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Abstract— We propose a novel model-reduction methodology
for large-scale dynamic networks with tightly-connected com-
ponents. First, the coherent groups are identified by a spectral
clustering algorithm on the graph Laplacian matrix that models
the network feedback. Then, a reduced network is built, where
each node represents the aggregate dynamics of each coherent
group, and the reduced network captures the dynamic coupling
between the groups. Our approach is theoretically justified
under a random graph setting. Finally, numerical experiments
align with and validate our theoretical findings.

I. INTRODUCTION

In networked dynamical systems, coherence refers to a
coordinated behavior from a group of nodes such that all
nodes have similar dynamical responses to some external
disturbances. Coherence analysis is useful in understanding
the collective behavior of large networks including consensus
networks [1], transportation networks [2], and power net-
works [3]. However, little we know about the underlying
mechanism that causes such a coherent behavior in various
networks.

Classic slow coherence analyses [3]–[7] (with applications
mostly to power networks) usually consider the second-order
electro-mechanical model without damping: ẍ = −M−1Lx,
where M is the diagonal matrix of machine inertias, and
L is the Laplacian matrix whose elements are synchronizing
coefficients between pair of machines. The coherency or syn-
chrony [4] (a generalized notion of coherency) is identified
by studying the first few slowest eigenmodes (eigenvectors
with small eigenvalues) of M−1L, the analysis can be carried
over to the case of uniform [3] and non-uniform [5] damping.
However, such state-space-based analysis is limited to very
specific node dynamics (second order) and do not account
for, more complex dynamics or controllers that are usually
present at a node level; e.g., in the power systems litera-
ture [8]–[10]. Therefore, we need a coherence identification
procedure that works for more general node dynamics.

Recently, it has been theoretically established that coher-
ence naturally emerges when a group of nodes are tightly-
connected, regardless of the node dynamics, as long as
the interconnection remains stable [11], [12]. The analysis
also provides an asymptotically (as the network connectivity
increases) exact characterization of the coherent response,
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which amounts an harmonic sum of individual node trans-
fer functions. Thus, in a sense, coherence identification is
closely related to the problem of finding tightly connected
components in the network, for which many clustering
algorithms based on the spectral embedding of graph ad-
jacency or Laplacian matrix, are proposed and theoretically
justified [13].

This leads to the natural question: Can these graph-based
clustering algorithms be adopted for coherence identification
in networked dynamical systems? Intuitively, when we ap-
ply those clustering algorithms to identify tightly-connected
components in the network, each component should be
coherent also in the dynamical sense. Then, applying [11],
[12] for each cluster, should lead to a good model for each
coherent group, which after interconnected with an appropri-
ately chosen reduced graph should lead to a good network-
reduced aggregate model of the dynamic interactions among
across coherent components.

In this paper, we formalize and theoretically justify this
seemingly naı̈ve approach utilizing the recent frequency-
domain analysis for coherence [12] and dynamics aggrega-
tion [14]. Specifically, we prose a novel approximation model
for large-scale networks with two tightly-connected compo-
nents/groups. The model is constructed in two stages: First,
the coherent groups are identified by a spectral clustering al-
gorithm solely on the graph Laplacian matrix of the network;
Then a two-node network, in which each node represents the
aggregate dynamics of one coherent group, approximates the
dynamical interactions between the two coherent groups in
the original network. We show that our algorithm achieves
perfect clustering for coherence identification and has good
accuracy in modeling the inter-group dynamical interaction
in the network with high probability when the network graph
is randomly generated from a weight stochastic block model.
Lastly, we apply our algorithm to modeling the frequency
response in power networks with IEEE 68-bus test system,
and the numerical results align with our theoretical findings.

Unlike previous coherence analysis [3]–[5], our approach
is dynamic-agnostic in that the coherence is identified solely
by network connections, which works for the case when
nodes are equipped with complicated controllers. Moreover,
our model is suitable for the control design aiming mostly
at response shaping [9] as the proposed two-node model
clearly shows how implemented controller would affect the
aggregate dynamics and the inter-group interaction.

The rest of the paper is organized as follows: We formalize
the coherence identification problem in Section II and also
introduce the spectral clustering algorithm. Then we propose
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our approximation model in Section III and provide theoreti-
cal justification in Section IV. Lastly, we validate our model
by several numerical experiments in Section V

Notation: For a vector x, ‖x‖ =
√
xTx denotes the 2-norm

of x, [x]i denotes its i-th entry, and for a matrix A, ‖A‖ de-
notes the spectral norm. We let In denote the identity matrix
of order n, V T denote the conjugate transpose of matrix
V , 1n denote [1, · · · , 1]T with dimension n, and [n] denote
the set {1, 2, · · · , n}. For non-negative random variables
X(n), Y (n), ordering, we write X(n) ∼ Op(Y (n)) if ∃M >
0, s.t. limn→∞ P (X(n) ≤MY (n)) = 1. We write f(n) ∼
Ωp(g(n)) if ∃M > 0, s.t. limn→∞ P (X(n) ≥MY (n)) = 1.

II. PRELIMINARIES

A. Network Model
Consider a network consisting of n nodes (n ≥ 2),

indexed by i ∈ [n] with the block diagram structure in
Fig.1. L is the Laplacian matrix of an undirected, weighted
graph that describes the network interconnection. We further
use f(s) to denote the transfer function representing the
dynamics of the network coupling, and G(s) = diag{gi(s)}
to denote the nodal dynamics, with gi(s), i ∈ [n], being an
SISO transfer function representing the dynamics of node
i. The network takes a vector signal u = [u1, · · · , un]T as

G(s)

L(s)

u y

−

Fig. 1: Block Diagram of General Networked Dynamical
Systems

input, whose component ui is the disturbance or input to
node i. The network output y = [y1, · · · , yn]T contains the
individual node outputs yi, i = 1, · · · , n. We are interested in
characterizing and approximating the response of the transfer
matrix Tyu(s) under certain assumptions on the network
topology, i.e., the Laplacian matrix L.

