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Abstract—The ability to achieve coordinated behavior—
engineered or emergent—on networked systems has attracted
widespread interest over several fields. This interest has led to
remarkable advances in developing a theoretical understanding
of the conditions under which agents within a network can
reach an agreement (consensus) or develop coordinated behavior,
such as synchronization. However, much less understood is the
phenomenon of network coherence. Network coherence generally
refers to nodes’ ability in a network to have a similar dynamic
response despite heterogeneity in their individual behavior. In
this paper, we develop a general framework to analyze and
quantify the level of network coherence that a system exhibits
by relating coherence with a low-rank property of the system.
More precisely, for a networked system with linear dynamics and
coupling, we show that, as the network connectivity grows, the
system transfer matrix converges to a rank-one transfer matrix
representing the coherent behavior. Interestingly, the non-zero
eigenvalue of such a rank-one matrix is given by the harmonic
mean of individual nodal dynamics, and we refer to it as the
coherent dynamics. Our analysis unveils the frequency-dependent
nature of coherence and a non-trivial interplay between dynamics
and network topology. We further show that many networked
systems can exhibit similar coherent behavior by establishing a
concentration result in a setting with randomly chosen individual
nodal dynamics.

I. INTRODUCTION

Coordinated behavior in network systems has been a popular
subject of research in many fields, including physics [2],
chemistry [3], social sciences [4], and biology [5]. Within
engineering, coordination is essential for the proper operation
of many networked systems including power networks [6],
[7], data and sensor networks [8], [9], and autonomous trans-
portation [10]–[13]. While there exist many expressions of this
behavior, two forms of coordination have particularly received
thorough attention by the control community: Consensus and
synchronization.

Consensus [4], [11]–[16], on one hand, refers to the ability
of the network nodes to asymptotically reach a common value
over some quantities of interest. Many extensions of this
problem include the study of robustness and performance of
consensus networks in the presence of noise [12]–[14], time-
delay [15], [16], and switching graph topology [16]. Synchro-
nization [5], [8]–[10], [17]–[19], on the other hand, refers to
the ability of network nodes to follow a commonly defined
trajectory. Although for nonlinear systems synchronization is
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a structurally stable phenomenon, in the linear case [10],
[17]–[19], synchronization requires the existence of a common
internal model that acts as a virtual leader [18], [19].

A closely related notion of coordination emerges when look-
ing at how the network agents collectively respond to distur-
bances. In this setting, agents with noticeably different input-
output responses, can present a similar, i.e., coherent, response
when interconnected. A vast body of work, triggered by the
seminal paper [13], has quantitatively studied the role of the
network topology in the emergence of coherence. Examples
include, directed [14] and undirected [20] consensus networks,
transportation networks [13], and power networks [7], [21]–
[23]. The key technical approach amounts to quantify the
level of coherence by computing the H2-norm of the system
for appropriately defined nodal disturbance and performance
signals. Broadly speaking, the analysis shows a reciprocal
dependence between the performance metrics and the non-
zero eigenvalues of the network graph Laplacian, validating
the fact that strong network coherence (low H2-norm) results
from the high connectivity of the network (large Laplacian
eigenvalues). Unfortunately, the analysis strongly relies on
a homogeneity [13], [14], [20]–[23] or proportionality [7]
assumption of the nodal transfer functions, and thus fails
to characterize how individual heterogeneous node dynamics
affect the overall coherent network response.

In this paper, we seek to overcome these limitations by
formalizing network coherence by the presence of a low-rank
structure, of the system transfer matrix, that appears when
the network feedback gain is high. More precisely, we show
that for linear networks, as the network’s effective algebraic
connectivity (a frequency-dependent notion to be later defined)
grows, the system transfer matrix converges to a rank-one
transfer matrix with identical element-wise transfer functions.
Interestingly, this transfer function is given by the harmonic
mean of individual nodal dynamics, which we refer to as
coherent dynamics. Furthermore, we provide the concentration
result of such coherent dynamics in large-scale stochastic
networks where the node dynamics are given by random
transfer functions.

This frequency domain analysis provides a deeper char-
acterization of the role of both, network topology and node
dynamics, on the coherent behavior of the network. In par-
ticular, our results make substantial contributions towards
the understanding of coordinated and coherent behavior of
network systems in many ways:

• We present a general framework in frequency domain
to analyze the coherence of heterogeneous networks. We
show that network coherence emerges as a low rank
structure of the system transfer matrix as we increase
the effective algebraic connectivity–a frequency-varying
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quantity that depends on the network coupling strength
and dynamics.

• Unlike previous works, our analysis applies to networks
with heterogeneous nodal dynamics, and further provides
an explicit characterization in the frequency domain of
the coherent response to disturbances. Thus, in this way,
our results highlight the contribution of individual nodal
dynamics to the network’s coherent behavior.

• The analysis further suggests that network coherence is
a frequency-dependent phenomenon. That is, the ability
for nodes to respond coherently depends on the frequency
composition of the input disturbance. We further ex-
plicitly connect our frequency domain analysis to time
domain notions of coherence.

• By providing an exact characterization of network’s co-
herent dynamics, our analysis can be further applied in
settings where only distributional information of the net-
wok composition is known. More precisely, we show that
the coherent dynamics of tightly-connected networks with
possibly random nodal dynamics are well approximated
by a deterministic transfer function that only depends on
the statistical distribution of node dynamics.

Prior works on coherence primarily study homogeneous
networks [13], [22], [23] and proportional networks [7], where
the network can be diagonalized into n individual dynamics,
each corresponding to one eigenvalue of the network Lapla-
cian. However, such techniques to study coherence cannot
be generalized to non-proportional heterogeneous networks.
In fact, in such setting, it is a priori unclear what a good
representation of the coherent response is. Our new frequency
domain framework allows one to analyze coherence in general
heterogeneous networks.

Notably, the problem of characterizing coherent dynamics
is unique to heterogeneous networks, since the coherent dy-
namics for homogeneous networks are exactly equal to the
common nodal dynamics. In real applications, however, such
as power networks, such characterization is relevant to model
reduction [24]–[26] and control design [27]. Our analysis
provides, in the asymptotic sense, the exact characterization
of coherent dynamics that can be used in control design for
heterogeneous networks.

The paper is organized as follows. In Section III and
Section IV we present respectively the point-wise and uniform
convergence results of network transfer matrix as the network
connectivity increases. In Section V, the dynamics concentra-
tion in large-scale networks is discussed. In Section VI, we
apply our analysis to consensus networks and synchronous
generator networks. Conclusions are presented in Section VII.

Notation: For a vector x, ‖x‖ =
√
xTx denotes the 2-

norm of x, and for a matrix A, σi(A) denotes the ith smallest
singular value of A, ‖A‖ denotes the spectral norm of A.
Particularly, if A is real symmetric, we let λi(A) denote the
ith smallest eigenvalue of A. For two sets S1, S2, we let S1\S2

denote the set difference.
We let In denote the identity matrix of order n, 1 denote

column vector [1, · · · , 1]T , [n] denote the set {1, 2, · · · , n}
and N+ denote the set of positive integers. Also, we write
complex numbers as a+ jb, where j =

√
−1.

II. PROBLEM SETUP

Consider a network consisting of n nodes (n ≥ 2), indexed
by i ∈ [n] with the block diagram structure in Fig.1. L is
the Laplacian matrix of the weighted graph that describes
the network interconnection. We further use f(s) to denote
the transfer function representing the dynamics of network
coupling, and G(s) = diag{gi(s)} to denote the nodal
dynamics, with gi(s), i ∈ [n], being an SISO transfer function
representing the dynamics of node i.

G(s)

f(s)L

u y

−

Fig. 1. Block diagram of general networked dynamical systems

Under this setting, we can compactly express the transfer
matrix from the input signal vector u to the output signal
vector y by

T (s) = (In +G(s)f(s)L)−1G(s)

= (In + diag{gi(s)}f(s)L)−1diag{gi(s)} . (1)

Many existing networks can be represented by this structure.
For example, for the first-order consensus network [11], [15],
f(s) = 1, and the node dynamics are given by gi(s) = 1

s . For
power networks [7], [22], f(s) = 1

s , gi(s) are the dynamics
of the generators, and L is the Laplacian matrix representing
the sensitivity of power injection w.r.t. bus phase angles.
Finally, in transportation networks [11], [12], gi(s) represent
the vehicle dynamics whereas f(s)L describes local inter-
vehicle information transfer.

Throughout this paper, we make the following assumptions,
all of which are mild and commonly satisfied by several
models that analyze the above-mentioned applications.

Assumption 1. The closed-loop system (1) satisfies:
1) All gi(s), i = 1, · · · , n and f(s) are rational proper

transfer functions;
2) Laplacian matrix L is real symmetric;
3) Any pole of f(s) is not a zero of any of gi(s), i =

1, · · · , n.

A straight forward application of the symmetry assumption
in L comes from its eigendecomposition

L = V ΛV T , (2)

where V =
[

1√
n
, V⊥

]
, V V T = V TV = In, and Λ =

diag{λi(L)} with 0 = λ1(L) ≤ λ2(L) ≤ · · · ≤ λn(L).
Using now (2) we can rewrite T (s) as

T (s) = (In + diag{gi(s)}f(s)L)−1diag{gi(s)}
= (diag{g−1

i (s)}+ f(s)L)−1

= (diag{g−1
i (s)}+ f(s)V ΛV T )−1

= V (V Tdiag{g−1
i (s)}V + f(s)Λ)−1V T . (3)
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As mentioned before, we are interested in characterizing
the behavior of the closed-loop system T (s) of (1) as the
connectivity of L, i.e. λ2(L), increases. To gain some insight
we first consider the following simplified example.

A. Motivating Example: Homogeneous Node Dynamics

Suppose gi(s) are homogeneous, i.e., gi(s) = g(s). Then
using (3) one can decompose T (s) as follows

T (s) =
1

n
g(s)11T +V⊥diag

{
1

g−1(s) + f(s)λi(L)

}n

i=2

V T⊥ ,

(4)
where the network dynamics decouple into two terms: 1) the
dynamics 1

ng(s)11T that is independent of network topology
and corresponds to the coherent behavior of the system; 2)
the remaining dynamics that are dependent on the network
structure via both, the eigenvalues λi(L), i = 2, · · · , n and the
eigenvectors V⊥. Notice that |f(s)λ2(L)| ≤ |f(s)λi(L)|, i =
2, . . . , n, then 1

ng(s)11T is dominant in T (s) as long as
|f(s)λ2(L)| (later referred as effective algbraic connectivity),
is large enough to make the norm of the second term in (4)
sufficiently small. Following such observation, we can find two
regimes where the coherent dynamics 1

ng(s)11T is dominant:
1) (High network connectivity) for almost every s0 ∈ C,

except for the poles of g(s), the following holds:

lim
λ2(L)→∞

∥∥∥∥T (s0)− 1

n
g(s0)11T

∥∥∥∥ = 0 .

Furthermore, one can verify that if a compact set S ⊂ C
contains neither zeros nor poles of g(s), the following
holds:

lim
λ2(L)→∞

sup
s∈S

∥∥∥∥T (s)− 1

n
g(s)11T

∥∥∥∥ = 0 .

2) (High gain in coupling dynamics) If s0 is a pole of f(s),
and λ2(L) 6= 0, then

lim
s→s0

∥∥∥∥T (s)− 1

n
g(s)11T

∥∥∥∥ = 0 .

Such convergence results suggest that if 1) the network
has high algebraic connectivity, or 2) our point of interest in
frequency domain is close to pole of f(s), the response of the
entire system is close to one of 1

ng(s)11T . We refer 1
ng(s)11T

as the coherent dynamics1 in the sense that in such system,
the inputs are aggregated, and all nodes have exactly the same
response to the aggregate input. Therefore, coherence of the
network corresponds, in the frequency domain, to the property
that the network’s transfer matrix approximately having a
particular rank-one structure, and thus coherence increases
as we increase the network connectivity, as depicted in Fig. 2.

The aforementioned analysis can be extended to the case
with proportionality assumption, i.e., gi(s) = pig(s) for some
g(s) and pi > 0, i = 1, · · · , n, where one can still obtain
decoupled dynamics through proper coordinate transforma-
tion [7]. However, it is challenging to characterize the coherent

1We also refer g(s) as the coherent dynamics since transfer matrix of the
form 1

n
g(s)11T is uniquely determined by its non-zero eigenvalue g(s).

G(s)

f(s)L

ĝ(s)
(
∑n

i=1 ui)/n ŷ1
u y

−

Fig. 2. The network coherence can be understood as approximating (left) the
closed-loop networks dynamics T (s) by (right) a coherent dynamics governed
by an SISO dynamics ĝ(s).

dynamics without the proportionality assumption. Our work
precisely aims at understanding the coherent dynamics of non-
proportional heterogeneous networks.

Remark 1. In this paper, we write most of our convergence re-
sults in the high connectivity regime as the limit of differences
in norm when λ2(L)→∞ for simplicity. However, one does
not require infinitely high connectivity to achieve coherence.
These limits suggests, under sufficiently high connectivity, the
transfer matrix T (s) is, in some sense, close to coherent
dynamics 1

ng(s)11T . The precise non-asymptotic result is
presented in Lemma 4. Moreover, notice that in the other
regime around pole of f(s), we only requires the network to
be connected.

B. The Goal of This Work

In this paper, we would like to show that even when gi(s)
are heterogeneous, similar convergence result still holds. More
precisely, we will, in the following sections, discuss the point-
wise and uniform convergence of T (s) to a transfer matrix
of the form 1

n ḡ(s)11T , as the effective algebraic connectiv-
ity |f(s)λ2(L)| increases. However, unlike the homogeneous
node dynamics case where the coherent behavior is driven by
ḡ(s) = g(s), we will show that the coherent dynamics ḡ(s)
are given by the harmonic mean of gi(s), i = 1, · · · , n, i.e.,

ḡ(s) =

(
1

n

n∑

i=1

g−1
i (s)

)−1

. (5)

Such asymptotic analyses under high connectivity serve two
main purposes. Firstly, using the coherent dynamics ḡ(s),
one can infer the point-wise convergence of T (s) as λ2(L)
increases. In particular, we show that

1) For a point that is neither a pole nor a zero of ḡ(s), T (s)
converges to 1

n ḡ(s)11T ;
2) Poles of ḡ(s) are asymptotically poles of T (s);
3) Zeros of ḡ(s) are asymptotically zeros of T (s).

