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Abstract— In constrained reinforcement learning (C-RL), an
agent seeks to learn from the environment a policy that
maximizes the expected cumulative reward while satisfying
minimum requirements in secondary cumulative reward con-
straints. Several algorithms rooted in sampled-based primal-
dual methods have been recently proposed to solve this problem
in policy space. However, such methods are based on stochastic
gradient descent-ascent algorithms whose trajectories are con-
nected to the optimal policy only after a mixing output stage
that depends on the algorithm’s history. As a result, there is a
mismatch between the behavioral policy and the optimal one.
In this work, we propose a novel algorithm for constrained RL
that does not suffer from these limitations. Leveraging recent
results on regularized saddle-flow dynamics, we develop a novel
stochastic gradient descent-ascent algorithm whose trajectories
converge to the optimal policy almost surely.

Index Terms— Constrained Reinforcement Learning,
Stochastic Approximation, Stochastic Gradient Descent-Ascent

I. INTRODUCTION

Reinforcement learning (RL) studies sequential decision-
making problems where the agent aims to maximize its
expected total reward by interacting with an unknown en-
vironment over time. However, in many applications such as
electric grids and robotics, the agent often deals with con-
flicting requirements [1], or has safety constraints during the
learning process [2]. The constrained reinforcement learning
(C-RL) framework is a natural way to embed all conflicting
requirements efficiently and incorporate safety [2]–[8].

There are two major approaches to finding the optimal
policy of a C-RL problem, where the first approach solves it
in the occupancy measure space. The constrained Markov
Decision Process (CMDP) framework is a standard, and
well-studied formulation for reinforcement learning with
constraints [3]. The agent aims to maximize the total re-
ward function while satisfying requirements in secondary
cumulative reward constraints. The CMDP problem can be
equivalently written as a linear programming problem in
occupancy measure space, and the optimal policy could be
recovered from the optimal occupancy measure [3]. However,
this approach requires knowledge of the transition kernel
of the underlying dynamical system explicitly, which is not
always available in many realistic applications.

An alternative approach is to apply the Lagrangian duality
and solve the C-RL problem in policy space [6]–[10]. These
approaches solve the min-max optimization problem using a
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sampling-based primal-dual algorithm or stochastic gradient
descent-ascent (SGDA) algorithm, where the Lagrangian
function is augmented with a possible regularization term,
e.g., a KL divergence regularization. The primal variables
and dual variables are updated iteratively, either using gra-
dient information or solving a sub-optimization problem.
The outcome of primal-dual algorithms is often subject to
two cases: in the first case, the output of the primal-dual
algorithm is a mixing policy, which is a weighted average
of history outputs [6]–[8]. In the second case, instead of
showing the output policy converges to the optimal policy,
they present a regret analysis for objective functions, and
constraints [9], [10]. In summary, a key limitation is that the
policy often oscillates and does not converge to the optimal
policy, i.e., there is a mismatch between the behavioral policy
and the optimal one. In this paper, we aim to tackle the above
limitations by introducing a novel SGDA algorithm leverag-
ing recent results on regularized saddle flow dynamics. Some
of the proofs are omitted due to space constraints.

The key insight that the above sampling-based primal-
dual algorithms do not converge is that the Lagrangian
function for the C-RL problem does not possess sufficient
convexity. The Lagrangian function is bilinear in occupancy
measure space and is non-convex-concave in policy space.
Our proposed method is rooted in the study of saddle flow
dynamics [11], [12]. By adding a carefully crafted augmented
regularization, the dissipative saddle flow proposed in [11]
makes minimal requirements on convexity-concavity and yet
still guarantees asymptotic convergence to a saddle point.

Leveraging tools from this dissipative saddle flow frame-
work, we propose a novel algorithm to solve the C-RL
problem in occupancy measure space, where the dynamics
asymptotically converge to the optimal occupancy measure
and optimal policy. We further extend the continuous-time
algorithm in a model-free setting, where the discretized
SGDA algorithm is shown to be the stochastic approximation
of the continuous-time saddle flow dynamic. We prove that
the SGDA algorithm almost surely converges to the optimal
solution of the C-RL problem. To the best of our knowledge,
this work is the first attempt to solve the C-RL problem to
converge to the optimal occupancy measure and policy.