Many existing networks can be represented by this struc-
ture. For example, for the first-order consensus network [1],
f(s) = 1, and the node dynamics are given by gi(s) = 1

s . For
power networks [15], f(s) = 1

s , gi(s) are the dynamics of
the generators, and L is the Laplacian matrix representing
the sensitivity of power injection w.r.t. bus phase angles.
Finally, in transportation networks [16], gi(s) represent the
vehicle dynamics whereas f(s)L describes local inter-vehicle
information transfer.

Recent work [11], [12] has shown that, under mild as-
sumptions, the following holds1 for almost any s0 ∈ C,

lim
λ2(L)→∞

‖Tyu(s0)− ĝ(s0)11T ‖ = 0 , (1)

1In [12], the transfer matrix 1
n
ḡ(s)11T appeared in the limit, where

ḡ(s) =
(

1
n

∑n
i=1 g

−1
i (s)

)−1
. It is easy to verify that 1

n
ḡ(s)11T =

ĝ(s0)11T

where

ĝ(s) =

(
n∑
i=1

g−1i (s)

)−1
. (2)

That is, when the algebraic connectivity λ2(L) of the net-
work is high, one can approximate Tyu(s) by a rank-one
transfer matrix. Such a rank-one transfer matrix ĝ(s0)11T

precisely describes the coherent behavior of the network: The
network takes the aggregated input û = 1Tu =

∑n
i=1 ui, and

responds coherently as ŷ1, where ŷ = ĝ(s)û. Therefore, it
suffices to study ĝ(s) to understand the coherent behavior in
a tightly-connected network.

However, practical networks are not necessarily tightly-
connected. Instead, they often contain multiple groups of
nodes such that within each group, the nodes are tightly-
connected while between groups, the nodes are weakly-
connected. Then the network dynamics can be reduced
to dynamic interactions among these groups. In order to
approximate such interaction, it is natural to, first identify
coherent groups, or coherent areas, in the network, then
apply the aforementioned analysis to obtain the coherent
dynamics ĝ(s) for each group, and replace the entire coherent
group by an aggregate node with ĝ(s). But the question
remains as to how one would identify coherent groups to
start with, and how should we model the interaction among
aggregate nodes such that it approximates the interaction
among coherent groups in the original network. We start with
the problem of identifying coherent groups.

B. Spectral Clustering

Spectral clustering [17] is a popular technique for identi-
fying tightly-connected components in a network. Algorithm
1 describes its simplest form for identifying two groups
in a network based on the graph Laplacian matrix L. The
algorithm computes the eigenvector v2(L) of L associated
with the second smallest eigenvalue λ2(L), and group the
nodes based on the sign of entries of [v2(L)]i, i = 1, · · · , n,
so that nodes with non-negative [v2(L)]i are in one group,
and others in another group.

Algorithm 1: Spectral Clustering for detecting two
communities

Data: Symmetric Laplacian Matrix L
Find λ2(L), v2(L) from the eigendecomposition of L
Ia ← ∅, Ib ← ∅
for i = 1, · · · , n do

if [v2(L)]i ≥ 0 then
Ia ← Ia ∪ {i}

else
Ib ← Ib ∪ {i}

Result: Ia, Ib,λ2(L)

If the network connection has a block structure, then such
a simple algorithm performs well. More precisely, suppose
the Laplacian matrix is of the following form:

Lblk = D −Ablk, (3)
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D = diag{Ablk1}, Ablk =

[
α1na

1Tna
β1na

1Tnb

β1nb
1Tna

α1nb
1Tnb

]
,

where, na + nb = n, and 0 ≤ β ≤ α. Then such a network
has, by construction, two coherent groups: one consisting of
the first na nodes and another consisting of the remaining
nb nodes. From the adjacency matrix Ablk, it is clear that
the nodes in the same coherent group are tightly connected
while the nodes from different group are relatively weakly
connected (since β ≤ α). One can show that

v2(Lblk) =
1√
n

 √ nb

na
1na

−
√

na

nb
1nb

 ,
from which Algorithm 1 groups first na nodes into one group
and the rest nb into the other group.

Obviously, one would not expect such a densely connected
network in practice, then how does spectral clustering re-
main effective? Previous work studied the spectral clustering
algorithm (and its variants) on random graphs generated
from the Stochastic Block Model [18], where, in its simplest
form with two communities/groups, the edge between every
two nodes appears in the network independently with some
probability, such that intra-group edges appear more often
than inter-group edges. This randomly generated adjacency
matrix A has expected value of the form Ablk in (3), and
more interestingly, for large networks, ‖LA −Lblk‖ is small
with high probability, where LA is the Laplacian matrix
constructed from A. Therefore spectral clustering on LA
should not be much different from one on Lblk. Indeed, it can
be shown that the angle between two vector v2(LA), v2(Lblk)
is small with high probability such that [v2(LA)]i has the
same sign as [v2(Lblk)]i, which suggests that the algorithm
still performs well. Thus, if one views a real network as one
instance of random graphs from the stochastic block model,
then spectral clustering should perform well for identifying
coherent groups.

In our setting, once coherent groups are identified, one
still needs to model the dynamic interaction between the
two groups. To address this challenge, we will keep the
same rationale used to justify spectral clustering: We first
show how the interaction can be modeled under an ideal
network defined as in (3) (Section III), and then argue that
the proposed model works for random graphs as long as
they remain close to its expected value with high probability
(Section IV).

III. MODEL REDUCTION FOR NETWORKS WITH BLOCK
STRUCTURE

Recall that, as shown in (1), when λ2(L) is large, the
network transfer matrix Tyu(s) can be approximated by
a rank-one transfer matrix. In this section, we show that
when λ3(L) is large, the network transfer matrix can be
approximated by a rank-two transfer matrix, and under an
ideal two-blocks network assumption, such a transfer matrix
is precisely characterized by a network of two aggregate
nodes.