Secondly, uniform convergence of T (s) explains the coherent
behavior/response of a tightly-connected network subject to
disturbances. To see the connection, recall the Inverse Laplace
Transform [28, Theorem 3.20] computes the system time-
domain response by integration on the line {σ + jω : ω ∈
[−∞,+∞]} in frequency domain with a suitable σ. Then
uniform convergence of T (s) on this line would show that
time-domain response of the network converges to one of
the coherent dynamics 1

n ḡ(s)11T as network connectivity
increases. However, we will see that such convergence does
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not hold for most networks through our analysis and subse-
quent examples, which suggests that the coherence we analyze
here is a frequency-dependent phenomenon. On that note,
one generally resort to weaker convergence results on a line
segment {σ+ jω : ω ∈ [−ωc,+ωc]} for some ωc > 0, which,
once established, justifies the coherent behavior of tightly-
connected networks subject to low-frequency disturbances (see
Section IV-D). Since the set above is a compact subset of C,
we are mostly discussing the uniform convergence results over
compact sets. Moreover, we also show the convergence in the
other regime: T (s) is coherent around the pole of f(s). This
suggests that the network responses coherently, when subject
to input signals that has its frequency component concentrate
around pole of f(s), and we show such an example in power
networks in Section VI.

One additional feature of our analysis is that it can be
further applied in settings where the composition of the
network is unknown and only distributional information is
present. More precisely, we will extend such convergence
results by considering a tightly-connected network where node
dynamics are given by random transfer functions. As the
network size grows, the coherent dynamics ḡ(s) converges in
probability to a deterministic transfer function. We term such a
phenomenon, where a family of uncertain large-scale tightly-
connected systems concentrates to a common deterministic
system, dynamics concentration.

Remark 2. In order for the frequency domain analysis pro-
vided to be meaningful, it is necessary that both the transfer
functions T (s) and T (s) − 11T ḡ(s) are stable. Since our
primary focus is on the interpretation of the frequency domain
results, we are largely working under the tacit assumption that
these transfer functions are stable whenever required. Some
simple passivity motivated criteria that ensure stability even
as λ2(L) becomes arbitrarily large are given in Theorem 2.
It should also be noted that there exist a range of scalable
stability criteria in the literature that can be used to guarantee
internal stability of the feedback setup in Figure 2. Perhaps
the most well known is that if each gi(s) is strictly positive
real, and f(s) is positive real, then the transfer functions ḡ(s)
and [

G(s)
I

]
(I + f(s)LG(s))

−1 [f(s)L I
]

are stable (see e.g. [29]). Alternative approaches that can be
easily adapted to our framework that give criteria that allow
for different classes of transfer functions include [30]–[32].

C. Preliminaries

Before presenting our results, we first state a few facts and
preliminary results that are used in later proofs.

1) Basic Results on Vectors and Matrices: The following
results can be found in [33].
• Norm Inequalities: Let x, y ∈ Rn and A,B ∈ Rm×n, we

have

2-Norm compatibility: ‖Ax‖ ≤ ‖A‖‖x‖ , (6)
2-Norm sub-multiplicativity: ‖AB‖ ≤ ‖A‖‖B‖ , (7)

Cauchy-Schwarz: |xT y| ≤ ‖x‖‖y‖ . (8)

• Inverse of Block Matrix: For block matrix M =

[
A B
C D

]

with A,D being square matrices, its inverse can be
written as

M−1 =

[
S−1 −S−1BD−1

−D−1CS−1 D−1 +D−1CS−1BD−1

]
,

(9)
where S = A − BD−1C, provided that all relevant
inverses exist.

2) Inequalities for singular values: We also provide several
inequalities for matrix singular values from [33, 7.3.P16]
which will be used in our proofs.

Lemma 1 (Weyl’s Inequality). Let A,B be square matrices
of order n, the following inequalities hold:

‖AB‖ ≥ ‖A‖σ1(B) , (10a)
σ1(AB) ≤ ‖A‖σ1(B) , (10b)

σ1(A+B) ≤ σ1(A) + ‖B‖ . (10c)

Lemma 1 allows us to obtain a useful bound on the spectral
norm of (A+B)−1. We state it as another Lemma as it will
be repeatedly used in sections III and IV:

Lemma 2. Let A,B be square matrices of order n. If σ1(A) ≥
‖B‖ > 0, then the following inequality holds:

‖(A+B)−1‖ ≤ 1

σ1(A)− ‖B‖ .

Proof. By (10c), we have

σ1(A) ≤ σ1(A+B) + ‖ −B‖ .
Then as long as σ1(A) ≥ ‖B‖ > 0, it leads to

1

σ1(A+B)
≤ 1

σ1(A)− ‖B‖ ,

and the left-hand side is exactly ‖(A+B)−1‖.
3) Grounded Laplacian Matrix: For a n × n Laplacian

matrix L, we select an index set I ⊂ [n]. Then the grounded
Laplacian L̃ is the principal submatrix of L obtained by
removing the rows and columns corresponding to the index
set I . The following lemma relates the eigenvalues of L̃ and
L.

Lemma 3. Given a n× n symmetric Laplacian matrix L, let
L̃ be its grounded Laplacian corresponding to a index set I
with |I| = m < n. Then for the least eigenvalue of L̃, the
following inequality holds:

λ1(L̃) ≥ m

n
λ2(L) .

The proof is shown in the Appendix.A. This lower bound
shows that for weighted graphs with fixed network size n, as
λ2(L)→∞, we also have λ1(L̃)→∞. This result is used in
section III and IV when we present the convergence analysis
regarding zeros of ḡ(s).

Now we are ready for the main results of this paper, and
we start with the exact characterization of coherent dynam-
ics of tightly-connected networks by proving the point-wise
convergence of T (s).
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III. POINT-WISE COHERENCE

In this section, we analyze the strength of network coher-
ence at a single point in the frequency domain. We start with
an important lemma revealing how such coherence is related
to algebraic connectivity λ2(L) and feedback dynamics f(s).

Lemma 4. Let T (s) and ḡ(s) be defined as in (1) and (5),
respectively. Suppose that for s0 ∈ C that is not a pole of
f(s), we have

|ḡ(s0)| ≤M1, and max
1≤i≤n

|g−1
i (s0)| ≤M2 ,

for some M1,M2 > 0. Then for large enough λ2(L), the
following inequality holds:
∥∥∥∥T (s0)− 1

n
ḡ(s0)11T

∥∥∥∥ ≤
(M1M2 + 1)

2

|f(s0)|λ2(L)−M2 −M1M2
2

.

(11)

Proof. Let H = V Tdiag{g−1
i (s0)}V + f(s0)Λ, such that (3)

becomes
T (s) = V H−1V T .

Then it is easy to see that
∥∥∥∥T (s0)− 1

n
ḡ(s0)11T

∥∥∥∥ = ‖T (s0)− ḡ(s0)V e1e
T
1 V

T ‖

=
∥∥V
(
H−1 − ḡ(s0)e1e

T
1

)
V T
∥∥

=
∥∥H−1 − ḡ(s0)e1e

T
1

∥∥ , (12)

where e1 is the first column of identity matrix In. The first
equality holds by noticing that 1√

n
is the first column of V ,

and the last equality comes from the fact that multiplying by
a unitary matrix V preserves the spectral norm.

We now write H in block matrix form:

H = V Tdiag{g−1
i (s0)}V + f(s0)Λ

=

[
1T√
n

V T⊥

]
diag{g−1

i (s0)}
[

1√
n

V⊥
]

+ f(s0)Λ

=

[
ḡ−1(s0) 1T√

n
diag{g−1

i (s0)}V⊥
V T
⊥ diag{g−1

i (s0)} 1√
n

V T
⊥ diag{g−1

i (s0)}V⊥ + f(s0)Λ̃

]

:=

[
ḡ−1(s0) hT21

h21 H22

]
,

where Λ̃ = diag{λ2(L), · · · , λn(L)}, and we use the fact that
λ1(Λ) = 0.

Inverting H in its block form as in (9), we have

H−1 =

[
a −ahT21H

−1
22

−aH−1
22 h21 H−1

22 + aH−1
22 h21h

T
21H

−1
22

]
,

where a = 1
ḡ−1(s0)−hT21H

−1
22 h21

.
Notice that ||V⊥|| = 1 and ||1|| = √n, we have

‖h21‖ =

∥∥∥∥V T⊥ diag{g−1
i (s0)} 1√

n

∥∥∥∥

≤ ‖V⊥‖‖diag{g−1
i (s0)}‖‖1‖√

n
≤M2 , (13)

where (13) follows from the norm compatibility (6) and that
matrix 2-norm is sub-multiplicative (7).

Also, by Lemma 2, when |f(s0)|λ2(L) > M2, the following
holds:

‖H−1
22 ‖ = ‖(f(s0)Λ̃ + V T⊥ diag{g−1

i (s0)}V⊥)−1‖

≤ 1

σ1(f(s0)Λ̃)− ‖V T⊥ diag{g−1
i (s0)}V⊥‖

≤ 1

σ1(f(s0)Λ̃)−M2

≤ 1

|f(s0)|λ2(L)−M2
. (14)

Again (14) uses the fact that ‖V⊥‖ = 1, the function 1
y−x is

decreasing in y and increasing in x, and, by our assumption,
‖diag{g−1

i (s0)}‖ = max1≤i≤n |g−1
i (s0)| ≤M2.

Lastly, when |f(s0)|λ2(L) > M2 + M2
2M1, a similar

reasoning as above, using (13) (14), and our assumption
|ḡ(s0)| ≤M1, gives

|a| ≤ 1

|ḡ−1(s0)| − |hT21H
−1
22 h21|

≤ 1

|ḡ−1(s0)| − ‖h21‖2‖H−1
22 ‖

≤ 1

1
M1
− M2

2

|f(s0)|λ2(L)−M2

=
(|f(s0)|λ2(L)−M2)M1

|f(s0)|λ2(L)−M2 −M1M2
2

, (15)

where in the second inequality, we used norm compati-
bility and Cauchy-Schwarz inequality (8) to upper-bound
|hT21H22h21|.

Now we bound the norm of H−1 − ḡ(s0)e1e
T
1 by the sum

of norms of all its blocks:

‖H−1 − ḡ(s0)e1e
T
1 ‖

=

∥∥∥∥
[
aḡ(s0)hT21H

−1
22 h21 −ahT21H

−1
22

−aH−1
22 h21 H−1

22 + aH−1
22 h21h

T
21H

−1
22

]∥∥∥∥
≤ |aḡ(s0)hT21H

−1
22 h21|+ 2‖aH−1

22 h21‖
+ ‖H−1

22 + aH−1
22 h21h

T
21H

−1
22 ‖

≤ |a|‖H−1
22 ‖(|ḡ(s0)|‖h21‖2 + 2‖h21‖+ ‖h21‖2‖H−1

22 ‖)
+ ‖H−1

22 ‖ , (16)

Using (13)(14)(15), we can further upper bound (16) as

‖H−1 − ḡ(s0)e1e
T
1 ‖

≤
M2

1M
2
2 + 2M1M2 +

M1M
2
2

|f(s0)|λ2(L)−M2

|f(s0)|λ2(L)−M2 −M1M2
2

+
1

|f(s0)|λ2(L)−M2

=
(M1M2 + 1)

2

|f(s0)|λ2(L)−M2 −M1M2
2

. (17)

This bound holds as long as |f(s0)|λ2(L) > M2 + M2
2M1.

Combining (12) and (17) gives the desired inequality.

Lemma 4 provides an upper bound for the incoherence
measure we are interested in, namely how far apart the system
transfer matrix is, at a particular point in the frequency domain,
from being rank-one with coherent direction 1

n11T . Notice
that this incoherence measure also provide upper bounds for

max
ij
|Tij(s0)− ḡ(s0)| ≤

∥∥∥∥T (s0)− 1

n
ḡ(s0)11T

∥∥∥∥
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max
i,j,k,l

|Tij(s0)− Tkl(s0)| ≤ 2

∥∥∥∥T (s0)− 1

n
ḡ(s0)11T

∥∥∥∥ ,

thus the transfer function from any input channel to any node
output is approximately ḡ(s), if the incoherence measure is
small.

We make following additional remarks:
Lemma 4 provides a non-asymptotic rate for our incoher-

ence measure
∥∥∥∥T (s0)− 1

n
ḡ(s0)11T

∥∥∥∥ ∼ O
(

M2
1M

2
2

|f(s0)|λ2(L)

)
. (18)

A large value of |f(s0)|λ2(L) is sufficient to have the inco-
herence measure small, and we term this quantity as effective
algebraic connectivity. We see that there are two possible
ways to achieve such point-wise coherence: Either we increase
the network algebraic connectivity λ2(L), by adding edges to
the network and increasing edge weights, etc., or we move
our point of interest s0 to a pole of f(s). This point-wise
coherence via effective connectivity provides the basis of
our subsequent analysis. Moreover, such coherence could be
achieved by practical networks, and in Section VI, we apply
our results to understand the coherent response of power
generator networks.

Secondly, the upper bound is frequency-dependent since
it is provided at a single point s0 in the s-domain. To see
such dependence, notice that s0 near a pole of f(s) has
large effective algebraic connectivity, hence the system is more
coherent around poles of f(s); On the contrary, s0 near a pole
of ḡ(s) requires large M1 for the condition of Lemma 4 to
hold, and readers can check that s0 near a zero of ḡ(s) requires
large M2, therefore for at these points, it is more difficult for us
to upper bound the incoherence measure by Lemma 4. Such
dependence makes it challenging to understand the network
coherence uniformly in the entire frequency domain.

Last but not least, Although Lemma 4 provides a sufficient
condition for the network coherence to emerge, i.e. the in-
creasing effective algebraic connectivity, it is still unknown
whether such a condition is necessary. In other words, we do
not know whether low effective algebraic connectivity means
some kind of incoherence. This problem seems trivial for
the extreme case: if |f(s0)| = 0 or L = 0, the feedback
loop vanishes, and every node responses independently, but
certainly not otherwise.

When the condition in Lemma 4 is satisfied, the system
is asymptotically coherent, i.e. T (s0) converges to 1

n ḡ(s0)
as the effective algebraic connectivity |f(s0)|λ2(L) increases.
As we mentioned above, we can achieve this by increasing
either λ2(L) or |f(s0)|, provided that the other value is
fixed and non-zero. Subsection III-A considers the former and
Subsection III-B the latter.

Before presenting with the results, we define

Definition 1. For transfer function g(s) and s0 ∈ C, s0 is a
generic point of g(s) if s0 is neither a pole nor a zero of g(s).

As we have seen through the discussions above, we always
require some generic point assumptions for either ḡ(s), f(s),
or both. Those points are of the most interest in this paper but

we will provide some results for the cases where the generic
assumption fails.

A. Convergence at Generic Points of f(s)

In this section we keep s0 fixed and present the point-wise
convergence result of T (s0) as λ2(L) increases. This requires
s0 to be a generic point of f(s).