Notation: Let K ⊂ Rn be a closed convex set. Given a
point y ∈ Rn, ΨK[y] = argminz∈K ∥z−y∥ denote the point-
wise projection (nearest point) in K to y. Given x ∈ K and
v ∈ Rn, define the vector field projection of v at x with
respect to K as: ΠK[x, v] = limδ→0+

ΨK[x+δv]−x
δ

II. PROBLEM FORMULATION

In the constrained reinforcement learning problem (C-RL),
S denotes the finite state space, A denotes the finite action



space, and P : S × A → △|S| gives the transition dynam-
ics of the CMDP, where P (·|s, a) denotes the probability
distribution of next state conditioned on the current state
s and action a. r : S × A → [0, 1] is the reward function,
gi : S×A → [−1, 1] denotes the ith constraint cost function.
The scalar γ denotes the discount factor, and q denotes the
initial distribution of the states. A stationary policy is a map
π : S → △|A| from states to a distribution in the action
space. The value functions for both reward and constraints’
cost following policy π are given by:

V πr (q) = (1− γ)Eπ[
∑∞
t=0 γ

tr(st, at) | s0 ∼ q],

V πgi(q) = (1− γ)Eπ[
∑∞
t=0 γ

tgi(st, at) | s0 ∼ q].

The standard C-RL problem aims to maximize the total
reward function while satisfying requirements in secondary
cumulative reward constraints:

max
π

V πr (q)

s.t. V πgi(q) ≥ hi, ∀i ∈ [I]. (1)

There exist two classes of approaches to solving the optimal
policy of a constrained reinforcement learning problem. The
constrained Markov Decision Process (CMDP) framework
equivalently expresses the C-RL problem as a linear pro-
gramming problem in occupancy measure space [3]. Given
a policy π, define λπ : S×A → [0, 1] as occupancy measure:

λπ(s, a) = (1− γ)
∑∞
t=0 γ

tPπq (st = s, at = a),

where s0 ∼ q. By definition, the occupancy measure belongs
to the probability simplex λπ ∈ ∆. Problem (1) can be
equivalently written as a linear programming problem:

max
λ∈∆

∑
a λ

T
a ra (2)

s.t.
∑
a λ

T
a g

i
a ≥ hi, i ∈ [I]∑

a(I − γPTa )λa = (1− γ)q,

where λa = [λ(1, a), . . . , λ(s, a)]T ∈ R|S| is the ath column
of λπ , ra = [r(1, a), . . . , r(s, a)]T ∈ R|S| denotes reward
function associated with action a, Pa denotes the transition
matrix associated with action a. The optimal policy could be
recovered by finding the optimal occupancy measure

π∗(a|s) = λ∗(s, a)∑
a′∈A λ

∗(s, a′)

However, a key limitation in this approach is that it requires
knowledge of the transition kernel of the underlying dynam-
ical system explicitly, i.e., Pa, ra, gia.

Another approach is to apply the primal-dual algorithm to
find the saddle points of the associated Lagrangian function
of problem (1) in policy space:

L(π, µ) = V πr +
∑I
i=1 µi(V

π
gi − hi).

Algorithms often augment Lagrangian function with a reg-
ularization term L̂(π, µ) = L(π, µ) + R(π, µ), e.g., a KL
divergence regularization, and update the policy and dual

variable using one of the following rules:

πk+1=

{
πk+η∇πL̂(π, µk)

argmaxπL̂(π, µk)
µk+1=

{
µk− η∇πL̂(πk, µ)

argminµL̂(πk, µ)

Among the sampling-based primal-dual algorithms, sev-
eral algorithms output a mixing policy of the form πT =∑T−1
k=0 ηkπk, which is a weighted average of the history

updates [6]–[8]. The output policy oscillates and does not
converge to the optimal policy. On the other hand, several
papers provide a regret analysis instead of showing the al-
gorithm’s convergence. To summarize, the CMDP approach
could directly solve the optimal occupancy measure and the
optimal policy while requiring knowledge of the transition
kernel. The sampling-based primal-dual algorithms often
output a mixing policy of history and do not converge to
the optimal policy. The key limitation is that the Lagrangian
function for the C-RL problem does not possess sufficient
convexity. Specifically, the Lagrangian function is bilinear in
occupancy measure space and is nonconvex in policy space.
In this paper, we aim to provide a novel algorithm that tackles
the above difficulties.

