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Abstract— We consider the problem of learning an inner
approximation of the region of attraction (ROA) of an asymp-
totically stable equilibrium point without an explicit model
of the dynamics. Rather than leveraging approximate models
with bounded uncertainty to find a (robust) invariant set
contained in the ROA, we propose to learn sets that satisfy
a more relaxed notion of containment known as recurrence.
We define a set to be τ -recurrent (resp. k-recurrent) if every
trajectory that starts within the set, returns to it after at
most τ seconds (resp. k steps). We show that under mild
assumptions a τ -recurrent set containing a stable equilibrium
must be a subset of its ROA. We then leverage this property to
develop algorithms that compute inner approximations of the
ROA using counter-examples of recurrence that are obtained
by sampling finite-length trajectories. Our algorithms process
samples sequentially, which allows them to continue being
executed even after an initial offline training stage. We further
provide an upper bound on the number of counter-examples
used by the algorithm, and almost sure convergence guarantees.

I. INTRODUCTION

The problem of estimating the region of attraction (ROA)
of an asymptotically stable equilibrium point has a long-
standing history in nonlinear control and dynamical systems
theory [1]. From a theoretical standpoint, there has been a
thorough study of conditions that guarantee several topo-
logical properties of such set, e.g., being connected, open,
dense, smooth [2]. From a practical standpoint, having a
representation of such region allows to test the limits of
controller designs, which are usually based on (possibly
linear) approximations of nonlinear systems [3], and provides
a mechanism for safety verification of certain operating
conditions [4] [5]. Unfortunately, it is known that finding
an analytic form of the region of attraction is difficult
and in general impossible [1, p. 122]. As a result, most
effort in characterizing the ROA focus on finding inner
approximations by means of invariant sets.

1) Related Work: Several methodologies for computing
inner approximations of the ROA have been proposed in the
literature. In a broad sense, they can be classified into two
groups, depending on whether accurate information about
the dynamic model is present or not. Notably, at their core,
almost all of the methods rely on finding an invariant set of
the system. We briefly review such methods next.
Exact Models: When an exact description of the dynamics
is available, it is possible to use this information via two
complementary methodologies. Lyapunov methods utilize
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the fact that Lyapunov functions are certificates of asymptotic
stability and build inner approximations using its sublevel
sets. Methods for finding such Lyapunov functions are
surveyed in, e.g., [6]. In particular, [7] and [8] construct
Lyapunov functions that are solutions of Zubov’s equation,
and [9] searches for piece-wise linear Lyapunov functions
that are found via linear programming. Similarly, piece-wise
quadratic parameterizations of Lyapunov functions using
LMI-based methods are considered in [10]. Finally, recent
work [11] leverages the universal approximation property of
neural networks to estimate the ROA of general nonlinear
dynamical systems.

Alternatively, non-Lyapunov methods focus directly on the
properties of the ROA. For example, trajectory reversing
methods [12] [13] derive the boundary of ROA directly from
the stable manifold of the equilibria on the boundary, and the
reachable set method [14] generates a grid of sample points
and classifies each of them by solving an optimal control
problem.
Inexact Models: In the presence of uncertainty, robust ROA
approximation methods [15]–[18] generalize Lyapunov ap-
proaches by finding a common Lyapunov function across the
entire uncertainty set. Alternatively, learning-based methods
utilize experimental data to estimate the region of attraction.
When a Lyapunov function is provided, experimental data
expand the Lyapunov function level set through, e.g., Gaus-
sian processes [19], or a simple sampling approach [20]. To
address the problem of simultaneously learning the Lyapunov
function and the level set, [21] parameterizes the Lyapunov
function as a neural network and iteratively trains it by
sampling points that are outside of the current Lyapunov
level set but come back in within T steps.

Notably, learning methods play a crucial role in model-free
settings. In particular, similar to the Lyapunov methods, [22]
uses trajectory data to fit values of a Lyapunov function by
leveraging converse Lyapunov results. Perhaps most relevant
to our paper is [23], which establishes a non-Lyapunov
approach that determines the boundary of ROA directly from
a support vector machine, trained from experimental data that
is sampled via hybrid active learning techniques.

2) Contributions: In this paper, we provide a novel
approach for learning inner approximations of the region
of attraction of an asymptotically stable equilibrium point
from sampled finite-length trajectories. We refer to such a
method as “model-free” since it does not require an explicit
description of the system but only requires a process that
generates the sample trajectories.

Rather than focusing on learning invariant sets that require
trajectories to always lie within the set, we propose to learn



sets that satisfy a more flexible notion of invariance. The
contributions of this work are manifold:

• We propose the notion of recurrence as an alternative
property that can be used to guarantee a set to be
contained in the region of attraction.

• We show that under mild conditions, a compact set
containing an asymptotically stable equilibrium point
is a subset of the region of attraction if and only if it is
recurrent.

• We leverage this property to develop several algorithms
that can learn inner approximations of the region of
attraction using counter-examples of recurrence that are
based on finite-length trajectory samples.

• We further provide guarantees on the worst-case number
of counter-examples required to compute a recurrent set.

3) Organization: The rest of the paper is organized as
follows. In Section II, we formulate the problem we aim to
solve, as well as revisit some classical results that will be
leveraged in this work. The notion of recurrence to be used
in this work is introduced in Section III, together with our
first core set of results that show the relationship between
recurrence and containment within the region of attraction.
The proposed algorithms and the corresponding guarantees
are given in Section IV. Numerical examples are provided
in Section V and we conclude in Section VI.

II. PROBLEM FORMULATION

We consider a continuous time dynamical system

ẋ(t) = f(x(t)) , (1)

where x(t) ∈ Rd is the state at time t, and the map f : Rd →
Rd is continuously differentiable and (globally) Lipschitz.
Given initial condition x(0) = x0, we use ϕ(t, x0) to denote
the solution of (1). Using this notation, the positive orbit of
x0 is given by O+(x0) = {y ∈ Rd : y = ϕ(t, x0), t ∈ R+}.

Definition 1 (ω-limit Set). Given an initial condition x0, its
ω-limit set Ω(x0) is the set of points y ∈ Rd for which
there exists a sequence tn indexed by n ∈ N satisfying
limn→∞ tn = ∞ and limn→∞ ϕ(tn, x0) = y. We will
further use Ω(f) to denote the ω-limit set of (1), which is
the union of ω-limit sets of all x ∈ Rd.

Note that by definition, if x∗ is an equilibrium of (1), then
it follows that x∗ ∈ Ω(f).

A. Region of Attraction

We would like then to learn the set of initial conditions
that converge to x∗.

Definition 2 (Region of Attraction). Given an invariant set
S ⊆ Ω(f), the region of attraction (ROA) of S under (1) is
defined as

A(S) :=
{
x0 ∈ Rd| lim inf

t→∞
d(ϕ(t, x0), S) = 0

}
, (2)

where d(ϕ(t, x0), S) is the distance from the solution ϕ(t, x0)
to the set S, i.e., d(ϕ(t, x0), S) := minx∈S ∥x− ϕ(t, x0)∥2.