A. Rank-two Approximation of Tyu(s)

Given eigendecomposition L =
∑n
i=1 λi(L)vi(L)vTi (L),

we first define

T2(s) =
[

1√
n

v2(L)
]
H−12

[
1T
√
n

vT2 (L)

]
,

where

H2(s) =[
1
n1TG−1(s)1 1T

√
n
G−1(s)v2(L)

vT2 (L)G−1(s) 1√
n

vT2 (L)G−1(s)v2(L) + λ2(L)f(s)

]
.

(4)

Then our main result is the following:

Theorem 1. For s0 ∈ C that is not a pole of f(s) and has
these two quantities

‖T2(s0)‖ := M1, and max
1≤i≤n

|g−1i (s0)| := M2 ,

finite. Then whenever |f(s0)|λ3(L) ≥ M2 + M1M
2
2 , the

following inequality holds:

‖Tyu(s0)− T2(s0)‖ ≤ (M1M2 + 1)
2

|f(s0)|λ3(L)−M2 −M1M2
2

.

(5)

The proof is shown in Appendix. The theorem states that
for almost any s0 ∈ C, except for poles of T2(s), zeros
of gi(s) and pole of f(s), one can approximate Tyu(s)
by a rank-two transfer matrix T2(s), in frequency domain.
While establishing the relations between Tyu(s) and T2(s)
regarding the time-domain response is left as future research,
this theorem suggests that when the network has large λ3(L),
the network dynamics can be potentially understood by
studying T2(s).

B. Preliminary Case: Dense Graph with Two-blocks Struc-
ture

While studying T2(s) itself can be interesting, we will
show that under certain assumptions on the network topol-
ogy, T2(s) has an even simpler and more interpretable form.

Let us thus assume the network has the Laplacian matrix
as in (3):

Lblk = D −Ablk,

D = diag{Ablk1}, Ablk =

[
α1na1Tna

β1na1Tnb

β1nb
1Tna

α1nb
1Tnb

]
,

where, na + nb = n, and 0 ≤ β ≤ α. Without loss of
generality, we assume na ≥ nb. We starts with the following
statement regarding the eigenvalues and eigenvectors of Lblk:

Claim. For the Laplacian matrix Lblk defined in (3) with
α ≥ β and na ≥ nb, we have

1) λ2(Lblk) = nβ, v2(Lblk) = 1√
n

 √ nb

na
1na

−
√

na

nb
1nb

;

2) λ3(Lblk) = nbα+ naβ.
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We have shown that T2(s) approximate Tyu(s) well if
λ3(L) is large. Given weak inter-area connectivity, namely
a small β, λ3(Lblk) is large when 1) α , the intra-area
connection, is large; and 2) nb is not too small, i.e., the
two coherent groups has balanced size. The two conditions
are reasonable: we require the former for the coherence to
emerge in the first place, and the later excludes the case
where the network are dominated by one large coherent
group.

More importantly, the eigenvector v2(Lblk), which is used
to define T2(s), has an simple expression. In this case, the
symmetric H2(s) in (4) can be written as

H2(s) =[
1
n (ĝ−1a (s) + ĝ−1b (s)) 1

n (
√

nb

na
ĝ−1a (s)−

√
na

nb
ĝ−1b (s))

∗ 1
n ( nb

na
ĝ−1a (s) + na

nb
ĝ−1b (s)) + λ2(L)f(s)

]
,

(6)

where

ĝa(s) =

(
na∑
i

g−1i (s)

)−1
, ĝb(s) =

(
na+nb∑
i=na+1

g−1i (s)

)−1
,

are exactly the aggregate dynamics for each coherent
group as defined in (2). Such expression for H2(s) suggests
that one may be able to represent T2(s) by some intercon-
nection among ĝa(s), ĝb(s) and f(s), and this is indeed true:

Theorem 2. Consider a network of two nodes inter-
connected as in Fig. 1, with node dynamics G(s) :=

Ĝ(s) =

[
ĝa(s) 0

0 ĝb(s)

]
and Laplacian matrix L := L̂ =

λ2(Lblk)nbna

n

[
1 −1
−1 1

]
, and let T̂2(s) be the 2× 2 transfer

matrix from the network input û =

[
ûa
ûb

]
to the output

ŷ =

[
ŷa
ŷb

]
. Then for networks with Laplacian matrix Lblk

defined in (3), we have

T2(s) =

[
1na 0
0 1nb

]
T̂2(s)

[
1Tna

0
0 1Tnb

]
. (7)

Here T̂2(s) is precisely the dynamics of a network of two
aggregate nodes ĝa(s), ĝb(s) with the same network coupling
dynamics f(s) but with a new Laplacian matrix L̂. Then
T2(s) takes the aggregate inputs from each coherent group

û =

[ ∑na

i=1 ui∑na+nb

i=na+1 ui

]
:=

[
ûa
ûb

]
as the input to T̂2(s), and its

output
[
ŷa1na

ŷb1nb

]
is coherent w.r.t. each group, where

[
ŷa
ŷb

]
=

T̂2(s)û. Therefore, when Tyu(s) can be well approximated
by T2(s), the network dynamics can be understood by
studying the interaction between two aggregate dynamics.

IV. MODEL REDUCTION FOR NETWORKS UNDER
WEIGHTED STOCHASTIC BLOCK MODEL

We have shown that certain assumption on the graph
Laplacian yields an interpretable reduced model, yet such

a network is less practical as it requires dense connections
among all the nodes. Can we ignore the fact that most
practical networks do not have such dense connections and
still build a two-node model from the same principle? If so,
when do we expect such an approach to perform well?