Notice that for any s0 that is also a generic point of ḡ(s), we
can always find such M1,M2 > 0 and large enough λ2(L) for
the upper bound in (11) to hold. Furthermore, given fixed M1

and M2, one can let the upper bound be arbitrarily small by
increasing λ2(L), which leads to the point-wise convergence
of T (s0), as stated in the following theorem.

Theorem 1. Let T (s) and ḡ(s) be defined as in (1) and (5),
respectively. If s0 ∈ C is a generic point of both ḡ(s) and
f(s), then

lim
λ2(L)→+∞

∥∥∥∥T (s0)− 1

n
ḡ(s0)11T

∥∥∥∥ = 0 .

Proof. Since s0 is not a pole of ḡ(s), |ḡ(s0)| is trivially upper
bounded by some M1 > 0. Also, it is easy to see that s0 is
not a zero of ḡ(s) if and only if s0 is not a zero of any gi(s).
Then max1≤i≤n |ḡ−1(s0)| is upper bounded by some M2 > 0.
Therefore the conditions of Lemma 4 are satisfied. We finish
the proof by taking λ2(L)→ +∞ on both sides of (11).

Theorem 1 establishes the emergence of coherence at
generic points of ḡ(s). This forms the basis of our analysis,
yet requires such s0 satisfying generic conditions. A more
careful analysis shows that, as λ2(L) → +∞, the pole of
ḡ(s) is asymptotically a pole of T (s), and the zero of ḡ(s) is
asymptotically a zero of T (s), as stated in the following two
theorems.

Theorem 2. Let T (s) and ḡ(s) be defined as in (1) and (5),
respectively. If s0 ∈ C is a pole of ḡ(s) and a generic point
of f(s), then

lim
λ2(L)→+∞

‖T (s0)‖ = +∞ .

Proof. Similarly to the proof of Lemma 4, we define H =
V Tdiag{g−1

i (s0)}V + f(s0)Λ and now we need to show that
‖T (s0)‖ = ‖H−1‖ grows unbounded as λ2(L)→ +∞.

Write H in block matrix form:

H =

[
ḡ−1(s0) 1T√

n
diag{g−1

i (s0)}V⊥
V T
⊥ diag{g−1

i (s0)} 1√
n

V T
⊥ diag{g−1

i (s0)}V⊥ + f(s0)Λ̃

]

:=

[
0 hT21

h21 H22

]
,

by noticing that ḡ−1(s0) = 0 because s0 is a pole of ḡ(s).
Inverting H in its block form gives

H−1 =

[
a −ahT21H

−1
22

−aH−1
22 h21 H−1

22 + aH−1
22 h21h

T
21H

−1
22

]

= a

[
1

−H−1
22 h21

] [
1 −hT21H

−1
22

]
+

[
0 0
0 H−1

22

]
,

(19)

where a now is given by a = − 1
hT21H

−1
22 h21

.
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Then from (19), when λ2(L) is large enough, we can lower
bound ‖H−1‖ by

‖H−1‖ ≥
∥∥∥∥∥a
[

1
−H−1

22 h21

] [
1

−H−1
22 h21

]T∥∥∥∥∥−
∥∥∥∥
[
0 0
0 H−1

22

]∥∥∥∥

=
1

|hT21H
−1
22 h21|

∥∥∥∥
[

1
−H−1

22 h21

]∥∥∥∥
2

− ‖H−1
22 ‖

≥ 1

|hT21H
−1
22 h21|

− ‖H−1
22 ‖

≥ 1

‖h21‖2‖H−1
22 ‖
− ‖H−1

22 ‖ , (20)

where in the second inequality, we simply use the fact that the
norm of a vector is lower bounded by its first entry.

Because s0 is a pole of ḡ(s), it cannot be a zero of any
gi(s); otherwise this would lead to the contradiction ḡ(s0) =
0. Therefore, max1≤i≤n |g−1

i (s)| is upper bounded by some
M > 0. Similarly to (13) and (14), we have ‖h21‖ ≤M and
‖H−1

22 ‖ ≤ 1
|f(s0)|λ2(L)−M . Then (20) can be lower bounded

by

‖H−1‖ ≥ 1

‖h21‖2‖H−1
22 ‖
− ‖H−1

22 ‖

≥ 1
M2

|f(s0)|λ2(L)−M
− 1

|f(s0)|λ2(L)−M

=
(|f(s0)|λ2(L)−M)2 −M2

M2(|f(s0)|λ2(L)−M)
.

This lower bound holds when |f(s0)|λ2(L) ≥M , and it grows
unbounded as λ2(L)→ +∞, which finishes the proof.

Remark 3. Theorem 2 does not suggest whether the network
is asymptotically coherent at poles of ḡ(s). Our incoherence
measure

∥∥T (s0)− 1
n ḡ(s0)11T

∥∥ is undefined at such poles.
Alternatively, for s0 the pole of ḡ(s), one can prove that
when Λ̃/ ˜λ2(L) → Λlim as λ2(L) → +∞, we have the
limit

∥∥∥ T (s0)
‖T (s0)‖ − 1

nγ(Λlim)11T
∥∥∥ → 0, for some γ(Λlim) ∈ C

determined by Λlim with |γ(Λlim)| = 1. We leave the formal
statement to Appendix.B. This suggests that T (s0) has the de-
sired rank-one structure for coherence. While the normalized
transfer matrix is not discussed in this paper due to the space
constraints, such formulation is better for understanding the
network coherence at the poles of ḡ(s).

Next, the convergence result regarding the zeros of ḡ(s) is
stated as

Theorem 3. Let T (s) and ḡ(s) be defined as in (1) and (5),
respectively. If s0 ∈ C is a zero of ḡ(s) and a generic point
of f(s), then

lim
λ2(L)→+∞

‖T (s0)‖ = 0 .

Proof. Since s0 is a zero of ḡ(s), it is the zero of at least
one gi(s). Without loss of generality, suppose gi(s0) = 0 for
1 ≤ i ≤ m and gi(s0) 6= 0 for m+ 1 ≤ i ≤ n.

If m = n, then T (s0) = 0. We only consider the non-trivial
case when m < n. The transfer matrix is now given by

T (s0) = (In +G(s0)f(s0)L)−1G(s0)

=

[
Im 0m×(n−m)

0(n−m)×m In−m + G̃(s0)f(s0)L̃

]−1

G(s0)

=

[
0m×m 0m×(n−m)

0(n−m)×m (In−m + G̃(s0)f(s0)L̃)−1G̃(s0)

]
,

(21)

where G̃(s) = diag{gm+1(s), · · · , gn(s)} and L̃ is the
grounded Laplacian of L by removing the first m rows and
columns.

By Lemma 3, when λ1(L̃) is large enough, we have

‖T (s0)‖ = ‖(In−m + G̃(s0)f(s0)L̃)−1G̃(s0)‖
= ‖(G̃−1(s0) + f(s0)L̃)−1‖

≤ 1

σ1(f(s0)L̃)− ‖G̃−1(s0)‖
≤ 1

|f(s0)|λ1(L̃)− ‖G̃−1(s0)‖
.

Since gi(s0) 6= 0 for m+ 1 ≤ i ≤ n, maxm+1≤i≤n |g−1
i (s0)|

is upper bounded by some M > 0. Then we have

‖T (s0)‖ ≤ 1

|f(s0)|λ1(L̃)−M
. (22)

By Lemma 3, we know that λ1(L̃) → +∞ as λ2(L) → ∞,
then

lim
λ2(L)→+∞

1

|f(s0)|λ1(L̃)−M
= 0 .

We finishes the proof by taking λ2(L) → +∞ on both sides
of (22)

Remark 4. The limit in Theorem 3 can still be written as
limλ2(L)→+∞ ‖T (s0) − 1

n ḡ(s0)11T ‖ = 0, because s0 is a
zero of ḡ(s). However, we here emphasize the fact that the
system is not coherent at s0 under normalization because
T (s0)/‖T (s0)‖ does not converge to 1

nγ11T for any γ ∈ C.

So far, we have shown point-wise convergence of T (s)
towards the transfer function 1

n ḡ(s)11T , from which we assess
how network coherence emerges as connectivity increases.
In Remark 3 and 4 we see that the incoherence measure∥∥T (s0)− 1

n ḡ(s0)11T
∥∥ is insufficient for understanding the

asymptotic behavior at zeros or poles of ḡ(s), and that the al-
ternative measure

∥∥∥ T (s0)
‖T (s0)‖ − 1

nγ11T
∥∥∥ is a good complement

for such purpose.2 The latter measure,
∥∥∥ T (s0)
‖T (s0)‖ − 1

nγ11T
∥∥∥,

focuses more on the relative scale of eigenvalues of T (s). In
this paper, we mostly use the former,

∥∥T (s0)− 1
n ḡ(s0)11T

∥∥,
and particularly when presenting the uniform convergence
results; because we are interested in connecting these results
to the network time-domain response.

B. Convergence Regarding Poles of f(s)

As mentioned before, when s0 is a pole of f(s), it is a
singularity of T (s). Under certain conditions, one can observe

2As λ2(L) increases, for pole of ḡ(s), the latter measure converges to 0
given suitable conditions but not for the former; for zero of ḡ(s), the opposite
result holds; for generic point of ḡ(s), both incoherence measures converge
to 0.
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that high-gain in f(s) plays a role similar to λ2(L). The result
uses Lemma 4 and is stated as follows.

Theorem 4. Let T (s) and ḡ(s) be defined as in (1) and (5),
respectively. Suppose λ2(L) > 0. If s0 ∈ C is a generic point
of ḡ(s) and s0 is a pole of f(s), then

lim
s→s0

∥∥∥∥T (s)− 1

n
ḡ(s)11T

∥∥∥∥ = 0 .

Proof. Since s0 is neither a zero nor a pole of ḡ(s), ∃δ > 0
such that ∀s ∈ U(s0, δ) = {s : |s − s0| < δ}, we have
|ḡ−1(s)| ≤ M1 and max1≤i≤n |g−1

i (s)| ≤ M2 for some
M1,M2 > 0.

By Lemma 4, ∀s ∈ U(s0, δ), the following holds
∥∥∥∥T (s)− 1

n
ḡ(s)11T

∥∥∥∥ ≤
(M1M2 + 1)

2

|f(s)|λ2(L)−M2 −M1M2
2

.

Taking s→ s0 on both side, notice that lims→s0 |f(s)| = +∞,
the limit of right-hand side is 0.

In other words, at pole of f(s), the network effect
is infinitely amplified. The effective algebraic connectivity
|f(s)|λ2(L) grows unbounded as s approaching the pole of
f(s). As a result, the frequency response of T (s) is exactly the
one of 1

n ḡ(s)11T . Hence network coherence naturally arises
around poles of f(s).

IV. UNIFORM COHERENCE

We now leverage the point-wise convergence results of
Section III to characterize conditions for uniform convergence.
This will allow us to connect our analysis with time domain
implications, as discussed in II-B.

We start by showing uniform convergence of T (s) over
compact regions that do not contain any zero or pole of ḡ(s).
While the uniform convergence does not hold over regions
containing such zeros or poles in general, we prove that in
some special cases, the uniform convergence around zeros of
ḡ(s) does hold. Finally, we provide a sufficient condition for
uniform convergence of T (s) on the right-half plane, which
implies the system converges in H∞ norm.

A. Uniform Convergence Around Generic Points of ḡ(s)

Again, similarly to the point-wise convergence, we discuss
uniform convergence of T (s) over set S that satisfies the
following assumption

Assumption 2. S ⊂ C satisfies sups∈S |f(s)| < ∞ and
infs∈S |f(s)| > 0.

Such an assumption guarantees all points in the closure
of S are generic points of f(s). This property prevents
any sequence of points in S that asymptotically eliminates
or amplifies the network effect on the boundary of S. In
subsequent sections, we denote Fh := sups∈S |f(s)| and
Fl := infs∈S |f(s)| > 0.

Recall that in Section III, point-wise convergence is proved
by choosing M1,M2 > 0 such that the conditions in Lemma
4 are satisfied at a particular point s0. Then, finding universal
M1,M2 > 0 that work for every s0 in a set S ⊂ C suffices

to show uniform convergence over S. Such a process is
straightforward if S is compact:

Theorem 5. Let T (s) and ḡ(s) be defined as in (1) and (5),
respectively. Then given a compact set S ⊂ C, if S satisfies
Assumption 2 and does not contain any zero or pole of ḡ(s),
we have

lim
λ2(L)→+∞

sup
s∈S

∥∥∥∥T (s)− 1

n
ḡ(s)11T

∥∥∥∥ = 0 .

Proof. On the one hand, since S does not contain any pole
of ḡ(s), ḡ(s) is continuous on the compact set S, and hence
bounded [35, Theorem 4.15]. On the other hand, because S
does not contain any zero of ḡ(s), every g−1

i (s) must be
continuous on S, and hence bounded as well. It follwos that
max1≤i≤n |g−1

i (s)| is bounded on S, and the conditions of
Lemma 4 are satisfied for all s ∈ S with a uniform choice of
M1 and M2. By (11), we have

sup
s∈S

∥∥∥∥T (s)− 1

n
ḡ(s)11T

∥∥∥∥ ≤
(M1M2 + 1)

2

Flλ2(L)−M2 −M1M2
2

,

where Fl = infs∈S |f(s)|. We finish the proof by taking
λ2(L)→ +∞ on both sides.

As we already discussed in Remark 3, if S contains poles of
ḡ(s), sups∈S

∥∥T (s)− 1
n ḡ(s)11T

∥∥ is not a good incoherence
measure as it is undefined. The rest of the section mainly
discusses the uniform convergence result around zeros of ḡ(s).

B. Uniform Convergence Around Zeros of ḡ(s)

We first define the notion of Nodal Multiplicity of a point
in complex plane w.r.t. a given network.

Definition 2. Given {gi(s), i ∈ [n]}, the Nodal Multiplicity of
s0 ∈ C is defined as

N (s0) := |{i ∈ [n] : gi(s0) = 0}| ,
where | · | denotes the set cardinality.

By definition, any zero of ḡ(s) must have positive nodal
multiplicity. Our finding is that zeros with nodal multiplicity
exactly 1 have a special property, which is shown in the
following Lemma.

Lemma 5. Let T (s), ḡ(s) be defined as in (1) and (5),
respectively. If s0 ∈ C is a zero of ḡ(s) with nodal multiplicity
N (s0) = 1, and we assume that ∃δ0 such that Assumption 2
holds for U(s0, δ0) := {s ∈ C : |s− s0| < δ0}. Then ∀ε > 0,
∃δ < δ0, λ > 0 such that whenever L satisfies λ2(L) ≥ λ, we
have

sup
s∈U(s0,δ)

∥∥∥∥T (s)− 1

n
ḡ(s)11T

∥∥∥∥ < ε .

