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Frequency shaping control for weakly-coupled
grid-forming IBRs

Bala Kameshwar Poolla, Yashen Lin, Andrey Bernstein, Enrique Mallada, Dominic Groß

Abstract—We consider the problem of controlling the fre-
quency of low-inertia power systems via inverter-based resources
(IBRs) that are weakly connected to the grid. We propose a novel
grid-forming control strategy, the so-called frequency shaping
control, that aims to shape the frequency response of synchronous
generators (SGs) to load perturbations so as to efficiently arrest
sudden frequency drops. Our solution relaxes several existing
assumptions in the literature and is able to navigate trade-
offs between peak power requirements and maximum frequency
deviations. Our analysis particularly shows the importance of
accurate estimation of network parameters. Finally, we analyze
the effect on frequency violation due to imperfect knowledge of
these parameters.

Index Terms—inverter-based resources, grid-forming devices,
frequency-shaping control, weakly-coupled networks

I. INTRODUCTION

Electric power systems are undergoing an unprecedented
transformation towards replacing conventional bulk power
generation with renewable generation. A significant proportion
of emerging technologies, such as photovoltaics, wind power,
and battery energy storage systems, are connected to power
systems by means of power electronic inverters. In contrast
to conventional synchronous generators (SGs) that provide
significant kinetic energy storage (i.e., inertia) and primary fre-
quency control via their turbine-governor system, renewables
and power electronic inverters deployed today are controlled
to maximize the renewable power generation and jeopardize
stability [1], [2]. Instead, grid-forming (GFM) inverters, that
impose a stable AC voltage at the point of connection are
envisioned to replace SGs as the cornerstone of future power
systems [2], [3].

The prevalent GFM control strategies in the literature are
droop-control [4], virtual synchronous machines [5], and (dis-
patchable) virtual oscillator control [6], [7]. While virtual
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oscillator control is typically aimed at 100% inverter systems,
the literature on low-inertia systems that contain a mix of
conventional generation and inverter-based resources (IBRs)
largely focuses on droop control and virtual synchronous
machines that mimic the speed droop and inertia response of
SGs to various levels of fidelity. Although strategies based
on machine-emulation are compatible with the legacy power
system, they do not leverage the full potential of a system of
SGs and IBRs. In particular, SGs provide significant (but slow)
frequency control, whereas IBRs can provide a fast frequency
control response but often cannot sustain this response over
a longer duration due to limited energy storage and limited
flexibility of their primary power source.

One alternative to inertia emulation or droop control is
to leverage the flexible power output of IBRs to shape the
frequency response of SGs to load changes [8], [9]. Inspired by
model-matching techniques, frequency shaping control (FSC)
aims to design IBR controls that transform SGs typical second-
order response to that of a first-order system. In this way, FSC
allows IBRs to provide fast short-term frequency control that
fills in the gap produced by the lower system inertia. However,
existing FSC designs are either limited to grid-following
(GFL) inverters [8], or require IBR buses to be coherent with
SG buses [9], a condition that is limited to systems with short
electrical distance, i.e., tightly coupled [10]. Moreover, the
requirement of shaping SGs as first-order systems leads to
high peak power requirements from IBRs. Thus, while this
approach results in a significant improvement over inertia
emulation, its applicability is limited to special settings.

In this work, we seek to extend this approach to overcome
the above-mentioned limitations. Precisely, we consider a
setup in which IBRs are electrically distant from SGs (a
scenario typically observed in off-shore wind), and provide
an FSC design which (i) accounts for the separation of SGs
and IBRs, and (ii) trades-off peak power with frequency con-
tainment, by matching the frequency dynamics of a low-inertia
system to a second-order transfer function. In particular, we
define a target second-order response that is motivated by a SG
with a smaller effective turbine time constant. Next, we design
and analyze a GFM control that realizes this target response
under any network coupling. Moreover, we show that stability
constraints on the control restrict the range of effective turbine
time constants that can be achieved and analyze the robustness
of the control towards uncertain network parameters.

II. SYSTEM MODELING

The focus of this work is to investigate shaping the dynamic
response of the frequency of a low-inertia power system. For
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brevity of the presentation, we will consider a two-bus system
(see Figure 1) containing a synchronous machine (SM) that
models the aggregate frequency dynamics of a conventional
multi-machine power system [11] and a grid-forming voltage
source inverter (VSI).