III. KEY INSIGHT FROM SADDLE FLOW DYNAMICS

Before introducing our algorithm, we would like to il-
lustrate our key insight from saddle flow dynamics, which
explains why the primal-dual algorithm oscillates and does
not converge. For a min-max optimization problem, primal-
dual algorithms require the Lagrangian L(x, y) function to
be strictly convex or concave on x or y, respectively, to
converge. Consider the following motivating example with
bilinear Lagrangian function:

min
x

max
y

L(x, y) := xy.

Our goal is to apply different dynamic laws that seek to
converge to some saddle point (x∗, y∗) = (0, 0) of L(x, y),
which satisfies L(x∗, y) ≤ L(x∗, y∗) ≤ L(x, y∗). In partic-
ular, consider the following classical primal-dual algorithm:

ẋ = −∇xL(x, y) = −y,
ẏ = ∇yL(x, y) = x.

In Figure 1, (a) plots the time series trajectory of states x
and y, and (b) plots the vector field and corresponding phase
portrait. We observe that the dynamical system oscillates and
does not converge to the saddle point (0,0).

In [11], the authors introduce a regularization framework
for saddle flow dynamics that guarantees asymptotic conver-
gence to a saddle point based on mild assumptions. In this
paper, we further extend the above framework to solve the C-
RL problem. Specifically, consider the following constrained
min-max optimization problem,

min
x∈K

max
y∈V

L(x, y)

where K ⊂ Rn,V ⊂ Rm are bounded closed convex sets. We
propose a regularized surrogate for L(x, y) via the following



(a) time series trajectories (b) phase portrait

Fig. 1: Primal-dual dynamics of bilinear Lagrangian function

augmentation:

L(x, y, z, w) :=
1

2ρ
∥x− z∥2 + L(x, y)− 1

2ρ
∥y − w∥2

The following projected and regularized saddle flow dynam-
ics aim to find the saddle points of the regularized La-
grangian, which contains the saddle point of the original La-
grangian. The regularized saddle flow dynamics still preserve
the same distribution structure, which can be implemented
in a fully distributed fashion, and requires the same gradient
information as the classical primal-dual algorithm:

ẋ = ΠK

[
x,−∇xL(x, y)−

1

ρ
(x− z)

]
, ż = ΠK

[
z,

1

ρ
(x− z)

]
ẏ = ΠV

[
y,−∇yL(x, y)−

1

ρ
(y − w)

]
, ẇ = ΠV

[
w,

1

ρ
(y − w)

]
(3)

Theorem 1. Assume that L(·, y) is convex for ∀y and L(x, ·)
is concave for ∀x, continuously differentiable, and there
exists at least one saddle point (x∗ ∈ K, y∗ ∈ V), where
K ⊂ Rn,V ⊂ Rm are closed and convex. Then the projected
saddle flow dynamics (3) asymptotically converge to some
saddle point (x∗, y∗) of L(x, y), while x(t) ∈ K, y(t) ∈
V, ∀t with initialization x(0) ∈ K, y(0) ∈ V .

Proof: See Appendix

The above theorem shows the projected and regularized
saddle flow dynamics will asymptotically converge to the
saddle point of the Lagrangian function, which requires mild
assumptions on convexity. Additionally, the following result
summarizes conditions under which the solutions of the
projected system exist and are unique.

Proposition 2. [12, Prop 2.2] Let f : Rn → Rn be Lipschitz
on a closed convex polyhedron K ∈ Rn. Then, for any x0 ∈
K, there exists a unique solution t → x(t) of the projected
system ẋ = ΠK

[
x, f(x)

]
with x(0) = x0.

We now apply the regularized saddle flow dynamics to the
bilinear Lagrangian function L(x, y) = xy.

ẋ = −y − 1

ρ
(x− z), ż =

1

ρ
(x− z),

ẏ = x− 1

ρ
(y − w), ẇ =

1

ρ
(y − w).

According to Figure 2, the trajectories of the above saddle

flow dynamics asymptotically converge to the saddle point
(0, 0, 0, 0), even when the original Lagrangian function is
bilinear.