Using Theorem 2, we first propose our approximation
model for networks with two coherent groups in Algorithm

2, where 1I ∈ Rn such that [1I ]i = 1{i∈I} =

{
1, i ∈ I
0, i /∈ I

for any I ⊆ [n]. We also illustrate our algorithm in Figure 2.
The algorithm works for any network: it first finds tightly-
connected components by Spectral Clustering on L, and then
builds the two-node network as if L has the same desired
block structure as Lblk. Our analysis in Section III shows
that such an algorithm will, for a network with Lblk, return
the exact T2(s), which is in turn a good approximation for
Tyu(s) when λ3(Lblk) is large. The question remains as to for
what types of networks the algorithm performs well. Recall

Algorithm 2: Approximation Model T2(s) for Net-
works with Two Coherent Groups

Data: Network Model (G(s) = diag{gi(s)}, L, f(s))
Do:

1) (Run Algorithm 1)
(Ia, Ib, λ2(L))← SpectralClustering(L);

2) ĝa(s)←
(∑

i∈Ia g
−1
i (s)

)−1
, na ← |Ia|,

ĝb(s)←
(∑

i∈Ib g
−1
i (s)

)−1
, nb ← |Ib|;

3) Ĝ(s)←
[
ĝa(s) 0

0 ĝb(s)

]
, L̂← λ2(L)nanb

na+nb

[
1 −1
−1 1

]
,

T̂2(s)← (I2 + f(s)Ĝ(s)L̂)−1Ĝ(s);

Result: T2(s)←
[
1Ia 1Ib

]
T̂2(s)

[
1TIa
1TIb

]

that spectral clustering performs well on certain random
graphs as long as the expected Adjacency matrix has the
desired block structure [18]. We argue that the same holds
for our algorithm.

Now consider a random weighted graph of size n whose
adjacency matrix A = [Aij ] is generated as

Aij =

{
Wij , with probability Pij
0, with probability 1− Pij

, Aji = Aij (8)

∀1 ≤ i ≤ j ≤ n .

Statistical graph theory often considers the case of un-
weighted graph, i.e., Wij = 1,∀i, j, for which (8) is
called random graphs with independent edges [19]. Here,
we require A to be weighted to model the network coupling
strength. One key result for such an independent edge model
is that for large networks, the random adjacency matrix A
does not deviate from its expected value EA too much, with
high probability. Further, such concentration result can be
extended for the Laplacian matrix LA as well.
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Fig. 2: Illustration of our approximation model from Algorithm 2

Proposition 3. Suppose maxi,j |Wij | ≤ 1. Let ∆ :=
maxi

∑
j PijW

2
ij . For any c > 0, If ∆ ≥ 16(c + 1) log n,

then for any 4n−c ≤ δ < 1, we have

P
(
‖LA − LEA‖ ≤ 8

√
∆ log(4n/δ)

)
≥ 1− δ .

We refer the readers to the Appendix for the proof. We
make the following remarks. Firstly, this result is a gener-
alization of [19, Theorem 3.1]. Specifically, [19] considers
the unweighted graph (Wij = 1,∀i, j) and derived con-
centration results on the normalized Laplacian D−

1
2LD−

1
2 ,

while our result works for weighted graph and we provide
the concentration result regarding the original Laplacian L.
Secondly, the assumption maxi,j |Wij | ≤ 1 is not critical
as one can always scale A by maxi,j |Wij | and apply the
result to the rescaled one. Last but not least, for the random
graphs of our interests, we have ∆ ∼p O(n), then this
Proposition essentially shows that with high probability, we
have ‖LA−LEA‖ ∼p O(

√
n log n), allowing us to relate the

spectral properties of LA to those of LEA.
Within this family of random graphs, we consider the one

with two coherent groups:
Weighted Stochastic Block Model with Two Communities
(Ia, Ib, p, q, wp, wq): Given a partition (Ia, Ib) of [n], the
adjacency matrix A is generated as in (8) with{

Pij = p,Wij = wp, I−1(i) = I−1(j)

Pij = q,Wij = wq, I−1(i) 6= I−1(j)
,

where I−1(i) =

{
a, i ∈ Ia
b, i ∈ Ib

.

When wp = wq = 1, this is exactly the stochastic block
model with two communities [18]. For the weighted version
wp, wq ≥ 0, notice that EA = Ablk (up to a permutation
matrix) with α = pwp, β = qwq, na = |Ia|, nb = |Ib|. Then
LEA = Lblk is exactly the Laplacian matrix for the ideal
network discussed in Section III. Given that ‖LA − LEA‖
is small with high probability, we have the following result
regarding the spectral properties of LA:

Theorem 4. Suppose 1 ≥ p > q ≥ 0, wq = γwp with 0 <
γ < 1. We let nmin := min{|Ia|, |Ib|} and n = |Ia|+ |Ib|.

If nmin = Ω(n), then given any 0 < δ < 1 and large enough
n, with probability at least 1− δ the following holds:

1) Large third smallest eigenvalue:

λ3(LA) ≥ wp(p+ γq)nmin − 8wp
√
np log(4n/δ) (9)

2) Approximately Good Invariant Subspace:

sin(v2(LA), v2(LEA)) ≤ 16
√

2

p− γq

√
np log(4n/δ)

n2min

,

(10)
where

sin(v2(LA), v2(LEA)) =
√

1− |v2(LA)T v2(LEA)|2 .

Proof sketch. With the upper bound ‖LA − LEA‖ ∼
Op(
√
n log n) from Proposition 3. The first result is due

to Weyl’s inequality [20], that is |λ3(LA) − λ3(LEA)| ≤
‖LA − LEA‖. The second results is a direct result
of a variant of Davis-Khan Theorem in [21], that is
sin(v2(LA), v2(LEA)) ∼ Op

(
‖LA−LEA‖

λ3(LEA)−λ2(LEA)

)
. We refer

the readers to the Appendix for the proof.