The aggregate response of the power system frequency
deviation ωsm to a load perturbation pℓ is modeled by swing
dynamics with a first-order turbine/governor model [12]

2H ω̇sm =− αℓ ωsm + pm − pℓ + pvsi, (1a)
τ ṗm =− pm − αg ωsm, (1b)

where pm ∈ R denotes the deviation of the mechanical power
generated by the turbine from its setpoint, and pvsi ∈ R models
the power flowing from the VSI to the synchronous machine.
Further, H is the equivalent inertia constant of the machine,
αg ∈ R>0 denotes the aggregate speed governor gain (i.e.,
inverse frequency droop constant), αℓ ∈ R>0 denotes the
aggregate frequency sensitivity of load, and τ ∈ R>0 is the
aggregate turbine time constant. The transfer function from
the machine electrical power injection psm = pℓ − pvsi to the
machine frequency

ωsm(s) = Gωsm, psm(s) (pvsi(s)− pℓ(s)), (2)
is given by

Gωsm, psm(s) =
s τ + 1

2Hτ s2 + (2H + αℓτ) s+ (αℓ + αg)
. (3)

Next, consider a VSI connected to the aggregate frequency
dynamics (1) through a lossless transmission line with suscep-
tance b ∈ R>0 as depicted in Figure 1. Furthermore, let θvsi
denote the voltage phase angle at the IBR bus. Then, using the
DC power flow approximation at 1 p.u. voltage magnitude and
zero angle difference [12], the inverter power injection pvsi(s)
is given by

pvsi(s) = b
(
θvsi(s)− θsm(s)

)
=

1

s
b
(
ωvsi(s)− ωsm(s)

)
. (4)

The combination of the synchronous machine and the IBR can
be interpreted as the VSI in feedback with the synchronous
machine as shown in Figure 2. To this end, let

ωvsi(s) = −Gωvsi, pvsi(s) pvsi(s), (5)
represent the dynamics of the grid-forming1 VSI. Combining
(4) and (5), the relation between the generator frequency ωsm
and the inverter power pvsi(s) is

pvsi(s) = − 1
1
b s+Gωvsi, pvsi(s)︸ ︷︷ ︸
=: Gpvsi, ωsm(s)

ωsm(s). (6)

Using (6) to close the loop between (5) and (2), results in the
closed-loop transfer function

ωsm(s) = −
( 1b s+Gωvsi, pvsi(s))Gωsm, psm(s)
1
b s+Gωsm, psm(s) +Gωvsi, pvsi(s)︸ ︷︷ ︸

=: Gcl
ωsm, pℓ

(s)

pℓ(s), (7)

from the load perturbation pℓ to the aggregate frequency ωsm.

1We emphasize that there is no precise and agreed upon definition of
grid-forming IBRs and resolving this challenge is beyond the scope of this
manuscript. Instead, we refer to an IBR as grid-forming if it imposes a
sinusoidal AC voltage with well-defined magnitude on its AC terminal.

psm

b

pvsi

θsm θvsi

pℓ
ωsm ωvsi

Fig. 1. Interconnection of a synchronous machine and grid-forming VSI.
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Fig. 2. The synchronous machine–IBR viewed as a feedback system.

III. PROBLEM FORMULATION

The goal of this work is to shape the response Gcl
ωsm, pℓ

(s)
through the IBR control Gωvsi, pvsi(s) to improve the system
frequency response. To that end, in this section, we will
first discuss the desired response Gcl⋆

ωsm, pℓ
(s). Subsequently, in

Section IV, we will compute Gωvsi, pvsi(s) such that Gcl
ωsm, pℓ

(s)
matches the desired response Gcl⋆

ωsm, pℓ
(s). In [9], the target

transfer function of the overall system Gcl⋆
ωsm, pℓ

(s) is a first-
order system. As first-order responses do not exhibit over-
shoots, the post-disturbance frequency nadir and the steady-
state settling frequency are identical. This results in the corre-
sponding IBR response to exhibit a high peak power injection
pvsi(s) in order to reduce the frequency nadir. Power inverters
with high rating (i.e., that can provide large peak power
injections) are expensive and frequent large power injections
degrade the lifetime, e.g., battery energy storage systems.
Thus, it is critical to minimize the IBR peak power, without
potentially degrading the frequency response of the overall
system too much. In particular, we aim to fully leverage the
fast and flexible actuation capabilities of IBRs to improve the
frequency nadir, while lowering the IBR peak power injections
relative to the approach in [9].