Fig. 2: Regularized saddle flow dynamics for L(x, y) = xy

A direct application of the above projected and regularized
saddle flow dynamic is to solve the C-RL problem in
occupancy measure space (2), where the Lagrangian function
is also bilinear. Specifically, the Lagrangian function for (2)
in occupancy measure space is:

L(λ, µ, v) =
∑
a

λTa ra +
∑
i

µi(
∑
a

λTa g
i
a − hi)

+ (1− γ)⟨q, v⟩ −
∑
a∈A

λTa (I − γPa)v, (5)

where µi ≥ 0 is the Lagrange multiplier associated with
the ith inequality constraint and v is the Lagrange multiplier
associated with the equality constraint. Therefore, motivated
by the projected and regularized saddle flow dynamics frame-
work, we propose a regularized surrogate for (5) via the
following augmentation:

L(v, v̂, µ, µ̂, λ, λ̂) :=
1

2ρ
∥v − v̂∥2 + 1

2ρ
∥µ− µ̂∥2

+ L(v, µ, λ)− 1

2ρ
∥λ− λ̂∥2 (6)

Slater’s condition for C-RL and the following Lemma es-
tablishes the boundedness of dual decision variables, which
naturally provides a closed convex set for projection.

Assumption 1 (Slater’s condition for C-RL). There exists a
strictly feasible occupancy measure λ̃ ∈ ∆ of problem (2),
i.e., there exist some ψ > 0 such that∑

a

λ̃Ta g
i
a ≥ hi + ψ, i ∈ [I]∑

a∈A
(I − γPTa )λ̃a = (1− γ)q,

Lemma 3. [7, Lem.1][Bounded dual variable] Under the
assumption 1, the optimal dual variables µ∗, v∗ are bounded.
Formally, it holds that ∥µ∗∥1 ≤ 2

ψ and ∥v∗∥∞ ≤ 1
1−γ +

2
(1−γ)ψ

Therefore, we propose the following projected saddle flow
dynamics to find the saddle points of (6), where U := {µ|µ ∈
RI≥0, ∥µ∥1 ≤ 2

ψ},V := {v|v ∈ Rs, ∥v∗∥∞ ≤ 1
1−γ +

2
(1−γ)ψ}



are both closed convex polyhedrons.

v̇ = ΠV

[
v,

∑
a∈A

(I − γPTa )λa − (1− γ)q − 1

ρ
(v − v̂)

]
,

˙̂v = ΠV

[
v̂,

1

ρ
(v − v̂)

]
,

µ̇i = ΠU

[
µi, h

i −
∑
a

λTa g
i
a −

1

ρ
(µi − µ̂i)

]
,

˙̂µi = ΠU

[
µ̂,

1

ρ
(µ− µ̂)

]
,

λ̇a = Π∆

[
λ, ra − (I − γPa)v +

∑
i

µig
i
a −

1

ρ
(λa − λ̂a)

]
,

˙̂
λa = Π∆

[
λ̂a,

1

ρ
(λ− λ̂)

]
, (7)

The following theorem is a direct application of Theorem
1 and Proposition 2, which guarantees (7) asymptotically
converge to the unique (optimal) saddle point of the C-RL
problem (2). Then we could recover the optimal policy from
the optimal occupancy measure λ∗.

Theorem 4. Let Assumption 1 hold. Then the projected sad-
dle flow dynamics (7) asymptotically converge to some saddle
point (λ∗, µ∗, v∗) of L(λ, µ, v), while satisfying λ(t) ∈
∆, µ(t) ∈ U , ∀t with proper initialization.

IV. STOCHASTIC APPROXIMATION FOR C-RL

In the following section, we aim to extend the proposed
continuous-time saddle flow algorithm (7) to a model-free
setting. Specifically, we propose a novel stochastic gradient
descent-ascent algorithm, which does not require the knowl-
edge of transition kernel. We show that the SGDA algorithm
is a stochastic approximation of the continuous time saddle
flow dynamics (7), which almost surely (w.p.1) converges to
the unique saddle point of the C-RL problem.

