\biggr] 
 - \mu 

K

P \ast + I\ast 

\biggl[ 
P \ast 

I\ast 

\biggr] 
=

\biggl[ 
0
0

\biggr] 
.

After some algebra one arrives at the expressions in (3.21) for P \ast and I\ast .
Furthermore,

(3.22) P \ast + I\ast =
\mu 

\beta  - \gamma 
K > K

under the hypothesis that \mu > \nu \beta  - \gamma \leftrightarrow R\mu < 1. Hence, for any testing rate that
stabilizes under infinite contact tracing assumptions, one gets an unstable equilibrium
when the saturation comes into play. Moreover, note that the total number being
tracked at this new equilibrium coincides with the threshold (3.6).

That this equilibrium is indeed unstable can be seen by analyzing its Jacobian
matrix,

J2 =

\biggl[ 
0 \nu \beta 
0 \beta  - \gamma 

\biggr] 
,

which corresponds to the open-loop model that has a positive eigenvalue \beta  - \gamma > 0
under the assumption R0 > 1.

As a final remark, note that the equilibrium (3.21) verifies

(3.23)
P \ast 

I\ast 
=

\nu \beta 

\beta  - \gamma 
=

R0

R0  - 1
\nu .

This supports the intuitive observation that, when \nu is large, most of the contact
tracing effort is spent only on the potential contacts, reducing the stability margin.
Below we analyze this in a numerical example.

Example. To depict the behavior of the dynamics (3.20), we choose as before
\gamma = 1/10 (10 days average recovery time) and \beta = 3\gamma , yielding R0 = 3. The ratio \nu 
is taken as \nu = 10, as observed in some cases, consistent with current measurements
in the real epidemiological scenario in Uruguay, where approximately 10 contacts are
traced per infected individual, generating only one new infection.
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Fig. 7. Phase diagram of (3.20) and unstable equilibrium point of the approximate dynamics.
We superimpose the solution of the nonlinear version depicted in Figure 8.

If we assume that K = 10 - 3, meaning that 1 in 1000 people can be tracked and
tested simultaneously, then the unstable equilibrium occurs at

P \ast + I\ast = 2.5\times 10 - 3,

but with a lower number of infections, namely,

P \ast = 2.34\times 10 - 3, I\ast = 0.16\times 10 - 3.

Observe that these parameters are also consistent with the numerical example
in section 3.1, where the stability threshold was at I = 2.5 \times 10 - 3. Now that the
contact tracing is burdened with potential contacts, the stability region diminishes in
consequence.

The phase plot is depicted in Figure 7. In particular, starting from an initial
condition I(0) = 0.5 \times 10 - 3 (which would be clearly stable in (3.4)) and P (0) = 0,
the system enters the exponential phase due to the secondary contacts that burden
the contact tracing capabilities. In particular, in Figure 8 we can observe that at
the peak 70\% of the population becomes a potential contact simultaneously, and the
susceptible people go quickly to 0, meaning that the whole population has been in
contact with an infected individual, clearly overwhelming the tracking and testing
capabilities.

3.6. Discussion. To conclude this section, let us recap the main results derived.
The first result is that, whenever there is a cap on the contact tracing capability, a
threshold behavior develops in the dynamics. This emphasizes the need for scale,
summarized succinctly in (3.6) and its nonlinear counterpart (3.12). Whenever the
infected number grows, the testing and tracing capacity should grow linearly with the
number of infections in order to avoid saturation. On the other hand, the system can
work in the saturated regime without becoming overwhelmed, but once the threshold
is crossed the epidemic will spread.

The second result is that this stability margin is greatly compromised by the fact
that testing and tracing capacity is burdened by the need of following contacts that
do not become infected. This is summarized in (3.22) and (3.23), which evidence how
saturation comes into play due to the total number of contacts, and that this total
number is dominated by potential contacts.
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Fig. 8. Unstable trajectories of the saturated system with limited contact tracing. (Color
available online.)