Next, we illustrate that the power injections from the IBRs
can be improved by choosing second-order target transfer
functions Gcl⋆

ωsm, pℓ
(s).

A. Generator matching transfer function

We consider the standalone synchronous machine transfer
function Gωsm, psm(s) defined in (3). Next, we define the set

U :=

{
ρ ∈ R

∣∣∣∣ 0 ≤ ρ < τ

}
(8)

of effective turbine time constants. As we desire to de-
sign a second-order transfer function for our target response
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Gcl⋆
ωsm, pℓ

(s), we consider a candidate transfer function in the
form of (3) with an effective turbine time constant ρ ∈ U

Gcl⋆
ωsm, pℓ

(s) := − s ρ+ 1

2Hρs2 + (αℓρ+ 2H) s+ (αℓ + αg)
. (9)

Such a choice of the target response translates to the IBR
speeding up the response of the turbine/governor system of the
SG, i.e., an overall system response that is much faster than the
original (aggregate) power system (1). This choice is justified
by the fact that SGs provide significant (but slow) frequency
control, whereas IBRs can provide a fast frequency response
but often cannot sustain this response over long periods of
time due to limited flexibility and energy storage.

Remark 1. (Target second-order response). In our analysis,
we consider the target Gcl⋆

ωsm, pℓ
(s) to be a modification of

the original system response Gωsm, psm(s). Such a choice is
reasonable as the IBR devices cannot provide significant
levels of inertia without significantly oversizing the IBR [13].
Moreover, we aim to control the post-disturbance steady-
state power injection of the IBR to zero. These requirements
effectively prevent us from modifying the inertia constant
H , load damping αℓ, and governor gain αg . Considering
more generic target transfer functions (parameterized by poles,
damping ratio, and zeros) that allow specifying objectives
beyond minimizing nadir and peak power injection are seen
as an interesting area for future work. •

In general, we can design controllers for IBRs to realize a
wide range of power injections. In order to obtain an overall
system response Gcl

ωsm, pℓ
(s) = Gcl⋆

ωsm, pℓ
(s), the power injection

from the IBR, pvsi(s) has to satisfy

pvsi(s)
!
= − αg s (τ − ρ)

(s τ + 1)(s ρ+ 1)
ωsm(s), (10)

where ωsm(s) is the frequency of the synchronous machine
(1). In terms of the load disturbance pℓ(s), the above relation
in conjunction with (7) translates to

pvsi(s) = − αg s (τ − ρ)

(s τ + 1)(s ρ+ 1)
Gcl⋆

ωsm, pℓ
(s) pℓ(s), (11)

where the target response Gcl⋆
ωsm, pℓ

(s) is given by (9). We note
from (11) that the transfer function is third-order due to stable
pole-zero cancellation.

Remark 2. (IBR power injection). While we limit ourselves
to grid-forming inverters in this paper, the results in this
section are agnostic to the IBR implementation. As long as
an IBR injects the power specified by (11), the overall system
response will match the target Gcl⋆

ωsm, pℓ
(s). •

B. Minimizing Peak IBR power injections

We recall from the discussion above that the main motiva-
tion for exploring higher-order target transfer functions is to
minimize the peak power injected by the IBR devices while
limiting the aggregate system frequency excursion in response
to load perturbations, i.e.,

min
ρ

|pvsi|∞

s.t. |ωsm|∞ ≤ ω̄sm, (12)

where | · |∞ = supt | · (t)| denotes the absolute peak value and
pvsi(t) is the power injected by the IBR in response to a step
perturbation in the load pℓ.

Remark 3. (Optimal effective time constant). The opti-
mization problem in (12) is trivial when the constraint on
frequency nadir is removed. Specifically, the unconstrained
problem admits a trivial solution ρ = τ , i.e., there is no power
injection from the IBR and thus we have the original frequency
dynamics (1). •

While [11] provides a closed-form relation for the frequency
nadir of an under-damped SG of (1), exact solutions to the
problem (12) are generally intractable both analytically and
computationally. Thus, we resort to gridding the parameter
space. Figure 3 and Figure 4 depict the response of the SG
frequency and IBR power injection to a 1 p.u. load step for
different overall effective time constants ρ. We note that as
the effective time constant ρ is reduced, the corresponding
frequency nadir decreases due to higher IBR power injection.