When the set S is a singleton that contains exactly one point
(say x), we abbreviate A(S) = A({x}) as A(x).

By definition, A(S) satisfies the invariant property that
every trajectory that starts in the set A(S) remains in the
set for all future times, i.e., A(S) is a positively invariant
set [1].

Definition 3 (Positively Invariant Set). A set I ⊆ Rd is
positively invariant w.r.t. (1) if and only if:

x0 ∈ I =⇒ ϕ(t, x0) ∈ I, ∀ t ∈ R+. (3)

The notion of positive invariance is fundamental for
control. It is used to trap trajectories in compact sets and
allows the development of the Lyapunov theory. By trapping
trajectories on sub-level sets of a function, one can guarantee
boundedness of trajectories, stability, and even asymptotic
stability via a gradual reduction of the value of the Lya-
punov function. Unfortunately, without further assumptions,
the set (2) may be a singleton, have zero measure, or be
disconnected, making the problem of characterizing (2) from
samples almost impossible. We thus make the following
assumption.

Assumption 1. The system (1) has an asymptotically stable
equilibrium at x∗ ∈ Rd.

Remark 1. It follows from Assumption 1 that the (positively
invariant) ROA A(x∗) is an open contractible set [24], i.e.,
the identity map of A(x∗) to itself is null-homotopic [25].

As a result, Assumption 1 provides the necessary reg-
ularity conditions for A(x∗) to be of practical use. A
natural approach under this setting is therefore to search
for Lyapunov functions [1] that render its sublevel sets as
invariant inner-approximations of A(x∗). Such methods are
particularly justified after the fundamental result by Vladimir
Zubov [26] that guarantees the existence of such a function:

Theorem 1 (Zubov’s Existence Criterion). A set A contain-
ing x∗ in its interior is the region of attraction of x∗ under
(1) if and only if there exist continuous functions V , h such
that the following hold:

• V (x∗) = h(x∗) = 0, 0 < V (x) < 1 for x ∈ A\{x∗},
h(x) > 0 for x ∈ Rd\{x∗}.

• For every γ2 > 0, there exists γ1 > 0, α1 > 0 such that
V (x) > γ1, h(x) > α1, whenever ∥x∥ ≥ γ2.

• V (xk) → 1 for all sequences {xk} such that xk → ∂A
or ∥xk∥ → ∞.

• V and h satisfy

(LfV )(x) = −h(x)(1− V (x))
√

1 + ∥f(x)∥2, (4)

where (LfV )(x) is the Lie derivative of V under the
flow induced by f .

Particularly, when f(x) is continuously differentiable, h(x)
can always be selected such that V is differentiable, i.e.,
(LfV )(x) = ∇V (x)T f(x).

Corollary 1. Under Assumption 1, there exists a Lyapunov
function V with domain on A(x∗) such that for any c ∈



(0, 1) the sublevel set V≤c := {x : V (x) ≤ c} is a
contractible invariant subset of A(x∗).

Proof. Let V be the Zubov’s function whose existence is
guaranteed by Theorem 1. Thus by the definition of V ,
for c ∈ (0, 1), V≤c ⊆ A(x∗). Further from (4), it follows
that (LfV )(x) < 0, for x ∈ V≤c ⊂ A(x∗). Thus, V≤c is
positively invariant.

To prove the V≤c is contractible, we need to provide a
continuous mapping H : [0, 1] × V≤c → V≤c such that
H(0, x) = x and H(1, x) = x∗ for all x ∈ V≤c. Similar
to [24], we define H(s, x) := ϕ( s

1−s , x) for s < 1, and
H(1, x) ≡ x∗. Note that H is continuous in s and x for
s < 1 , as in [1]. We are thus left to prove continuity at
each (1, x). To do so, we take any such x and pick any
open neighborhood V of H(1, x) = x∗. By Assumption 1
as well as the definition of asymptotic stability, it follows
that there exists another open neighborhood W ⊆ A(x∗)
of x∗ for which all trajectories starting in W remain in
V , i.e., ϕ(t, x0) ∈ V for all x0 ∈ W and t > 0. Given
V≤c ⊆ A(x∗), any point x ∈ V≤c satisfies ϕ(T, x) ∈ W for
some T > 0. This, together with the continuity of ϕ(T, ·),
implies that there is a neighborhood V ′ ⊆ V≤c of x such that
ϕ(T, y) ∈ W for all y ∈ V ′, which let us conclude:

H(s, y) ∈ V whenever y ∈ V ′ and s > 1− 1

T + 1

and continuity follows since V could be made arbitrarily
small.

The Zubov’s function V of Theorem 1 provides a para-
metric family {V≤c : c ∈ (0, 1)} of positively invariant
sets inside A(x∗). Further, while Zubov’s result provides a
constructive method for V (x), by means of solving a partial
differential equation, such a method becomes impractical in
the absence of a descriptive model for (1). Thus, in the
absence of an exact model of the dynamics, it is natural to
try to find a set inside A(x∗) that is positively invariant in
a robust sense, in the presence of bounded uncertainty [18],
or that is positively invariant with high probability [19].

However, one of the caveats of positively invariant sets
is that they need to be specified very carefully, in the sense
that even a good approximation of a positively invariant set
is not necessarily positively invariant. Particularly, subsets
of positively invariant sets need not be positively invariant.
This indirectly imposes strict constraints on the complexity
of the set that one needs to learn via (3). This motivates the
alternative proposed in the next section.

III. RECURRENT SETS

We now introduce the relaxed notion of invariance to be
used in this paper, which we refer to here as recurrence.
We will then illustrate how recurrent sets constitute a more
flexible and general class of objects to study.

Definition 4 (Recurrent Set). A set R ⊆ Rd is recurrent
w.r.t. (1), if for any point x0 ∈ R and any time t ≥ 0, there
exists a time t′ ≥ t, such that ϕ(t′, x0) ∈ R.

Note that a recurrent set, while not invariant, guarantees
that solutions starting in this set will visit it back infinitely
often. In particular, by Definition 3, a positively invariant
set I is recurrent. Thus, Definition 4 generalizes the notion
of positive invariance by allowing the solution ϕ(t, x0) to
step outside the set R for some finite time. One concern
may be however that by allowing ϕ(t, x0) to leave the set
R, this will lead to trajectories that diverge, thus leading
to unstable behavior. The following results show that under
mild assumptions, this should not be a source of concern.

Lemma 1. Let R ⊂ Rd be a compact recurrent set satisfying
∂R∩Ω(f) = ∅. Then for any x0 ∈ R, there exists some time
T > 0, such that the solution ϕ(t, x0) ∈ R for all t ≥ T .