For large networks, if the sizes of two coherent groups
are balanced so that nmin ∼ Ωp(n). Then (9) implies
λ3(LA) ∼ Ωp(n), showing that T2(s) will be a good ap-
proximation to Tyu(s), by Theorem 1. Also, (10) shows that

sin(v2(LA), v2(LEA)) ∼ Op
(√

logn
n

)
, hence the T2(s)

constructed from v2(LA) is close to the one constructed
from v2(LEA), which is exactly the two-node model from
Theorem 2. Therefore, we should expect Algorithm 2 to
perform well for the weighted stochastic block model, even
if one instance of such random graph appears much different
than an ideal Ablk as it has much fewer edges.

V. APPLICATION: MODELING FREQUENCY RESPONSE IN
POWER NETWORKS

The frequency response of synchronous generator (includ-
ing grid-forming inverters) networks, linearized at its equi-
librium point [22], can be modeled exactly as the network
model in Fig 1 with f(s) = 1

s and

ui: Disturbance in mechanical power at generator i
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yi: Frequency of generator i
gi(s): Generator dynamics

L: Sensitivity of power injection w.r.t. bus phase angles

As for generator dynamics, we use the second-order model

gi(s) =
1

mis+ di +
r−1
i

τis+1

, (11)

where mi is the inertia, di the damping, r−1i the droop
coefficient, and τi the turbine time constant of generator i.
Remark. Aggregating generators with second-order dynam-
ics do not returns a ĝa(s) with the same order as a single
generator if the turbine time constant τi are different across
generators, then one may need to utilize model reduction
techniques such as balanced truncation [23] on ĝa(s), please
refer to [14] for a detailed discussion. In the experiment, we
do not do model reduction on ĝa(s).

A. Synthetic Case: Weighted Stochastic Block Model

We first validate our algorithm with a synthetic test case,
where generator dynamics follows (11) and we randomly
sample the inertia and damping independently as

mi ∼ Uniform([0.05, 0.5]), di ∼ Uniform([0.2, 0.5]) .

ri ∼ Uniform([5, 10]), τi ∼ Uniform([2, 10])

The adjacency matrix A is sampled from our weighted
stochastic block model (Ia, Ib, p, q, wp, wq) where na =
|Ia| = 30, nb = |Ib| = 20, p = 0.6, q = 0.1, wp =
5, wq = 0.5. We note that for spectral clustering, Algorithm 1
always achieves perfect clustering across multiple runs. With
the generated network model, we inject a step disturbance
u2(t) = χ(t) at the second node and plot the step response
of Tyu(s) in Fig 3, along with the response ŷa, ŷb of our
approximate model T2(s) from Algorithm 2. There is a clear
difference between the dynamical response of generators
from group a and group b, and the aggregate responses ŷa, ŷb
capture such difference while providing a good approxima-
tion to the actual node responses. Due to space constraints,
we only present the result of running Algorithm 2 on one
instance of the randomly generated networks, but the results
are consistent across multiple runs.

Fig. 3: Synthetic Dataset (p = 0.6): Step Response of Tyu(s)
and T2(s) from algorithm 2. (Middle) Response shown for
only group a, (Right) Response shown for only group b. The
node injected with step disturbance is in the group a.

Our theorem suggests that if we increase p, i.e., having
more intra-group connection, then λ3(LA) increases, which

makes our approximation model closer to the true network.
Indeed, we run the same experiment with p = 0.9, we see a
more coherent behavior in the network, as shown in Figure
4.

Fig. 4: Synthetic Dataset (p = 0.9): Step Response of Tyu(s)
and T2(s) from algorithm 2. (Middle) Response shown for
only group a, (Right) Response shown for only group b. The
node injected with step disturbance is in the group a.

B. Test Case: IEEE 68-bus System

Lastly, we apply our algorithm to the IEEE 68-bus test
system [24]. We first use Kron reduction to eliminate the
load buses in the network [25] and apply our algorithm to the
reduced network with only the generator buses. The spectral
clustering result (from Algorithm 1) correctly identifies the
two areas in the test system, one for NETS and one for NYPS
and its adjacent areas.

We also inject a step disturbance χ(t) to the second
generator in the network and plot the response of Tyu(s)
and T2(s). While the responses appear less coherent than the
synthetic case, our approximation still captures the average
trend in each group. Notably, the approximation model
captures the underdamped response of coherent group a,
when the disturbance is injected to group b.

VI. CONCLUSION

In this paper, we propose a novel model-reduction method-
ology for large-scale dynamic networks, based on the recent
frequency-domain characterization of coherent dynamics in
networked systems. Our analysis shows that networks with
two coherent groups/areas can be well approximated by two
aggregate nodes dynamically interacting with each other, and
our results are theoretically justified for networks with ideal
block structures and networks with random graphs generated
from a weighted stochastic block model. The numerical
results align with our theoretical findings. We believe our
analysis can be extended to networks with more than two co-
herent groups and designing algorithms to identify multiple
coherent groups and modeling their interaction are interesting
future research directions.
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APPENDIX

A. Proof of Theorem 1

Proof of Theorem 1. Firstly, we have

Tyu(s0) = (In +G(s0)f(s0)L)−1G(s0)

= (G−1(s0) + f(s0)L)−1

= V (V TG−1(s0)V + f(s0)Λ)−1V T ,

where G−1(s0) = diag{g−1i (s0)}, Λ = diag{λi(L)}, and V =
[
v1(L), v2(L), · · · , vn(L)

]
.

Let H = V Tdiag{g−1i (s0)}V + f(s0)Λ, then

Tyu(s0) = V H−1V T .