0 2 4 6 8 10

−400

−300

−200

−100

0

Time (s)

Fr
eq

ue
nc

y
(m

H
z)

0.9s
0.7s
0.5s
0.3s

Fig. 3. The frequency response for a 1 p.u. load step for different values of
ρ.
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Fig. 4. The power injection from the IBR for a 1 p.u. load step for different
values of ρ.

Another observation for the specific system parameters
used2, is that the objective is monotone in the decision variable
(ρ) and thus the solution to the minimization problem (12) can
also be determined graphically. To this end, we compute and
plot specifically, the peak power injection from IBRs for step
load perturbations in Figure 5 as a function of ρ.

2We use the single machine-single IBR system from [9] for our simulations.
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Fig. 5. Peak IBR power injection for a 1 p.u. load step as a function of ρ.
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Fig. 6. Frequency nadir for a 1 p.u. load step as a function of ρ.
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Fig. 7. Pareto front for peak IBR power injection v/s the frequency nadir for
a 1 p.u. load step. The limit ρ → 0 recovers a first-order response.

In Figure 6, we plot the frequency nadir3 of the overall
system (with the IBR) as a function of the effective time
constant ρ based on the data from [9]. As the effective time
constant increases, the frequency nadir increases monotoni-
cally attaining a maximum for ρ = τ , i.e., the original system
without any IBR. Finally, in Figure 7, we plot the Pareto front
for frequency nadir and the peak power input pvsi from the
IBR. We also indicate points on the Pareto front for varying
ρ. The limit (i.e., ρ → 0) recovers the first-order response as
in [9]. Note that as both these quantities are monotonic in ρ,
the Pareto front would allow a system operator to choose an

3We consider the absolute value of the frequency nadir here. As the load
perturbation is a step, the frequency nadir will be negative.

acceptable trade-off between the two.
Thus, for the target system response in (9), we obtain a set of

pairs of peak IBR power injection and frequency nadir points.
Each pair maps to a unique ρ, which has the interpretation
of time constant analogous to the turbine time constant of the
original system (1).

IV. IBR IMPLEMENTATION OF CONTROLLERS

In this section, we delve into the implementation of the
frequency controls discussed in the previous section using
IBRs. In particular, we investigate grid-forming devices, which
we believe will form the backbone of future grids.

Consider a single machine-single grid-forming IBR system
as in Figure 1. Let θsm, psm (resp. θvsi, pvsi) denote the
angle, power injection of the synchronous machine (resp.
grid-forming inverter) and pℓ denote the load served by the
system. The line susceptance (which may be time-varying,
e.g., depending on the state of tap changing transformers,
etc.,) between the IBR and the machine is modeled by the
susceptance b. For this system, let the synchronous machine
dynamics be as in (1), and the inverter dynamics as in (4).
We wish to design the control transfer function Gωvsi, pvsi(s) in
order to realize the target function Gcl⋆

ωsm, pℓ
(s) for the overall

system. We recall from (10) the IBR power injection required
to achieve the target response, i.e., Gcl

ωsm, pℓ
(s) = Gcl⋆

ωsm, pℓ
(s).

On comparing with (6), we obtain

G−1
pvsi, ωsm

(s) =
1

b
s+Gωvsi, pvsi(s)

!
=

(s τ + 1)(s ρ+ 1)

αg s (τ − ρ)
. (13)

We note that the right hand side terms of the above expres-
sion can be realized through a Proportional-Integral-Derivative
(PID) type controller Gωvsi, pvsi(s), i.e.,

Gωvsi, pvsi(s) = kp +
ki
s

+ kd s. (14)

Next, consider the corresponding PID control gains are

kd :=
τ ρ

αg(τ − ρ)
− 1

b̂
, kp :=

τ + ρ

αg(τ − ρ)
, ki :=

1

αg(τ − ρ)
,

(15)

where b̂ is an estimate for b. If b̂ = b, then (13) holds and
closed-loop transfer Gcl

ωsm, pℓ
function equals (9). We will first

analyze the case b̂ = b. To this end, the set of effective time
constant for which kd ≥ 0 is denoted by

N :=

{
ρ ∈ R

∣∣∣∣ αg τ

b̂ τ + αg

≤ ρ < τ

}
⊂ U . (16)

Proposition 1. Consider the control gains kd, kp, and ki
defined in (15), and b̂ = b, then

(i) the transfer function Gωsm, pvsi(s) is stable,
(ii) the closed-loop transfer function Gcl

ωsm, pℓ
(s) is passive,

(iii) and −Gωvsi, pvsi(s) is minimum phase iff ρ ∈ N .