Proof. We will prove this statement by contradiction. As-
sume the result does not hold, i.e., there exist x0 ∈ R and
t′ ≥ t such that ϕ(t′, x0) ̸∈ R for any t > 0. This, together
with the definition of the recurrent set (Definition 4) and
the continuity of the solution, implies there exists a t′′ ≥ t
such that ϕ(t′′, x0) ∈ ∂R for any t > 0. Therefore, we can
construct an infinite sequence {xn}∞n=0 that lies within ∂R,
i.e., {xn}∞n=0 ⊂ ∂R.

Precisely, let t0 ≥ 0 be a time such that ϕ(t0, x0) ∈ ∂R.
Then, given xn := ϕ(tn, x0) ∈ ∂R and some fixed time
interval τ > 0, we defined tn+1 as the first time since tn+τ
that the solution xn+1 := ϕ(tn+1, x0) lies within ∂R, i.e.,
ϕ(tn+1, x0) ∈ ∂R and ϕ(t, x0) ̸∈ ∂R for all t ∈ [tn +
τ, tn+1).

Then, since ∂R is compact, by Bolzano-Weierstrass the-
orem, {xn}∞n=0 must have a sub-sequence {xni

}∞i=1 that
converges to an accumulation point x̄ ∈ ∂R. It follows
then from the definition of ω-limit sets (Definition 1) that
x̄ = limi→∞ xni ∈ Ω(f) ∩ ∂R, which contradicts with the
assumption that ∂R∩ Ω(f) = ∅.

Theorem 2. Let R ⊂ Rd be a compact set satisfying ∂R∩
Ω(f) = ∅. Then R is recurrent if and only if Ω(f)∩R ̸= ∅
and R ⊂ A(Ω(f) ∩R).

Proof. ( =⇒ ): If R is a compact recurrent set satisfying
∂R∩Ω(f) = ∅, Lemma 1 implies that for any point x0 ∈ R,
there exists a time T > 0 such that ϕ(t, x0) ∈ R, ∀t ≥ T ,
i.e., the solution is bounded in the compact set R for all
t ≥ T . It then follows from [1, p. 127] that the limit set
Ω(x0) ̸= ∅ and limt→∞ d(ϕ(t, x0),Ω(x0)) = 0. Therefore,
we conclude Ω(f)∩R ⊇ Ω(x0)∩R ̸= ∅ and x0 ∈ A(Ω(f)∩
R). Finally, since x0 was chosen arbitrarily within R, it
follows that R ⊂ A(Ω(f) ∩R).
(⇐=): By assumption Ω(f) ∩ R ⊂ intR. Therefore, we
can always construct an open ζ-neighborhood ΩR

ζ := {x ∈
Rd|d(x,Ω(f)∩R) < ζ} of Ω(f)∩R for some ζ > 0 small
enough such that ΩR

ζ ⊂ R.
Then for any point x0 ∈ R, by the assumption that R ⊂

A(Ω(f) ∩R), the solution ϕ(t, x0) converges to Ω(f) ∩R,
i.e., lim inft→∞ d(ϕ(t, x0),Ω(f) ∩ R) = 0. It follows then
that for any ζ > 0 and time t > 0, there always exists some
time t′ ≥ t such that d(ϕ(t′, x0),Ω(f) ∩ R) < ζ , and thus
ϕ(t′, x0) ∈ ΩR

ζ ⊂ R. Therefore, R is recurrent.



Theorem 2 illustrates that recurrence necessarily implies
containment within the region of attraction of Ω(f)∩R. As
a result, by imposing mild conditions on Ω(f), one leads to
the following quite useful result.

Assumption 2. The ω-limit set Ω(f) of (1) is composed of
hyperbolic equilibrium points, with only one of them, say x∗,
being asymptotically stable.

Corollary 2. Let assumptions 1 and 2 hold. Further, let R
be a compact set satisfying ∂R∩Ω(f) = ∅ and Ω(f)∩R =
{x∗}. Then the set R is recurrent if and only if R ⊂ A(x∗).

Proof. ( =⇒ ): By assumption R is compact, and ∂R ∩
Ω(f) = ∅. Then, Theorem 2 implies that if R is recurrent
then Ω(f) ∩ R ̸= ∅ and R ⊂ A(Ω(f) ∩ R). This, together
with the other assumption that Ω(f) ∩ R = {x∗}, implies
R ⊂ A(x∗).

(⇐=): This direction is trivial given Theorem 2.

Corollary 2 implies that from a practical standpoint, one
may use recurrence as a mechanism for finding inner approx-
imations for A(x∗). However, one limitation of the above
results is that although R is recurrent, we do not know a
priori how long it may take for a trajectory to come back
to R after it leaves it. This motivates the following stricter
notion of recurrence.

Definition 5 (τ -Recurrent Set). A set R ⊆ Rd is τ -recurrent
w.r.t. (1), if for any point x0 ∈ R and any time t ≥ 0, there
exists a t′ ∈ [t, t+ τ ], such that ϕ(t′, x0) ∈ R.

Theorem 3. Let Assumption 1 hold, and consider a compact
set R ⊆ A(x∗) satisfying x∗ ∈ intR and R∩ ∂A(x∗) = ∅.
Then there exists positive constants c , c , and a , depending
on R, such that for all τ ≥ τ̄ := c−c

a , the set R is
τ -recurrent. Further, starting from any point x ∈ R, the
solution ϕ(t, x) ∈ R for all t ≥ τ̄ .

Proof. The proof of the theorem relies on Zubov’s existence
criterion stated in Theorem 1. Given R, let us now define

c := min
x∈∂R

V (x), c := max
x∈∂R

V (x),

and a := max
x∈C

∇V (x)T f(x),

where C = {x ∈ Rd : c ≤ V (x) ≤ c} is compact.
We first argue that V≤c := {x : V (x) ≤ c} ⊆ R. Let x be

the point in ∂R that achieves the minimum, i.e, V (x) = c,
and let R′ be the connected component of R containing
x. Note that x∗ ∈ intR must be contained in R′, since
otherwise, the trajectory ϕ(t, x), which strictly decreases V
must eventually find a point x′ ∈ ∂R with V (x′) < c; which
contradicts the definition of c. Thus, x∗ ∈ R′ ⊆ R.

Suppose then that V≤c ̸⊆ R′ ⊆ R, for any point x̃ ∈
V≤c\R′, V (ϕ(t, x̃)) < c, for t > 0, and limt→∞ ϕ(t, x̃) =
x∗. Thus there exists t̃ > 0 s.t. V (ϕ(t̃, x̃)) < c and ϕ(t̃, x̃) ∈
∂R; contradiction. It follow then that V≤c ⊆ R′ ⊆ R.

