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Abstract

The shift from conventional synchronous generation to renewable inverter-

interfaced sources has led to a noticeable degradation of frequency dynamics

in power systems, mainly due to a loss of inertia. Fortunately, the recent

technology advancement and cost reduction in energy storage facilitate the

potential for higher renewable energy penetration via inverter-interfaced

energy storage. With proper control laws imposed on inverters, the rapid

power-frequency response from energy storage contributes to mitigating the

degradation. A straightforward choice is to emulate the droop response

and/or inertial response of synchronous generators through droop control

(DC) or virtual inertia (VI), yet they do not necessarily fully exploit the benefits

of inverter-interfaced energy storage. This thesis thus seeks to challenge this

naive choice of mimicking synchronous generator characteristics by advocat-

ing for a principled control design perspective.

To achieve this goal, we build an analysis framework for quantifying the

performance of power systems using signal and system norms, within which

we perform a systematic study to evaluate the effect of different control laws

on various performance metrics. Our analysis unveils several limitations of
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traditional control laws, such as the coupling between the steady-state per-

formance and dynamic performance in DC and the high noise sensitivity of

VI, which motivate the need for better solutions. We first propose dynam-i-c

Droop control (iDroop) which is proved to enjoy many good properties. For ex-

ample, iDroop is able to decouple the steady-state performance and dynamic

performance. Moreover, iDroop can be tuned to achieve Nadir elimination,

zero synchronization cost, and low noise sensitivity. However, iDroop has no

control over the rate of change of frequency (RoCoF), which is undesirable in

low-inertia power systems for the risk of falsely triggering protections. Thus,

we further propose frequency shaping control (FS) whose most outstanding

feature is its ability to shape the system frequency dynamics following a sud-

den power imbalance into a first-order one with the specified synchronous

frequency and RoCoF by adjusting two independent control parameters. We

finally validate theoretical results through numerical experiments performed

on a more realistic power system test case.
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Chapter 1

Introduction

An electric power system is a large complex dynamic network that con-

sists of generation, transmission, and distribution systems, all of which work

together to deliver the right amount of electricity from power plants to end

customers. Since different components in this physical network are mutually

dependent, the “right amount” actually refers to a balance between electric

power supply and demand over the network on a second-by-second basis,

which is the key to the normal operation of a power system [1]. A sudden

surplus of generation over load boosts the frequency above its nominal value,

while a sudden drop of generation below load depresses the frequency below

its nominal value [2]. Usually, the nominal frequency is either 50 Hz or 60 Hz

depending on the number of alternating current cycles per second in a partic-

ular power system. For example, the European and most of the Asian power

grids operate at 50 Hz and the North American power grid operates at 60 Hz.

Since most electrical devices connected to power grids are designed to operate

within certain frequency ranges, a power imbalance not corrected timely may

result in catastrophic consequences in the end. For instance, the main cause
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of the 2021 Texas power crisis where the unprecedented low temperatures

following severe winter storms knocked out the Texas power grid is that the

deficient supply of power due to frozen equipment could not meet the high

demand for electricity in such cold weather.

Nowadays, power systems are in a state of flux [3]. Motivated by growing

concerns about climate change and energy depletion [4], power systems

are experiencing a gradual change in the mix of generation—conventional

synchronous generators are being replaced by renewable energy sources

such as solar and wind energy. This tendency is in line with the goal of

the Paris Agreement, under which nearly 200 countries contribute together

towards reducing greenhouse gas emissions. To name a few, China and India

committed to increase the nonfossil share of their energy supply to 20% and

40%, respectively, by 2030 [5, 6]. As the largest historical emitter in the world,

the United States formally rejoined the Paris Agreement on February 19, 2021,

with a pledge to achieve net-zero emissions no later than 2050. Clearly, this

calls for further development of renewable generation. It is anticipated that

the renewable share of the electricity generation mix in the United States will

double from 21% in 2020 to 42% in 2050 [7].

However, this transition actually poses challenges to the operation of

power systems [8, 9]. On the one hand, the intermittent nature of renewable

energy sources catalyzes unpredictable changes in power generation [10]. For

example, solar power is variable since the sun does not always shine and

wind power is capricious since the wind does not constantly blow. Thus, more

effort is needed to keep power well-balanced; otherwise frequency fluctuates
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more markedly and frequently. On the other hand, renewable energy sources

typically connect to power grids through power electronic converters which

lack the natural inertia inherently provided by rotating mass of synchronous

generators [11]. This implies a reduction of system inertia in power systems

with a high penetration of renewable energy, which further adversely affects

the frequency dynamics [12].

In physics, the so-called inertia reflects the tendency of any object to reject

any change in its velocity, which was formulated by Isaac Newton as his

well-known first law of motion. Power systems have long been predominately

powered by synchronous generators, whose mechanical speed of rotation is di-

rectly coupled to electrical frequency of the grid via electromagnetic induction.

Hence, the moment of inertia of rotating mass of these generators measures

the resistance of power systems to change in grid frequency. Roughly speak-

ing, greater moment of inertia gives rise to stubborner resistance to frequency

deviations since the kinetic energy stored in rotating mass is directly propor-

tional to the moment of inertia. Specifically, the kinetic energy is equal to

one-half of the product of the moment of inertia and the squared electrical

angular frequency. This relation lays the groundwork for understanding the

fact that the kinetic energy stored in rotating mass of synchronous generators

effectively performs as a buffer against frequency changes. As mentioned

before, the grid frequency rises above or drops below its nominal value during

power imbalances, depending on whether a net excess or deficiency of power

supply occurs. The mechanism is as follows: if power supply exceeds demand,

the kinetic energy is absorbed into the rotating mass from the grid, which
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speeds up generators and thus the grid frequency increases; if power demand

exceeds supply, the kinetic energy is extracted from the rotating mass to the

grid, which slows down generators and thus the grid frequency decreases.

Although this procedure, also known as inertial response, typically lasts only

for a few seconds, it provides time for turbine-governors to respond to power

imbalances by automatically adjusting the supply of mechanical power to

synchronous generators in a desired way. Here, a turbine-governor, as shown

in Figure 1.1, is a device attached to the shaft of a driven generator for the

sake of controlling the power that enters the generator in response to its rota-

tional speed variation. For example, in a fossil-fueled power plant, a governor

manipulates the position of a steam valve such that the steam flow into the

turbine decreases if the generator speed rises and increases if the generator

speed falls, with the turbine converting thermal energy to rotational energy

that drives the generator. This kind of procedure is known as droop response,

which helps to arrest and stabilize the frequency to a value that still deviates

from the nominal one. Conceivably, for a power system with sufficient online

generators, a large amount of moment of inertia is present and hence only

a minor frequency deviation is able to recover the power balance through

inertial and droop response.1

Nevertheless, the ever-growing renewable energy penetration level drives

power systems towards an era of inverter-dominated generation [14], where an

inverter is a power electronic device that converts direct current (dc) electricity

to alternating current (ac) electricity [15]. Although multiple power conversion

1The restoration of frequency to the nominal value requires a secondary control layer, e.g.,
automatic generation control [13], which is out of the scope of this thesis.
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Turbine
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Mechanical Speed Electrical Frequency

Figure 1.1: Scheme for turbine-governor

stages are needed to integrate renewable energy sources into grids, usually

inverters are the ones that play the role of the final stage which directly

interacts with the grid [16]. Figure 1.2 illustrates the typical way in which

solar and wind energy are connected to the grid. Note that the main structure

difference here is that solar energy is converted to dc electricity first but wind

energy is converted to ac electricity first. A solar generation system begins

with the process that photovoltaic arrays transform solar radiation into dc

electricity. A wind generation system starts with the procedure that wind

turbines capture kinetic energy from the wind blowing over their aerodynamic

blades whose low-speed high-torque mechanical power is converted to high-

speed low-torque mechanical power via a gearbox so as to drive an electric

generator that produces ac electricity. However, neither the dc electricity

produced in a solar generation system nor the ac electricity produced in a

wind generation system can be integrated into the grid at this stage since their

quality is highly susceptible to ambient conditions and incompatible with

grid conditions. Firstly, to ensure the maximum power generation efficiency,
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the “raw” dc electricity generated from sunlight and ac electricity generated

from wind, after being filtered for reducing ripples, are regulated by a dc-dc

converter and an ac-dc converter, respectively, to realize the maximum power

point tracking under time-variant ambient conditions. Then, the obtained

power is injected to a dc link capacitor, whose voltage is regulated by a

following inverter to a constant value. Finally, the dc power is interfaced

with the ac grid through the inverter, where an output filter and a step-up

transformer are included to enable harmonics mitigation and voltage elevation.

The structure described above makes it easy to understand the reduction of

inertia in power systems as renewable energy penetration grows. Clearly, solar

generation systems contribute no inertia since they have no moving parts at

all. As for most modern wind generation systems, although wind turbines

do have massive rotor blades, they fail to contribute inertia either since a by-

product of the power electronics interface, which decouples the variable speed

of the wind generator with the fixed frequency of the power grid in the normal

operation, is that it prevents the kinetic energy stored in rotor blades from

providing a buffer against rapid grid frequency changes when sudden power

imbalances occur. With a lack of inertia in power systems, an exacerbated

frequency deviation is required to recover the power balance. Therefore, care

must be taken when replacing a significant amount of synchronous generators

with renewable resources to avoid serious frequency dynamic degradation

caused by reduced inertia. Notably, frequency dynamic degradation increases

the risk of blackouts, which in turn places a limit on the total amount of

renewable energy that can be sustained by power grids [17]. For example,

an incident happened in Europe on January 8, 2021, where the grid of the
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Figure 1.2: Typical structure of renewable energy systems [18]

continent split into two to elude a huge blackout in response to a power

demand surge due to biting cold, is blamed on the rising renewables in the

energy mix.

Fortunately, the recent technology advancement and cost reduction in

energy storage facilitate the potential to enable higher renewable energy pene-

tration by means of inverter-interfaced energy storage [19]. By virtue of the

response rapidity and control flexibility, inverter-interfaced energy storage

is deemed as a viable option for frequency control in power systems, where

energy storage contributes to fast power-frequency response according to the

control law imposed on inverters to compensate the possibly fast decline in

frequency resulting from low-inertia. For example, an impressive 472 MW of

storage has been reported to participate in the frequency control during the

recent blackout caused by a lightning strike in the Great Britain system on
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August 9, 2019 [20], where there was a cumulative loss of 1878 MW genera-

tion from the 32 GVA prior-contingency generation capacity available on the

system.

Straightforwardly, a widely embraced control approach is to emulate the

droop response and/or inertial response of synchronous generators through

droop control (DC) and/or virtual inertia (VI) [21, 22]. DC only imitates the

natural droop response of synchronous generators by modulating the inverter

power output based on the local frequency measurement in a way that is

proportional to the frequency deviation. VI also mimics the physical inertial

response of synchronous generators through fast power exchange between

the inverter and the grid by means of a proportional-derivative action upon

the frequency deviation. In such settings, the inverter power output variation

works as follows: its proportional component helps to continually resist any

nonzero frequency deviation as droop response, while its derivative com-

ponent injects power to the grid when the frequency decreases and absorbs

power from the grid when the frequency increases, as inertial response, until

the frequency settles down. Recent works within this line of research focus on

leveraging either numerical methods [23–26] to optimize the allocation of syn-

thetic inertial and droop responses or analytical methods to characterize the

sensitivity of system performance to global or spatial variations of parameters

of such approaches [27–29].

Nevertheless, the naive utilization of inverter-interfaced energy storage to

emulate synchronous generator behavior does not take advantage of their full

potential of implementing a much wider class of control actions. Presumably,
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it need not be the case that synchronous generator behavior represents the op-

timal response to grid conditions since it is constrained by physical limits [11].

Particularly, inverter-interfaced energy storage has a much shorter time delay

and higher ramp rate when compared with synchronous generators, which

makes it a especially suitable provider for frequency control [30]. This, thus,

opens the door for the search of better control approaches.