Proof. For the PID control gains in (15), the resulting transfer
function Gωsm, pvsi(s) is stable from the Routh-Hurwitz crite-
rion. Next, we note that the effective turbine dynamics

Gωsm, pvsi(s)−
αg

s τ + 1
= − αg

s ρ+ 1
, (17)

is passive. Moreover, the overall system transfer function
Gcl

ωsm, pℓ
(s) is a negative feedback interconnection of the
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strictly passive machine rotor dynamics and the passive ef-
fective turbine dynamics, thus stable. The last item directly
follows from kd ≥ 0.

1

2H s+ αℓ

−αg

τ s+ 1

Gpvsi, ωsm

−αg

ρ s+ 1

ωsm

pm

pvsi

pℓ
Gωsm, psm(s)

−
+

+
+

Fig. 8. The net effect of the grid-forming IBR on the overall system response.

Furthermore, we note that the lower bound for the differen-
tial gain can be reduced further with the exception that such a
controller is non-minimum phase. This choice while improving
the allowable range of ρ, i.e., ρ ∈ U (note that N ⊂ U) may
however, result in an unstable closed loop if b is not known
exactly. We shall investigate this scenario in the next section.

V. EFFECT OF IMPERFECT NETWORK PARAMETERS

In the preceding discussions, we have assumed that the
network susceptance is known with a fair degree of certainty.
However, in various practical settings the network susceptance
may generally be unknown, may be time-varying, and poten-
tially can only be approximately estimated. For such scenarios,
analyzing the robustness and performance trade-offs merits a
detailed discussion.

A. Stability and sensitivity analysis

We will now consider controller gains that are functions
of the estimate b̂ ̸= b. The analysis in the previous section
crucially hinges on a pole zero cancellation, i.e., for b̂ = b it
holds that

G−1
pvsi, ωsm

(s) =
τ ρ

αg(τ − ρ)
s+ kp +

ki
s
.

In contrast, for b̂ ̸= b we obtain

G−1
pvsi, ωsm

(s) =

(
τ ρ

αg(τ − ρ)
+

(
1

b
− 1

b̂

))
︸ ︷︷ ︸

=:ξ

s+ kp +
ki
s
.

We are now ready to provide stability conditions for the
case b̂ ̸= b. To this end, we define the set

M :=

{[
ρ

b̂

]
∈ R2

∣∣∣∣ b̂ < b,
τ αg (b− b̂)

τ b̂ b+ αg (b− b̂)
≤ ρ < τ

}
, (18)

and note that the closed-loop transfer function no longer
matches the target if b̂ ̸= b, i.e., Gcl

ωsm, pℓ
(s) ̸= Gcl⋆

ωsm, pℓ
(s).

Theorem 1. The closed-loop transfer function Gcl
ωsm, pℓ

(s) is
stable if either (i) b̂ ≥ b, or (ii) (ρ, b̂) ∈ M.

Proof. The gains kp and ki defined in (15) are positive irre-
spective of b̂. Moreover, for b̂ ≥ b the coefficient ξ is positive

and it directly follows from [14, Cor. 11] that is Gωsm, pvsi(s)
is positive real. Similarly, if (ρ, b̂) ∈ M it can be verified that
ξ is positive and Gωsm, pvsi(s) is positive real. Thus, the sum of
the turbine dynamics and Gωsm, pvsi(s) is obtained as a sum of
two passive transfer functions (as depicted in Figure 8). As in
Proposition 1, the closed-loop transfer function Gcl

ωsm, pℓ
(s) is

stable as it is a negative feedback interconnection of a strictly
passive system and a passive system.

Moreover, note that {ρ ∈ R| ∃ b̂ : (ρ, b̂) ∈ M} ⊂ N ⊂ U ,
i.e., if b̂ < b, the range of effective turbine time constants for
which we can guarantee stability has to be further restricted.
Therefore, we can also conclude that an overestimate for the
susceptance, while degrading the system performance, does
not result in an unstable system, while with an underestimate,
too small a choice of ρ can result in an unstable system.