Similarly, since the contradictable set V≤c contains every
point in the boundary of R, there cannot be any point in

Fig. 1: An visualization of the proof of Theorem 3. Par-
ticularly, when R is disconnected, the equilibrium x∗ must
be contained in R′, since otherwise, one could find a point
x′ ∈ ∂R with V (x′) < V (x) along the trajectory ϕ(t, x)
that strictly decreases V .

x ∈ R with V (x) > c. We therefore get that the following
inclusions must hold:

V≤c ⊆ R ⊆ V≤c. (5)

Finally, by (5), for any point x ∈ R we must have
V (x) ≤ c. Since the time derivative of V (x) is at most
a < 0, it follows that after t ≥ τ̄ := c−c

a the Lyapunov
value V (ϕ(t, x)) ≤ c, which implies that ϕ(t, x) ∈ R and
result follows.

Note that the lower bound on τ in Theorem 3 implicitly
depends on the set R. This makes the process of learning
a recurrent set difficult as τ would change, and the set is
updated. To eliminate this dependence, one is required to
introduce conservativeness. To that end, for given δ > 0,
c ∈ (0, 1), and V as in Theorem 1, we consider the set

Ã := V≤c\{intBδ + x∗}, (6)

where as mentioned before V≤c := {x : V (x) ≤ c} is a
compact Lyapunov sublevel set contained in A(x∗) . The
sign ’+’ in (6) represents the Minkowski sum, and Bδ is a
closed δ ball centered at the origin, i.e., Bδ = {x| ∥x∥2 ≤ δ}.
Note we further choose δ > 0 to be small enough such that
Bδ + x∗ ⊆ V≤c, and the set V≤c can approximate the ROA
A(x∗) with arbitrary (2-norm) accuracy as c → 1 in the case
that A(x∗) is bounded.

Then, by denoting c(δ) as the min Lyapunov function
value in Ã, and a(δ) as the largest Lie derivative within
the set Cδ = {x ∈ Rd : c(δ) ≤ V (x) ≤ c}, i.e.,

c(δ) := min
x∈Ã

V (x), and a(δ) := max
x∈Cδ

∇V (x)T f(x),

we obtain a lower bound on τ that is independent of R.

Theorem 4. Let Assumption 1 hold, and consider δ > 0,
c ∈ (0, 1) and a compact set R satisfying: Bδ + x∗ ⊆ R ⊆
V≤c. Then R is τ -recurrent for τ ≥ τ̄(δ) := (c(δ)−c)/a(δ).
Moreover, when t ≥ τ̄(δ), ϕ(t, x) ∈ R for any point x ∈ R.

Proof. Let us first construct a contradiction to show V≤c(δ) ⊆
Bδ + x∗. Particularly, if V≤c(δ) ̸⊆ Bδ + x∗, then for any
point x̃ ∈ V≤c(δ)\{Bδ + x∗}, limt→∞ ϕ(t, x̃) = x∗ and



V (ϕ(t, x̃)) < c(δ) for all t > 0. Therefore, there exists a
t̃ > 0 such that V (ϕ(t̃, x̃)) < c(δ) and ϕ(t̃, x̃) ∈ ∂{Bδ +
x∗} ⊂ Ã, which contradicts with the definition of c(δ).

Now, since V≤c(δ) ⊆ Bδ + x∗ ⊆ R ⊆ V≤c, any point
x ∈ R must have V (x) ≤ c. Then, it follows from the
definition of a(δ) that after t ≥ τ(δ), the Lyapunov value
V (ϕ(t, x)) ≤ c(δ), and thus ϕ(t, x) ∈ R.

IV. LEARNING RECURRENT SETS

Having laid down the basic theory underlying recurrent
sets, we now propose a method to compute inner approxi-
mations of the region of attraction A(x∗) based on checking
the recurrence property on finite-length trajectory samples.
For concreteness, we consider the following type of sampled
trajectories for system (1):

xn = ϕ(nτs, x0), x0 ∈ Rd , n ∈ N , (7)

where τs > 0 is the sampling period.
In this setting, we define the notion of discrete recurrence

w.r.t. a length k trajectory:

Definition 6 (k-Recurrent Set). A set R ⊆ Rd is k-steps
recurrent (k-recurrent for short) w.r.t. (7), if for any point
x0 ∈ R and any step index n ≥ 0, there exists an n′ ∈
{n, ..., n+ k}, such that xn′ ∈ R.

Remark 2. Note that a set R being k-recurrent implies that
R is τ -recurrent with τ = kτs. One can then conclude that
R ⊂ A(x∗) under the assumptions of Corollary 2. However,
the converse is not necessarily true.

To ensure one can find such a k-recurrent set, we consider
again the specific set Ã defined in (6) that gives the following
sufficient conditions for a set R to be k-recurrent.

Theorem 5. Let Assumption 1 hold, and consider δ > 0,
c ∈ (0, 1) and a compact set R satisfying: Bδ + x∗ ⊆ R ⊆
V≤c. Then R is τ -recurrent for k > k̄ := τ̄(δ)/τs, where
τ̄(δ) is defined as in Theorem 4.

Proof. Given Theorem 4, this result follows directly from
ϕ(t, x) ∈ R for all x ∈ R when t ≥ τ̄(δ).

In the rest of the paper, we assume for simplicity that
the ω-limit set Ω(f) of (1) is the set of all the hyperbolic
equilibrium points with a unique asymptotically stable one
(Assumption 2). We further assume w.l.o.g. that the asymp-
totically stable equilibrium is at the origin, i.e., x∗ = 0. We
briefly explain next the underlying mechanism that will be
used to learn recurrent sets.

Algorithm Summary: We will restrict our search to
a compact initial approximation Ŝ(0) ⊂ Rd of the ROA
satisfying Ŝ(0) ⊇ Bδ . Precisely, we will seek to find a subset
of the ROA within A(x∗) ∩ Ŝ(0) by computing k-recurrent
sets R that seek to satisfy the properties of Theorem 5. In
this approach, starting from Ŝ(0), we sequentially generate a
sequence of approximations Ŝ(i). For each Ŝ(i), we sample
points pij ∈ Ŝ(i) and check whether a trajectory of length
k that starts at pij returns to Ŝ(i) for each j = 0, 1, 2, ....
A trajectory that does not return to Ŝ(i) within k steps is

a counter-example of k-recurrence. Once a counter-example
is found, we update the approximation Ŝ(i) to Ŝ(i+1) and
restart the sampling process. This method is illustrated in
Algorithm 1.

The rest of this section provides a detailed explanation of
each step of the algorithm, as well as a rigorous justification
of the proposed methodology.

Algorithm 1: Learning a k-recurrent set

Initialize Ŝ0 according to (9)
for Iteration i = 0, 1, ... do

for Iteration j = 0, 1, ... do
Generate random sample pij ∈ Ŝ(i) uniformly
if pij is a counter-example w.r.t Ŝ(i) then

Update Ŝ(i) according to (10)
break

end
end

end

A. Classification of sample points

We say that a sample point pij is a valid k-recurrent point
w.r.t current approximation Ŝ(i) if starting from x0 = pij ,

∃ n ∈ {1, ..., k}, s.t. xn ∈ Ŝ(i). (8)

If (8) does not hold, we say pij is a counter-example. We
will use such counter-examples to update our current set
approximation Ŝ(i).