Then it is easy to see that

‖Tyu(s0)− T2(s0)‖ =

∥∥∥∥T (s0)− V
[
H−12 0

0 0

]
V T
∥∥∥∥

=

∥∥∥∥V (H−1 − [H−12 0
0 0

])
V T
∥∥∥∥

=

∥∥∥∥H−1 − [H−12 0
0 0

]∥∥∥∥ , (12)

where the last equality comes from the fact that multiplying by a unitary matrix V preserves the spectral norm.
Let V2 :=

[
1√
n

v2(L)
]

and V ⊥2 :=
[
v3(L) · · · vn(L)

]
, we now write H in block matrix form:

H = V Tdiag{g−1i (s0)}V + f(s0)Λ

=

[
V T2

(V ⊥2 )T

]
diag{g−1i (s0)}

[
V2 V ⊥2

]
+ f(s0)Λ

=

[
H2 V T

2 diag{g−1
i (s0)}V ⊥2

(V ⊥2 )T diag{g−1
i (s0)}V2 (V ⊥2 )T diag{g−1

i (s0)}V ⊥2 + f(s0)Λ̃

]
:=

[
H2 HT

o

Ho Hd

]
,

where Λ̃ = diag{λ3(L), · · · , λn(L)}.
Inverting H in its block form, we have

H−1 =

[
A −AHT

o H
−1
d

−H−1d HoA H−1d +H−1d HoAH
T
o H

−1
d

]
,

where a = (H2 −HT
o H

−1
d Ho)

−1.
Notice that ||V ⊥2 || = 1 and ||V2|| = 1, we have

‖Ho‖ =
∥∥(V2 ⊥)Tdiag{g−1i (s0)}V2

∥∥
≤ ‖V⊥‖‖diag{g−1i (s0)}‖‖V2‖ ≤M2 . (13)

Also, by Weyl’s inequality [20], when |f(s0)|λ2(L) > M2, the following holds:

‖H−1d ‖ = ‖(f(s0)Λ̃ + (V ⊥2 )Tdiag{g−1i (s0)}V ⊥2 )−1‖

≤ 1

σ1(f(s0)Λ̃)− ‖(V ⊥2 )Tdiag{g−1i (s0)}V ⊥2 ‖

≤ 1

σ1(f(s0)Λ̃)−M2

≤ 1

|f(s0)|λ3(L)−M2
. (14)

Lastly, when |f(s0)|λ2(L) > M2 +M2
2M1, a similar reasoning as above, using (13) (14), and our assumption ‖T2(s0)‖ =

‖H−12 ‖ ≤M1, gives

‖A‖ ≤ 1

‖H2‖ − ‖HT
o H

−1
d Ho‖

≤ 1

‖H2‖ − ‖Ho‖2‖H−1d ‖

8



≤ 1

1
M1
− M2

2

|f(s0)|λ3(L)−M2

=
(|f(s0)|λ3(L)−M2)M1

|f(s0)|λ3(L)−M2 −M1M2
2

. (15)

Now we bound the norm of H−1 −
[
H−12 0

0 0

]
by the sum of norms of all its blocks:∥∥∥∥H−1 − [H−12 0

0 0

]∥∥∥∥
=

∥∥∥∥[AHT
o H

−1
d HoH2 −aHT

o H
−1
d

−aH−1d Ho H−1d + aH−1d HoH
T
o H

−1
d

]∥∥∥∥
≤ ‖AHT

o H
−1
d HoH2‖+ 2‖AH−1d Ho‖

+ ‖H−1d +AH−1d HoH
T
o H

−1
d ‖

≤ ‖A‖‖H−1d ‖(‖H2‖‖Ho‖2 + 2‖Ho‖+ ‖Ho‖2‖H−1d ‖)
+ ‖H−1d ‖ , (16)

Using (13)(14)(15), we can further upper bound (16) as∥∥∥∥H−1 − [H−12 0
0 0

]∥∥∥∥
≤
M2

1M
2
2 + 2M1M2 +

M1M
2
2

|f(s0)|λ3(L)−M2

|f(s0)|λ3(L)−M2 −M1M2
2

+
1

|f(s0)|λ2(L)−M2

=
(M1M2 + 1)

2

|f(s0)|λ3(L)−M2 −M1M2
2

. (17)

This bound holds as long as |f(s0)|λ3(L) > M2 +M2
2M1. Combining (12) and (17) gives the desired inequality.
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B. Eigenvalues and Eigenvectors of Lblk(na, nb, α, β)

The matrix Ablk(na, nb, α, β) is defined to be

Ablk(na, nb, α, β) =

[
α1na

1Tna
β1na

1Tnb

β1nb
1Tna

α1nb
1Tnb

]
,

and Lblk(na, nb, α, β) = diag{Ablk1na+nb
} −Ablk.

Consider any non-zero vector v such that Lblkv = λv for some λ ≥ 0. We write v =

[
v1:na

vna+1:nb

]
:=

[
v1
v2

]
. Then Lblkv = λv

can be written as [
(naα+ nbβ)v1
(nbα+ naβ)v2

]
−
[(
α(1Tna

v1) + β(1Tnb
v2)
)

1na(
α(1Tnb

v2) + β(1Tna
v1)
)

1nb

]
= λ

[
v1
v2

]
. (18)

Multiply
[
1Tna

0
0 1Tnb

]
to the left of (18), we have[

(naα+ nbβ)(1Tna
v1)

(nbα+ naβ)(1Tnb
v2)

]
−
[(
naα(1Tna

v1) + naβ(1Tnb
v2)
)(

nbα(1Tnb
v2) + nbβ(1Tna

v1)
)] = λ

[
(1Tna

v1)
(1Tnb

v2)

]
,

which leads to [
nbβ − λ −naβ
−nbβ naβ − λ

] [
(1Tna

v1)
(1Tnb

v2)

]
= 0 .

We view the equation above as a system of linear equations:

When it has non-zero solution
[
(1Tna

v1)
(1Tnb

v2)

]
6= 0: It implies det

([
nbβ − λ −naβ
−nbβ naβ − λ

])
= 0, which is λ(λ−(na+nb)β) = 0.