Next, we quantify the sensitivity of the closed-loop system
to using b̂ ̸= b in the controller. To simplify the analysis, we
introduce the scaled inverse susceptance mismatch

β := αg(τ − ρ)

(
1

b
− 1

b̂

)
. (19)

Theorem 2. Given a mismatch β, the H∞-norm of the
sensitivity

S(s) :=
∂

∂β

Gcl
ωsm, pℓ

(s)−Gcl⋆
ωsm, pℓ

(s)

Gcl⋆
ωsm, pℓ

(s)

∣∣∣∣
β=0

of the relative mismatch of the closed-loop transfer function
Gcl

ωsm, pℓ
(s) to a variation in β around 0 can be expressed as

∥S∥∞ =
αg (τ − ρ)

(τ2ρ)
.

Proof. Using (19), (7) can be rewritten as

Gcl
ωsm, pℓ

(s) =
−1

ms+ d+
αg[βs

2 + (s τ + 1)2]

(s τ + 1)[βs2 + (s τ + 1)(s ρ+ 1)]

.

A lengthy calculation reveals the following expression for S

S(s) =
αg (τ − ρ) s3

(s ρ+ 1)(s τ + 1)2
,

and consequently that S(s) has a real pole with multiplicity
of two at − 1

τ and a real pole multiplicity of one at − 1
ρ . It

directly follows that the magnitude |S(jω)| is monotonically
increasing in ω and the maximum gain is attained at ω → ∞
and the Theorem directly follows from

∥S∥∞= lim
ω→∞

αg (τ − ρ)ω3√
(1 + ω2 ρ2) (1 + ω2 τ2)

=
αg (τ − ρ)

(τ2ρ)
.

The key inference drawn from the above theorem (while re-
stricting ourselves to variations around β = 0) is that the peak
sensitivity ∥S∥∞ of the relative mismatch between Gcl

ωsm, pℓ
(s)

and Gcl⋆
ωsm, pℓ

(s) with respect to the scaled inverse susceptance
mismatch β is independent of b, b̂ and decreases as the tuning
parameter ρ increases (i.e., ρ → τ ). Therefore, increasing
ρ decreases the relative mismatch between Gcl

ωsm, pℓ
(s) and

Gcl⋆
ωsm, pℓ

(s). To illustrate how β changes with the susceptance
mismatch, we let b̂ = c b, thus β ∝ c−1

cb , i.e., for a fixed c
and effective time constant ρ, the scaled inverse susceptance
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mismatch β and overall mismatch between Gcl
ωsm, pℓ

(s) and
Gcl⋆

ωsm, pℓ
(s) decrease as the true susceptance b increases.

B. Two-bus system case study

We revisit the two-bus system to illustrate that the impact of
incorrect estimates as predicted by Theorem 2. In Figure 9, we
consider the frequency response to a 1 p.u. load perturbation
under two scenarios (i) b̂ = b, (ii) b̂ ̸= b. We note that the
mismatch results in a significant variation from the desired
trajectory, resulting in a much higher frequency nadir.
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c = 1.05

c = 5

Fig. 9. The frequency response for different values of c, with ρ = 0.7s.
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Fig. 10. The effect of susceptance mismatch for different values of ρ, with
c = 1.05. The dashed lines indicate the frequency nadir for c = 1.
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Fig. 11. The effect of susceptance mismatch with ρ = 0.7s, b̂ = c b.

Next, we analyze the impact of the effective turbine constant
ρ on the sensitivity. We recall from Theorem 2 that increasing
ρ results in a lower sensitivity and decreases the mismatch

between the actual and target dynamics. This is illustrated in
Figure 10 for varying values of ρ.

Finally, we consider the effect of larger mismatch errors for
a fixed ρ. From Theorem 2, the relative mismatch between
Gcl

ωsm, pℓ
(s) and Gcl⋆

ωsm, pℓ
(s) scales inversely with b around β =

0. However, this trend is observed even for large mismatch
values of β (i.e., c > 1.05) as illustrated in Figure 11.

VI. CONCLUSIONS

We analyzed the problem of frequency control for weakly
coupled low-inertia power systems equipped with SGs, IBRs
and propose a grid-forming frequency shaping control with a
second-order target behaviour. While relaxing several existing
assumptions in the literature, the proposed approach allowed
a trade-off between the IBR peak power injection and SG
frequency nadir. Furthermore, we highlighted the significant
role of the network parameters and analyzed the effect on
the closed-loop system behaviour due to imperfect knowledge
of these parameters. We aim to fully leverage the flexibility
offered by the frequency shaping control and compare other
inverter implementations as future work.
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