The proof is shown in Appendix D. Notice that for given
ε > 0, the ε bound is valid for any λ2(L) ≥ λ, therefore
we can prove uniform convergence over compact regions that
only contain zeros of ḡ(s) with nodal multiplicity 1.

Theorem 6 (Uniform convergence around points with
N (s0) = 1). Let T (s), ḡ(s) be defined as in (1) and (5),
respectively. For a compact set S ⊂ C satisfying Assumption 2,
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if S does not contain any pole of ḡ(s), and N (s) ≤ 1,∀s ∈ S,
then we have

lim
λ2(L)→+∞

sup
s∈S

∥∥∥∥T (s)− 1

n
ḡ(s)11T

∥∥∥∥ = 0 .

Proof. Firstly, let {sk, 1 ≤ k ≤ m} be the set of all the zeros
of ḡ(s) within S. Then N (sk) = 1, 1 ≤ k ≤ m, and by
Lemma 5,∀ε > 0 and every 1 ≤ k ≤ m, ∃ δsk , λsk > 0 such
that ∀L satisfying λ2(L) ≥ λsk , the following holds:

sup
s∈U(sk,δsk )

∥∥∥∥T (s)− 1

n
ḡ(s)11T

∥∥∥∥ < ε .

Let Ŝ := S \ (
⋃m
k=1 U(sk, δsk)), then we know that Ŝ is a

compact set that does not contain any pole or zero of ḡ. By
Theorem 5, ∃λ̂ such that

sup
s∈Ŝ

∥∥∥∥T (s)− 1

n
ḡ(s)11T

∥∥∥∥ < ε .

Let λ = max
{
λ̂, λs1 , · · · , λsm

}
, then ∀L satisfying λ2(L) ≥

λ, we have:

sup
s∈S

∥∥∥∥T (s)− 1

n
ḡ(s)11T

∥∥∥∥

= max

{
sup
s∈Ŝ

∥∥∥∥T (s)− 1

n
ḡ(s)11T

∥∥∥∥ ,

sup
s∈

⋃m
k=1 U(sk,δsk )

∥∥∥∥T (s)− 1

n
ḡ(s)11T

∥∥∥∥

}
< ε ,

which proves the limit.

For zeros with nodal multiplicity strictly larger than 1, the
analysis is rather complicated. We first look once again at the
homogeneous node dynamics setting of Section II to provide
some insight.

Example 1. Consider again a homogeneous network with
node dynamics g(s) and f(s) = 1, where the transfer matrix
is given by

T (s) =
1

n
g(s)11T + V⊥diag

{
1

g−1(s) + λi(L)

}n

i=2

V T⊥ .

The poles of T (s) include 1) the poles of g(s), and 2) any point
s0 that satisfies g−1(s0)+λi(L) = 0 for a particular i. Notice
that if λi(L) is large, every solution to g−1(s0)+λi(L) = 0 is
close to one of the zeros of g(s). As we increase λ2(L), which
effectively increases every λi(L), 2 ≤ i ≤ n, one can check
that at most n − 1 poles asymptotically approach each zero
of g(s), provided that λi(L) are distinct. As a result, uniform
convergence around any zero of g(s) cannot be obtained due
to the presence of poles of T (s) close to them.

Such observation also seems to hold in general for networks
with heterogeneous node dynamics gi(s). That is, if a zero of
ḡ(s) is a zero with nodal multiplicity strictly larger than 1,
then we expect it to “attract” poles of T (s). But it is difficult
to formally prove it since we cannot exactly locate the poles of

T (s) in the absence of homogeneity.3 Surprisingly, there are
certain cases where we can still quantify the effect of those
poles of T (s) approaching a zero of ḡ(s). This essentially
disproves the uniform convergence for such cases.

Theorem 7 (Uniform Convergence Failure). Let T (s), ḡ(s) be
defined as in (1) and (5), respectively. Let f(s) = 1. Suppose
z ∈ R is a real zero of all gi(s), i ∈ [n] with multiplicity 1,
i.e. ∀i ∈ [n], gi(z) = 0, lims→z

gi(s)
s−z 6= 0. Then for any set

S containing z in its interior, ∃λ,M > 0 such that, for all
Laplacian matrices L satisfying λ2(L) ≥ λ, we have

sup
s∈S

∥∥∥∥T (s)− 1

n
ḡ(s)11T

∥∥∥∥ ≥M .

The proof is shown in Appendix C. Although Theorem 7
only disproves the uniform convergence around one particular
type of zero of ḡ(s), namely, such zero must have nodal
multiplicity n and it must be a real zero with multiplicity
1 for all gi(s), we believe a similar result holds for any zero
that is “shared” by multiple gi(s). However, a complete proof
is left for future research.

We now provide another point of view of this phenomenon.
Suppose in a network of size 2, z1 is exclusively zero of g1(s)
and z2 exclusively zero of g2(s). If z1 and z2 are close enough,
there must be p a pole of ḡ(s) in the small neighborhood of
z1 or z2. To be more clear, see the following example.

Example 2. Let g1(s) = s+a
s2 , g2(s) = s+a+ε

s2 , then z1 = −a
and z2 = −a − ε are the zeros respectively. The coherent
dynamics is given by

ḡ(s) =
2

g−1
1 (s) + g−1

2 (s)
=

(s+ a)(s+ a+ ε)

2s2(s+ a+ ε/2)
.

ḡ(s) has a pole p = −a − ε/2 that is in both ε/2-
neighborhoods of z1 and z2.

By Theorem 2, we know that p is asymptotically a pole of
T (s), in other words, there is a pole of T (s) approaching p,
as the network connectivity increases. Moreover, z1 and z2

being close enough suggests that p is close to z1 and z2, as
we see in the example. Consequently, two zeros z1, z2 being
close introduces a pole of T (s) asymptotically approaching a
small neighborhood of z1, z2. Consider the limit case where
the two zeros collapse into a shared zero of g1(s), g2(s), we
should expect a pole of T (s) approaching this shared zero.

A similar argument can be made for m zeros of different
nodes being close to each other, introducing m − 1 poles
of ḡ(s) in the small neighborhood that asymptotically attract
poles of T (s). This is by no means a rigorous proof of how
uniform convergence fails around a zero “shared” by multiple
gi(s), but rather a discussion providing intuition behind such
behavior.

At this point, we have proved uniform convergence of T (s)
on a compact set S that does not include 1) zeros of ḡ(s) with
Nodal Multiplicity larger than 1, or 2) poles of ḡ(s).

3We can still exactly locate the poles of T (s) when proportionality is
assumed, i.e. gi(s) = fig(s), i ∈ [n] for some fi > 0 and rational transfer
function g(s). Such a case can be regarded as the homogeneous case by
considering a scaled version of L.

9



In particular, we find that zero with Nodal Multiplicity
larger than 1, i.e. it is ”shared” by multiple gi(s), attracts
pole of T (s) as network connectivity increases, which suggests
that uniform convergence of T (s) fails around such point.
Although we only provide the proof for special cases as in
Theorem 7, we conjecture such a statement is true in general
and we left more careful analysis for future research.

C. Uniform Convergence on Right-Half Complex Plane

Aside from uniform convergence on compact sets, uniform
convergence over the closed right-half plane {s : Re(s) ≥ 0}
is of great interest as well. If we were to establish uniform
convergence over the right-half plane for a certain T (s), then
given ḡ(s) to be stable, the convergence in H∞-norm of T (s)
towards 1

n ḡ(s)11T could be guaranteed, i.e., T (s) converges
to 1

n ḡ(s)11T as a system. One trivial consequence is that we
can infer the stability of T (s) with a large enough λ2(L) by the
stability of ḡ(s). Furthermore, given any L2 input signal, we
can make the L2 difference between output responses of T (s)
and 1

n ḡ(s)11T arbitrarily small by increasing the network
connectivity.

Unfortunately, for most networks, we encounter with the
same issue we have seen when dealing with zeros of ḡ(s):
When gi(s) is strictly proper, gi(s) → 0 as |s| → +∞,
thus, ∞ can be viewed as a zero of gi(s) by regarding gi(s)
as functions defined on extended complex plane C ∪ {∞}.
Then for networks that include more than one node whose
transfer functions are strictly proper, there will be poles of
T (s) approaching {∞} as λ2(L) increases. Notice that those
poles could approach {∞} either from the left-half or right-
half plane. Apparently, the uniform convergence on the right-
half plane will not hold if the latter happens, but even when
the former happens, we still need to quantify the effect of such
poles because they are approaching the boundary of our set
{s : Re(s) ≥ 0}. A similar argument can be made for any set
of the form {s : Re(s) = σ} = {σ + jω : ω ∈ [−∞,+∞]},
which we mentioned in II-B.

Although proving (or disproving) uniform convergence on
the right-half plane for general networks is quite challenging,
it is much more straightforward for networks consist of only
non-strictly proper nodes, as shown in the following theorem:

Theorem 8 (Sufficient condition for uniform convergence on
right-half plane). Let T (s), ḡ(s) be defined as in (1) and (5),
respectively. Suppose gi(s), i ∈ [n] are not strictly proper, ḡ(s)
is stable, and N (s) ≤ 1,∀Re(s) ≥ 0, then we have

lim
λ2(L)→+∞

sup
Re(s)≥0

∥∥∥∥T (s)− 1

n
ḡ(s)11T

∥∥∥∥ = 0 .

Proof. Given R > 0, we define the following sets:

S1 := {s ∈ C : Re(s) ≥ 0, |s| ≤ R} ,
S2 := {s ∈ C : Re(s) ≥ 0, |s| > R} .

Apparently, S1

⋃
S2 = {s ∈ C : Re(s) ≥ 0}. Then we

can show uniform convergence on right-half plane by proving
uniform convergence on S1, S2 respectively:

Firstly, because all gi(s) are not strictly proper, each gi(s)
converges to some non-zero value as |s| → +∞. Then we

can choose R large enough so that max1≤i≤n |g−1
i (s)| ≤

M2,∀s ∈ S2 for some M2 > 0. Moreover, |ḡ(s)| < M1,∀s ∈
S2 for some M1 > 0 because ḡ(s) is stable. Then the
conditions in Lemma 4 are satisfied, we have

sup
s∈S2

∥∥∥∥T (s)− 1

n
ḡ(s)11T

∥∥∥∥ ≤
(M1M2 + 1)

2

Flλ2(L)−M2 −M1M2
2

,

(23)
where Fl = infs∈S |f(s)|. Taking λ2(L)→ +∞ on both side
of (23), we have the uniform convergence on S2.

Secondly, notice that S1 is compact, contains no pole of
ḡ(s) and has N (s) ≤ 1,∀s ∈ S1, the uniform convergence is
shown by Theorem 6.

D. Connection to Time Domain Response

As discussed in Section II-B, we are interested in the
uniform convergence of network transfer matrix T (s) because
uniform convergence result on the line {σ + jω : ω ∈
[−∞,+∞]} would allow us to show coherence in time-
domain response through the inverse Laplace transform [28,
Theorem 3.20]

f(t) = L−1{F (s)}(t) =
1

2πj
lim
ω→∞

∫ σ+jω

σ−jω
estF (s)ds .

However, we have seen in Section IV-C establishing such
uniform convergence is challenging when gi(s) are strictly
proper. Nonetheless, if we assume the input signal decays
sufficiently fast in high frequency range, we can prove the
following:

Theorem 9. Given ε > 0 and a real input signal vector with
its Laplace transform U(s). Suppose for some γ > 0, σ > 0,
ω0 > 0, we have

1) supRe(s)>σ ‖U(s)‖ is finite;
2)

lim
ω→∞

∫ σ+jω

σ+jω0

‖U(s)‖ds ≤ 2πε

6eσγ
,

3) ‖ḡ(s)‖H∞ ≤ γ;
4) ‖T (s)‖H∞ ≤ γ, for any Laplacian matrix L;

Let yi(t) be the response of i-th node when the network input
is U(s), and let ȳ(t) be the response of ḡ(s) to 1T

n U(s). Then
there exists λ = O( e

σγ
ε ), such that If λ2(L) ≥ λ, we have

sup
t>0
|yi(t)− ȳ(t)| ≤ ε .

The proof is shown in Appendix F. The non-asymptotic
rate O( e

σγ
ε ) has hidden constant that implicitly depends on

gi(s),f(s),U(s) and the choice of w0. It is yet independent of
L.

Theorem 9 made several assumptions: The first one makes
sure we can integrate on {σ + jω : ω ∈ [−∞,+∞]}. The
second condition requires the input signal decays sufficiently
fast in high-frequency range. The third assumption relies on
the stability of ḡ(s) and can be verified easily. The last
assumption is generally hard to verify, but it holds when the
network satisfies additional properties. To present the result,
we first define the following

10



Definition 3. A rational transfer function g(s) is positive real
(PR) if

Re(g(s)) ≥ 0,∀Re(s) > 0 .

A rational transfer function g(s) is output strictly passive
(OSP) if

Re(g(s)) ≥ ε|g(s)|2,∀Re(s) > 0 ,

for some ε > 0.

With these definition, we have

Theorem 10. Suppose all gi(s), i = 1, · · · , n are OSP, and
f(s) is PR. There exists γ > 0, such that given any positive
semidefinite matrix L, we have

‖T (s)‖H∞ ≤ γ .
The proof is shown in Appendix F. This theorem shows

the stability of the network when gi(s) are OSP and f(s) is
PR, regardless of the network connectivity. The coherence in
time-domain response for such network can be understood by
Theorem 9.

V. COHERENCE AND DYNAMICS CONCENTRATION IN
LARGE-SCALE NETWORKS

Until now we looked into convergence results of T (s) for
networks with fixed size n. However, one could easily see
that such coherence does not depend on the network size n.
In particular, the right-hand side of (11) only depends on n
via λ2(L) as long as the bounds regarding gi(s), i.e. M1 and
M2 do not scale with respect to n. This implies that coherence
can emerge as the network size increases. This is the topic of
this section.

More interestingly, in a stochastic setting where all gi(s)
are unknown transfer functions independently drawn from
some distribution, their harmonic mean eventually converges
in probability to a deterministic transfer function as the
network size increases. Consequently, a large-scale stochastic
network concentrates to deterministic a system. We term this
phenomenon dynamics concentration.