Therefore λ = 0 or λ = (na + nb)β, this gives two eigenpair:(
λ = 0, v =

1√
n

1n

)
, or

λ = (na + nb)β, v =
1√
n

 √ nb

na
1na

−
√

na

nb
1nb

 ,

where n = na + nb, and eigenvector v is normalized, i.e., ‖v‖ = 1.

When it has only zero solution
[
(1Tna

v1)
(1Tnb

v2)

]
= 0: When both (1Tna

v1), (1Tnb
v2) are zero, (18) reduces to[

(naα+ nbβ)v1
(nbα+ naβ)v2

]
= λ

[
v1
v2

]
.

When either na = nb or α = β, one have naα + nbβ = nbα + naβ = λ. This is an simple eigenvalue with algebraic
multiplicity na + nb − 2.

When na 6= nb and α 6= β, we have naα + nbβ 6= nbα + naβ. In this case, v1 and v2 can not be non-zero at the same
time and

1)
(
λ = naα+ nbβ, v =

[
v1
0

])
is an eigenpair for any v1 such that 1Tna

v1 = 0, ‖v1‖ = 1.

2)
(
λ = nbα+ naβ, v =

[
0
v2

])
is an eigenpair for any v2 such that 1Tnb

v2 = 0, ‖v2‖ = 1.

Then λ = naα + nbβ is an simple eigenvalue with algebraic multiplicity na − 1 and so is λ = nbα + naβ with algebraic
multiplicity nb − 1.

So far we find all eigenvalues and eigenvectors of Lblk.
Notice that when α ≥ β, we have min{naα + nbβ, nbα + naβ} ≥ (na + nb)β. In this case, the first two smallest

eigenvalues and their corresponding eigenvectors are(
λ1(Lblk) = 0, v1(Lblk) =

1√
n

1n

)
, or

λ2(Lblk) = (na + nb)β, v2(Lblk) =
1√
n

 √ nb

na
1na

−
√

na

nb
1nb

 .

and λ3(Lblk) = min{naα+ nbβ, nbα+ naβ}.
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C. Proofs of Theorem 2

Proof of Theorem 2. Since v2(Lblk) = 1√
n

 √ nb

na
1na

−
√

na

nb
1nb

, we have

T2(s) =
1

n

1na

√
nb

na
1na

1nb
−
√

na

nb
1nb

H−12

1na

√
nb

na
1na

1nb
−
√

na

nb
1nb

T ,

where

H2(s) =

 1
n (ĝ−1a (s) + ĝ−1b (s)) 1

n (
√

nb

na
ĝ−1a (s)−

√
na

nb
ĝ−1b (s))

1
n (
√

nb

na
ĝ−1a (s)−

√
na

nb
ĝ−1b (s)) 1

n ( nb

na
ĝ−1a (s) + na

nb
ĝ−1b (s)) + λ2(Lblk)f(s)

 ,
Notice that 1na

√
nb

na
1na

1nb
−
√

na

nb
1nb

[ na

n
nb

n√
nanb

n2 −
√

nanb

n2

]
=

[
1na

0
0 1nb

]
.

Then

T2(s) =

[
1na

0
0 1nb

]
1

n

[
na

n
nb

n√
nanb

n2 −
√

nanb

n2

]−1
H−12 (s)

[
na

n
nb

n√
nanb

n2 −
√

nanb

n2

]−T [
1na

0
0 1nb

]T
.

Now

1

n

[
na

n
nb

n√
nanb

n2 −
√

nanb

n2

]−1
H−12 (s)

[
na

n
nb

n√
nanb

n2 −
√

nanb

n2

]−T
=

(
n

[
na

n
nb

n√
nanb

n2 −
√

nanb

n2

]T
H2(s)

[
na

n
nb

n√
nanb

n2 −
√

nanb

n2

])−1

=

([
ĝ−1a (s) 0

0 ĝ−1b (s)

]
+ λ2(Lblk)

nanb
n

[
1 −1
−1 1

]
f(s)

)−1
= (Ĝ−1(s) + L̂f(s))−1

= (I2 + Ĝ(s)L̂f(s))−1Ĝ(s) := T̂2(s) .

Therefore T2(s) =

[
1na

0
0 1nb

]
T̂2(s)

[
1na

0
0 1nb

]T
, where T̂2(s) is exactly a network model with two nodes.
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D. Proofs for Section IV

Lemma 5 (Corollary 7.1 in [19]). Let X1, · · · , Xn be mean-zero independent random d× d Hermitian matrices and such
that there exists a M > 0 with ‖Xi‖ ≤ M almost surely for 1 ≤ i ≤ m. Define σ2 ≡ λmax

(∑n
i=1 E[X2

i ]
)
. Then for all

t > 0,

P

(∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥ ≥ t
)
≤ 2d exp

(
− t2

8σ2 + 4Mt

)
.

Lemma 6 (Direct consequence of Theorem 3.3 in [27]). Let X1, · · · , Xn be independent Bernoulli random variables with
P (Xi = 1) = pi, 1 ≤ i ≤ n. For X =

∑n
i=1 aiXi with ai > 0, we define ν =

∑n
i=1 a

2
i pi. Then, we have

P (|X − E[X]| ≥ t) ≤ exp

(
− t2

2(ν + amaxt/3)

)
,

where amax = maxi ai.

Proof of Proposition 3. We let W = [Wij ], P = [Pij ], where Wji = Wij , Pji = Pij ,∀j > i. Notice that EA = W � P .
Since LA = DA −A with DA = diag{A1}, we have

LA − LW�P = DA −A−DW�P −W � P .

Therefore,

P (‖LA − LW�P ‖ ≥ t)
= P (‖DA −A−DW�P −W � P‖ ≥ t)
≤ P (‖DA −DW�P ‖+ ‖A−W � P‖ ≥ t)
≤ P (‖DA −DW�P ‖ ≥ t/2) + P (‖A−W � P‖ ≥ t/2) .