1.1 Thesis Contributions

The high level goal of our research is to develop novel control approaches

that are able to largely improve the performance of prior methods. To this

end, the main contributions of this thesis are as follows.

We build an analysis framework for quantifying the performance of power

systems using signal and system norms, within which we perform a system-

atic study to evaluate the effect of different control laws on both frequency

response metrics and storage economic metrics. More precisely, under a mild

proportionality assumption, we are able to perform a modal decomposition

which allows us to get closed-form expressions or conditions for synchronous

frequency, Nadir, rate of change of frequency (RoCoF), synchronization cost,

frequency variance, and steady-state effort share. All of them pave the way

for a better understanding of the sensitivities of various performance metrics

to different control laws.

Our analysis unveils several limitations of traditional control laws, such

as the inability of DC to improve the dynamic performance without sacri-

ficing the steady-state performance and the unbounded frequency variance
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introduced by VI in the presence of frequency measurement noise. Therefore,

rather than clinging to the idea of imitating synchronous generator behavior

via inverter-interfaced energy storage, we prefer searching for better solutions.

We first propose dynam-i-c Droop control (iDroop) [31–33]—inspired by the

classical lead/lag compensator—which is proved to enjoy many good proper-

ties. First of all, the added degrees of freedom in iDroop allow to decouple the

dynamic performance improvement from the steady-state performance. In

addition, the lead/lag property of iDroop makes it less sensitive to stochastic

power fluctuations and frequency measurement noise. Last but not least,

iDroop can also be tuned either to achieve zero synchronization cost or to

achieve Nadir elimination, by which we mean to remove the overshoot in

the transient system frequency. Particularly, the Nadir elimination tuning

of iDroop exhibits the potential for a balance among various performance

metrics in practice. However, iDroop has no control over the RoCoF, which

is undesirable in low-inertia power systems for the risk of falsely triggering

protections.

We then propose frequency shaping control (FS) [34, 35]—an extension of

iDroop—whose most outstanding feature is its ability to shape the system

frequency dynamics following a sudden power imbalance into a first-order

one with the specified synchronous frequency and RoCoF by adjusting two

independent control parameters.

We finally validate theoretical results through numerical experiments per-

formed on a more realistic power system test case that violates the propor-

tionality assumption, which clearly confirms that our proposed control laws
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outperform the traditional ones in an overall sense.

1.2 Thesis Outline

The remainder of this thesis is organized as follows:

• Chapter 2 describes the power system model used here and defines some

relevant frequency control metrics.

• Chapter 3 turns attention towards proportionally heterogeneous power

systems, a reasonable first-cut approximation to generally heterogeneous

power systems, where a modal decomposition can be done to extremely

ease the performance analysis.

• Chapter 4 formally compares the performance of the traditional control

laws—DC and VI—with that of our proposed control laws—iDroop and

FS—for frequency control via inverter-interfaced energy storage, which

serves as both a motivation and a justification for our research.

• Chapter 5 validates our theoretical results through a numerical example

with more complex models for both the energy storage and the power

system.

• Chapter 6 concludes this thesis.
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Chapter 2

Model and Metrics for Frequency
Control in Power Systems

This chapter describes the power system model used here and defines some

relevant frequency control metrics. In Section 2.1, we build an one-bus system

model from scratch, a simple yet useful characterization for many practical

systems that are tightly electrically coupled. In Section 2.2, we generalize the

one-bus system model to multi-bus system model by considering the effect

of the transmission network. In Section 2.3, we introduce the mathematical

definitions and physical interpretations of some signal and system norms

which are then used to measure the performance of power systems under

different frequency control laws based on inverter-interfaced energy storage

through appropriately defined frequency response and storage economic

metrics.
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2.1 Model of One-Bus Systems

We start from the simple case where the inter-machine oscillations are

negligible so that the whole power system can be modelled as an equivalent

augmented synchronous generator, where, by “augmented”, we mean that the

effect of a turbine-governor is also considered. Such a representation is proven

to be sufficiently accurate for many practical systems [36–38]. The dynamics of

a synchronous generator can be characterized by the classical swing equation

and the key features of a turbine-governor also can be captured by a simplified

model. It is worth reproducing some of the derivation provided in [39, 40] for

modelling such an augmented synchronous generator since it throws light

on the physical interpretation of important jargon used by power system

engineers. With the augmented synchronous generator model built up, we

can gain a better understanding of the frequency dynamic degradation in low-

inertia power systems by investigating an example of practical power systems,

which motivates the participation of inverter-interfaced energy storage in

frequency control.

2.1.1 Swing Equation

The motion of a synchronous generator obeys Newton’s second law. Thus,

the equation of motion is

JΩ̇m = Tm − Te , (2.1)

where J denotes the total moment of inertia (in kg m2), Ωm the rotor mechani-

cal angular velocity (in rad s−1), Tm the mechanical torque (in N m), and Te
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the electrical torque (in N m).

It is convenient to express (2.1) in terms of the inertia constant H, which is

defined as the normalized kinetic energy at the rated rotor mechanical angular

velocity Ωm0 (in rad s−1) on the rated apparent power base SB (in VA), i.e.,

H :=
JΩ2

m0
2SB

. (2.2)

Observe from (2.2) that the inertia constant H (in s) actually counts seconds

during which the rated power can be supplied solely by the stored kinetic

energy in the generator. Typically, H is in a narrow range of 1–10 s, which

makes it a better choice than J for power system engineers to quantify the

inertial response of a synchronous generator, given that J has a high variance

between individual generators. After expressing J in terms of H though (2.2),

we can rewrite (2.1) as
2HSB

Ω2
m0

Ω̇m = Tm − Te . (2.3)

Since what we care about is the deviation of the rotor mechanical angular

velocity from its rated value, we will denote as ωm the per unit deviation of

the rotor mechanical angular velocity from its rated value, i.e.,

ωm :=
Ωm − Ωm0

Ωm0
,

from which we can get

Ω̇m = Ωm0ω̇m . (2.4)

Applying (2.4) to (2.3), we can get

2Hω̇m =
Ωm0Tm − Ωm0Te

SB
. (2.5)
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Note that usually the rotor mechanical angular velocity does not deviate

from its rated value much, i.e., Ωm ≈ Ωm0. Thus, we can rewrite (2.5) in terms

of the mechanical input power from the turbine to the generator Pm (in W)

and the electrical output power from the generator to the load Pe (in W) as

2Hω̇m ≈ ΩmTm − ΩmTe

SB
=

Pm − Pe

SB
. (2.6)

If it is recognized that the steady-state values of Pm and Pe, denoted as

Pm⋆ and Pe⋆, respectively, are equal, i.e., Pm⋆ = Pe⋆, we can further rewrite

(2.6) in terms of the per unit variations of the mechanical power input and the

electrical power output from their respective steady-state values which are

defined as

pm :=
Pm − Pm⋆

SB
and pe :=

Pe − Pe⋆

SB
, (2.7)

respectively. Thus, combining (2.6) and (2.7), we can get

2Hω̇m =
(Pm − Pm⋆)− (Pe − Pe⋆)

SB
= pm − pe . (2.8)

The rotor electrical and mechanical angular velocities are related by the

number of pairs of field poles nf through the relations that

Ω = nfΩm and Ω0 = nfΩm0 , (2.9)

where Ω and Ω0 denote the true and rated rotor electrical velocities (in

rad s−1), respectively. Hence, we can replace ωm in (2.8) with the per unit
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deviation of the rotor electrical angular velocity from its rated value ω since

ω :=
Ω − Ω0

Ω0
=

nfΩm − nfΩm0

nfΩm0
=

Ωm − Ωm0

Ωm0
=: ωm , (2.10)

which yields

2Hω̇ = pm − pe . (2.11)

Note that, due to (2.10), the per unit deviations of the rotor electrical angular

velocity and rotor mechanical angular velocity from their respective rated

values, namely, ω and ωm, are used interchangeably from now on.

It is reasonable to separate pe in (2.11) into two components as pe = pl +

αlω, where the first term pl represents the per unit non-frequency-sensitive

load change, such as the one from lights and heaters, and the second term

αlω represents the per unit frequency-sensitive load change, such as the one

from fans and pumps. Here, αl is the load-frequency sensitivity coefficient (in

p.u.) whose typical values are 0–2 p.u.. For example, αl = 1 p.u. means that a

1% frequency change results in a 1% load change.

Now, we can get the following classical swing equation

mω̇ = −αlω + pm − pl with m := 2H . (2.12)

Here, with an abuse of terminology, m is also called generator inertia constant,

which instead of 2H is used just for a clean notation. The above equation can

also be represented by a transfer function as

ω̂

p̂m − p̂l
=

1
ms + αl

, 1 (2.13)

1We use hat to distinguish the Laplace transform from its time domain counterpart.
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ω1

ms+ αl

pl −

Figure 2.1: Block diagram of swing equation

whose block diagram is shown in Figure 2.1.

2.1.2 Turbine-Governor Dynamics

A turbine-governor varies mechanical power supply to synchronous gen-

erators after sensing mechanical speed deviations. Depending on turbine

types and configurations, the detailed dynamics of a turbine-governor can

be extremely high-order and nonlinear, which will be a barrier to our future

analysis. Hence, we make a detour for tractable analysis by adopting the

following simplified model that captures the key features of turbine-governor

dynamics [41]:

τt ṗm = −pm + φωϵ(ω) (2.14)

with

φωϵ(ω) :=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− 1
rt
(ω + ωϵ) if ω ≤ −ωϵ

0 if − ωϵ < ω < ωϵ

− 1
rt
(ω − ωϵ) if ωm ≥ ωϵ

,

where τt > 0 represents the turbine time constant (in s), rt > 0 represents the

turbine droop coefficient (in p.u.), and ωϵ ≥ 0 is the threshold of the deadband

(in p.u.). To gain a better understanding of (2.14), we can turn it into the block

diagram as shown in Figure 2.2, which is composed of a governor deadband,

an inverse droop, and a first-order lag.
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In general, a governor deadband is of two types: inherent and inten-

tional [42]. An inherent deadband is the one resulting from uncontrollable

mechanical effect such as sticky valves and loose gears. Experience shows that

an inherent deadband is often within ±5 mHz, corresponding to ±0.0001 p.u.

electrical frequency deviation on a 50 Hz base, which is negligible. An inten-

tional deadband is the one designed to avoid mechanical wear due to excessive

control activities in response to speed deviations, with which the governor

does not react to the speed deviation ω until it exceeds a preset threshold

±ωϵ. A standard value of ωϵ is 36 mHz, corresponding to 0.000 72 p.u. elec-

trical frequency deviation on a 50 Hz base. Here, we consider an intentional

deadband.

An inverse droop characterizes the droop response which feeds speed

deviations back to adjust mechanical power output of the turbine by changing

the valve position. More precisely, a negative feedback is used with the aim

of raising mechanical power output if a sudden decrease in speed occurs

and lowering mechanical power output if a sudden increase in speed occurs.

Ideally, the variation of pm with ω is determined by the control gain 1/rt which

is the reciprocal of the turbine droop coefficient. Thus, it is often preferred

to use the so-called turbine inverse droop coefficient αt := 1/rt (in p.u.), whose

typical values are 10–20 p.u.. For example, αt = 20 p.u., i.e., rt = 0.05 p.u.,

means that a 1% speed drop would cause a 20% increase in mechanical power

output.

A first-order lag reflects the fact that the mechanical power output variation

following the speed deviation does not occur instantaneously since the various
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rtωǫ

Figure 2.2: Block diagram of simplified turbine-governor dynamics

mechanical processes involved all take time. For instance, it would take

a while for a change in the valve position to be effective in changing the

mechanical power output of the turbine due to the gradual penetration of the

flow from the valve into the turbine. Thus, we approximate such lags with a

single turbine time constant τt.