A. Coherence in Large-scale Networks

To start with, we revise the problem settings to account
for variable network size: Let {gi(s), i ∈ N+} be a sequence
of transfer functions, and {Ln, n ∈ N+} be a sequence of
real symmetric Laplacian matrices such that Ln has order n,
particularly, let L1 = 0. Then we define a sequence of transfer
matrix Tn(s) as

Tn(s) = (In +Gn(s)Ln)
−1
Gn(s) , (24)

where Gn(s) = diag{g1(s), · · · , gn(s)}. This is exactly the
same transfer matrix shown in Fig.1 for a network of size n.
We can then define the coherent dynamics for every Tn(s) as

ḡn(s) =

(
1

n

n∑

i=1

g−1
i (s)

)−1

. (25)

For certain family {Ln, n ∈ N+} of large-scale networks,
the network algebraic connectivity λ2(Ln) increases as n

grows. For example, when Ln is the Laplacian of a com-
plete graph of size n with all edge weights being 1, we
have λ2(Ln) = n. As a result, network coherence naturally
emerges as the network size grows. Recall that to prove
the convergence of Tn(s) to 1

n ḡn(s)11T for fixed n, we
essentially seek for M1,M2 > 0, such that |ḡn(s)| ≤ M1

and max1≤i≤n |g−1
i (s)| ≤ M2 for s in a certain set. If it

is possible to find a universal M1,M2 > 0 for all n, then
the convergence results should be extended to arbitrarily large
networks, provided that network connectivity increases as n
grows. To state this condition formally, we need the notion of
uniform boundedness for a family of functions.

Definition 4. Let {gi(s), i ∈ I} be a family of complex
functions indexed by I . Given S ⊂ C, {gi(s), i ∈ I} is
uniformly bounded on S if

∃M > 0 s.t. |gi(s)| ≤M, ∀i ∈ I, ∀s ∈ S .
Now we are ready to show uniform convergence of Tn(s):

Theorem 11. Let Tn(s) and ḡn(s) be defined as in (24) and
(25), respectively. Suppose λ2(Ln) → +∞ as n → ∞. If
both {g−1

i (s), i ∈ N+} and {ḡn(s), n ∈ N+} are uniformly
bounded on a set S ⊂ C. then we have

lim
n→∞

sup
s∈S

∥∥∥∥Tn(s)− 1

n
ḡn(s)11T

∥∥∥∥ = 0 .

Proof. Since both {g−1
i (s), i ∈ N+} and {ḡn(s), n ∈ N+} are

uniformly bounded on S, ∃M1,M2 > 0 s.t. |ḡn(s)| ≤M1 and
max1≤i≤n |g−1

i (s)| ≤ M2 for every n ∈ N+ and s ∈ S. By
Lemma 4, ∀n ∈ N+,

sup
s∈S

∥∥∥∥Tn(s)− 1

n
ḡn(s)11T

∥∥∥∥ ≤
(M1M2 + 1)

2

Flλ2(Ln)−M2 −M1M2
2

,

(26)
where Fl = infs∈S |f(s)|. We already assumed that λ2(Ln)→
+∞ as n → +∞, therefore the proof is finished by taking
n→ +∞ on both sides of (26).

Remark 5. Similarly to Theorem 5, uniform convergence is
achieved on a set away from zeros or poles of ḡ(s). The
uniform boundedness condition is preventing any point in the
closure of S from asymptotically becoming a zero of any
g−1
i (s) or a pole of ḡ(s) as n increases.

B. Dynamics Concentration in Large-scale Networks

Now we consider the cases where the node dynamics are
unknown (stochastic). For simplicity, we constraint our analy-
sis to the setting where the node dynamics are independently
sampled from the same random rational transfer function with
all or part of the coefficients are random variables, i.e. the
nodal transfer functions are of the form

gi(s) ∼
bms

m + . . . b1s+ b0
alsl + . . . a1s+ a0

, (27)

for some m, l > 0, where b0, · · · , bm, a0, · · · , al are random
variables.

To formalize the setting, we firstly define the random
transfer function to be sampled. Let Ω = Rd be the sample
space, F the Borel σ-field of Ω, and P a probability measure
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on Ω. A sample w ∈ Ω thus represents a d-dimensional vector
of coefficients. We then define a random rational transfer
function g(s, w) on (Ω,F ,P) such that all or part of the
coefficients of g(s, w) are random variables. Then for any
w0 ∈ Ω, g(s, w0) is a rational transfer function.

Now consider the probability space (Ω∞,F∞,P∞). Every
w ∈ Ω∞ give an instance of samples drawn from our random
transfer function:

gi(s, wi) := g(s, wi), i ∈ N+ ,

where wi is the i-th element of w. By construction,
gi(s, wi), i ∈ N+ are i.i.d. random transfer functions. More-
over, for every s0 ∈ C, gi(s0, wi), i ∈ N+ are i.i.d. random
complex variables taking values in the extended complex plane
(presumably taking value ∞).

Now given {Ln, n ∈ N+} a sequence of n × n real
symmetric Laplacian matrices, consider the random network
of size n whose nodes are associated with the dynamics
gi(s, wi), i = 1, 2, · · · , n and coupled through Ln. The trans-
fer matrix of such a network is given by

Tn(s,w) = (In +Gn(s,w)Ln)−1Gn(s,w) , (28)

where Gn(s,w) = diag{g1(s, w1), · · · , gn(s, wn)}.
Then under this setting, the coherent dynamics of the

network is given by

ḡ(s,w) =

(
1

n

n∑

i=1

g−1
i (s, wi)

)−1

. (29)

Now given a compact set S ⊂ C of interest, and assuming
suitable conditions on the distribution of g(s, w), we expect
that the random coherent dynamics ḡ(s,w) would converge
uniformly in probability to its expectation

ĝ(s) =
(
Eg−1(s, w))

)−1
:=

(∫

Ω

g−1(s, w)dP(w)

)−1

,

(30)
for all s ∈ S, as n → ∞. The following Lemma provides a
sufficient condition for this to hold.

Lemma 6. Consider the probability space (Ω∞,F∞,P∞).
Let ḡn(s,w) and ĝ(s) be defined as in (29) and (30), re-
spectively, and given a compact set S ⊂ C, let the following
conditions hold:

1) g−1(s, w) is uniformly bounded on S × Ω;
2) {ḡn(s,w), n ∈ N+} are uniformly bounded on S×Ω∞;
3) ∃L > 0 s.t. |g−1

1 (s1, w) − g−1
1 (s2, w)| ≤ L|s1 − s2|,

∀w ∈ Ω,∀s1, s2 ∈ S;
4) ĝ(s) is uniformly continuous.

Then, ∀ε > 0, we have

lim
n→∞

P

(
sup
s∈S

∥∥∥∥
1

n
ḡn(s,w)11T − 1

n
ĝ(s)11T

∥∥∥∥ ≥ ε
)

= 0 .

The proof is shown in Appendix E. This lemma suggests
that our coherent dynamics ḡn(s,w), as n increases, converges
uniformly on S to its expected version ĝ(s). Then provided
that the coherence is obtained as the network size grows, we
would expect that the random transfer matrix Tn(s,w) to

concentrate to a deterministic one 1
n ĝ(s)11T , as the following

theorem shows.

Theorem 12. Given probability space (Ω∞,F∞,P∞). Let
Tn(s,w) and ĝ(s) be defined as in (28) and (30), respectively.
Suppose λ2(Ln) → +∞ as n → +∞. Given a compact set
S ⊂ C, if all the conditions in Lemma 6 hold, then ∀ε > 0,
we have

lim
n→∞

P

(
sup
s∈S

∥∥∥∥Tn(s,w)− 1

n
ĝ(s)11T

∥∥∥∥ ≥ ε
)

= 0 .

Proof. Firstly, notice that

P

(
sup
s∈S

∥∥∥∥Tn(s,w)− 1

n
ĝ(s)11T

∥∥∥∥ ≥ ε
)

≤ P

(
sup
s∈S

∥∥∥∥Tn(s,w)− 1

n
ḡn(s)11T

∥∥∥∥+

sup
s∈S

∥∥∥∥
1

n
ḡn(s,w)11T − 1

n
ĝ(s)11T

∥∥∥∥ ≥ ε
)

≤ P

(
sup
s∈S

∥∥∥∥Tn(s,w)− 1

n
ḡn(s,w)11T

∥∥∥∥ ≥
ε

2

)
+

P

(
sup
s∈S

∥∥∥∥
1

n
ḡn(s,w)11T − 1

n
ĝ(s)11T

∥∥∥∥ ≥
ε

2

)
.

The second term converges to 0 as n → +∞ by Lemma 6.
For the first term, we show below that it becomes exactly 0 for
large enough n. Still, we assume {ḡn(s,w)} and {g−1

i (s,w)}
are uniformly bounded on S by M1,M2 > 0 respectively. By
Lemma 4, choosing large enough n s.t.

P

(
sup
s∈S

∥∥∥∥Tn(s,w)− 1

n
ḡn(s,w)11T

∥∥∥∥ ≥
ε

2

)

≤ P

(
(M1M2 + 1)

2

Flλ2(Ln)−M2 −M1M2
2

≥ ε

2

)
,

then we can choose even larger n such that the probability
on the right-hand side is 0 because λ2(Ln) → +∞ as n →
∞.

Remark 6. Lemma 6 requires g−1(s, w) to be uniformly
bounded on S × Ω. That is, for s0 ∈ S, g−1(s0, w) is a
bounded complex random variable. In [1], a weaker condition,
that g−1(s0, w) is a sub-Gaussian complex random variable,
is considered. This allows to show that point-wise convergence
in probability can be achieved whenever λ2(Ln) grows poly-
nomially in n.

In summary, because the coherent dynamics of the tightly-
connected network is given by the harmonic mean of all node
dynamics gi(s), it concentrates to its harmonic expectation
ĝ(s) as the network size grows. As a result, in practice, the
coherent behavior of large-scale tightly-connected networks
depends on the empirical distribution of gi(s), i.e. a collective
effect of all node dynamics rather than every individual
node dynamics. For example, two different realizations of
large-scale network with dynamics Tn(s,w) exhibit similar
coherent behavior with high probability, in spite of the possible
substantial differences in individual node dynamics.
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VI. APPLICATION: AGGREGATE DYNAMICS OF
SYNCHRONOUS GENERATOR NETWORKS

In this section, we apply our analysis to investigate co-
herence in power networks. For coherent generator groups,
we find that 1

n ĝ(s) generalized typical aggregate generator
models which are often used for model reduction in power
networks [37]. Moreover, we show that heterogeneity in
generator dynamics usually leads to high-order aggregate
dynamics, making it challenging to find a reasonably low-
order approximation.

Consider the transfer matrix of power generator net-
works [7] linearized around its steady-state point, given by the
following block diagram: This is exactly the block structure

diag{gi(s)}

1
sL

u ω

−

Fig. 3. Block Diagram of Linearized Power Networks

shown in Fig. 1 with f(s) = 1
s . Here, the network output,

i.e., the frequency deviation of each generator, is denoted by
ω. Generally, the gi(s) are modeled as strictly positive real
transfer functions and we assume L is connected.

A. Coherence Analysis

We utilize the convergence results from previous sections to
characterize the coherent behavior of such networks. We still
denote the coherent dynamics as ḡ(s) defined in (5).

Firstly, Notice that s = 0 is a pole of f(s) = 1
s , then by

Theorem 4, T (0) is exactly 1
n ḡ(0)11T , which suggests that in

steady state, frequency outputs are the same for all generators.
Moreover, another consequence of Theorem 4 is as follows.

Claim 1. Given fixed L, ∀ε > 0, ∃ηc > 0 such that

sup
η∈[−ηc,ηc]

∥∥∥∥T (jη)− 1

n
ḡ(jη)11T

∥∥∥∥ < ε .

Proof. This is the direct application of Theorem 4 according
to the definition of the limit.

The claim suggests that the network is naturally coherent
in the low-frequency range. In other words, for any fixed
network L, there is a low-frequency range such that the
network responds coherently to disturbances in that frequency
range. Additionally, we know that such frequency range can be
arbitrarily wide, given sufficiently large network connectivity,
suggested by the following claim.

Claim 2. ∀ηc > 0, we have

lim
λ2(L)→∞

sup
η∈[−ηc,ηc]

∥∥∥∥T (jη)− 1

n
ḡ(jη)11T

∥∥∥∥ = 0 .

Proof. Provided that gi(s) are strictly positive real [38], this
is a direct application of Theorem 5.

Loosely speaking, the generator network is coherent for
certain low-frequency range and the width of such frequency
range increases when the network is more connected (λ2(L)
increases).

Furthermore, notice that ∞ can be regarded as a zero
of f(s), around which the network effect diminishes, i.e.
for sufficiently large η, the effective algebraic connectivity
|f(jη)λ2(L)| = λ2(L)

|η| can be arbitrarily small. Hence given
any fixed L, there is a high-frequency range such that the
network does not exhibit coherence under disturbances within
such range.

Fig. 4. Step responses of Icelandic Grid without (Left) and with (Right)
connectivity λ2(L) scaled up. The responses of coherent dynamics ḡ(s) are
shown in red dashed lines.

Fig. 5. Responses of Icelandic Grid under sinusoidal disturbances of fre-
quency wlow = 0.1rad/s (Left) and whigh = 0.25rad/s (Right). The
responses of coherent dynamics ḡ(s) are shown in red dashed lines.

We verify our analysis with simulations on the Icelandic
power grid [39]. As shown in Fig. 4, the network step response
is more coherent, i.e. response of every single node (generator)
is getting closer to the one of the coherent dynamics ḡ(s),
when the network connectivity is scaled up. For the plot on
the right, the connectivity λ2(L) is scaled up to 10 times the
original. Then Fig. 5 shows such coherence is also frequency-
dependent, where the generators respond less coherently under
disturbances of higher frequency.

The discussions and simulations above suggest that the
coherent dynamics ḡ(s) characterize well the overall re-
sponse/behavior of generators. This leads to a general method-
ology to analyze the aggregate dynamics of such networks, that
we describe next.

B. Aggregate Dynamics of Generator Networks

Let

gaggr(s) :=
1

n
ḡ(s) =

(
n∑

i=1

g−1
i (s)

)
.
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Our analysis suggests that the transfer function T (s) repre-
senting a network of generators is close gaggr(s)11T within
the low-frequency range, for sufficiently high network con-
nectivity λ2(L). We can also view gaggr(s) as the aggregate
generator dynamics, in the sense that it takes the sum of
disturbances 1Tu =

∑n
i=1 ui as its input, and its output

represents the coherent response of all generators.
Such a notion of aggregate dynamics is important in mod-

eling large-scale power networks [37]. Generally speaking,
one seeks to find an aggregate dynamic model for a group
of generators using the same structure (transfer function) as
individual generator dynamics, i.e. when generator dynamics
are modeled as gi(s) = g(s; θi), where θi is a vector of
parameters representing physical properties of each generator,
existing works [24]–[26] propose methods to find aggregate
dynamics of the form g(s; θaggr) for certain structures of
g(s; θ). Our gaggr(s) justifies their choices of θaggr, as shown
in the following example.

Example 3. For generators given by the swing model gi(s) =
1

mis+di
, where mi, di are the inertia and damping of gener-

ator i, respectively. The aggregate dynamics are

gaggr(s) =
1

maggrs+ daggr
, (31)

where maggr =
∑n
i=1mi and daggr =

∑n
i=1 di.