In many optimization problems, the goal is to find some
recursive numerical procedure that sequentially approximates
a value of the decision variable x, which minimizes the
objective function, e.g., ẋ = h(x) or xn+1 = xn+αnh(xn).
Stochastic approximations attempt to solve the problem when
one cannot actually observe h(x), but rather h(x) plus some
error or noise. Consider the following projection algorithm:

xn+1 = ΨG

[
xn + αn

(
h(xn) + ξn

)]
, (8)

where G := {x : qi(x) ≤ 0, i ∈ [s]} denotes the constraints
and {ξn} denotes a sequence of random variables. The goal
is to generate a sequence {xn} estimate of the optimal
value of x when the actual observation has random noise
h(xn) + ξn. In general, the projection ΨG [x] is easy to
compute when the constraints are linear; i.e., when G is
a polyhedron. We introduce the following list of standard
assumptions for stochastic approximation

Assumption 2 (Stochastic Approximation).
1.1 h(·) is a continuous function.
1.2 {αn} is a sequence of positive real numbers such that

αn > 0,
∑
n α

n = ∞,
∑
n(α

n)2 <∞,

1.3 G is the closure of its interior and is bounded. The
qi(·), i ∈ [s] are continuously differentiable.

1.4 There is a T > 0 such that for each ϵ > 0

lim
n
P{sup

j≥n
max
t≤T

|
m(jT+t)−1∑
i=m(jT )

αiξi| ≥ ϵ} = 0,

where tn :=
∑n−1
i=0 α

i and m(t) := maxn{tn ≤ t} for
t ≥ 0.

Under those standard assumptions for stochastic approx-
imations, the sequence {xn} generated by the projection
algorithm (8) will converge almost surely to a stable solution
to the projected system.

Theorem 5. [13, Theorem 5.3.1] Assume Assumption 2
hold. Consider the following ODE:

ẋ = ΠG

[
x, h(x)

]
. (9)

Let x∗ denotes an asymptotically stable point of (9) with
domain of attraction DA(x∗) and xn generated by (8). If
A ∈ DA(x∗) is compact and xn ∈ A infinitely often, then
xn converges to x∗ almost surely as n→ ∞.

Consider the following randomized primal-dual approach
proposed in [7], [14], where we assume the presence of
a generative model. For a given state action pair (s, a),
the generative model provides the next state s′ and the
reward functions r(s, a), gi(s, a) to train the policy. Consider
the following stochastic approximation for the Lagrangian
function (5) for a distribution ξ:

Lξ(λ, µ, v) = (1− γ)v(s0)−
∑
i∈[I]

µih
i+ (10)

1ξ(s,a)>0

λ(s, a)
[
r(s, a)− v(s) + γv(s′) +

∑
i∈[I] µig

i(s, a)
]

ξ(s, a)

where s0 ∼ q, (s, a) ∼ ξ, and the next state s′ ∼
P (·|s, a). The stochastic approximation Lξ(λ, µ, v) (10) is
an unbiased estimator for the Lagrangian function (5), i.e.,
Eξ,P (·|s,a),q

[
Lξ(λ, µ, v)

]
= L(λ, µ, v). Using the proposed

stochastic approximation of the Lagrangian function, con-
sider the following projection algorithm for solving the C-RL
problem in a model-free setting:

vn+1 = ΨV

[
vn + αn

(
1ξ(s,a)>0

λ(s, a)[e(s)− γe(s′)]

ξ(s, a)

− (1− γ)e(s0)−
1

ρ
(vn − v̂n)

)]
,

v̂n+1 = ΨV

[
v̂n + αn

1

ρ
(vn − v̂n)

]
,

µn+1
i = ΨU

[
µni + αn

(
hi − 1ξ(s,a)>0

λ(s, a)gi(s, a)

ξ(s, a)

− 1

ρ
(µni − µ̂ni )

)]
,

µ̂n+1
i = ΨU

[
µ̂ni + αn

1

ρ
(µni − µ̂ni )

]
,



λn+1
a = Ψ∆

[
λna + αn

(
− 1

ρ
(λna − λ̂na)

+ 1ξ(s,a)>0
r(s, a)− v(s) + γv(s′) +

∑
i µ

n
i g

i(s, a)

ξ(s, a)

)]
,

λ̂n+1
a = Ψ∆

[
λ̂na +

1

ρ
(λna − λ̂na)

]
, (11)

The following Theorem is a direct application of Theorem
5 and 4, which shows the sequence from (11) almost surely
converges to the optimal solution to the C-RL problem.