2.1.3 Augmented Synchronous Generator Model

Now, we are ready to establish the augmented synchronous generator

model after combining the swing equation in (2.12) and the turbine-governor

dynamics in (2.14), which yields the block diagram shown in Figure 2.3. This

model can be used to analyze the frequency performance of one-bus systems,

where the electrical distances between different parts in a power system are

negligible. In such systems, we can ignore the inter-machine oscillations

and assume a coherent frequency among all generators. In other words,

all generators are deemed to be locked together to form a grid frequency F

(in Hz) determined by their common rotor electrical angular velocity Ω via

F = Ω/(2π). This makes an equivalent single generator model shown in

Figure 2.3 sufficient to represent the collective frequency performance of the

whole system. Therein, the per unit deviation of the rotor electrical angular
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velocity ω is exactly the per unit grid frequency deviation since

F − F0

F0
=

Ω/(2π)− Ω0/(2π)

Ω0/(2π)
=

Ω − Ω0

Ω0
=: ω ,

where F0 := Ω0/(2π) denotes the nominal grid frequency (in Hz). This shows

again the benefit of per unit analysis used by power system engineers. Note

that, although it is convenient to use the per unit grid frequency deviation ω

in analysis, we prefer to also use the true frequency deviation f := F0ω when

studying a practical system.

It worth noting that the parameters m, αl, αt, and τt of the equivalent gen-

erator are actually either accurate or approximate aggregates of parameters of

all generators in such a system. More precisely, for a system with n genera-

tors, the aggregate generator inertia constant m and aggregate load-frequency

sensitivity coefficient αl are exactly the sum of the generator inertia constants

and load-frequency sensitivity coefficients of all generators, respectively, i.e.,

m =
n

∑
i=1

mi and αl =
n

∑
i=1

αl,i ,

where mi and αl,i denote the generator inertia constant and load-frequency

sensitivity coefficient of the ith generator, respectively; however, αt and τt

are chosen to be the dc gain and time constant, respectively, of a first-order

reduced model for the aggregate turbine-governor dynamics given by [43]

n

∑
i=1

αt,i

τt,is + 1
,

where αt,i is the ith turbine inverse droop coefficient, τt,i is the ith turbine time

constant, and the individual governor deadbands are omitted for simplicity.
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Figure 2.3: Block diagram of augmented synchronous generator model

Remark 2.1 (Change of Base). Since individual generators in a power system may

have different ratings, it is necessary to normalize their parameter values to a common

base before conducting any analysis. A good rule of thumb for the change of base is to

keep the actual value unchanged. For example, if mi,old and αl,i,old are the generator

inertia constant and load-frequency sensitivity coefficient, respectively, of the ith

generator on its own power base SB,i,old, then we have to recalculate the per unit

values on the power base of the whole system SB as

mi = mi,old
SB,i,old

SB
and αl,i = αl,i,old

SB,i,old

SB
.

Therefore, throughout this thesis, all per unit values are on the system base by default,

which means that we assume that they have been preprocessed properly by the change

of base.

With the model provided in Figure 2.3, we can investigate the frequency

performance of some practical systems as in the following example, which

helps to offer a better insight of the frequency dynamic degradation in low-

inertia power systems.

Example 2.1 (Great Britain Power System Under the Low-Inertia Scenario).
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Consider the Great Britain power system modelled as the one-bus system shown in

Figure 2.3 with parameter values taken mostly from [44, 45]. The system power base

is SB = 32 GVA and the nominal system frequency is F0 = 50 Hz. It is known that

the present lowest value of the system inertia constant is H = 4.06 s [44]. However,

it is predicted that in 2025 the system inertia constant under the high renewable

penetration scenario will be as low as H = 2.19 s [44]. In addition, we assume

that the aggregate load-frequency sensitivity coefficient is αl = 1 p.u., the aggregate

turbine inverse droop coefficient is αt = 15 p.u., the turbine time constant is τt = 1 s,

and the governor deadband is ±36 mHz, i.e., ωϵ = 0.000 72 p.u.. All parameter

values are summarized in Table 2.1. To show the effect of lower inertia on frequency

dynamics, Figure 2.4 provides a plot of system frequency deviations following a sudden

power disturbance for the two different values of system inertia constant mentioned

above. According to [45], the maximum value of a sudden power imbalance that the

system should survive is |µ0|allowed = 0.0563 p.u. which corresponds to the loss of

the two biggest generation units. Thus, we test the case when pl is a step increase

with a magnitude of 0.0563 p.u. at time t = 1 s. Clearly, for the lower value of inertia,

the transient frequency dip gets closer to 500 mHz, the maximum allowed frequency

drop for the Great Britain power system [44, 45]. Thus, certain measures should be

taken to improve it.

2.1.4 One-Bus System with Energy Storage

Since frequency deviation is volatile in a low-inertia power system, it is

necessary to resort to certain measures to improve frequency performance,

especially following major power disturbances. A promising approach to
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Table 2.1: Parameter Values of Great Britain Power Systems (Example 2.1)

PARAMETERS SYMBOLS VALUES

Nominal frequency F0 50 Hz
System power base SB 32 GVA

Maximum power imbalance |µ0|allowed 0.0563 p.u.

System inertia constant H 4.06 s in scenario 1
2.19 s in scenario 2

Aggregate load-frequency
sensitivity coefficient

αl 1 p.u.

Aggregate turbine inverse
droop coefficient

αt 15 p.u.

Turbine time constant τt 1 s
Governor deadband

threshold
ωϵ 0.000 72 p.u.

† All per unit values are on the system base.
‡ Recall that m := 2H.
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-400
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Figure 2.4: Frequency deviations in Great Britain system (Example 2.1)
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mitigate this problem is to employ inverter-interfaced energy storage for

frequency control [46]. The dynamics of inverter-interfaced energy storage

is much faster than the electro-mechanical dynamics of conventional syn-

chronous generators, which allows for more flexibility in frequency control.

Here, we consider the most commonly used control mode of inverters—the

“grid-following” mode—which adjusts inverter power output variation pb

(in p.u.) in certain ways directly following grid frequency deviation ω. The

detailed way depends on the control law ĉ(s) employed to map ω to pb, with

which the inverter power-frequency response can be described in Laplace

domain as

p̂b = ĉ(s)ω̂ . (2.15)

Note that two underlying assumptions are made. First, the measurement of

the grid frequency is rather fast and accurate. Second, energy storage is able

to follow power commands from inverter instantly and provide any shape of

power response as long as it is within the installed capacity capability.

Then, we proceed to apply inverter-interfaced energy storage to the one-

bus system by adding the feedback loop described in (2.15) to the augmented

synchronous generator, which yields Figure 2.5.

2.2 Model of Multi-Bus Systems

With the model of one-bus systems paving the way, we now delve into the

more general multi-bus systems which relax the previous assumption about

the inter-machine oscillations. Thus, the case where different buses exhibit
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Figure 2.5: Block diagram of an one-bus system with energy storage

different frequencies can be tackled by considering the effect of the transmis-

sion network. To this end, we consider a n-bus system whose topology can be

characterized by a weighted undirected connected graph (V , E), where buses

indexed by i, j ∈ V := [n] := {1, . . . , n} are linked through transmission lines

denoted by unordered pairs {i, j} ∈ E ⊂ {{i, j} | i, j ∈ V , i ̸= j}.2 Here, some

basic concepts from graph theory are involved.

Definition 2.1 (Undirected/Simple Graph). A (simple) graph is an ordered pair

(V , E), where V is a nonempty set of vertices and E is a set of 2-element subsets of V ,

called edges.3

Definition 2.2 (Walk). A walk in a graph is a sequence of vertices such that any

pair of consecutive vertices in the sequence is an edge of the graph.

Definition 2.3 (Connectivity). A graph is connected if there exists a walk between

2Throughout this thesis, we use [n] to denote the set of the first n positive integers. For
example, [3] = {1, 2, 3}.

3A set is an unordered collection of distinct elements
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any two vertices.

Remark 2.2 (Implications of Undirected/Simple Graphs). Definition 2.1 ac-

tually implies that a (simple) graph has no self-loops, no parallel edges, and no

orientation.

As illustrated by the block diagram in Figure 2.6, assuming operation

around an equilibrium, the system dynamics are modeled as a feedback

interconnection of bus dynamics and network dynamics, where the input and

output signals that are of most interest to us are power injection set point

changes pin := (pin,i, i ∈ [n]) ∈ Rn (in p.u.) and bus frequency deviations

from the nominal value ω := (ωi, i ∈ [n]) ∈ Rn (in p.u.), respectively.4 We

now discuss the dynamic elements in more detail.

As a note for clarification, we assume ideal grid conditions with neither

imbalance nor harmonics, which allows a single-phase analysis. As usual, all

per unit values are assumed to be on a common system base with a nominal

frequency F0 := Ω0/(2π) as well as a power base SB and a voltage base VB

specified, which uniquely determines the bases of remaining parameters and

variables through the same relations as the one that their actual values satisfy.

2.2.1 Bus Dynamics

The bus dynamics that map net bus power imbalances up :=
(︁
up,i, i ∈ [n]

)︁
∈

Rn (in p.u.) to frequency deviations ω are composed of n blocks, the ith of

which represents the dynamics of the ith bus as shown in Figure 2.7. Observe

4Throughout this thesis, vectors are denoted in lower case bold and matrices are denoted
in upper case bold, unless otherwise specified.
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Figure 2.6: A multi-bus system model

from Figure 2.7 that each of the buses is in the same form as the model of an

one-bus system with energy storage shown in Figure 2.5 except for a subscript

i added to index the bus number. Thus, we can easily write the generator and

inverter dynamics by referring to (2.12), (2.14), and (2.15).

Generator Dynamics The augmented synchronous generator dynamics on

n buses can be stacked into a vector form as follows:

Mω̇ = −Alω + pm + pb + up , (2.16a)

T t ṗm = −pm +φωϵ
(ω) , (2.16b)
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Figure 2.7: Block diagram of the ith bus dynamics

where φωϵ
(ω) is a vector function of ω with its ith term determined by

φωϵ,i(ω) :=

⎧
⎪⎨
⎪⎩

−αt,i(ωi + ωϵ) if ωi ≤ −ωϵ

0 if − ωϵ < ωi < ωϵ

−αt,i(ωi − ωϵ) if ωi ≥ ωϵ

, ∀i ∈ [n] .

The meanings of all other parameters and variables should be clear from the

definitions of their one-bus counterparts. Here, M := diag (mi, i ∈ [n]) ∈
Rn×n, Al := diag (αl,i, i ∈ [n]) ∈ Rn×n, T t := diag (τt,i, i ∈ [n]) ∈ Rn×n,

pm := (pm,i, i ∈ [n]) ∈ Rn, and pb := (pb,i, i ∈ [n]) ∈ Rn, with mi > 0,

αl,i > 0, and τt,i ≥ 0, ∀i ∈ [n].
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Inverter Dynamics The dynamics of inverter-interfaced energy storage on

n buses can be stacked into a vector form as follows:

p̂b = Ĉ(s)ω̂ , (2.17)

where Ĉ(s) := diag (ĉi(s), i ∈ [n]).

2.2.2 Network Dynamics

The bread-and-butter issue that distinguishes multi-bus systems from one-

bus systems is the unignorable effect of the transmission network, which plays

a part in defining the physical relationship that system states—namely, voltage

angle and magnitude as well as active and reactive power injections at each

bus—should satisfy at an equilibrium. By conservation of complex power, at

each bus, the difference between the complex power supplied and demanded

from outside should match the net complex power drained into the transmis-

sion network at an equilibrium, which is the key idea conveyed by power

flow equations. We now derive classic power flow equations following [47].