4. Conclusions. This work presents a cautionary message of the fundamental
limits involved in preventing disease propagation during an epidemic. Our results
highlight the particularly dangerous combination of instability and nonlinearity, in-
trinsic to the disease spread process (our plant), together with delays and capacity
constraints, intrinsic to the TeTrIs process (our actuator), which makes the disease
control problem fundamentally challenging. It is important to notice that some of
our quantitative predictions are, to a certain extent, pessimistic, as we only consider
one method for disease spread prevention, i.e., TeTrIs. Clearly, complementing such
a process with other control mechanisms, such as social distancing, masks, etc., can
improve the effectiveness and robustness of disease spread mitigation efforts. Nev-
ertheless, irrespective of the methods used, we believe that the needs for speed and
scale are, at its core, necessary for effective disease prevention.

Appendix A. Proof of Theorem 2.1. We begin by linearizing the model
in (2.4) and (2.5). Eliminating S using the algebraic equation in (2.4) and then
linearizing about the point (I,R,Q) = (0, 0, 0) shows that for small deviations,

(A.1)
dI

dt
= (\beta  - \gamma ) I  - \beta Q.

Equation (2.5) is already linear. We are therefore required to show that the intercon-
nection of (A.1) and (2.5) is stable. Eliminating Q from the I equation in (A.1) with
(2.5) gives

dI

dt
+ \gamma I + \alpha \beta exp ( - \gamma Tdelay) I (t - Tdelay) - \beta I = 0.

Stability is then equivalent to all the roots of the characteristic equation lying in the
open left-half-plane. That is,

s+ \gamma + \alpha \beta exp ( - \gamma Tdelay) exp ( - sTdelay) - \beta \not = 0 \forall s \in C+.

Putting \~s = s/\beta and rearranging shows that this is equivalent to

(A.2) \~s+R - 1
0 + \alpha exp

\bigl( 
 - \beta Tdelay

\bigl( 
\~s+R - 1

0

\bigr) \bigr) 
\not = 1 \forall \~s \in C+.

A standard Nyquist argument then shows that this holds if and only if the curve given
by

f (\~s) := \~s+R - 1
0 + \alpha exp

\bigl( 
 - \beta Tdelay

\bigl( 
\~s+R - 1

0

\bigr) \bigr) D
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when evaluated along the usual Nyquist D-contour does not encircle 1. A simple
sufficient condition for this is that

(i) f (0) > 1;
(ii) d

d\omega (Im (f (j\omega ))) > 0,
since together (i)--(ii) ensure that the curve only crosses the real axis to the right of
1 (technically we also need to consider the real axis crossing on the return arc along
the D-contour, but since for large s, f (s) \approx s, these will be to the right of 1). It is
readily checked that (i) is equivalent to the condition from the theorem statement.
That is,

(i) \Leftarrow \Rightarrow Tdelay <
1

\gamma 
ln

\biggl( 
\alpha 

1 - R - 1
0

\biggr) 
=: T \ast .

For (ii), observe that

d

d\omega 
(Im (f (j\omega ))) = 1 - \alpha \beta Tdelay exp

\bigl( 
 - \beta TdelayR

 - 1
0

\bigr) 
cos (\beta Tdelay\omega ) .

Therefore, it is sufficient that \alpha \beta Tdelay exp
\bigl( 
 - \beta TdelayR

 - 1
0

\bigr) 
< 1. We will demonstrate

this in two stages. First observe that \alpha \beta Tdelay exp
\bigl( 
 - \beta TdelayR

 - 1
0

\bigr) 
\leq \alpha R0 exp ( - 1).

Therefore, if R0 < exp (1), (ii) holds (recall that 0 \leq \alpha \leq 1). Now assume that
R0 \geq exp (1). We then see that if this is the case,

ln

\biggl( 
\alpha 

1 - R - 1
0

\biggr) 
\leq ln

\biggl( 
1

1 - exp ( - 1)

\biggr) 
\approx 0.5 < 1,

so (i) implies that
\beta Tdelay < \beta T \ast < R0.

Next observe that for x < R0, the function x exp ( - x/R0) is monotonically increasing
in x. Therefore,

\alpha \beta Tdelay exp
\bigl( 
 - \beta TdelayR

 - 1
0

\bigr) 
< \alpha \beta T \ast exp

\bigl( 
 - \beta T \ast R - 1

0

\bigr) 
= R0

\bigl( 
1 - R - 1

0

\bigr) 
ln

\biggl( 
\alpha 

1 - R - 1
0

\biggr) 
\leq 1.