Here the parameters are θ = {m, d}. The aggregate model
given by (31) is consistent with the existing approach of
choosing inertia m and damping d as the respective sums over
all the coherent generators.

However, as we show in the next example, when one
considers more involved models, it is challenging to find
parameters θaggr that accurately fit the aggregate dynamics.

Example 4. For generators given by the swing model with
turbine droop

gi(s) =
1

mis+ di +
r−1
i

τis+1

, (32)

where r−1
i and τi are the droop coefficient and turbine time

constant of generator i, respectively. The aggregate dynamics
are given by

gaggr(s) =
1

maggrs+ daggr +
∑n
i=1

r−1
i

τis+1

. (33)

Here the parameters are θ = {m, d, r−1, τ}. This example
illustrates, in particular, the difficulty in aggregating generators
with heterogeneous turbine time constants. When all genera-
tors have the same turbine time constant τi = τ , then gaggr(s)
in (33) reduces to the typical effective machine model

gaggr(s) =
1

maggrs+ daggr +
r−1
aggr

τs+1

,

where r−1
aggr =

∑n
i=1 r

−1
i , i.e. the aggregation model is still

obtained by choosing parameters {m, d, r−1} as the respective
sums of their individual values.

If the τi are heterogeneous, then gaggr(s) is a high-order
transfer function and cannot be accurately represented by a sin-
gle generator model. The aggregation of generators essentially
asks for a low-order approximation of gaggr(s). Our analysis
reveals the fundamental limitation of using conventional ap-
proaches seeking aggregate dynamics with the same structure
of individual generators. Furthermore, by characterizing the
aggregate dynamics in the explicit form gaggr(s), one can
develop more accurate low-order approximation [40]. Lastly,
we emphasize that our analysis does not depend on a specific
model of generator dynamics gi(s), hence it provides a general
methodology to aggregate coherent generator networks.

VII. CONCLUSIONS

This paper provides various convergence results of the
transfer matrix T (s) for a tightly-connected network. The
analysis leads to useful characterizations of coordinated be-
havior and justifies the relation between network coherence
and network effective algebraic connectivity. Our results sug-
gest that network coherence is also a frequency-dependent
phenomenon, which is numerically illustrated in generator
networks. Lastly, concentration results for large-scale tightly-
connected networks are presented, revealing the exclusive role
of the statistical distribution of node dynamics in determining
the coherent dynamics of such networks.

As we already see from the numerical example of syn-
chronous generator networks, when the network is coherent,
the entire network can be represented by its aggregate dynam-
ics, because the network has all non-zero eigenvalue being
sufficiently large to make the dynamics associated with these
eigenvalues negligible. One could extend such observation to
less coherent networks which has large eigenvalues except for
a few small eigenvalues. We can utilize the same frequency
domain analysis to these networks, but instead of only keeping
the coherent dynamics, we retain the dynamic associated
with all the small eigenvalues (These dynamics are generally
coupled due to the heterogeneity in node dynamics). In this
way, we can accurately capture the important modes in the
network dynamics while significantly reduce the complexity
of our model.

Furthermore, for large-scale networks with multiple coher-
ent groups, or communities in a more general sense, one
could model the inter-community interactions by replacing
the dynamics of each community with its coherent one, or
more generally, a reduced one. Although clustering, i.e. finding
communities, for homogeneous networks can be efficiently
done by various methods such as spectral clustering [41] [42],
it is still open for research to find multiple coherent groups in
heterogeneous dynamical networks.

APPENDIX

A. Proof of Lemma 3

Proof. To avoid confusion, here we let 1n denote all one
vector 1 of length n.

Without loss of generality, assume I = {1, · · · ,m}. Then
L̃ is the principal submatrix of L by removing first m rows
and columns.
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By [?, 3.5], the matrix

L− λ2(L)

(
I − 1

n
1n1Tn

)
,

is positive semi-definite. Now let v =

[
0
ṽ1

]
where ṽ1 is the

unit eigenvector correspoding to λ1(L̃), we have

vT
(
L− λ2(L)

(
I − 1

n
1n1Tn

))
v

= ṽT1 L̃ṽ1 − λ2(L)

(
1− 1

n
(1Tn−mṽ1)2

)

= λ1(L̃)− λ2(L)

(
1− 1

n
(1Tn−mṽ1)2

)
≥ 0 .

We also have 1Tn−mṽ1 ≤ ‖1n−m‖‖ṽ1‖ =
√
n−m, then the

desired lower bound on λ1(L̃) is obtained:

λ1(L̃) ≥ λ2(L)

(
1− 1

n
(1Tn−mṽ1)2

)
≥ m

n
λ2(L) .

B. Convergence of Normalized Transfer Function at Poles of
ḡ(s)

We present here the formal statement regarding the Remark
3 on the convergence of normalized transfer function at poles
of ḡ(s).

Proposition 13. Let T (s) and ḡ(s) be defined as in (1) and
(5), respectively. If s0 ∈ C is a pole of ḡ(s) and a generic point
of f(s), and additionally, we assume ‖Λ̃/λ2(L)−Λlim‖ → 0
as λ2(L)→ +∞, then

lim
λ2(L)→+∞

∥∥∥∥
T (s0)

‖T (s0)‖ −
1

n
γ(Λlim)11T

∥∥∥∥ = 0 ,

where γ(Λlim) =
hT12Λ−1

limh12

|hT12Λ−1
limh12|

.

Here γ(Λlim) is well-defined since Λlim must be positive
definite, otherwise it contradicts the fact that Λ̃/λ2(L)−I � 0.

Proof. Since

T (s0)

‖T (s0)‖ =
T (s0)

a
· |a|
‖T (s0)‖ ·

a

|a| ,

where a is defined as in (19). The desired result follows once
we show that

∥∥∥T (s0)
a − 1

n11T
∥∥∥→ 0, |a|

‖T (s0)‖ → 1 and a
|a| →

γ(Λlim). Recall that T (s0) = V H−1V T and

H−1 = a

[
1

−H−1
22 h21

] [
1 −hT21H

−1
22

]
+

[
0 0
0 H−1

22

]
.

For the first limit, we have
∥∥∥∥
T (s0)

a
− 1

n
11T

∥∥∥∥

=

∥∥∥∥
H−1

a
− e1e

T
1

∥∥∥∥

=

∥∥∥∥
[

0
−H−1

22 h21

] [
0 −hT21H

−1
22

]
+

[
0 0
0 H−1

22

]
/a

∥∥∥∥

= ‖hT21H
−1
22 ‖2 + ‖hT21H

−1
22 h21H

−1
22 ‖

≤ 2‖h21‖2‖H−1
22 ‖2 ≤

2M2

(|f(s0)|λ2(L)−M)2
→ 0 .

The second limit comes from

‖T (s0)‖/|a|

=

∥∥∥∥a
[

1
−H−1

22 h21

] [
1 −hT21H

−1
22

]
+

[
0 0
0 H−1

22

]∥∥∥∥ /|a|

≤
∥∥∥∥
[

1
−H−1

22 h21

] [
1 −hT21H

−1
22

]∥∥∥∥+ ‖H−1
22 ‖/|a|

≤ 1 + ‖H−1
22 h21‖2 + ‖H−1

22 ‖2‖h21‖2 ,
and

‖T (s0)‖/|a|

≥
∥∥∥∥
[

1
−H−1

22 h21

] [
1 −hT21H

−1
22

]∥∥∥∥− ‖H
−1
22 ‖/|a|

≥ 1 + ‖H−1
22 h21‖2 − ‖H−1

22 ‖2‖h21‖2 ,
along with the fact that both the upper and the lower bound
converge to 1. To see the limit, notice that
∣∣‖H−1

22 h21‖2 + ‖H−1
22 ‖2‖h21‖2

∣∣ ≤ 2‖H−1
22 ‖2‖h21‖2∣∣‖H−1

22 h21‖2 − ‖H−1
22 ‖2‖h21‖2

∣∣ ≤ ‖H−1
22 h21‖2 + ‖H−1

22 ‖2‖h21‖2

≤ 2‖H−1
22 ‖2‖h21‖2 ,

and

2‖H−1
22 ‖2‖h21‖2 ≤

2M2

(|f(s0)|λ2(L)−M)2
→ 0 .

The last limit is obtained from

a

|a| =
hT12H

−1
22 h12

|hT12H
−1
22 h12|

= γ(Λlim)
hT12H

−1
22 h12

f−1(s0)λ−1
2 (L)hT12Λ−1

limh12

|f−1(s0)λ−1
2 (L)hT12Λ−1

limh12|
|hT12H

−1
22 h12|

,

and the fact that hT12H
−1
22 h12

f−1(s0)λ−1
2 (L)hT12Λ−1

limh12
→ 1.

To show the limit of the ratio in the end, notice that
∣∣∣∣

hT12H
−1
22 h12

f−1(s0)λ−1
2 (L)hT12Λ−1

limh12

− 1

∣∣∣∣

=

∣∣∣∣∣
hT12(V T⊥ G̃(s0)V⊥ + f(s0)Λ̃)−1h12

f−1(s0)λ−1
2 (L)hT12Λ−1

limh12

− 1

∣∣∣∣∣

=

∣∣∣∣∣∣∣

hT12

(
V T⊥ G̃(s0)V⊥
f(s0)λ2(L) + Λ̃

λ2(L)

)−1

h12

hT12Λ−1
limh12

− 1

∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣

hT12

[(
V T⊥ G̃(s0)V⊥
f(s0)λ2(L) + Λ̃

λ2(L)

)−1

− Λ−1
lim

]
h12

hT12Λ−1
limh12

∣∣∣∣∣∣∣∣

≤ ‖h12‖2
|h12TΛlimh12|

∥∥∥∥∥∥

(
V T⊥ G̃(s0)V⊥
f(s0)λ2(L)

+
Λ̃

λ2(L)

)−1

− Λ−1
lim

∥∥∥∥∥∥

≤ ‖h12‖2
|h12TΛlimh12|

‖Λ−1
lim‖2‖∆‖

1− ‖Λ−1
lim‖‖∆‖

,
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where

∆ =
V T⊥ G̃(s0)V⊥
f(s0)λ2(L)

+
Λ̃

λ2(L)
− Λlim .

Here we use the fact that for some invertible square matrices
A,B, we have

‖(A+B)−1 −A−1‖ = ‖(A+B)−1(A+B −A)A−1‖
≤ ‖(A+B)−1‖‖B‖‖A−1‖

(Lemma 2) ≤ ‖A−1‖
1− ‖A−1‖‖B‖‖B‖‖A

−1‖

=
‖A−1‖2‖B‖

1− ‖A−1‖‖B‖ ,

provided that 1−‖A−1‖‖B‖ > 0. To finish the proof, we see
that

‖∆‖ ≤
∥∥∥∥∥
V T⊥ G̃(s0)V⊥
f(s0)λ2(L)

∥∥∥∥∥+

∥∥∥∥∥
Λ̃

λ2(L)
− Λlim

∥∥∥∥∥

≤ M

f(s0)λ2(L)
+

∥∥∥∥∥
Λ̃

λ2(L)
− Λlim

∥∥∥∥∥→ 0 .

This shows that
∣∣∣∣

hT12H
−1
22 h12

f−1(s0)λ−1
2 (L)hT12Λ−1

limh12

− 1

∣∣∣∣

≤ ‖h12‖2
|h12TΛlimh12|

‖Λ−1
lim‖2‖∆‖

1− ‖Λ−1
lim‖‖∆‖

→ 0 ,

which is the desired limit.

C. Proof of Theorem 7

Proof. Let U(s0, R) := {s ∈ C : |s0 − s| < R} be the open
ball centered at s0 with radius R.

Notice that z is a zero of ḡ(s) and it is in the interior of
S, then given M > 0, ∃R1 > 0, s.t. U(z,R1) ⊂ S, and
sups∈U(z,R1) |ḡ(s)| ≤M .

Suppose the above is true for some M > 0, then

sup
s∈S

∥∥∥∥T (s)− 1

n
ḡ(s)11T

∥∥∥∥

≥ sup
s∈U(z,R1)

∥∥∥∥T (s)− 1

n
ḡ(s)11T

∥∥∥∥

≥ sup
s∈U(z,R1)

(
‖T (s)‖ − sup

s′∈U(z,R1)

∥∥∥∥
1

n
ḡ(s′)11T

∥∥∥∥

)

= sup
s∈U(z,R1)

(
‖T (s)‖ − sup

s′∈U(z,R1)

|ḡ(s′)|
)

≥ sup
s∈U(z,R1)

‖T (s)‖ −M .

Apparently we only need to find such M and also show that

∃s∗ ∈ U(z,R1), s.t. sup
s∈U(z,R1)

‖T (s)‖ ≥ ‖T (s∗)‖ ≥ 2M .

By the assumption, every gi(s), i = 1, · · · , n can be written
as

gi(s) = (s− z)hi(s) .

Here, hi(s) is rational and we denote

hi(z) = hi0 i = 1, · · · , n ,
where hi0 ∈ R and hi0 6= 0, i = 1, · · · , n. We let hmax =
maxi∈[n] |hi0| and hmin = mini∈[n] |hi0| > 0.

Since for i ∈ [n], hi(s) is rational and z is not a pole of
hi(s), ∃R2 > 0 s.t. hi(s),i = 1, · · · , n are holomorphic on
U(z,R2), i.e. every hi(s) has expansion

hi(s) = hi0 +

∞∑

k=1

h
(k)
i (z)

k!
(s− z)k := hi0 + ri(s) ,

where h(k)
i (·) is the k-th derivative of hi(·). For every i ∈ [n],

expand ri(s) in Taylor series, then using Cauchy’s estimation
formula [?], we have ∀s ∈ U(z, R2

2 ),

|ri(s)| ≤
∞∑

k=1

Mhi

Rk2
|s− z|k =

Mhi
|s−z|
R2

1− |s−z|R2

≤ 2Mhi

R2
|s− z| ,

where Mhi = max|s−z|=R2
|hi(s)|.

For s ∈ U(z, R2

2 ), diag{gi(s)} can be expanded as

diag{gi(s)} = (s− z)diag{hi(s)} = (s− z)(H0 +R(s)) ,

where H0 = diag{hi0}, R(s) = diag{ri(s)}. And we also
have

‖R(s)‖ ≤ max
i∈[n]
|ri(s)| ≤Mh|s− z| ,

where Mh = maxi∈[n]
2Mhi

R2
.