∀i ∈ [n], let the difference between the complex power supplied and

demanded from outside at the ith bus be Si (in p.u.). At an equilibrium, we

have

Pi + jQi = Si = Vi Ii .5 (2.18)

Here, Pi and Qi are the real and imaginary parts, respectively, of the rectan-

gular representation for Si, which correspond to active and reactive power

injections (in p.u.), respectively, at the ith bus; Vi and Ii are the phasor voltage

5j represents the imaginary unit which satisfies j2 = −1; we use overline to denote the
complex conjugate.
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relative to ground and the phasor current injected to bus, respectively, at the

ith bus, i.e.,

Vi := |Vi|ej∠Vi and Ii := |Ii|ej∠Ii , (2.19)

which correspond to a sinusoidal voltage and current given by

vi := |Vi| cos (Ωt +∠Vi) and ii := |Ii| cos (Ωt +∠Ii) ,

respectively. Here, |Vi| and |Ii| are the root-mean-squared magnitudes (in p.u.)

of vi and ii, respectively, which are equal to the peak values (in p.u.) of vi and

ii, respectively, in the per unit system; ∠Vi and ∠Ii are the phases (in rad) of vi

and ii, respectively.

Let V := (Vi, i ∈ [n]) ∈ Cn and I := (Ii, i ∈ [n]) ∈ Cn. Then the following

node equations should hold:

I = YV . (2.20)

Here, Y :=
[︁
Yij
]︁
∈ Cn×n is the bus admittance matrix that can be constructed

from the primitive parameters of a transmission network, whose ijth element

can be put into a polar representation as

Yij := Gij + jBij (2.21)

with Gij and Bij called conductance and susceptance (in p.u.), respectively.

Remark 2.3 (Structure of Bus Admittance Matrix). The bus admittance matrix

Y can be constructed from the primitive admittance of a transmission network in a

standard way [47]. That is, ∀i, j ∈ [n], if i = j, then Yij, called self admittance, is

the sum of all primitive admittance connected to the ith bus; if i ̸= j, then Yij, called

30



mutual admittance, is the negative of the sum of all primitive admittance on {i, j} ∈ E .

Actually, this construction implies the symmetry of Y , i.e., ∀i, j ∈ [n], Yij = Yji,

and the following pattern of sign in mutual admittance: ∀i ̸= j, if {i, j} ̸∈ E , then

Gij = 0 and Bij = 0; if {i, j} ∈ E , then Gij ≤ 0 and Bij ≥ 0, not both zero.

Applying the ith component of (2.20), i.e.,

Ii =
n

∑
j=1

YijVj ,

to (2.18) yields

Pi + jQi = Vi

n

∑
j=1

YijV j . (2.22)

Substituting (2.19) and (2.21) to (2.22) gives

Pi + jQi =
n

∑
j=1

|Vi||Vj|
(︁
Gij − jBij

)︁
ej(∠Vi−∠Vj) . (2.23)

It is convenient to define

Θi := ∠Vi ,

with which we can rewrite (2.23) as

Pi + jQi =
n

∑
j=1

|Vi||Vj|
(︁
Gij − jBij

)︁ [︁
cos

(︁
Θi − Θj

)︁
+ j sin

(︁
Θi − Θj

)︁]︁
(2.24)

using Euler’s formula. Finally, we can separate (2.24) into real and imaginary

parts as

Pi =
n

∑
j=1

|Vi||Vj|
[︁
Gij cos

(︁
Θi − Θj

)︁
+ Bij sin

(︁
Θi − Θj

)︁]︁
, (2.25a)

Qi =
n

∑
j=1

|Vi||Vj|
[︁
Gij sin

(︁
Θi − Θj

)︁
− Bij cos

(︁
Θi − Θj

)︁]︁
, (2.25b)
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which are called power flow equations.

Observe from the right hand side of (2.25) that the power drained into the

transmission network at each bus depends on voltage angle and magnitude

of all buses, which makes the network dynamics nonlinear. Thus, to simplify

analysis, we will adopt a linearized model to characterize the network dy-

namics, which implicitly makes the following assumptions well-justified for

frequency control on transmission networks [39, 48].

Assumption 2.1 (Linearized Network Model Assumptions).

• Lossless lines: ∀{i, j} ∈ E , the line resistance is zero.

• Constant voltage profile: ∀i ∈ [n], the bus voltage magnitude is constant.

• Decoupling: Reactive power flows do not affect bus voltage angles.

• ∀{i, j} ∈ E , the equilibrium bus voltage angle difference is within±π/2.

The lossless lines assumption agrees with the fact that the line resistance is

negligible compared to the line inductance in transmission networks, which

further implies that, ∀i, j ∈ [n], Gij = 0 by the way in which the bus admittance

matrix is constructed. Then, (2.25) reduces to

Pi =
n

∑
j=1

|Vi||Vj|Bij sin
(︁
Θi − Θj

)︁
, (2.26a)

Qi = −
n

∑
j=1

|Vi||Vj|Bij cos
(︁
Θi − Θj

)︁
. (2.26b)

The constant voltage profile assumption is reasonable since bus voltage mag-

nitudes are kept within strict limits in normal operation. The decoupling
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assumption takes advantage of the weak coupling between reactive power

flows and bus voltage angles in normal operation. These two assumptions

allow us to focus on the relationship between active power injections and bus

voltage angles described by (2.26a), from which we can linearize the network

dynamics around an equilibrium as

pn,i =
n

∑
j′=1

⎛
⎝∂Θj′

n

∑
j=1

|Vi||Vj|Bij sin(Θi − Θj)

⃓⃓
⃓⃓
⃓
Θ=Θ⋆

⎞
⎠ θj′ , ∀i ∈ [n] . (2.27)

Here, pn,i is the deviation in the active power drained into the transmission

network at the ith bus (in p.u.) and θi is the angle deviation at the ith bus

(in rad) from the equilibrium angles Θ⋆ := (Θ⋆,i, i ∈ [n]) ∈ Rn of Θ :=

(Θi, i ∈ [n]) ∈ Rn.

We can stack (2.27) into a vector form by defining a weighted undirected

Laplacian matrix LB =
[︁
LB,ij

]︁
∈ Rn×n of the network whose ij′th element is

LB,ij′ = ∂Θj′

n

∑
j=1

|Vi||Vj|Bij sin(Θi − Θj)

⃓⃓
⃓⃓
⃓
Θ=Θ⋆

, (2.28)

which yields

pn = LBθ (2.29)

with pn := (pn,i, i ∈ [n]) ∈ Rn and θ := (θi, i ∈ [n]) ∈ Rn. Finally, since we

care more about ω than θ, we now involve ω in the model via

θ̇ = Ω0ω . (2.30)

Thus, (2.29) and (2.30) together characterize the linearized model of network

dynamics that map frequency deviations ω to network power deviations pn,
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which can also be described in Laplace domain as

p̂n =
L′

B
s

ω̂ with L′
B := Ω0LB . (2.31)

Notably, since throughout the modelling process we consider power drained

into the network, we need to add the block description of network dynamics

given by (2.31) as a negative feedback loop in Figure 2.6.

One might be curious about the need for the last assumption about equi-

librium bus voltage angle differences in Assumption 2.1, i.e., ∀{i, j} ∈ E ,

−π/2 < Θ⋆,i − Θ⋆,j < π/2, since it has never been used up to now. Actually,

it is made to ensure that LB is a well-defined Laplacian matrix. Prior to a

detailed explanation of this, we need to introduce the definition of a Laplacian

matrix.

Definition 2.4 (Laplacian Matrix of a Weighted Undirected Graph). Given a

weighted undirected graph (V , E) with V = [n], E ⊂ {{i, j} | i, j ∈ V , i ̸= j}, and a

weight matrix W :=
[︁
Wij
]︁
∈ Rn×n such that

Wij =

⎧
⎪⎨
⎪⎩

Wji > 0 if {i, j} ∈ E

0 if {i, j} ̸∈ E
, ∀i, j ∈ [n] , (2.32)

the Laplacian matrix L :=
[︁
Lij
]︁
∈ Rn×n of (V , E) is defined as a matrix whose ijth

element is

Lij :=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

−Wij if i ̸= j

n

∑
j′=1,j′ ̸=i

Wij′ if i = j
, ∀i, j ∈ [n] . (2.33)

Remark 2.4 (Independence from Diagonal Weights). From (2.33), it is easy to
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see that the Laplacian matrix of a graph is independent of diagonal entries of the

weight matrix. Thus, from the perspective of Laplacian matrix, we can always assume

zero diagonal weights without loss of generality which is an assumption naturally

needed in a (simple) graph for consistency with the fact of no self-loops.

We now quickly check that LB built in (2.28) is a well-defined Laplacian

matrix under the assumption that, ∀{i, j} ∈ E , −π/2 < Θ⋆,i − Θ⋆,j < π/2,

using Definition 2.4. A simple calculation shows that the explicit expression

for the ijth element of LB is

LB,ij =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

−|Vi||Vj|Bij cos(Θ⋆,i − Θ⋆,j) if i ̸= j

n

∑
j′=1,j′ ̸=i

|Vi||Vj′ |Bij′ cos(Θ⋆,i − Θ⋆,j′) if i = j
, ∀i, j ∈ [n] ,

which is in the same format as (2.33) with

Wij := |Vi||Vj|Bij cos(Θ⋆,i − Θ⋆,j) , ∀i ̸= j .

Thus, LB can be considered as the Laplacian matrix associated with the weight

matrix W defined as

Wij :=

⎧
⎪⎨
⎪⎩

|Vi||Vj|Bij cos(Θ⋆,i − Θ⋆,j) if i ̸= j

0 if i = j

, ∀i, j ∈ [n] . (2.34)

It remains to be shown that (2.34) produces a well-defined weight matrix

W that satisfies (2.32) for the graph (V , E) underlying the n-bus system.

Clearly, ∀i, j ∈ [n], |Vi| > 0, |Vj| > 0. We then divide our analysis of Wij

according to diagonal and off-diagonal terms. For the case that i = j, we

have {i, j} ̸∈ E and Wij = 0. For the case that i ̸= j, if {i, j} ̸∈ E , then
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Wij = |Vi||Vj|Bij cos(Θ⋆,i − Θ⋆,j) = 0 since Bij = 0 by Remark 2.3; if {i, j} ∈ E ,

then Wij = |Vi||Vj|Bij cos(Θ⋆,i − Θ⋆,j) = |Vj||Vi|Bji cos(Θ⋆,j − Θ⋆,i) = Wji > 0

since Bij = Bji > 0 by Remark 2.3 and cos(Θ⋆,i − Θ⋆,j) = cos(Θ⋆,j − Θ⋆,i) > 0

by our assumption that −π/2 < Θ⋆,i − Θ⋆,j < π/2. Thus, both cases match

(2.32), which means that W is a well-defined weight matrix on (V , E). There-

fore, LB built in (2.28) is a well-defined Laplacian matrix.

Trivially, L′
B in (2.31) is a well-defined Laplacian matrix on the graph (V , E)

with the weight matrix Ω0W . As a Laplacian matrix, L′
B enjoys many useful

properties, some of which are [49]:

• Symmetry, i.e., L′
B = L′

B
T. This ensures that L′

B is real orthogonally diago-

nalizable [50].

• Each row sums to 0, i.e., L′
B1n = 0n×1, where 1n ∈ Rn is the vector of all 1’s.

This implies that 0 is an eigenvalue of L′
B associated with eigenvector 1n.

• Eigenvalues different from 0 lie on the open right half plane by the Gers-

gorin disks theorem.

• The algebraic multiplicity of the 0 eigenvalue is 1 since the graph (V , E) is

connected.

It follows from above properties that L′
B is real orthogonally diagonalizable

with eigenvalues satisfying 0 = λ1(L′
B) < λ2(L′

B) ≤ . . . ≤ λn(L′
B).

2.2.3 Closed-Loop Dynamics

Heretofore our focus is to prepare ourselves for investigating the closed-

loop response of the n-bus system in Figure 2.6 from the power injection set
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point changes pin to frequency deviations ω, which could help us to estimate

the ability of the system to reject a sudden power imbalance that might be

caused by a loss of generation units or a spike in load demands. However,

apart from this disturbance rejection capability, the sensitivity of the system to

stochastic power fluctuations and frequency measurement noise also matters.