Therefore, (i) =\Rightarrow (ii), and by consequence the conditions of the theorem are sufficient
for stability. Necessity follows since if Tdelay \geq T \ast , then f (0) \leq 1. Since for x \gg 0,
f (x) > 1, by the intermediate value theorem there must be some x \geq 0 for which
f (x) = 1. Therefore, (A.2) does not hold, and the system will be unstable.

Appendix B. Extending Theorem 2.3 to the nonlinear setting. In this
section we will demonstrate that under appropriate assumptions, a natural analogue
of Theorem 2.3 holds in the nonlinear setting. To do this we will prove that the
induced L2-norm of a system is always lower-bounded by the induced L2-norm of
its linearization. Since the induced L2-norm of an LTI system is equal to its H-
infinity norm, this shows that if the linearization of a nonlinear system is LTI, then
the induced L2-norm of the sensitivity function of the nonlinear system must satisfy
the same bound from Theorem 2.3.

The result we are trying to prove is in fact rather elementary. However, it requires
a bit of setup to lay out the appropriate definitions and concepts. The difficulties stem
from the fact that we would like to combine nonlinear state-space models (to describe
general compartmental models for disease spread) and delays. Accordingly we adopt
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the standard operator theoretic setup on L2 which covers both of these types of
model. More specifically, L2 is the space of functions f : [0,\infty ) \rightarrow R with finite norm

\| f\| :=

\sqrt{} \int \infty 

0

| f (t)| 2 dt.

This is a subspace of L2e, whose members need only be square integrable on finite
intervals. An operator is a function \scrG : L2e \rightarrow L2e, and the induced L2-norm of an
operator is defined as

\| \scrG \| L2
:= sup

\biggl\{ 
\| \scrG (u)\| 
\| u\| 

: u \in L2e, u \not = 0

\biggr\} 
.

In the case where the operator \scrG is describing the dynamics of an LTI system with
transfer function G, \| \scrG \| L2

= \| G\| \infty .

The natural generalization of a linearization in this setting is given by the Fr\'echet
derivative. An operator \scrG is Fr\'echet differentiable at a point x \in L2 if there exists a
linear operator \scrA such that

lim
h\rightarrow 0

\| \scrG (x+ h) - \scrG (x) - \scrA (h)\| 
\| h\| 

= 0.

If such a linear operator exists, it is unique, and we denote the Fr\'echet derivative of
\scrG at x as D\scrG (x) = \scrA .

With these definitions in place, we are ready to state the main result of this sec-
tion. The following lemma shows that, provided the linearization exists, the induced
L2-norm of the linearization of an operator about a fixed point (an equilibrium point)
is always smaller than the L2-norm of the operator itself. This means that if we have
a nonlinear system \scrG with linearization described by an LTI system with transfer
function G, then \| \scrG \| L2

\geq \| G\| \infty . This immediately gives us a nonlinear gener-

alization of Theorem 2.3. In particular, if we instead study the nonlinear feedback
interconnection

(B.1)
ei = \scrG i (ei - 1) + di, i \in \{ 1, . . . , n\} ,
e0 =  - en

and define the sensitivity functions to be the operators \scrS i : di \rightarrow ei, then, provided
the linearizations of \scrS i are LTI, \| \scrS i\| L2

must satisfy exactly the same lower bound

from Theorem 2.3.

Lemma B.1. Given an operator \scrG , if \scrG (0) = 0 and \scrG is Fr\'echet differentiable at
0, then

\| \scrG \| L2
\geq \| D\scrG (0)\| L2

.

Proof. Let \scrA = D\scrG (0). Using the reverse triangle inequality shows that for any
nonzero x \in L2e and nonzero \epsilon \in R,

\| \scrG \| L2
\geq \| \scrG (\epsilon x)\| / \| \epsilon x\| = \| \scrG (\epsilon x) - \scrA (\epsilon x) +\scrA (\epsilon x)\| / \| \epsilon x\| 

\geq \| \scrA (x)\| / \| x\|  - \| \scrG (\epsilon x) - \scrA (\epsilon x)\| / \| \epsilon x\| .

Taking the limit \epsilon \rightarrow 0, we see from the definition of the Fr\'echet derivative that this
implies \| \scrG \| L2

\geq \| \scrA (x)\| / \| x\| . Taking the sup over x \in L2e gives the result.
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