We need to upper bound each term separately (We define ∆ := maxi
∑n
j=1 PijW

2
ij):

Upper bound for P (‖DA −DW�P ‖ ≥ t/2):
For the first term, notice that both DA, DW�P are diagonal, we have

P (‖DA −DW�P ‖ ≥ t/2)

= P
(

max
i
|[DA]ii − [DW�P ]ii| ≥ t/2

)
≤

n∑
i=1

P

(
|[DA]ii − [DW�P ]ii| ≥

t

2

)

=

n∑
i=1

P

∣∣∣∣∣∣
∑
j

Aij −
∑
j

WijPij

∣∣∣∣∣∣ ≥ t

2


(Lemma 6) ≤

n∑
i=1

2 exp

− t2

8
(∑n

j=1 PijW
2
ij + t/6

)


≤ 2n exp

(
− t2

8(∆ + t/6)

)
.

Upper bound for P (‖A−W � P‖ ≥ t/2):
For the second term, let ei ∈ Rn be the i-th column of the identity matrix In. Then

A−W � P =
∑

1≤i≤j≤n

Xij ,where Xij =

{
(Aij −WijPij)(eie

T
j + eje

T
i ), i 6= j

(Aij −WijPij)eie
T
i , i = j

.

Notice that Xij , 1 ≤ i ≤ j ≤ n are mean-zero (E[Aij ] = WijPij), Hermitian, and we have ‖Xij‖ ≤ 1, i ≤ j ≤ n almost
surely. To apply Lemma 5, we need to compute ‖

∑
1≤i≤j≤n E[X2

ij ]‖. Since

E[X2
ij ] =

{
(1− Pij)PijW 2

ij(eie
T
i + eje

T
j ), i 6= j

(1− Pij)PijW 2
ijeie

T
i , i = j

,

we have ∑
1≤i≤j≤n

E[X2
ij ] =

n∑
i=1

 n∑
j=1

(1− Pij)PijW 2
ij

 eie
T
i .
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Therefore
∑

1≤i≤j≤n E[X2
ij ] is a diagonal matrix with each diagonal entry upper bounded by

max
i

 n∑
j=1

(1− Pij)PijW 2
ij

 ≤ max
i

n∑
j=1

PijW
2
ij := ∆ .

Invoke Lemma (5) to obtain

P (‖A−W � P‖ ≥ t/2) ≤ 2n exp

(
− t2

32∆ + 16t

)
,∀t ≥ 0

Combining the two upper bounds:
Overall, we have

P (‖LA − LW�P ‖ ≥ t)
≤ P (‖DA −DW�P ‖ ≥ t/2) + P (‖A−W � P‖ ≥ t/2)

≤ 2n exp

(
− t2

8(∆ + t/6)

)
+ 2n exp

(
− t2

32∆ + 16t

)
≤ 4n exp

(
− t2

32∆ + 16t

)
.

Now set t = 8
√

∆ log(4n/δ), the assumption ∆ ≥ 16(c+ 1) log n implies t ≤ 2∆. Therefore,

4n exp

(
− t2

32∆ + 16t

)
≤ 4n exp

(
− t2

64∆

)
= δ .

This leads to exactly
P
(
‖LA − LW�P ‖ ≤ 8

√
∆ log(4n/δ)

)
≥ 1− δ .

Recall that EA = W � P , we have the desired result.

Proof of Theorem 4. For the random matrix A generated by the weighted stochastic block model (Ia, Ib, p, q, wp, wq), we
have

∆ = max
i

∑
j

PijW
2
ij = max{napw2

p, nbqw
2
q} ≤ npw2

p ,

and
∆ = max{napw2

p, nbqw
2
q} ≥ nminqw

2
q .

Therefore, for any 0 < δ < 1, pick c > 0 and n sufficiently large such that n−c ≤ δ and ∆ ≥ 16(c+ 1) log n. The latter is
possible since nmin = Ω(n), so that sufficient large n has

∆ ≥ nminqw
2
q ≥ 16(c+ 1) log n .

By Proposition 3, we have, with probability 1− δ,

‖LA − LEA‖ ≤ 8
√

∆ log(4n/δ) ≤ 8wp
√
np log(4n/δ) . (19)

Given the event (19), by Weyl’s inequality [20, Theorem 4.3.1], we have

λ3(LEA)− λ3(LA) ≤ ‖LA − LEA‖ ≤ 8wp
√
np log(4n/δ) .

Following the analysis in Appendix B, we know λ3(LEA) = min{napwp + nbqwq, nbpwp + naqwq} ≥ nmin(p + γq)wp,
then

λ3(LA) ≥ λ3(LEA)− 8wp
√
np log(4n/δ) ≥ nmin(p+ γq)wp − 8wp

√
np log(4n/δ) .

This proves the first inequality. For the second inequality, by [Theorem 2] [21], we have

‖ sin Θ(V̂, V )‖F ≤
2
√

2‖LA − LEA‖
λ3(LEA)− λ2(LEA)

,

where V̂ =
[

1n√
n

v2(LA)
]

and V =
[

1n√
n

v2(LEA)
]
, and the matrix sin Θ(V̂, V ) is a diagonal matrix of

√
1− σ2

i (V T V̂ ).

Notice that σ1(V T V̂ ) = 1 and σ2(V T V̂ ) = vT2 (LA)v2(LEA), then

‖ sin Θ(V̂, V )‖F = sin(v2(LA), v2(LEA)) ≤ 2
√

2‖LA − LEA‖
λ3(LEA)− λ2(LEA)

=
2
√

2‖LA − LEA‖
nminwp(p− γq)

≤
16
√

2wp
√
np log(4n/δ)

nminwp(p− γq)
,

13



which is exactly the desired inequality

sin(v2(LA), v2(LEA)) ≤ 16
√

2

wp(p− γq)

√
np log(4n/δ)

n2min

.
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