Thus, we will dwell further on this by introducing two additional input signals

to the n-bus system as shown in Figure 2.8, where, for the ease of presentation,

the block diagram of the bus dynamics is redrawn as a feedback loop that

comprises a forward-path Ĝ(s) := diag (ĝi(s), i ∈ [n]) and a feedback-path

Ĉ(s) := diag (ĉi(s), i ∈ [n]) representing the transfer function matrices of

generators and inverters, respectively. The input signal np :=
(︁
np,i, i ∈ [n]

)︁
∈

Rn (in p.u.) that represents stochastic power fluctuations is injected on top of

pin, while the input signal nω := (nω,i, i ∈ [n]) ∈ Rn (in p.u.) that represents

frequency measurement noise originates in sensors involved in grid-following

inverters. The weighting functions Ŵp(s) and Ŵω(s) can be used to adjust

the magnitudes of these two signals in the usual way.

As our analysis of the effect of different control laws on system perfor-

mance unfolds, it should be clear that the key lies in an examination of the

closed-loop responses of the system in Figure 2.8 from pin, np, and nω to ω,

which can be described compactly by the transfer function matrix

T̂sys(s) :=
[︁
T̂ωp(s) T̂ωn(s) :=

[︁
T̂ωnp(s) T̂ωnω(s)

]︁]︁
. (2.35)

Last but not least, the linear model in (2.35) relies on the following assump-

tion on the augmented synchronous generator dynamics on each bus in the
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Ĉ(s) = diag (ĉi(s), i ∈ V)

ĝ1(s)

ĝi(s)

ĝn(s)

Generator Dynamics

Ĝ(s) = diag (ĝi(s), i ∈ V)

up

L′
B

s

Network Dynamics

pn

pin

−
+

Inverter Dynamics

+

+

nω

ω

ĉ1(s)

ĉi(s)

ĉn(s)

pb

Bus Dynamics
np

Ŵ ω(s)

Ŵ p(s)

Figure 2.8: A linearized model of the multi-bus system
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system shown in Figure 2.6.

Assumption 2.2 (Scenario-Based Generator Dynamics). Whenever the system

shown in Figure 2.6 is excited solely by:

• pin, then ωϵ = 0 such that turbine-governors are constantly triggered;

• np and nω, then |ωi(t)| < ωϵ, ∀ i ∈ [n] and t ≥ 0, such that turbine-governors

will not be triggered.

Assumption 2.2 extremely simplifies our analysis by removing the nonlin-

earity introduced to (2.16) by governor deadbands. Under this assumption,

the generator dynamics that are of our interest fall into two cases:

Generator Dynamics 1 (Standard Swing Dynamics). When turbine-governors

are not triggered, the generator dynamics can be described by the transfer function

ĝi(s) =
1

mis + αl,i
, ∀i ∈ [n] . (2.36)

Generator Dynamics 2 (Second-Order Generator Dynamics). When turbine-

governors are constantly triggered, the generator dynamics can be described by the

transfer function

ĝi(s) =
τt,is + 1

miτt,is2 + (mi + αl,iτt,i) s + αl,i + αt,i
, ∀i ∈ [n] . (2.37)

2.3 Performance Metrics

Having built up the model of the power system, we are now ready to intro-

duce performance metrics used in this thesis to compare different frequency

control laws.
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2.3.1 Signal and System Norms

Signal and system norms are useful measures for evaluating performance

of a control system. Thus, we begin with definitions of some relevant norms

that are appropriate to the characterization of power system performance

under different frequency control laws.

Definition 2.5 (L2 Norm of a Signal [51]). For a vector-valued time-varying

signal y := (yi(t), i ∈ [n]) ∈ Rn, the L2 norm of y is

∥y∥L2 :=

√︄
n

∑
i=1

∫︂ ∞

−∞
|yi(t)|2dt =

√︃∫︂ ∞

−∞
y(t)Ty(t)dt .

Definition 2.6 (L∞ Norm of a Signal [51]). For a vector-valued time-varying

signal y := (yi(t), i ∈ [n]) ∈ Rn, the L∞ norm of y is

∥y∥L∞ := max
t

max
i∈[n]

|yi(t)| ,

supposing the maximum value exists.

Definition 2.7 (H2 Norm of a System [51]). For a multi-input multi-output linear

system with a strictly proper stable transfer function matrix T̂(s), the H2 norm of

T̂(s) is

∥T̂∥H2 :=

√︄
1

2π

∫︂ ∞

−∞
tr
(︁
T̂(jὼ)∗T̂(jὼ)

)︁
dὼ =

√︃∫︂ ∞

−∞
tr (T(t)TT(t))dt , 6

where the second equality is by Parseval’s theorem.

6We use ὼ rather than ω to denote the frequency variable in mathematics in order to
distinguish it from the per unit grid frequency deviation ω; we use ∗ to denote the conjugate
transpose.
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T̂ (s)
yu

Figure 2.9: A linear system

Remark 2.5 (Right-Sided Signals and Causal Systems). In most cases, we as-

sume signals are right-sided, i.e., y(t) = 0n×1, ∀t < 0, and systems are causal, i.e.,

T(t) = 0, ∀t < 0, which means that the integrals with respect to time t are taken

only over [0, ∞] in above definitions.

We can see from above definitions that the L2 norm quantifies the “energy”

of a signal while the L∞ norm quantifies the “peak” of a signal. As for

the H2 norm, we can interpret it as a norm of a system response resulting

from certain input signals [51, 52]. To see this, consider the linear system

in Figure 2.9, where there is a strictly proper stable transfer function matrix

T̂(s) from the input signal u := (ui(t), i ∈ [n1]) ∈ Rn1 to the output signal

y := (yi(t), i ∈ [n2]) ∈ Rn2 . Then, the norm of the output signal y can yield

both deterministic and stochastic interpretations of the H2 norm of the system

T̂(s), depending on the choice for the input signal u that the system is subject

to.

A Deterministic Interpretation of the H2 Norm Suppose u is a series of

unit impulses. That is, ∀i ∈ [n1], at the ith experiment, apply u = δ(t)ei to

T̂(s), where δ(t) is the unit-impulse function and ei ∈ Rn1 is the vector with

a 1 in the ith coordinate and 0’s elsewhere. Then the sum of the squared L2

norms of y over all n1 experiments results in the squared H2 norm of T̂(s)
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since

n1

∑
j=1

∥ y|u=δ(t)ej
∥2
L2

=
n1

∑
j=1

∥T(t)ej∥2
L2

:=
n1

∑
j=1

n2

∑
i=1

∫︂ ∞

0
|Tij(t)|2dt

=
∫︂ ∞

0

n1

∑
j=1

n2

∑
i=1

|Tij(t)|2dt =
∫︂ ∞

0
tr
(︂

T(t)TT(t)
)︂

dt =: ∥T̂∥2
H2

.

A Stochastic Interpretation of the H2 Norm Suppose u is white noise of

unit intensity, i.e., E
[︁
u(t)u(τ)T]︁ = δ(t − τ)In1 . Then the sum of the steady-

state variances of all elements in y leads to the squared H2 norm of T̂(s)

since

lim
t→∞

E
[︂
y(t)Ty(t)

]︂

= lim
t→∞

tr
(︂

E
[︂
y(t)y(t)T

]︂)︂

= lim
t→∞

tr
(︃

E

[︃∫︂ t

0
T(τ1)u(t − τ1)dτ1

∫︂ t

0
u(t − τ2)

TT(τ2)
Tdτ2

]︃)︃

= lim
t→∞

tr
(︃∫︂ t

0
T(τ1)

∫︂ t

0
E
[︂
u(t − τ1)u(t − τ2)

T
]︂

T(τ2)
Tdτ2dτ1

)︃

= lim
t→∞

tr
(︃∫︂ t

0
T(τ1)

∫︂ t

0
δ(τ2 − τ1)T(τ2)

Tdτ2dτ1

)︃

= lim
t→∞

tr
(︃∫︂ t

0
T(τ1)T(τ1)

Tdτ1

)︃
= tr

(︃∫︂ ∞

0
T(τ1)T(τ1)

Tdτ1

)︃

=
∫︂ ∞

0
tr
(︂

T(τ1)T(τ1)
T
)︂

dτ1 =
∫︂ ∞

0
tr
(︂

T(τ1)
TT(τ1)

)︂
dτ1 =: ∥T̂∥2

H2
.

Given any state-space realization of T̂(s), the H2 norm can be calculated
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by solving a particular Lyapunov equation [51, 52]. More specifically, suppose

ΣT̂(s) =

[︃
A B
C D

]︃
, i.e., T̂(s) = C (sI − A)−1 B + D .

For strictly proper T̂(s), i.e., D = 0n2×n1 , we have

∥T̂∥2
H2

:=
∫︂ ∞

0
tr
(︂

T(t)TT(t)
)︂

dt =
∫︂ ∞

0
tr
(︂

T(t)T(t)T
)︂

dt

=tr
(︃∫︂ ∞

0
T(t)T(t)Tdt

)︃
= tr

(︃∫︂ ∞

0
CeAtBBTeATtCTdt

)︃

=tr
(︂

CXCT
)︂

,

where

X :=
∫︂ ∞

0
eAtBBTeATtdt . (2.38)

Note that X defined in (2.38) is an important matrix called controllability

Gramian in control theory, which can be obtained as the unique solution to the

following Lyapunov equation

AX + X AT = −BBT (2.39)

if A is asymptotically stable.7 A standard way to verify that X satisfies (2.39)

utilizes the fact that

d
dt

eAtBBTeATt = AeAtBBTeATt + eAtBBTeATt AT . (2.40)

7A matrix is asymptotically stable if all its eigenvalues have negative real parts.
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Integrating both sides of (2.40) with respect to t over [0, ∞] yields

eAtBBTeATt
⃓⃓
⃓
∞

0
= A

∫︂ ∞

0
eAtBBTeATtdt +

∫︂ ∞

0
eAtBBTeATtdtAT ,

which combined with (2.38) directly results in (2.39) since limt→∞ eAt = 0 if A

is asymptotically stable.

Remark 2.6 (A Bi-Proper System Leads to Infinite H2 Norm). The H2 norm

is defined only for strictly proper transfer function matrices in Defintion 2.7. Clearly,

if T̂(s) is bi-proper, i.e., D ̸= 0n2×n1 , then ∥T̂∥2
H2

= ∞ since there must ∃ i ∈ [n2]

and j ∈ [n1] such that limὼ→∞ T̂ij(jὼ) = Dij ̸= 0.

2.3.2 Frequency Response and Storage Economic Metrics

After a brief review of the basic concepts of signal and system norms, we

are ready to apply them to quantifying the performance of the power system

shown in Figure 2.8 under different frequency control laws. Notably, for the

design of frequency control based on inverter-interfaced energy storage, not

only control performance but also economic factors matter. Therefore, the

performance metrics that are of our interest for comparing different control

laws are twofold: frequency response metrics and storage economic metrics.

Frequency Response Metrics

Before introducing the frequency response metrics that will be used in this

thesis, we need to define some useful notions. Since different buses exhibit

different frequencies in a n-bus system, a classical option to power system
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engineers is to consider the inertia-weighted average of bus frequency devia-

tions (in p.u.), also known as the center of inertia (COI) frequency deviation [28],

i.e.,

ω̄ := ∑n
i=1 miωi

∑n
i=1 mi

, (2.41)

as the global representative system frequency. Then, the oscillations of all

individual bus frequencies around the COI frequency can be characterized by

ω̃ := (ω̃i, i ∈ [n]) := ω − ω̄1n ∈ Rn (in p.u.). With these two notions defined,

we now introduce the factors that are relevant to frequency security.

• Synchronous frequency measures the steady-state grid frequency deviation

from its nominal value when all individual buses synchronize after a sud-

den power imbalance pin. In other words, if ω(∞) = ωsyn1n, then ωsyn is

called the synchronous frequency. Clearly, if the synchronous frequency

exists, then it is exactly the steady-state COI frequency deviation since

ω̄(∞) =
(︁
∑n

i=1 miωsyn
)︁

/ (∑n
i=1 mi) = ωsyn. In the absence of a secondary

control layer, e.g., automatic generation control [13], the system can syn-

chronize with a nontrivial frequency deviation, i.e., ωsyn ̸= 0. For example,

the maximum allowed quasi-steady-state frequency deviation for the Euro-

pean and Great Britain power systems is ±200 mHz (±0.004 p.u. on a 50 Hz

base) [45, 53].