Now for T (s), we start from

‖T (s)‖
= ‖(I + diag{gi(s)}L)−1diag{gi(s)}‖
= |s− z|‖(I + diag{gi(s)}L)−1diag{hi(s)}‖

(10a) ≥ |s− z|‖(I + diag{gi(s)}L)−1‖σ1(diag{hi(s)})

= |s− z| σ1(diag{hi(s)})
σ1(I + diag{gi(s)}L)

. (C.1)

For s ∈ U(z, R2

2 ), the numerator can be lower bounded by

σ1(diag{hi(s)}) = σ1(H0 +R(s))

(10c) ≥ hmin − ‖R(s)‖
≥ hmin −Mh|s− z| . (C.2)

Then, let
LH = H

1/2
0 LH

1/2
0 ,

which is semi-positive definite. the denominator can be upper
bounded by

σ1(I + diag{gi(s)}L)

= σ1(I + (s− z)H0L+ (s− z)R(s)L)

= σ1(H
1/2
0 [I + (s− z)LH
+ (s− z)H−1/2

0 R(s)H
−1/2
0 LH ]H

−1/2
0 )

(10b)

≤ h
1/2
max

h
1/2
min

σ1

(
I + (s− z)LH + (s− z)H−1/2

0 R(s)H
−1/2
0 LH

)

(10c)
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≤ h
1/2
max

h
1/2
min

(
σ1 (I + (s− z)LH) + |s− z|‖LH‖

‖R(s)‖
hmin

)
.

(C.3)

Suppose λn(LH) = ‖LH‖ ≥ max{ 1
R1
, 2
R2
}, then for s∗ =

z − 1
λn(LH) ∈ U(z,min{R1,

R2

2 }), we have

1) I + (s∗ − z)LH = I − LH
λn(LH) is symmetric and has

eigenvalue 0. Then σ1(I + (s∗ − z)LH) = 0;
2) |s∗ − z|‖LH‖ = 1.

From (C.3) and (10c), we have

σ1(I + diag{gi(s∗)}L)

≤ h
1/2
max

h
1/2
min

(
σ1 (I + (s∗ − z)LH) + |s∗ − z|‖LH‖

‖R(s∗)‖
hmin

)

≤ |s∗ − z|‖LH‖
h

1/2
max

h
3/2
min

‖R(s∗)‖

≤ h
1/2
max

h
3/2
min

‖R(s∗)‖ ≤ h
1/2
max

h
3/2
min

Mh|s∗ − z| . (C.4)

Combing (C.1)(C.2)(C.4), let λn(LH) large enough such
that λn(LH) ≥ max{ 2Mh

hmin
, 1
R1
, 2
R2
} , we have

‖T (s∗)‖ ≥ |s∗ − z| σ1(diag{hi(s∗)})
σ1(I + diag{gi(s∗)}L)

≥
hmin − Mh

λn(LH)

h
1/2
max

h
3/2
min

Mh

≥ h
5/2
min

2h
1/2
maxMh

.

Since
λn(LH) ≥ λn(L)hmin ≥ λ2(L)hmin ,

by (10a), we can have λn(LH) arbitrarily large by increasing
λ2(L).

In summary, we can pick R2 for the expansion of hi(s) to

exist, then pick M =
h
5/2
min

4h
1/2
maxMh

, which also determines R1,
and let

λ =
1

hmin
max

{
2Mh

hmin
,

1

R1
,

2

R2

}
.

Then we conclude that ∀L s.t. λ2(L) ≥ λ,

∃s∗ = z − 1

λn(LH)
∈ U(z,R1) ⊂ S, s.t. ‖T (s∗)‖ ≥ 2M ,

which implies

sup
s∈S

∥∥∥∥T (s)− 1

n
ḡ(s)11T

∥∥∥∥ ≥ sup
s∈U(z,R1)

‖T (s)‖ −M ≥M .

D. Proof of Lemma 5

Proof. We denote U(s0, R) := {s ∈ C : |s0 − s| < R} the
open ball centered at s0 with radius R.

By assumptions, we have Fl = infs∈U(s0,δ0) f(s) > 0 and
Fh = sups∈U(s0,δ0) f(s) <∞. Without loss of generality, we
assume Fl = 1. For s ∈ U(s0, δ0), we have

1 ≤ |f(s)| ≤ Fh . (D.1)

Consider any set S, we have

sup
s∈S

∥∥∥∥T (s)− 1

n
ḡ(s)11T

∥∥∥∥ ≤ sup
s∈S
‖T (s)‖+ sup

s∈S
|ḡ(s)| .

For the second term, since ḡ(s) is rational and s0 is a zero of
ḡ(s), by continuity of ḡ(s), ∃δ1 > 0 such that

sup
s∈U(s0,δ1)

|ḡ(s)| ≤ ε

2
. (D.2)

Now we bound the first term. To start with, notice that
N (s0) = 1. Without loss of generality, assume g1(s0) = 0
and gi(s0) 6= 0, 2 ≤ i ≤ n. Then again by continuity of
g−1
i (s), 2 ≤ i ≤ n, ∃δ2,M > 0 such that

sup
s∈U(s0,δ2)

max
2≤i≤n

|g−1
i (s)| ≤M . (D.3)

On the other hand, since s0 is a zero of g1(s), one can pick
δ3 > 0 such that

sup
s∈U(s0,δ3)

|g1(s)| ≤ ε

36n+ 2εnMF 2
h

. (D.4)

We let δ = min{δ0, δ1, δ2, δ3} and we would like to bound
sups∈U(s0,δ) ‖T (s)‖ by ε

2 under sufficiently large λ2(L). This
would imply, together with (D.2), that

sup
s∈U(s0,δ)

∥∥∥∥T (s)− 1

n
ḡ(s)11T

∥∥∥∥ ≤ ε .

The remaining of this proof is to bound sups∈U(s0,δ) ‖T (s)‖
by ε

2 .

We write L in block form as
[
l11 LT21

L21 L̃

]
, by separating

its first row and column from the rest. Here L̃ is a grounded
Laplacian of L, and L̃ is invertible as long as λ2(L) 6= 0
according to Lemma 3.

Since L1n = 0, we have L21 + L̃1n−1 = 0, which gives

L̃−1L21 = −1n−1 , (D.5a)

LT21L̃
−1L21 = −LT211n−1 = l11 . (D.5b)

We use these equalities later.
We define G̃(s) = diag{g2(s), · · · , gn(s)} and T̃ (s) =

(In−1 + G̃(s)f(s)L̃)−1G̃(s). Through some computation, we
can write T (s) in the following block form
[

A(s) −A(s)f(s)LT21T̃ (s)

−A(s)f(s)T̃ (s)L21 T̃ (s) +A(s)f2(s)T̃ (s)L21L
T
21T̃ (s)

]
,

where

A(s) =
g1(s)

1 + g1(s)
(
f(s)l11 − f2(s)LT21T̃ (s)L21

) .

.
Then an upper bound of ‖T (s)‖ is given by

‖T (s)‖

≤
∥∥∥∥A(s)

[
1 f(s)LT21T̃ (s)

f(s)T̃ (s)L21 f2(s)T̃ (s)L21L
T
21T̃ (s)

]∥∥∥∥

+

∥∥∥∥
[
0 0

0 T̃ (s)

]∥∥∥∥
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= |A(s)|
∥∥∥∥∥

[
1

f(s)T̃ (s)L21

] [
1

f(s)T̃ (s)L21

]T∥∥∥∥∥+ ‖T̃ (s)‖

≤ |A(s)|
(

1 + ‖f(s)T̃ (s)L21‖
)2

+ ‖T̃ (s)‖ . (D.6)

Now we bound every term in (D.6) for s ∈ U(s0, δ) through
following steps:
1) We firstly bound |A(s)|. By Woodbury matrix identity [33,
0.7.4], we have

f(s)T̃ (s) = f(s)
(
In−1 + G̃(s)f(s)L̃

)−1

G̃(s)

=
(
L̃+ f−1(s)G̃−1(s)

)−1

= L̃−1 − L̃−1
(
f−1(s)G̃(s) + L̃−1

)−1

L̃−1 .

(D.7)

By (D.7) and (D.5), we have

l11 − f(s)LT21T̃ (s)L21

= l11 − LT21

(
L̃−1 − L̃−1

(
f−1(s)G̃(s) + L̃−1

)−1

L̃−1

)
L21

= (l11 − LT21L̃
−1L21)

+ LT21L̃
−1
(
f−1(s)G̃(s) + L̃−1

)−1

L̃−1L21

(D.5b)

= LT21L̃
−1
(
f−1(s)G̃(s) + L̃−1

)−1

L̃−1L21

(D.5a)

= 1Tn−1

(
f−1(s)G̃(s) + L̃−1

)−1

1n−1 . (D.8)

When λ1(L̃) ≥ 2MFh, the following holds:
∣∣∣∣1Tn−1

(
f−1(s)G̃(s) + L̃−1

)−1

1n−1

∣∣∣∣

≤ (n− 1)

∥∥∥∥
(
f−1(s)G̃(s) + L̃−1

)−1
∥∥∥∥

(Lemma 2) ≤ n− 1

σ1(G̃(s))|f(s)|−1 − ‖L̃−1‖
(D.1)(D.3) ≤ n− 1

1/ (MFh)− 1/λ1(L̃)
≤ 2nMFh , (D.9)

which when combined with (D.4) gives the following bound
on |A(s)|:

|A(s)|

=
|g1(s)|∣∣∣1 + g1(s)f(s)

(
l11 − LT21f(s)T̃ (s)L21

)∣∣∣
(D.8)

=
|g1(s)|∣∣∣∣1 + g1(s)f(s)1Tn−1

(
f−1(s)G̃(s) + L̃−1

)−1

1n−1

∣∣∣∣

≤ |g1(s)|

1− |g1(s)||f(s)|
∣∣∣∣1Tn−1

(
f−1(s)G̃(s) + L̃−1

)−1

1n−1

∣∣∣∣
(D.4)(D.9)(D.1)

≤
ε

36n+2nεMF 2
h

1− 2εnMF 2
h

36n+2nεMF 2
h

=
ε

36n
. (D.10)

2) For ‖f(s)T̃ (s)L21‖, when λ1(L̃) ≥ 2M , we have:
∥∥∥T̃ (s)L21

∥∥∥ =

∥∥∥∥
(
G̃−1(s) + f(s)L̃

)−1

L21

∥∥∥∥

=

∥∥∥∥
(
f(s)I + L̃−1G̃−1(s)

)−1

L̃−1L21

∥∥∥∥

(D.5a) ≤
√
n− 1

∥∥∥∥
(
f(s)I + L̃−1G̃−1(s)

)−1
∥∥∥∥

(Lemma 2) ≤ √n
(
|f(s)| − ‖L̃−1‖‖G̃−1(s)‖

)−1

(D.1)(D.3) ≤ √n
(

1−M/λ1(L̃)
)−1

≤ 2
√
n ≤ 3

√
n− 1 .

(D.11)

3) Lastly, for ‖T̃ (s)‖, when λ1(L̃) ≥M + 4
ε , we have

‖T̃ (s)‖ =

∥∥∥∥
(
G̃−1(s) + f(s)L̃

)−1
∥∥∥∥

(Lemma 2) ≤
(
|f(s)|λ1(L̃)− ‖G̃−1(s)‖

)−1

(D.1)(D.3) ≤
(
λ1(L̃)−M

)−1

≤ ε

4
. (D.12)

Apply three bounds obtained from (D.10)(D.11)(D.12) to
(D.6), we have:

sup
s∈U(s0,δ)

‖T (s)‖ ≤ ε

36n
· 9n+

ε

4
=
ε

2
,

which holds when λ1(L̃) ≥ max{2MFh,M + 4
ε }. According

to Lemma 3, We can guarantee it by letting λ2(L) ≥ λ =
nmax{2MFh,M + 4

ε }. We therefore found the desired δ and
λ, which finish the proof.

E. Proof of Lemma 6

Proof. It suffices to show that ∀ε > 0,

lim
n→+∞

P

(
sup
s∈S
|ḡn(s,w)− ĝ(s)| ≥ ε

)
= 0 , (E.1)

since |ḡn(s,w)− ĝ(s)| =
∥∥ 1
n ḡn(s,w)11T − 1

n ĝ(s)11T
∥∥.

By the assumptions, {ḡn(s,w), n ∈ N+,w ∈ Ω∞}, and
{g−1
i (s, w), i ∈ N+, w ∈ Ω} are uniformly bounded by

M1 > 0 and M2 > 0, respectively on S. Then, at any
s ∈ S, both Re

(
g−1
i (s, w)

)
and Im

(
g−1
i (s, w)

)
are random

variables bounded within [−M2,M2]. We can simply bound
their variances by

Var
(
Re
(
g−1
i (s, w)

))
≤ (2M2)2 = 4M2

2 ,

Var
(
Im
(
g−1
i (s, w)

))
≤ (2M2)2 = 4M2

2 .

Then it follows that

Var
(
Re
(
ḡ−1
n (s,w)

))

= Var

(
Re

(
n−1

n∑

i=1

g−1
i (s, w)

))
≤ 4M2

2 /n ,

and

Var
(
Im
(
ḡ−1
n (s,w)

))
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= Var

(
Im

(
n−1

n∑

i=1

g−1
i (s, w)

))
≤ 4M2

2 /n .

By definition of ĝ(s) in (29), we have ERe
(
ḡ−1
n (s,w)

)
=

Re (ĝ(s)) and EIm
(
ḡ−1
n (s,w)

)
= Im (ĝ(s)), then by Cheby-

shev’s inequality, for ε > 0, we have

P
(∣∣ḡ−1

n (s,w)− ĝ−1(s)
∣∣ ≥ ε

)

≤ P
(∣∣Re

(
ḡ−1
n (s,w)

)
−Re

(
ĝ−1(s)

)∣∣+∣∣Im
(
ḡ−1
n (s,w)

)
− Im

(
ĝ−1(s)

)∣∣ ≥ ε
)

≤ P
(∣∣Re

(
ḡ−1
n (s,w)

)
−Re

(
ĝ−1(s)

)∣∣ ≥ ε/2
)

+

P
(∣∣Im

(
ḡ−1
n (s,w)

)
− Im

(
ĝ−1(s)

)∣∣ ≥ ε/2
)

≤ 4Var
(
Re
(
ḡ−1
n (s,w)

))

ε2
+

4Var
(
Im
(
ḡ−1
n (s,w)

))

ε2

≤ 32M2
2

ε2n
. (E.2)

On the other hand, we have

|ḡn(s,w)| ≤M1

⇒
∣∣ḡ−1
n (s,w)

∣∣ ≥ 1

M1

⇒
∣∣ḡ−1
n (s,w)− ĝ−1(s) + ĝ−1(s)

∣∣ ≥ 1

M1

⇒
∣∣ĝ−1(s)

∣∣ ≥ 1

M1
−
∣∣ḡ−1
n (s,w)− ĝ−1(s)

∣∣ . (E.3)

Then given ε > 0, ∀n ∈ N+,∀s ∈ S, the following holds:

P (|ĝ(s)− ḡn(s,w)| ≥ ε)
= P

(∣∣ḡn(s,w)ĝ(s)
(
ḡ−1
n (s,w)− ĝ−1(s)

)∣∣ ≥ ε
)

≤ P
(
|ḡn(s,w)| |ĝ(s)|

∣∣ḡ−1
n (s,w)− ĝ−1(s)

∣∣ ≥ ε
)

≤ P
(
M1

∣∣ḡ−1
n (s,w)− ĝ−1(s)

∣∣ ≥ ε|ĝ−1(s)|
)

(E.3) ≤ P
(
M1

∣∣ḡ−1
n (s,w)− ĝ−1(s)

∣∣ ≥
ε

M1
− ε
∣∣ḡ−1
n (s,w)− ĝ−1(s)

∣∣
)

= P

(∣∣ḡ−1
n (s,w)− ĝ−1(s)

∣∣ ≥ ε

M1(M1 + ε)

)

(E.2) ≤ 32M2
2M

2
1 (M1 + ε)2

ε2n
.