B. Construction of set approximations

In order to gradually update the sets Ŝ(i), we consider two
parametric families of set approximations.

1) Sphere approximation: To construct a sphere approx-
imation, we start by choosing a radius b̄ > 0 large enough
such that the set

Ŝ(0) := {x| ∥x∥2 ≤ b(0) := b̄} ⊇ Bδ. (9)

The sphere approximation for iteration i is then defined as
Ŝ(i) := {x| ∥x∥2 ≤ b(i)}. Finally, given a sample point pij ∈
Ŝ(i) we update Ŝ(i) based on the following criterion:

pij counter-example =⇒ b(i+1) = ∥pij∥2 − ε, (10)

where ε > 0 is an algorithm parameter expressing the level
of conservativeness in our update.

If the process reaches a value of b(i) < 0, we declare
the search a failure. At such point, one may choose to either
reduce the value of ε or increase the length of the trajectories
sampled.

2) Polyhedron approximation: One could also choose to
construct Ŝ(i) using polyhedron approximation. To that end,
we first construct a matrix A := [a1, ..., an]

T ∈ Rn×d, where
each row vector an is a normalized (∥al∥ = 1 ∀l) exploration
direction indexed by l ∈ {1, ..., n}. Precisely, we generate A
randomly with row dimension n large enough such that for



Fig. 2: An illustration of the proof of Theorem 6. In par-
ticular, given an arbitrary point pij ̸∈ V≤c, in the sphere
case, it follows that ∥pij∥2 ≥ r. And in the polyhedron
case, the closest projection maxl∈{1,...,n} a

T
l pij ≥ r/2 under

Assumption (11) that every pair of exploration directions are
close enough.

any arbitrary direction v ∈ Rd, there exists an exploration
direction al with an angle θv,l between v and al satisfying

θv,l := arccos

(
vTal

∥v∥∥al∥

)
≤ 2

3
π. (11)

Note that the aforementioned process is analog to construct-
ing an ε-net over a unit Euclidean hyper-sphere, for which
several algorithms exist [27], [28]. Upper bounds on the size
of n can also be found in the literature, see, e.g., [29].

The polyhedron approximation at iteration i is defined as
Ŝ(i) := {x|Ax ≤ b(i)}, consisting on n inequalities aimed
at approximating a k-recurrent set via counter examples. In
this paper, keep A fixed for every iteration, and update the
constraint coefficients b(i) = [b

(i)
1 , ..., b

(i)
n ]T ∈ Rn.

Similarly to the sphere approximation, we initialize b(0) :=
b̄1n, such that

Ŝ(0) = {x|Ax ≤ b(0) := b̄1n} ⊇ Bδ, (12)

which can be done for b̄ > 0 large enough; here 1n ∈ Rn is
the vector of all ones.

Afterwards b(i) is updated by sampling points pij ∈ Ŝ(i)

and checking the following criterion:

pij counter-example

=⇒

{
b
(i+1)
l∗ = al∗pij − ε

b
(i+1)
l = b

(i)
l , ∀ l = {1, .., n}\l∗,

where ε > 0 is fixed and l∗ = argmaxl∈{1,...,n}
aT
l pij

∥al∥∥pij∥ is
the index of exploration direction that minimizes the angle
between pij and al. If l∗ consists of more than one index,
we simply choose one at random. As before, we declare the
search a failure whenever b

(i)
l < 0 for some l, since this

implies that the equilibrium x∗ = 0 is outside the set Ŝ(i).

C. Bound on the number of updates

As mentioned before, the aforementioned search for ap-
proximations will fail if b(i) (sphere) or one of b

(i)
l (poly-

hedron) becomes negative at some iteration i > 0. We
will show next that, provided that k and ε are chosen
appropriately, there will be no failure. In other words, there

will be no counter-examples after a finite number of set
updates.

Given k ≥ k̄, and an arbitrary approximation Ŝ(i) satisfy-
ing Bδ ⊆ Ŝ(i) ⊆ V≤c, then Theorem 5 guarantees that any
sample pij ∈ Ŝ(i) will lead to a k-recurrent trajectory, i.e.,
condition (8). As a result, the algorithm will stop updating
at this point since we cannot find further counter-examples
within Ŝ(i). This means that, if it is possible for Ŝ(i) to
become a subset of V≤c, without violating the condition
Bδ ⊆ Ŝ(i), then the algorithm will stop updating and will
never fail. The following theorem shows that this is indeed
the case, whenever ε and k are properly chosen.

Theorem 6. Let the initial approximation Ŝ(0) satisfy Bδ ⊆
Ŝ(0) and trajectory length k > k̄, for k̄ as defined in Theorem
5. Then, given a counter-example pij , the resulting updated
set satisfies Bδ ⊆ Ŝ(i+1) whenever

ε ≤

{
r − δ with sphere approximation
r
2 − δ with polyhedron approximation,

(13)

where r is the smallest distance between the origin (equilib-
rium) and the boundary ∂V≤c.

Proof. Given an arbitrary counter-example pij w.r.t Ŝ(i) ⊇
Bδ , it follows that pij ̸∈ V≤c by Theorem 5; since otherwise,
pij would generate a k-recurrent trajectory. Then, it follows
from the definition of r that ∥pij∥2 ≥ r, as illustrated in
Figure 2. Further, let Br := {x| ∥x∥2 ≤ r} ⊆ V≤c.

We now reason differently depending on the type of
approximation.
(Sphere case): It then follows from ∥pij∥2 ≥ r that
whenever ε ≤ r − δ, the update leads to b(i+1) = ∥pij∥2 −
ε ≥ r − ε ≥ δ.
(Polyhedron case): It follows from (11), that for any point
p′ ̸∈ Br, we have maxl∈{1,...,n} a

T
l p

′ ≥ ∥p′∥ cos
(
2
3π

)
≥ r

2 .
Therefore, since by definition of Br, pij ̸∈ Br we conclude
then that b(i+1)

l∗ = aTl∗pij − ε ≥ r
2 − ε ≥ δ.

Together with the fact that Ŝ(0) ⊇ Bδ , result follows.

Theorem 6 establishes that one can choose parameters
k and ε so that the sequence of sets Ŝ(i) never leads to
b(i) or b(i)l negative, i.e., the algorithm never fails. However,
this requires prior knowledge of k̄, r, and δ. We argue that
local information on the dynamics can be sufficient to find
conservative bounds for r and δ, and thus ε. However, k̄
depends in a highly non-trivial way on δ. We solve this issue
by, doubling the side of k, i.e. k+ = 2k, every time the
failure conditions are met, and re-initializing the sets back
to Ŝ0.