• Nadir measures the maximum grid frequency deviation during a transient

response to a sudden power imbalance pin. It can be quantified by the L∞

norm of the COI frequency deviation ω̄, i.e.,

∥ω̄∥L∞ := max
t≥0

|ω̄(t)| . (2.42)
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This quantity matters in that deeper Nadir increases the risk of under-

frequency load shedding and cascading outrages. For example, the max-

imum allowed Nadir is 800 mHz (0.016 p.u. on a 50 Hz base) for the Eu-

ropean power system [46] and 500 mHz (0.01 p.u. on a 50 Hz base) for the

Great Britain power system [44, 45]. Thus, one of our targets is to find

conditions that make Nadir equal to the steady-state COI frequency devi-

ation. In other words, we want to remove the overshoot in the transient

COI frequency, which is what we mean by Nadir elimination hereafter. The

no overshoot property resulting from Nadir elimination allows the COI

frequency to monotonically move towards its new steady-state without

experiencing Nadir, which largely improves frequency security.

• RoCoF measures the maximum rate of change of frequency during a tran-

sient response to a sudden power imbalance pin, i.e.,

∥ω̇̄∥L∞ := max
t≥0

|ω̇̄(t)| , (2.43)

which usually occurs at the initial time instant for a first- or second-order

COI frequency response. A high RoCoF may cause the frequency to fall

quickly below the under-frequency load shedding threshold before the

frequency control actions kick in [54]. For example, the highest RoCoF

allowed in the European power system is 0.5 Hz s−1 (0.01 p.u. s−1 on a

50 Hz base).

• Synchronization cost measures the total oscillations of all individual bus fre-

quency responses around the COI frequency response following a sudden

power imbalance pin. It can be quantified by the squared L2 norm of ω̃, i.e.,
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∥ω̃∥2
L2

:=
n

∑
i=1

∫︂ ∞

0
|ω̃i(t)|2dt =

∫︂ ∞

0
ω̃(t)Tω̃(t)dt . (2.44)

• Frequency variance measures how the relative intensity of stochastic power

fluctuations np and frequency measurement noise nω affect the frequency

deviations, where the signals np and nω are assumed to be uncorrelated

white noise of unit intensity such that

E
[︂
np(t)np(τ)

T
]︂
= δ(t − τ)In ,

E
[︂
nω(t)nω(τ)

T
]︂
= δ(t − τ)In ,

E
[︂
np(t)nω(τ)

T
]︂
= 0n×n .

This can be quantified by the squared H2 norm of the system T̂ωn(s) due to

its stochastic interpretation, i.e.,

lim
t→∞

E
[︂
ω(t)Tω(t)

]︂
=∥T̂ωn∥2

H2
:=

1
2π

∫︂ ∞

−∞
tr
(︁
T̂ωn(jὼ)∗T̂ωn(jὼ)

)︁
dὼ . (2.45)

Storage Economic Metrics

The factors that affect the cost of inverter-interfaced energy storage are:

• Steady-state effort share measures the fraction of the power imbalance pin

addressed by inverter-interfaced energy storage. It is calculated as the

absolute value of the ratio between the total steady-state inverter power

output variation and the total power imbalance, i.e.,

ηes :=
⃓⃓
⃓⃓∑

n
i=1 ĉi(0)ωi(∞)

∑n
i=1 pin,i(0+)

⃓⃓
⃓⃓ , (2.46)
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where ĉi(0) is the dc gain of the ith inverter. A higher steady-state effort

share indicates that a larger amount of steady-state power output is required

from inverter-interfaced energy storage in the process of handling certain

power imbalance. Since this necessary headroom is achieved by additional

storage capacity [46], a lower steady-state effort can be associated with

lower operational costs and it is therefore desired.
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Chapter 3

Foundations of Performance
Analysis for Proportionally
Heterogeneous Power Systems

This chapter turns attention towards proportionally heterogeneous power

systems, a reasonable first-cut approximation to generally heterogeneous

power systems, where a modal decomposition can be done to extremely ease

the performance analysis. In Section 3.1, after an introduction to our mild

proportionality assumption, we perform a modal decomposition such that

the power system model built in Chapter 2 is diagonalized, which results in a

meaningful step response decomposition interpretation of the main mode and

the remaining modes. In Section 3.2, we show that it is possible to compute

all the performance metrics introduced in Chapter 2 analytically as functions

of the system parameters for proportionally heterogeneous power systems,

which provides a foundation for further performance comparisons among

different frequency control laws based on inverter-interfaced energy storage

in Chapter 4.
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3.1 Modal Decomposition for Proportionally Het-
erogeneous Systems

It is in general tough to analyze the performance of the system T̂sys(s)

shown in Figure 2.8 for heterogeneous parameters. Nevertheless, provided

that parameters of generators and inverters scale according to their power

ratings, we can vastly simplify the analysis by performing a modal decom-

position on the system T̂sys(s). Such a proportionally heterogeneous power

system assumption is aligned with our intuition that “heavier” equipment

has a greater impact on the system performance.

Therefore, from now on, we restrict our attention to the proportionally

heterogeneous power system as described in the following assumption, which

is a generalization of [28, 55]. This assumption ensures that the closed-loop

transfer function matrix of the system T̂sys(s) is diagonalizable, which makes

further performance analysis tractable.

Assumption 3.1 (Proportionality). There exists a proportionality matrix R :=

diag (ri, i ∈ [n]) ∈ Rn×n with ri > 0, ∀i ∈ [n], such that

Ĝ(s) = ĝo(s)R−1 and Ĉ(s) = ĉo(s)R ,

where ĝo(s) and ĉo(s) are called the representative generator and the representative

inverter, respectively.

Remark 3.1 (Proportionality Parameters). The parameters ri’s could be individ-

ual generator ratings. This choice is rather arbitrary for our analysis, provided that

Assumption 3.1 is satisfied. Other alternatives could include ri = mi/mo where
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mo is, for example, either the average or maximum or even 1 s generator inertia.

The practical relevance of Assumption 3.1 is justified, for example, by the empirical

values reported in [56], which show that, at least in regard to order of magnitude,

Assumption 3.1 is a reasonable first-cut approximation to heterogeneity.

Under Assumption 3.1, the representative generator of (2.36) and (2.37)

are given by

ĝo(s) =
1

mos + αl,o
(3.1)

and

ĝo(s) =
τt,os + 1

moτt,os2 + (mo + αl,oτt,o) s + αl,o + αt,o
, (3.2)

respectively, with mi = rimo, αl,i = riαl,o, αt,i = riαt,o, and τt,i = τt,o, ∀i ∈ [n],

while the representative inverter depends on the specific control law that will

be used.1

3.1.1 Diagonalization

Using Assumption 3.1, we can derive a diagonalized version of (2.35) for

the n-bus system shown in Figure 2.8. First, we rewrite

Ĝ(s) = R− 1
2 [ĝo(s)In] R− 1

2 and Ĉ(s) = R
1
2 [ĉo(s)In] R

1
2

as shown in Figure 3.1(a). Then, after a loop transformation, we obtain Fig-

ure 3.1(b). Here, we define the scaled Laplacian matrix

LR := R− 1
2 L′

BR− 1
2 (3.3)

1We use variables with subscript o to denote parameters of the representative generator
and inverter.
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by grouping the terms in the upper blocks of Figure 3.1(b). Recall from

Section 2.2.2 that L′
B is real orthogonally diagonalizable with eigenvalues

satisfying 0 = λ1(L′
B) < λ2(L′

B) ≤ . . . ≤ λn(L′
B).

2 We now show that LR

shares similar properties.

Lemma 3.1 (Decomposition of the Scaled Laplacian Matrix). ∃ an orthogonal

matrix U ∈ Rn×n with UTU = UUT = In such that

LR = UΛUT , (3.4)

where Λ := diag (λk, k ∈ [n]) ∈ Rn×n with λk being the kth eigenvalue of LR

ordered non-decreasingly (0 = λ1 < λ2 ≤ . . . ≤ λn) and

U :=
[︂
u1 := (∑n

i=1 ri)
− 1

2 R
1
2 1n U⊥ :=

[︁
u2 . . . un

]︁]︂
(3.5)

composed by the eigenvector uk = (uk,i, i ∈ [n]) ∈ Rn associated with λk.3

Proof. First, LR is symmetric since we know from Section 2.2.2 that L′
B is

symmetric, which means that LR is real orthogonally diagonalizable as in (3.4).

Thus, the key is to show that the eigenvalues of LR satisfy 0 = λ1 < λ2 ≤ . . . ≤
λn and 0 is an eigenvalue of LR associated with eigenvector (∑n

i=1 ri)
− 1

2 R
1
2 1n.

Recall from Section 2.2.2 that

LB,ij :=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

−Wij if i ̸= j

n

∑
j′=1,j′ ̸=i

Wij′ if i = j
, ∀i, j ∈ [n] , (3.6)

2Throughout this thesis, for a matrix E ∈ Cn×n with only real eigenvalues, we always
order its eigenvalues non-decreasingly, i.e., λ1(E) ≤ λ2(E) ≤ . . . ≤ λn(E).

3We use k and l to index dynamic modes but i and j to index bus numbers.
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2 [ĝo(s)In]R

− 1
2

R
1
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1
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nω
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Ŵ ω(s)

L′
B

s

pin
+

+

ω
ĝo(s)InR− 1

2

R− 1
2

R− 1
2

R
1
2ĉo(s)In

R− 1
2

−
+

nω

np

Ŵ p(s)

(b)

pin
+

+

ω
ĝo(s)In

ĉo(s)In

−

Λ

s

R− 1
2

R
1
2

UT U

UT

R− 1
2

pin
+

Ŵ ω(s)
nω

np

Ŵ p(s)

(c)

Figure 3.1: Equivalent block diagrams of the multi-bus system under proportion-
ality assumption
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with

Wij = Wji =

⎧
⎪⎨
⎪⎩

|Vi||Vj|Bij cos(Θ⋆,i − Θ⋆,j) > 0 if{i, j} ∈ E

0 if {i, j} ̸∈ E
, ∀i, j ∈ [n] .