By taking n → +∞ on both sides, we prove that ḡn(s,w)
converges point-wise to ĝ(s) on S.

We now show that ḡn(s,w) is also stochastic equicontin-
uous on S. For the definition of stochastic equicontinuity,
please refer to [36]. We already assumed that ḡn(s,w) ≤M1,
∀w ∈ Ω∞, s ∈ S. Then ∀w ∈ Ω∞,∀s1, s2 ∈ S, we have

|ḡn(s1,w)− ḡn(s2,w)|
≤
∣∣ḡn(s1,w)||ḡn(s2,w)||ḡ−1

n (s1,w)− ḡ−1
n (s2,w)

∣∣

≤M2
1

∣∣∣∣∣
n∑

i=1

(
g−1
i (s1, wi)− g−1

i (s2, w1)
)
∣∣∣∣∣

≤M2
1

n∑

i=1

∣∣g−1
i (s1, wi)− g−1

i (s2, wi)
∣∣ ≤ nM2

1L|s1 − s2| ,

where the last inequality is from our third assumption and also
the fact that g−1

i (s, w) = g−1
1 (s, w) (identically distributed

as random functions). By [36, Corollary 2.2], the inequality
above is sufficient to establish stochatic equicontinuity of
ḡn(s,w) on S, and combining point-wise convergence and the
fourth assumption that ĝ(s) is uniform continuous, we get the
uniform convergence of ḡn(s,w) to ĝ(s) on S, which gives
(E.1).

F. Proofs of Theorem 9 and 10

Proof of Theorem 9. When the input to the network is U(s),
the output response of the i-th node is

Yi(s) = eTi T (s)U(s) ,

where ei is the i-th column of the identity matrix In.
Using Mellin’s inverse formula [28, Theorem 3.20], we have

|yi(t)− ȳ(t)|

=

∣∣∣∣
1

2πj
lim
ω→∞

∫ σ+jω

σ−jω
est
(
eTi T (s)U(s)− eTi ḡ(s)1

1T

n
U(s)

)
ds

∣∣∣∣

≤ eσ

2π
lim
ω→∞

∫ σ+jω

σ−jω

∣∣∣∣eTi T (s)U(s)− eTi ḡ(s)1
1T

n
U(s)

∣∣∣∣ ds

≤ eσ

2π
lim
ω→∞

∫ σ+jω

σ−jω

∥∥∥∥T (s)− 1

n
ḡ(s)11T

∥∥∥∥ ‖U(s)‖ds

=
eσ

2π
((A) + (B) + (C)) ,

where

(A) =

∫ σ+jω0

σ−jω0

∥∥∥∥T (s)− 1

n
ḡ(s)11T

∥∥∥∥ ‖U(s)‖ds ,

(B) = lim
ω→∞

∫ σ+jω

σ+jω0

∥∥∥∥T (s)− 1

n
ḡ(s)11T

∥∥∥∥ ‖U(s)‖ds ,

(C) = lim
ω→∞

∫ σ−jω0

σ−jω

∥∥∥∥T (s)− 1

n
ḡ(s)11T

∥∥∥∥ ‖U(s)‖ds ,

By our assumption,

(B) = lim
ω→∞

∫ σ+jω

σ+jω0

∥∥∥∥T (s)− 1

n
ḡ(s)11T

∥∥∥∥ ‖U(s)‖ds

≤ lim
ω→∞

∫ σ+jω

σ+jω0

(
‖T (s)‖+

∥∥∥∥
1

n
ḡ(s)11T

∥∥∥∥
)
‖U(s)‖ds

≤ 2γ lim
ω→∞

∫ σ+jω

σ+jω0

‖U(s)‖ds ≤ 2πε

3eσγ
.

Similarly, we have (C) ≤ 2πε
3eσγ .

For the remaining term, we have

(A) =

∫ σ+jω0

σ−jω0

∥∥∥∥T (s)− 1

n
ḡ(s)11T

∥∥∥∥ ‖U(s)‖ds

≤ sup
w∈[−w0,w0]

∥∥∥∥T (σ + jw)− 1

n
ḡ(σ + jw)11T

∥∥∥∥

×
∫ σ+jω0

σ−jω0

‖U(s)‖ds

Since [σ − jω0, σ + jω0] is a compact set that satisfies the
assumption in Theorem 6, we have

lim
λ2(L)→∞

sup
w∈[−w0,w0]

∥∥∥∥T (σ + jw)− 1

n
ḡ(σ + jw)11T

∥∥∥∥ = 0 .
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Therefore, for sufficienly large λ2(L), we have

(A) ≤ 2πε

3eσγ
.

.
Combining the upperbounds for (A), (B), (C), we have

|yi(t)− ȳ(t)| ≤ ε .
Notice that the choice of λ2(L) does not depends on time t,
hence this inequality holds for all t > 0.

Proof of Theorem 10. For each gi(s), i = 1, · · · , n, we have,
by the OSP property,

Re(gi(s)) ≥ εi|gi(s)|2,∀Re(s) > 0 .

Let ε = min{εi : i = 1 · · · , n}, we have

Re(G(s)) � εG∗(s)G(s) ,

or equivalently,
[
G(s)
I

]∗ [−εI I
I 0

] [
G(s)
I

]
� 0 .

Since gi(s) are all OSP, then gi(s) is positive real [38]. A
positive real function that is not zero function has no zero nor
pole on the left half plane. Therefore gi(s) are invertible for
all Re(s) > 0, which ensures that G(s) is invertible for all
Re(s) > 0. Then

(G∗(s))−1

[
G(s)
I

]∗ [−εI I
I 0

] [
G(s)
I

]
G−1(s) � 0 ,

which is
[

I
G−1(s)

]∗ [−εI I
I 0

] [
I

G−1(s)

]
� 0 . (F.4)

Notice that

T (s) = (I +G(s)f(s)L)−1G(s) = (G−1(s) + f(s)L)−1 ,

then from (F.4) and the fact that f(s) is PR, we have
[

I
T−1(s)

]∗ [−εI I
I 0

] [
I

T−1(s)

]

=

[
I

G−1(s) + f(s)L

]∗ [−εI I
I 0

] [
I

G−1(s) + f(s)L

]

=

[
I

G−1(s)

]∗ [−εI I
I 0

] [
I

G−1(s)

]
+ [f∗(s) + f(s)]L

�
[

I
G−1(s)

]∗ [−εI I
I 0

] [
I

G−1(s)

]
� 0 .

Now for sufficiently large γ > 0, we have
[
−εI I
I 0

]
+

[
ε
2I 0
0 −γ2 ε

2I

]
=

[
− ε

2I I
I −γ2 ε

2I

]
� 0 ,

since its Schur complement (− ε
2 + 2

εγ2 )I � 0 for large γ.
Therefore,

[
I

T−1(s)

]∗ [− ε
2I 0
0 γ2 ε

2I

] [
I

T−1(s)

]

�
[

I
T−1(s)

]∗ [−εI I
I 0

] [
I

T−1(s)

]
� 0 ,

which is exactly,

γ2 ε

2
(T−1(s))∗(T−1(s)) � ε

2
I .

This shows that

σ2
min(T−1(s)) ≥ 1

γ2
,∀Re(s) > 0 ,

which is equivalent to

‖T (s)‖2 ≤ γ , ∀Re(s) > 0 .
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is necessary and sufficient for linear output synchronization,” Automat-
ica, vol. 47, no. 5, pp. 1068–1074, 2011.

[20] H. G. Oral, E. Mallada, and D. F. Gayme, “Performance of first and
second order linear networked systems over digraphs,” in IEEE 56th
Annu. Conf. on Decision and Control, Dec 2017, pp. 1688–1694.

[21] B. Bamieh and D. F. Gayme, “The price of synchrony: Resistive losses
due to phase synchronization in power networks,” in 2013 American
Control Conference, 2013, pp. 5815–5820.

[22] M. Andreasson, E. Tegling, H. Sandberg, and K. H. Johansson, “Coher-
ence in synchronizing power networks with distributed integral control,”
in IEEE 56th Annu. Conf. on Decision and Control, Dec 2017, pp. 6327–
6333.

[23] M. Pirani, J. W. Simpson-Porco, and B. Fidan, “System-theoretic per-
formance metrics for low-inertia stability of power networks,” in 2017
IEEE 56th Annual Conference on Decision and Control (CDC), 2017,
pp. 5106–5111.

[24] A. J. Germond and R. Podmore, “Dynamic aggregation of generating
unit models,” IEEE Trans. Power App. Syst., vol. PAS-97, no. 4, pp.
1060–1069, July 1978.

[25] D. Apostolopoulou, P. W. Sauer, and A. D. Domı́nguez-Garcı́a, “Bal-
ancing authority area model and its application to the design of adaptive
AGC systems,” IEEE Trans. Power Syst., vol. 31, no. 5, pp. 3756–3764,
Sep. 2016.

[26] S. S. Guggilam, C. Zhao, E. Dall’Anese, Y. C. Chen, and S. V. Dho-
ple, “Optimizing DER participation in inertial and primary-frequency
response,” IEEE Trans. Power Syst., vol. 33, no. 5, pp. 5194–5205, Sep.
2018.

[27] Y. Jiang, A. Bernstein, P. Vorobev, and E. Mallada, “Grid-
forming frequency shaping control in low inertia power systems,”
IEEE Control Systems Letters (L-CSS), vol. 5, no. 6, pp. 1988–
1993, 12 2021, also in ACC 2021. [Online]. Available: https:
//mallada.ece.jhu.edu/pubs/2021-LCSS-JBVM.pdf

[28] G. E. Dullerud and F. Paganini, A course in robust control theory: a
convex approach. Springer Science & Business Media, 2013, vol. 36.

[29] H. Marquez and C. Damaren, “Comments on ”strictly positive real
transfer functions revisited,” IEEE Transactions on Automatic Control,
vol. 40, no. 3, pp. 478–479, 1995.

[30] I. Lestas and G. Vinnicombe, “Scalable decentralized robust stability
certificates for networks of interconnected heterogeneous dynamical
systems,” IEEE Transactions on Automatic Control, vol. 51, no. 10,
pp. 1613–1625, 2006.

[31] U. T. Jönsson and C.-Y. Kao, “A scalable robust stability criterion
for systems with heterogeneous lti components,” IEEE Transactions on
Automatic Control, vol. 55, no. 10, pp. 2219–2234, 2010.

[32] R. Pates and E. Mallada, “Robust scale-free synthesis for frequency
control in power systems,” IEEE Transactions on Control of Network
Systems, vol. 6, no. 3, pp. 1174–1184, 2019.

[33] R. A. Horn and C. R. Johnson, Matrix Analysis, 2nd ed. New York,
NY, USA: Cambridge University Press, 2012.

[34] H. Min and E. Mallada, “Coherence and concentration in tightly-
connected networks,” arXiv preprint arXiv:2101.00981, 2021.

[35] W. Rudin et al., Principles of mathematical analysis. McGraw-hill
New York, 1964, vol. 3.

[36] W. K. Newey, “Uniform convergence in probability and stochastic
equicontinuity,” Econometrica: Journal of the Econometric Society, pp.
1161–1167, 1991.

[37] J. H. Chow, Power system coherency and model reduction. New York,
NY, USA: Springer, 2013.

[38] H. K. Khalil and J. W. Grizzle, Nonlinear systems. Prentice hall Upper
Saddle River, NJ, 2002, vol. 3.

[39] U. of Edinburgh. Power systems test case archive. Mar.
2003. [Online]. Available: https://www.maths.ed.ac.uk/optenergy/
NetworkData/icelandDyn/

[40] H. Min, F. Paganini, and E. Mallada, “Accurate reduced-order models
for heterogeneous coherent generators,” IEEE Contr. Syst. Lett., vol. 5,
no. 5, pp. 1741–1746, 2021.

[41] F. R. Bach and M. I. Jordan, “Learning spectral clustering,” in Advances
in Neural Information Processing Systems, 2004, pp. 305–312.

[42] M. Belkin and P. Niyogi, “Laplacian eigenmaps and spectral techniques
for embedding and clustering,” in Advances in Neural Information
Processing Systems, 2001, p. 585–591.

Hancheng Min is currently working toward the
Ph.D. degree at the Department of Electrical and
Computer Engineering, Johns Hopkins University.
He received the B.Eng. degree in Electrical En-
gineering and Automation from Tongji University
in 2016, and the M.S. degree in Systems Engi-
neering from University of Pennsylvania in 2018.
His research interests include analysis and control
for large-scale networks, reinforcement learning and
deep learning theory.

Richard Pates received the M.Eng degree in 2009,
and the Ph.D. degree in 2014, both from the Uni-
versity of Cambridge. He is currently an Senior
Lecturer at Lund University. His research interests
include modular methods for control system design,
stability and control of electrical power systems, and
fundamental performance limitations in large-scale
systems.

Enrique Mallada (S’09-M’13-SM’) is an Assistant
Professor of Electrical and Computer Engineering at
Johns Hopkins University. Prior to joining Hopkins
in 2016, he was a Post-Doctoral Fellow in the Cen-
ter for the Mathematics of Information at Caltech
from 2014 to 2016. He received his Ingeniero en
Telecomunicaciones degree from Universidad ORT,
Uruguay, in 2005 and his Ph.D. degree in Electrical
and Computer Engineering with a minor in Applied
Mathematics from Cornell University in 2014. Dr.
Mallada was awarded the NSF CAREER award in

2018, the ECE Director’s PhD Thesis Research Award for his dissertation
in 2014, the Center for the Mathematics of Information (CMI) Fellowship
from Caltech in 2014, and the Cornell University Jacobs Fellowship in 2011.
His research interests lie in the areas of control, dynamical systems and
optimization, with applications to engineering networks such as power systems
and the Internet.

21