In what follows, we use Fb̄ to denote the parametric family
of closed balls (resp. polytopes) defined by {x : ||x||2 ≤
b} (resp.{x : Ax ≤ b}), for b ∈ [0, b̄] (resp. b ∈ [0, b̄]n).
This leads to the following total bound on the number of
iterations.

Theorem 7. Given the initial approximation Ŝ(0) ∈ Fb̄ and
initial constant b̄ defined in (9) or (12), the total number



of counter-examples encountered in Algorithm 1, with k-
doubling after each failure, is bounded by b̄

ε log2 k̄ in the
sphere case and n b̄

ε log2 k̄ in the polyhedron case.

Proof. Note that once a counter-example is encountered,
we decrease the radius constraint (sphere case) or one of
the exploration directions (polyhedron case) by at least ε.
Therefore, Ŝ(i) ∈ Fb̄ for all i ∈ {1, 2, ...}. And for any fixed
k, our method can find at most b̄/ε counter-examples with
the sphere approximation and nb̄/ε counter-examples with
the polyhedron approximation without failing. Since it takes
at most log2 k̄ updates on k to find some k ≥ k̄ using the
doubling method, result follows.

Our results provide an upper bound on the number of
updates the set approximation may experience by ensuring
that Ŝ(i) always contains an δ-ball around the equilibrium
point. However, this is not sufficient to guarantee that Ŝ(i) is
k-recurrent, which is required to guarantee that Ŝ(i) ⊆ V≤c.
This issue is addressed next.

D. Convergence guarantee

By Definition 6, a set Ŝ is k-recurrent if every point
p ∈ Ŝ satisfies (8). As shown before, certifying this property
will enable us to guarantee that Ŝ ⊂ A(0). However, it
is infeasible to enforce condition (8) for every point in
Ŝ . Instead, we will show that under mild conditions, our
algorithm converges to a Ŝ∗ satisfying int Ŝ∗ ⊆ A(0) with
probability one.

In our algorithm, we generate samples pj uniformly within
some set Ŝ , i.e., pj

iid∼ U(Ŝ) for all j ∈ {0, 1, 2, ...}. We
use Ŝcounter to denote the set that contains all the counter-
examples in Ŝ that certify Ŝ being not k-recurrent, i.e.,

Ŝcounter := {p ∈ Ŝ| p is a counter-example}.

Given a random sample pj we define the Bernoulli random
variable Xj with Xj = 1 if pj ∈ Ŝcounter and Xj = 0
otherwise.

Lemma 2. Consider a set Ŝ ∈ Fb̄ satisfying ∂Ŝ ∩Ω(f) = ∅
and Ω(f) ∩ Ŝ = {0}, if int Ŝ ̸⊆ A(0), then there exists a
point p ∈ int Ŝ\A(0) and a time t′ > 0 such that ϕ(t, p) ̸∈
Ŝ , ∀t > t′. Moreover, the point p could be selected such that
t′ is arbitrarily close to zero.

Proof. Let us consider a point p ∈ int Ŝ\A(0), we claim
that either p ̸∈ A(Ω(f)) or p ∈ A(Ω(f)\{0}) is true since
A(Ω(f)\{0}) ∩ A(0) = ∅.

Consider first a point p ̸∈ A(Ω(f)), we have ϕ(p, t) → ∞
as t → ∞. Since Ŝ is compact, the first result follows in this
case.

In the other case that p ∈ A(Ω(f)\{0}), it follows from
the definition of the regions of attraction (Definition 2)
that lim inft→∞ d(ϕ(t, p),Ω(f)\{0}) = 0. Note that by
assumption Ŝ is a compact set and {Ω(f)\{0}} ∩ Ŝ = ∅.
Therefore, if the result does not follow, i.e., for all t′ > 0
there exists a t > t′ such that ϕ(t, p) ∈ Ŝ , we can
construct an infinite sequence {xn}∞n=0 ⊂ ∂Ŝ as in the

proof of Lemma 1. Then, since ∂Ŝ is compact, by Bolzano-
Weierstrass theorem, {xn}∞n=0 must have a sub-sequence
{xni}∞i=1 that converges to an accumulation point x̄ ∈ ∂Ŝ .
It follows then from the definition of ω-limit sets (Definition
1) that x̄ = limi→∞ xni

∈ Ω(f) ∩ ∂Ŝ , which contradicts
with the assumption that ∂Ŝ ∩ Ω(f) = ∅.

Now, since the first result follows, we can additionally let
q = ϕ(t′−δ, p) and conclude ϕ(t, q) ̸∈ Ŝ , ∀t > δ with δ > 0
arbitrarily close to zero, which implies the other result.

Lemma 3. For any set Ŝ ∈ Fb̄ satisfying ∂Ŝ ∩ Ω(f) = ∅
and Ω(f)∩Ŝ = {0}, the volume of its counter-example part
is positive, i.e., vol(Ŝcounter) > 0, whenever int Ŝ ̸⊆ A(0).

Proof. If int Ŝ ̸⊆ A(0), then Lemma 2 implies that there
exists a point p ∈ int Ŝ\A(0) and a time t′ ∈ (0, τs) such
that ϕ(t, p) ̸∈ Ŝ , ∀t > t′. Then, for any k = 1, 2, 3..., we
can respectively construct a neighborhood of p that consists
of counter-examples of k-recurrent.

Precisely, let us consider an arbitrary point q ∈ Ŝ and
recall the assumption that the dynamical system (1) is glob-
ally L-Lipschitz, it follows from [1, p. 96] that the distance
between solutions ∥ϕ(t, p)− ϕ(t, q)∥ ≤ ∥p− q∥ exp (Lt)
for all t ≥ 0. Therefore, we choose q such that

∥p− q∥ < d := min
n=1,...,k

d(ϕ(nτs, p), Ŝ)/ exp (Lkτs),

and claim ∥ϕ(nτs, p)− ϕ(nτs, q)∥ ≤ ∥p− q∥ exp (Lnτs) <
d(ϕ(nτs, p), Ŝ), ∀n = 1, ..., k, i.e., q is a counter-example
of k-recurrence.

Finally, since p ∈ int Ŝ , the aforementioned counter-
example set {q ∈ Ŝ| ∥p− q∥ < d} has positive volume,
and thus the result follows.

Lemma 4. For any set Ŝ ∈ Fb̄ satisfying int Ŝ ̸⊆ A(0), ∂Ŝ∩
Ω(f) = ∅ and Ω(f) ∩ Ŝ = {0}, we have limm→∞ P(X1 =
· · · = Xm = 1) = 0. That is, a counter-example is eventually
sampled almost surely.

Proof. Note that we have Ŝcounter ⊆ Ŝ and vol(Ŝcounter) > 0
by Lemma 3. Then, denoting the counter-example ratio as
ρ := vol(Ŝcounter)/ vol(Ŝ), one can conclude 0 < ρ ≤ 1 and

lim
m→∞

P(X0 = ... = Xm = 1) = lim
m→∞

(1− ρ)m = 0.