Thus, combining (3.3) and (3.6), we can write LR explicitly as

LR,ij :=

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

− Wij√rirj
if i ̸= j

n

∑
j′=1,j′ ̸=i

Wij′

ri
if i = j

, ∀i, j ∈ [n] . (3.7)

In order to show that all eigenvalues of LR are nonnegative, we show that LR

is positive semidefinite. Note that, ∀y := (yi, i ∈ [n]) ∈ Rn,

yT LRy =
n

∑
i=1

yi

(︄
n

∑
j=1

LR,ijyj

)︄
=

n

∑
i=1

yi

(︄
LR,iiyi +

n

∑
j=1,j ̸=i

LR,ijyj

)︄

=
n

∑
i=1

yi

(︄
n

∑
j=1,j ̸=i

Wij

ri
yi −

n

∑
j=1,j ̸=i

Wij√rirj
yj

)︄

=
n

∑
i=1

n

∑
j=1,j ̸=i

Wij√
ri

(︄
y2

i√
ri
− yiyj√rj

)︄
=

n

∑
i=1

n

∑
j=1

Wij√
ri

(︄
y2

i√
ri
− yiyj√rj

)︄

=
n

∑
i=1

n

∑
j=1

Wij√
ri

y2
i

2
√

ri
+

n

∑
i=1

n

∑
j=1

Wij√
ri

y2
i

2
√

ri
−

n

∑
i=1

n

∑
j=1

Wij√
ri

yiyj√rj

=
n

∑
i=1

n

∑
j=1

Wij√
ri

y2
i

2
√

ri
+

n

∑
i=1

n

∑
j=1

Wji√rj

y2
j

2√rj
−

n

∑
i=1

n

∑
j=1

Wij√
ri

yiyj√rj

=
n

∑
i=1

n

∑
j=1

Wij√
ri

y2
i

2
√

ri
+

n

∑
i=1

n

∑
j=1

Wij√rj

y2
j

2√rj
−

n

∑
i=1

n

∑
j=1

Wij√
ri

yiyj√rj
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=
1
2

n

∑
i=1

n

∑
j=1

Wij

(︄
yi√
ri
− yj√rj

)︄2

= ∑
{i,j}∈E

Wij

(︄
yi√
ri
− yj√rj

)︄2

≥ 0 . (3.8)

Thus, LR is positive semidefinite, which means that all eigenvalues of LR are

nonnegative. Recall from Section 2.2.2 that L′
B1n = 0n×1. Thus, it is easy to

see that 0 is an eigenvalue of LR associated with eigenvector (∑n
i=1 ri)

− 1
2 R

1
2 1n

since LRR
1
2 1n = R− 1

2 L′
BR− 1

2 R
1
2 1n = R− 1

2 L′
B1n = R− 1

2 0n×1 = 0n×1, where

R
1
2 1n is normalized to length 1 by a factor of (∑n

i=1 ri)
− 1

2 . Now, we still need

to show that the algebraic multiplicity of the 0 eigenvalue of LR is 1, which

can be seen from the nullity of LR. Assume that y ∈ Rn is in the null space of

LR, i.e., LRy = 0n×1. Then, yT LRy = 0. From (3.8), we know that

∑
{i,j}∈E

Wij

(︄
yi√
ri
− yj√rj

)︄2

= 0 ,

which implies that yi/
√

ri = yj/
√rj, ∀{i, j} ∈ E . Recall that the graph (V , E)

is assumed to be connected, which means that y1/
√

r1 = . . . = yn/
√

rn, i.e.,

y1 : . . . : yn =
√

r1 : . . . :
√

rn.4 Thus, every member of the null space is

a multiple of R
1
2 1n, which means that the nullity is 1. This concludes the

proof.

Remark 3.2 (Algebraic Connectivity). The proof of Lemma 3.1 verifies that the

second smallest eigenvalue λ2 of a symmetric (scaled) Laplacian matrix is positive if

the associated graph is connected, which is part of the reason for calling it the algebraic

connectivity [49].

Now, applying (3.3) and (3.4) to Figure 3.1(b) and rearranging blocks of

U and UT results in Figure 3.1(c). Finally, moving the block of ĉo(s)In ahead
4The colon is a symbol for ratio.
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Ŵ ω(s)

+
ω

ĝo(s)In

−
R− 1

2

R
1
2

ĉo(s)In

Λ

s
− ĉo(s)In

+

Ĥp(s)

UT U R− 1
2

UT

Ĥω(s)

+
pin

nω

np

Ŵ p(s)

Figure 3.2: Diagonalized block diagram of the multi-bus system

of the summing junction and combining the two parallel paths produces

Figure 3.2, where the boxed part is fully diagonalized.

Now, by defining the closed-loop with a forward-path ĝo(s)In and a

feedback-path (Λ/s − ĉo(s)In) as

Ĥp(s) = diag
(︂

ĥp,k(s), k ∈ [n]
)︂

, (3.9)

where

ĥp,k(s) =
ĝo(s)

1 + ĝo(s) (λk/s − ĉo(s))
, (3.10)

and Ĥω(s) = ĉo(s)Ĥp(s), i.e.,

Ĥω(s) = diag
(︂

ĥω,k(s), k ∈ [n]
)︂

,

where

ĥω,k(s) = ĉo(s)ĥp,k(s) , (3.11)

56



the closed-loop transfer functions from pin, np, and nω to ω become

T̂ωp(s) = R− 1
2 UĤp(s)UTR− 1

2 , (3.12a)

T̂ωnp(s) = R− 1
2 UĤp(s)UTR− 1

2 Ŵp(s) , (3.12b)

T̂ωnω(s) = R− 1
2 UĤω(s)UTR

1
2 Ŵω(s) , (3.12c)

respectively.5

As described in Section 2.3.2, the synchronous frequency, Nadir, RoCoF,

synchronization cost, and steady-state effort share can all be characterized by

a step response of the system T̂ωp(s), while the sensitivity to stochastic power

fluctuations and frequency measurement noise can be evaluated through the

H2 norm of the system T̂ωn(s) :=
[︁
T̂ωnp(s) T̂ωnω(s)

]︁
. Thus, there are two

scenarios that are of our interest.

Assumption 3.2 (Step Input Scenario). There is a step change on the power injec-

tion set point, i.e., pin = µ01t≥0, np = 0n×1, and nω = 0n×1, where µ0 ∈ Rn is a

given vector direction that allows for power disturbances of different magnitudes at

individual buses and 1t≥0 is the unit-step function.

Assumption 3.3 (Proportionally Weighted Noise Scenario). The noise weight-

ing functions are given by Ŵp(s) = κpR
1
2 and Ŵω(s) = κωR− 1

2 , where κp > 0

and κω > 0 are weighting constants.

Remark 3.3 (About the Weighting Assumption). As a natural counterpart of

5With abuse of notation, the specific generator dynamics involved in ĥp,k(s) depends on
the input scenario which should be clear from the metric considered. Thus, in the rest of
this thesis, there might be the cases where two input scenarios happen to share the transfer
function symbol.
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Assumption 3.1, we look at the case when the stochastic power fluctuations and

frequency measurement noise are weighted directly and inversely proportional to the

square root of the bus ratings, respectively. In the case of Ŵp(s), this is equivalent to

assuming that demand fluctuation variances are proportional to the bus ratings, which

is in agreement with the central limit theorem. As for Ŵω(s), this is equivalent to

assuming that the frequency measurement noise variances are inversely proportional

to the bus ratings, which is in line with the inverse relationship between jitter variance

and power consumption for an oscillator in a phase-locked loop [57].

3.1.2 Step Response Decomposition

Recall that in Section 2.3.2 there is a mention of a desire to separate indi-

vidual bus frequencies into the COI frequency and oscillations around it for

quantifying the frequency response performance when the system undergoes

a sudden power imbalance. We now show that this separation can be done

nicely for a proportionally heterogeneous system by mostly following the

approach from [28].

Let Assumption 3.2 hold. Then, the step response of the system T̂ωp(s) in

(3.12) can be described in the Laplace domain as

ω̂ = T̂ωp(s)p̂in = R− 1
2 UĤp(s)UTR− 1

2
µ0
s

. (3.13)

Next, we can separate the first mode from all others in (3.13) by using (3.5)

and (3.9).

ω̂=R− 1
2

[︂
(∑n

i=1 ri)
− 1

2 R
1
2 1n U⊥

]︂[︄ ĥp,1(s) 01×(n−1)
0(n−1)×1 Ĥp⊥(s)

]︄[︄
(∑n

i=1 ri)
− 1

2 1T
n R

1
2

UT
⊥

]︄
R− 1

2
µ0
s
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=

(︄
∑n

i=1 µ0,i

∑n
i=1 ri

ĥp,1(s)
s

)︄
1n + R− 1

2 U⊥Ĥp⊥(s)UT
⊥R− 1

2
µ0
s

, (3.14)

where

Ĥp⊥(s) := diag
(︂

ĥp,k(s), k ∈ [n] \ {1}
)︂

.

It is convenient to define

ĥu,k(s) :=
ĥp,k(s)

s
, ∀k ∈ [n] , and Ĥu⊥(s) := diag

(︂
ĥu,k(s), k ∈ [n] \ {1}

)︂
,

with which (3.14) can be expressed as

ω̂ =

(︃
∑n

i=1 µ0,i

∑n
i=1 ri

ĥu,1(s)
)︃

1n + R− 1
2 U⊥Ĥu⊥(s)UT

⊥R− 1
2 µ0 . (3.15)

Observe from (3.15) that each bus frequency deviation is partitioned into two

terms, where the first term describes a tendency toward a common behavior

among all buses and the second term represents the deviation of the actual

dynamics from the common behavior.

To gain a better insight into the common behavior, we can use the trick

that (∑n
i=1 ri)

− 1
2 1T

n R
1
2 U⊥ = 01×(n−1) which is due to the inherent property of

the orthogonal matrix U, i.e., UTU = In. With this in mind, we can eliminate

the second term in (3.15) after pre-multiplying it by 1T
n R. This yields

1T
n Rω̂ =

(︃
∑n

i=1 µ0,i

∑n
i=1 ri

ĥu,1(s)
)︃

1T
n R1n , i.e.,

n

∑
i=1

riω̂i =

(︃
∑n

i=1 µ0,i

∑n
i=1 ri

ĥu,1(s)
)︃ n

∑
i=1

ri ,

from which we can solve for the common behavior as

(︃
∑n

i=1 µ0,i

∑n
i=1 ri

ĥu,1(s)
)︃
=

∑n
i=1 riω̂i

∑n
i=1 ri

=
∑n

i=1 miω̂i

∑n
i=1 mi

=: ω̂̄ , (3.16)
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where the second equality is due to mi = rimo, ∀i ∈ [n], and the last equality

is due to the definition of the COI frequency deviation in (2.41). Clearly,

the common behavior is exactly the motion of the COI, which endorses the

tradition to consider the COI frequency as the global representative system

frequency.

Naturally, the oscillations of all individual bus frequencies around the COI

frequency correspond to the second term in (3.15) since

ω̂̃ :=ω̂ − ω̂̄1n

=ω̂ −
(︃

∑n
i=1 µ0,i

∑n
i=1 ri

ĥu,1(s)
)︃

1n = R− 1
2 U⊥Ĥu⊥(s)UT

⊥R− 1
2 µ0 . (3.17)

3.2 Generic Analysis of Performance Metrics

We now derive some important building blocks required for the perfor-

mance analysis of the diagonalized system described in (3.12). Note that the

results on the synchronous frequency in Section 3.2.1 and steady-state effort

share in Section 3.2.6 do not rely on the proportionality of the power system

characterized by Assumption 3.1.

3.2.1 Synchronous Frequency

The following lemma provides a general expression for the synchronous

frequency ωsyn in our setting.

Lemma 3.2 (Synchronous Frequency). Let Assumptions 2.2 and 3.2 hold. If pb,i

is determined by a control law ĉi(s), ∀i ∈ [n], then the output ω of the system T̂ωp(s)
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synchronizes to the steady-state frequency deviation ω(∞) = ωsyn1n with

ωsyn =
∑n

i=1 µ0,i

∑n
i=1 (αl,i + αt,i − ĉi(0))

. (3.18)

Proof. Combining (2.16a), (2.30), and (2.31) through up = pin − pn, we get the

(partial) state-space representation of the system T̂ωp(s) as

θ̇ = Ω0ω , (3.19a)

Mω̇ =− L′
B

Ω0
θ− Alω + pm + pb + pin . (3.19b)

In the steady-state, (3.19) yields

L′
Bω(∞)t = − L′

B
Ω0

Θ⋆ − Alω(∞) + pm(∞) + pb(∞) + µ0 , (3.20)

where (Θ⋆ + Ω0ω(∞)t, ω(∞), pm(∞), pb(∞)) denotes the steady-state so-

lution of (3.19). Equation (3.20) indicates that L′
Bω(∞)t is constant. Thus,

L′
Bω(∞) = 0n×1. Recall from Section 2.2.2 that 0 is an eigenvalue of L′

B with

algebraic multiplicity 1. Thus, every member of the null space of L′
B must be

a multiple of the known eigenvector 1n associated with the 0 eigenvalue. It

follows that, ∃ωsyn, such that ω(∞) = ωsyn1n. Therefore, (3.20) becomes

0n×1 =− L′
B

Ω0
Θ⋆ − Alωsyn1n + pm(∞) + pb(∞) + µ0 , (3.21)

where pb(∞) =
(︁
ĉi(0)ωsyn, i ∈ [n]

)︁
∈ Rn and pm(∞) =

(︁
−αt,iωsyn, i ∈ [n]

)︁
∈

Rn for ωϵ = 0 by (2.16b). Pre-multiplying (3.21) by 1T
n and using the property

in Section 2.2.2, i.e., 1T
n L′

B = 1T
n L′T

B = (L′
B1n)

T
= 0T

n×1, we get the desired

result in (3.18).
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3.2.2 Nadir

A deep Nadir poses a threat to the reliable operation of a power system.