Theorem 6. Assume 1 and 2 hold, as n→ ∞, the sequence
{λn, vn, µn} generated by (11) almost surely (w.p.1) con-
verge to the optimal solution of the C-RL problem (2).

V. NUMERICAL EXAMPLES

In this section, we illustrate the effectiveness of our
proposed approach using a classical CMDP problem: flow
and service control problem in a single-server queue [3].
Specifically, we consider a discrete-time single-server queue
with a buffer of finite size L. We assume that, at most, one
customer may join the system in a time slot. The state s
corresponds to the number of customers in the queue at
the beginning of a time slot (|S| = L + 1). The service
action a is selected from a finite subset A, and the flow
action b is selected from a finite subset B. Specifically, for
two real numbers satisfying 0 < amin ≤ amax < 1, if
the queue is non-empty and if the action of the server is
a ∈ A, where A is a finite subset of [amin, amax], then
the service of a customer is successfully completed with
probability a. Likewise, for two real numbers satisfying
0 ≤ bmin ≤ bmax < 1, if the queue is not full and if the
action of the server is b ∈ B(s), where B(s) is a finite
subset of [bmin, bmax], then the probability of having one
arrival during this time slot is equal to b. We assume that
0 ∈ B(x) for all x; moreover, when the buffer is full, no
arrivals are possible (B(L) = 0). The transition law P (·|s, a)
is therefore given by:

a(1− b) if 1 ≤ x ≤ L, y = x− 1;

ab+ (1− a)(1− b) if 1 ≤ x ≤ L, y = x;

(1− a)b if 0 ≤ x < L, y = x+ 1;

1− (1− a)b if y = x = 0;

The reward function r(s, a, b) is a real-valued decreasing
function that depends only on s, which can be interpreted as
a holding cost. The reward function g1(s, a, b) corresponding
to the service rate is assumed to be a decreasing function that
depends only on a. It can be interpreted as a higher service
success rate having a higher cost. The reward function
g2(s, a, b) corresponding to the flow rate b is assumed to
be an increasing function that depends only on b. It can be
interpreted as a higher flow rate is more desired.

Suppose we want to solve the optimal policy for C-RL
problem (1), while satisfying constraints for service and
flow. In the following numerical example, we compare the
result generated by (11) and the ground truth result by
directly solving the linear programming 2, where we use
the transition law stated above. Specifically, we choose L =

4, A = [0.2, 0.3, 0.5, 0.6, 0.8], B = [0.1, 0.3, 0.5, 0.9, 0]. The
initial distribution q is set as uniform distribution. The reward
functions are r(s) = −s + 5, g1(a) = −10a + 3, g2(b) =
10b− 3.

Fig. 3: objective function Fig. 4: constraint functions

Fig. 5: occupancy measure λ Fig. 6: dual variable v

We compare the cumulative reward function, constraint
functions, and output decision variables λ, µ, v with the
ground truth result by directly solving the linear program-
ming problem (2). Results show that the decision variables
converge to the optimal solution while satisfying the con-
straints for flow and service.

VI. CONCLUSION

In this work, we propose a novel SGDA algorithm to solve
the C-RL problem in occupancy measure space leveraging
tools from regularized saddle flow dynamics. Even when
the Lagrangian function is bilinear, the continuous dynamics
asymptotically converge to the optimal occupancy measure
and policy. The discretized SGDA is a stochastic approxima-
tion of the continuous-time saddle flow dynamic. We further
proved the SGDA algorithm almost surely converges to the
optimal solution to the C-RL problem.

APPENDIX

A. Proof of Theorem 1

We will use the following technical Lemma:

Lemma 7. For any closed convex set K ⊂ Rn and a, b ∈
K, v ∈ Rn,the inner product

⟨b− a, v −ΠK[a, v]⟩ ≤ 0

Proof: According to [15, Sec.0.6, Cor.1], we have the fol-
lowing variational inequality holds:

⟨b−ΨK[c], c−ΨK[c]⟩ ≤ 0, ∀b ∈ K, ∀c ∈ Rn.

The rest follows from [16, Lem.4]



Using this lemma, the proof of Theorem 1 essentially
follows from [11, Thm.9].
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