We now leverage the results in Lemma 3 and Lemma 4
to obtain the following termination guarantee.

Theorem 8. Consider Ŝ(0) ∈ Fb̄ with Ŝ(0) ⊇ Bδ and Ω(f)∩
Ŝ(0) = {0}. Then, after a finite number of iterations, the
updates on Ŝ(i) terminate at some Ŝ∗ whose interior is a
non-empty subset of A(0) whenever k > k̄ and (13) holds.

Proof. Suppose that at any given iteration i the set int Ŝ(i) ̸⊆
A(0). Then it follows from Lemma 4 that a counter-example
is eventually found almost surely, and a new set Ŝ(i+1) is
obtained. Also Theorem 7 implies the total number of such
transitions is finite, since Ŝ(0) ∈ Fb̄ and Bδ ⊆ Ŝ(0).



Now let Ŝ∗ denote the last updated approximation. Note
that since there are not further updates to Ŝ∗ with probability
one, this implies that vol(Ŝ∗

counter) = 0. We argue then that
int Ŝ∗ ⊆ A(0), since otherwise vol(Ŝ∗

counter) > 0, which
contradicts the fact that Ŝ∗ is the last iteration. Finally, int Ŝ∗

is non-empty since Theorem 6 implies Ŝ∗ ⊇ Bδ .

E. Multiple center point approximation
When the ROA A(0) is distorted or non-convex, Al-

gorithm 1 may significantly underestimate A(0), meaning
that the volume of the resulting approximation vol(Ŝ(i)) ≪
vol(A(0)). To address this problem, we can refine Algo-
rithm 1 by generating additional approximations similar to
Ŝ(i) but centered at points different from the equilibrium
x∗ = 0.

In particular, we consider h ∈ N+ center points xq indexed
by q ∈ {1, 2, ..., h}, where the first center point as x1 =
x∗ = 0. Then other centers, i.e., x2,...,xh, can be chosen
uniformly within some region of interest or selected to be
in some preferred place. At each center point xq the sphere
approximation is defined by Ŝ(i)

q := {x| ∥x− xq∥2 ≤ b
(i)
q },

where b
(i)
q represents the radius to be updated in the presence

of counter-examples. As before we initialize b
(0)
q = b̄. In

the case of polyhedral approximations, we similarly define
b
(i)
q = [b

(i)
q,1, ..., b

(i)
q,n]T ∈ Rn, with b

(0)
q = b̄1N and let Ŝ(i)

q :=

{x|A(x− xq) ≤ b
(i)
q }.

Then, the multi-center ROA approximation Ŝ(i)
multi at iter-

ation i is the union of all approximations, i.e., Ŝ(i)
multi :=

∪h
q=1Ŝ

(i)
q . Note that Ŝ(i)

1 is equivalent to the original ap-
proximation Ŝ(i) of previous sections, and Ŝ(i)

2 to Ŝ(i)
h are

additional enhancements.
Similar to Algorithm 1, sample points pij are generated

uniformly within Ŝ(i)
multi in each sub-iteration j = 1, 2, .... In

this multi-center case, pij is classified as a counter-example
if starting from x0 = pij , xn ̸∈ Ŝ(i)

multi for all n ∈ {1, ..., k}.
Once encountered a counter-example, we update Ŝ(i)

multi and
restart sampling iteration j. In particular, given a counter-
example pij ∈ Ŝ(i)

multi, every approximations Ŝ(i)
q (sphere or

polyhedron) satisfying pij ∈ Ŝ(i)
q are subjected to update

respectively via the following criterion:

(sphere) b(i+1)
q = ∥pij − xq∥2 − ε

(polyhedron)

{
b
(i+1)
q,l∗ = al∗(pij − xq)− ε

b
(i+1)
q,l = b

(i)
q,l, ∀ l∈{1, .., n}\l∗,

where l∗ = argmaxl∈{1,...,n}
aT
l (pij−xq)

∥al∥∥pij−xq∥ . Again, we
choose one at random if l∗ consists of more than one index.

Then, those approximations not containing pij are updated
as Ŝ(i+1)

q = Ŝ(i)
q . Note that the parameter ε is strictly posi-

tive. Thus, for all center points xq ̸∈ A(0), the corresponding
constraint parameters b

(i)
q could decrease to negative values

and result in Ŝ(i)
q = ∅ without affecting our results.

In this multi-center setting, we use Fh
b̄

to denote the
parametric family of h closed balls (resp. polytopes) defined

by ∪h
q=1Sq , where Sq = {x : ||x − xq||2 ≤ bq} (resp.

Sq = {x : A(x − xq) ≤ bq}), for bq ∈ [0, b̄] (resp.
bq ∈ [0, b̄]n) and xq ∈ Rd indexed by q = {1, ..., h}.

Theorem 9. For any iteration i ∈ N+, the multi-center
approximation Ŝ(i)

multi is non-vanishing, i.e., Ŝ(i)
multi ⊇ Bδ , if

k > k̄ and condition (13) is satisfied. The total number of
counter-examples encountered, with k-doubling after each
failure, is bounded by h b̄

ε log2 k̄ and nh b̄
ε log2 k̄ in the sphere

and polyhedron case respectively. Moreover, the last updated
multi-center approximation Ŝ∗

multi satisfies int Ŝ∗
multi ̸= ∅ and

int Ŝ∗
multi ⊆ A(0) whenever Ω(f) ∩ Ŝ(0)

multi = {0}.

Proof. By definition Ŝ(i)
multi ⊇ Ŝ(i)

1 for all i ∈ N+, Theorem 6
therefore implies Ŝ(i)

multi ⊇ Ŝ(i)
1 ⊇ Bδ under (13). The

bound on the total number of counter-examples follows as in
Theorem 7, since every additional approximation Ŝ(i)

q ∈ Fb̄

for all q ∈ {1, ..., h} and iteration i ∈ {1, ...}. Finally, by
generalizing Lemma 2- 4 and Theorem 8 to the scope of
Fh

b̄
, the last statement follows.

V. EXPERIMENTS

We illustrate the accuracy of the proposed methodology
by approximating the region of attraction of the following
autonomous dynamical system:[

ẋ1

ẋ2

]
=

[
x2

−x1 +
1
3x

3
1 − x2

]
.

The black dotted area in Figure 3 represents the complement
of ROA of the origin, which is computed by testing a mesh
grid of points. A point is marked black if it does not converge
to the equilibrium after t = 30. In our algorithm we set
ϵ = 0.1, k = 50 and τs = 0.5. To estimate the number of
iterations until convergence, we stop our algorithm when all
black dots are excluded from our current approximation.

The outcomes of our approximation are marked in green.
In particular, Figure 3 (left two panels) shows the outcome
of applying Algorithm 1 using a sphere and a n = 200
directions polyhedron approximation. To address the prob-
lem of under-estimation, as shown in the right two panels
of Figure 3, we can generate random center points. Fifty
spheres or ten polyhedrons approximates with random center
points give a good approximation. Detailed statistics of our
algorithms for the aforementioned scenarios are provided in
Table I. Notably, the number of counter-examples and the
steps simulated per sample is small, which illustrates the
efficiency of our algorithm.

VI. CONCLUSIONS AND FUTURE WORK

We consider the problem of learning the region of attrac-
tion of a stable equilibrium point. We propose the use of a
more flexible notion of invariance known as recurrence. We
provide necessary and sufficient conditions for a recurrent
set to be an inner approximation of the ROA. Our algorithms
are sequential and only incur a limited number of counter-
examples. Future work includes extending our framework to
other families of approximations and control design.
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Fig. 3: The region of attraction approximations for one center point (left two) and multiple random center points (right two)
in the sphere and polyhedron case, respectively.

Approximate method # of counter examples # of samples # of steps simulated Average # of steps per sample

1-center sphere approximation 14 7024 7935 1.39
1-center polyhedron approximation 94 23130 28127 1.22

50-center sphere approximations 191 17481 53756 3.07
10-center polyhedron approximations 370 46819 66399 1.41

TABLE I: Performance statistics for different configurations of our algorithm.

REFERENCES

[1] H. K. Khalil, “Nonlinear systems; 3rd ed.” 2002.
[2] S. Willard, General Topology, ser. Addison-Wesley series in mathe-

matics. Dover Publications, 2004.
[3] Y. Li, S. Das, and N. Li, “Online optimal control with affine con-

straints,” 2020.
[4] A. Robey, H. Hu, L. Lindemann, H. Zhang, D. V. Dimarogonas,

S. Tu, and N. Matni, “Learning control barrier functions from expert
demonstrations,” 2020.

[5] A. Sallab, M. Abdou, E. Perot, and S. Yogamani, “Deep reinforcement
learning framework for autonomous driving,” pp. 70–76, 2017.

[6] P. Giesl and S. Hafstein, “Review on computational methods for
lyapunov functions,” Discrete and Continuous Dynamical Systems -
B, vol. 20, no. 8, pp. 2291–2331, 2015.

[7] A. Vannelli and M. Vidyasagar, “Maximal lyapunov functions and
domains of attraction for autonomous nonlinear systems,” Automatica,
vol. 21, no. 1, pp. 69–80, 1985.

[8] M. Hassan and C.Storey, “Numerical determination of domains of
attraction for electrical power systems using the method of zubov,”
International Journal of Control, vol. 34, no. 2, pp. 371–381, 1981.

[9] P. Julian, J. Guivant, and A. Desages, “A parametrization of piece-
wise linear lyapunov functions via linear programming,” International
Journal of Control, vol. 72, no. 7-8, pp. 702–715, 1999.

[10] R. Goebel, A. Teel, T. Hu, and Z. Lin, “Conjugate convex lyapunov
functions for dual linear differential inclusions,” IEEE Transactions
on Automatic Control, vol. 51, no. 4, pp. 661–666, 2006.

[11] S. Chen, M. Fazlyab, M. Morari, G. J. Pappas, and V. M. Preciado,
“Learning lyapunov functions for hybrid systems,” 2020.

[12] R. Genesio, M. Tartaglia, and A. Vicino, “On the estimation of
asymptotic stability regions: State of the art and new proposals,” IEEE
Transactions on Automatic Control, vol. 30, no. 8, pp. 747–755, 1985.

[13] H.-D. Chiang, M. Hirsch, and F. Wu, “Stability regions of nonlinear
autonomous dynamical systems,” IEEE Transactions on Automatic
Control, vol. 33, no. 1, pp. 16–27, 1988.

[14] R. Baier and M. Gerdts, “A computational method for non-convex
reachable sets using optimal control,” in 2009 European Control
Conference, ECC 2009, 08 2009.

[15] B. Xue, N. Zhan, and Y. Li, “Robust regions of attraction generation

for state-constrained perturbed discrete-time polynomial systems,”
2020.

[16] R. Ambrosino and E. Garone, “Robust stability of linear uncertain
systems through piecewise quadratic lyapunov functions defined over
conical partitions,” in 2012 IEEE 51st IEEE Conference on Decision
and Control (CDC), 2012.

[17] S. Chen, M. Fazlyab, M. Morari, G. J. Pappas, and V. M. Preciado,
“Learning region of attraction for nonlinear systems,” 2021.

[18] U. Topcu, A. K. Packard, P. Seiler, and G. J. Balas, “Robust region-
of-attraction estimation,” IEEE Transactions on Automatic Control,
vol. 55, no. 1, pp. 137–142, 2009.

[19] F. Berkenkamp, R. Moriconi, A. P. Schoellig, and A. Krause, “Safe
learning of regions of attraction for uncertain, nonlinear systems with
gaussian processes,” in 2016 IEEE 55th Conference on Decision and
Control (CDC). IEEE, 2016, pp. 4661–4666.

[20] E. Najafi, R. Babuska, and G. Lopes, “A fast sampling method for
estimating the domain of attraction,” Nonlinear Dynamics, vol. 86,
pp. 823–834, 2016.

[21] S. M. Richards, F. Berkenkamp, and A. Krause, “The lyapunov neural
network: Adaptive stability certification for safe learning of dynamical
systems,” 2018.

[22] B. K. Colbert and M. M. Peet, “Estimating the region of attraction
using stable trajectory measurements,” 2018.

[23] X.-S. Wang, J. D. Turner, and B. P. Mann, “A model-free sampling
method for estimating basins of attraction using hybrid active learning
(hal),” 2020.

[24] E. Sontag, Mathematical Control Theory: Deterministic Finite Dimen-
sional Systems, ser. Texts in Applied Mathematics. Springer New
York, 2013.

[25] J. R. Munkres, Topology / James R. Munkres., 2nd ed. Upper Saddle
River, NJ: Prentice Hall, Inc., 2000.

[26] R. D. Driver, “Methods of am lyapunov and their application (vi
zubov),” SIAM Review, vol. 7, no. 4, p. 570, 1965.

[27] D. Haussler and E. Welzl, “ε-nets and simplex range queries,” Discrete
& Computational Geometry, vol. 2, pp. 127–151, 1987.

[28] N. H. Mustafa, “Computing Optimal Epsilon-Nets Is as Easy as
Finding an Unhit Set,” in 46th International Colloquium on Automata,
Languages, and Programming (ICALP 2019), 2019, pp. 87:1–87:12.

[29] R. Vershynin, “Introduction to the non-asymptotic analysis of random
matrices,” 2011.


	Introduction
	Related Work
	Contributions
	Organization


	Problem Formulation
	Region of Attraction

	Recurrent Sets
	Learning recurrent sets
	Classification of sample points
	Construction of set approximations
	Sphere approximation
	Polyhedron approximation

	Bound on the number of updates
	Convergence guarantee
	Multiple center point approximation

	Experiments
	Conclusions and future work
	References