Hence, one of the goals of frequency control is the reduction of Nadir. We

seek to evaluate the ability of different frequency control laws to eliminate

Nadir. To this end, we provide a necessary and sufficient condition for Nadir

elimination in a second-order system with a zero.

Theorem 3.1 (Nadir Elimination for a Second-Order System). Assume K > 0,

z > 0, ξ ≥ 0, ωn > 0. The step response of a second-order system with a transfer

function given by

ĥ(s) =
K (s + z)

s2 + 2ξωns + ω2
n

has no Nadir if and only if

1 ≤ ξ ≤ z
ωn

or

⎧
⎪⎨
⎪⎩

ξ >
z

ωn

ξ ≥ 1
2

(︃
z

ωn
+

ωn

z

)︃ . (3.22)

Proof. Basically, Nadir must occur at some nonnegative finite time instant

tnadir, such that ẏu(tnadir) = 0 and yu(tnadir) is a maximum, where yu(t)

denotes the unit-step response of ĥ(s), i.e., ŷu(s) := ĥ(s)/s. We consider three

cases based on the value of the damping ratio ξ separately:

• Under damped case (0 ≤ ξ < 1): The output is

ŷu(s) =
Kz
ω2

n

[︄
1
s
− s + ξωn

(s + ξωn)2 + ω2
d
− ξωn − ω2

n/z
(s + ξωn)2 + ω2

d

]︄
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with ωd := ωn
√︁

1 − ξ2, which gives the time domain response

yu(t) =
Kz
ω2

n

[︃
1 − e−ξωnt

(︃
cos (ωdt) +

ξωn − ω2
n/z

ωd
sin (ωdt)

)︃]︃

=
Kz
ω2

n

⎛
⎝1 − e−ξωnt

√︂
ω2

d + (ξωn − ω2
n/z)2

ωd
cos (ωdt − ϕ)

⎞
⎠

with

ϕ = arctan
(︃

ξωn − ω2
n/z

ωd

)︃
∈
(︂
−π

2
,

π

2

)︂
.

Clearly, the above response must have oscillations. Therefore, for the case

0 ≤ ξ < 1, Nadir always exists.

• Critically damped case (ξ = 1): The output is

ŷu(s) =
Kz
ω2

n

[︄
1
s
− 1

s + ωn
− ωn − ω2

n/z

(s + ωn)
2

]︄
,

which gives the time domain response

yu(t) =
Kz
ω2

n

{︃
1 − e−ωnt

[︃
1 +

(︃
ωn −

ω2
n

z

)︃
t
]︃}︃

.

Thus,

ẏu(t) = Kze−ωnt
[︃(︂

1 − ωn

z

)︂
t +

1
z

]︃
.

Clearly, ẏu(tnadir) = 0 has a nonnegative finite solution

tnadir =
1

ωn − z
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whenever ωn/z > 1. In addition, ∀ρ > 0, it holds that

ẏu(tnadir − ρ) = Kze−ωn(tnadir−ρ)

[︃(︂
1 − ωn

z

)︂
(tnadir − ρ) +

1
z

]︃

= eωnρẏu(tnadir)− Kze−ωn(tnadir−ρ)
(︂

1 − ωn

z

)︂
ρ

= ρKze−ωn(tnadir−ρ)
(︂ωn

z
− 1
)︂
> 0 ,

ẏu(tnadir + ρ) = Kze−ωn(tnadir+ρ)

[︃(︂
1 − ωn

z

)︂
(tnadir + ρ) +

1
z

]︃

= e−ωnρẏu(tnadir) + Kze−ωn(tnadir+ρ)
(︂

1 − ωn

z

)︂
ρ

= ρKze−ωn(tnadir+ρ)
(︂

1 − ωn

z

)︂
< 0 ,

which implies that yu(tnadir) is a maximum. Thus, Nadir occurs at tnadir.

Therefore, for the case ξ = 1, Nadir is eliminated if and only if ωn/z ≤ 1.

To put it more succinctly, we combine the two conditions into

1 = ξ ≤ z
ωn

. (3.23)

• Over damped case (ξ > 1): The output is

ŷu(s) =
Kz
ω2

n

(︃
1
s
− η1

s + σ1
− η2

s + σ2

)︃

with

σ1,2 = ωn

(︃
ξ ±

√︂
ξ2 − 1

)︃
and η1,2 =

1
2
∓ ξ − ωn/z

2
√︁

ξ2 − 1
,
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which gives the time domain response

yu(t) =
Kz
ω2

n

(︁
1 − η1e−σ1t − η2e−σ2t)︁ .

Thus,

ẏu(t) =
Kz
ω2

n

(︁
σ1η1e−σ1t + σ2η2e−σ2t)︁ .

Clearly, ẏu(tnadir) = 0 yields σ1η1e−σ1tnadir = −σ2η2e−σ2tnadir , which has a

nonnegative finite solution

tnadir =
1

2ωn
√︁

ξ2 − 1
ln

z − ωn

(︂
ξ +

√︁
ξ2 − 1

)︂

z − ωn

(︂
ξ −

√︁
ξ2 − 1

)︂

whenever z − ωn

(︂
ξ −

√︁
ξ2 − 1

)︂
< 0. In addition, ∀ρ > 0, it holds that

ẏu(tnadir − ρ) =
Kz
ω2

n

[︂
σ1η1e−σ1(tnadir−ρ) + σ2η2e−σ2(tnadir−ρ)

]︂

> eσ1ρ Kz
ω2

n

(︁
σ1η1e−σ1tnadir + σ2η2e−σ2tnadir

)︁

= eσ1ρẏu(tnadir) = 0 ,

ẏu(tnadir+ ρ) =
Kz
ω2

n

[︂
σ1η1e−σ1(tnadir+ρ) + σ2η2e−σ2(tnadir+ρ)

]︂

< e−σ1ρ Kz
ω2

n

(︁
σ1η1e−σ1tnadir+σ2η2e−σ2tnadir

)︁

= e−σ1ρẏu(tnadir) = 0 ,

since σ1 > σ2 > 0 and one can show that σ2η2 < 0 under the condition

z−ωn

(︂
ξ −

√︁
ξ2 − 1

)︂
< 0. This implies that yu(tnadir) is a maximum. Thus,
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Nadir occurs at tnadir. Therefore, for the case ξ > 1, Nadir is eliminated

if and only if z − ωn

(︂
ξ −

√︁
ξ2 − 1

)︂
≥ 0, i.e.,

√︁
ξ2 − 1 ≥ ξ − z/ωn, which

holds if and only if

ξ ≤ z
ωn

or

⎧
⎪⎨
⎪⎩

ξ >
z

ωn

ξ ≥ 1
2

(︃
z

ωn
+

ωn

z

)︃ .

Thus, we get the conditions

1 < ξ ≤ z
ωn

or

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ξ > 1

ξ >
z

ωn

ξ ≥ 1
2

(︃
z

ωn
+

ωn

z

)︃ . (3.24)

Note that, ∀a, b ≥ 0, (a + b)/2 ≥
√

ab with equality only when a = b.

Thus, if z ̸= ωn, then the third inequality in the brace ensures that ξ > 1.

Moreover, if z = ωn, then the second inequality in the brace becomes

ξ > 1. Therefore, we can remove ξ > 1 from the brace since the last two

inequalities jointly imply this.

Finally, we can combine (3.23) and (3.24) to yield (3.22).

3.2.3 RoCoF

Many technical reports claim that the theoretically highest RoCoF occurs

at the moment just after a sudden power imbalance occurs [58]. However,

to the best of our knowledge, there is no rigorous proofs for this up to now

except the one provided for the specific second-order augmented synchronous

generator model in [28]. Therefore, we fill this gap by showing that this claim

is true for any asymptotically stable first-order system and any asymptotically
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stable second-order system satisfying a minor condition. Yet, from our point

of view, this claim is not necessarily true for higher order systems.

Theorem 3.2 (RoCoF of a First-Order System). Assume K > 0 and σ > 0.

Following a unit-step input at time t = 0, the (maximum) RoCoF of a first-order

system with a transfer function given by

ĥ(s) =
K

s + σ

must occur exactly at time t = 0+ with its value given by K.

Proof. Let yu(t) denote the unit-step response of ĥ(s), i.e., ŷu(s) := ĥ(s)/s.

Then we would like to show

∥ẏu∥L∞ := max
t≥0

|ẏu(t)| = |ẏu(0
+)| .

Note that the Laplace transform of ẏu(t) is given by

L {ẏu(t)} = sŷu(s)− yu(0+) ,

where, by the initial value theorem [59],

yu(0+) = lim
s→∞

sŷu(s) = lim
s→∞

ĥ(s) = 0 .

Thus, we have

L {ẏu(t)} = sŷu(s) = ĥ(s)

whose inverse Laplace transform is

ẏu(t) = Ke−σt > 0 .
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Therefore, |ẏu(t)| = ẏu(t) exponentially decreases from K to 0, which con-

cludes the proof.

Theorem 3.3 (RoCoF of a Second-Order System). Assume K > 0, z > 0, ξ ≥ 0,

ωn > 0. Following a unit-step input at time t = 0, the (maximum) RoCoF of a

second-order system with a transfer function given by

ĥ(s) =
K (s + z)

s2 + 2ξωns + ω2
n

must occur exactly at time t = 0+ with its value given by K if

2ξωn > z . (3.25)

Proof. Let yu(t) denote the unit-step response of ĥ(s), i.e., ŷu(s) := ĥ(s)/s.

Then we would like to show

∥ẏu∥L∞ := max
t≥0

|ẏu(t)| = |ẏu(0
+)| .

With this aim, we will first show that |ẏu(0
+)| is a local maximum and then

verify that |ẏu(0
+)| is a global maximum. Note that the Laplace transform of

ẏu(t) is given by

L {ẏu(t)} = sŷu(s)− yu(0+) ,

where, by the initial value theorem,

yu(0+) = lim
s→∞

sŷu(s) = lim
s→∞

ĥ(s) = 0 .

Thus, we have

L {ẏu(t)} = sŷu(s) = ĥ(s) .
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By the initial value theorem, we have

ẏu(0
+) = lim

s→∞
sL {ẏu(t)} = lim

s→∞
sĥ(s) = K > 0 .

Now, as usual, we consider three cases based on the value of the damping

ratio ξ separately:

• Under damped case (0 ≤ ξ < 1): Define ωd := ωn
√︁

1 − ξ2. Then

L {ẏu(t)} = K

[︄
s + ξωn

(s + ξωn)2 + ω2
d
+

z − ξωn

(s + ξωn)2 + ω2
d

]︄
,

whose inverse Laplace transform is

ẏu(t) = Ke−ξωnt
(︃

cos (ωdt) +
z − ξωn

ωd
sin (ωdt)

)︃

= Ke−ξωnt

√︂
ω2

d + (z − ξωn)
2

ωd
cos (ωdt − ϕ1) (3.26)

with

ϕ1 = arctan
(︃

z − ξωn

ωd

)︃
∈
(︂
−π

2
,

π

2

)︂
.

Taking time derivative of (3.26), we get

ÿu(t)=−Ke−ξωnt

√︂
ω2

d+(z−ξωn)
2

ωd
(ξωn cos (ωdt−ϕ1)+ωd sin (ωdt−ϕ1)) .

Thus, we have

ÿu(0) =− K

√︂
ω2

d + (z − ξωn)
2

ωd
(ξωn cos (−ϕ1) + ωd sin (−ϕ1))

=− K

√︂
ω2

d + (z − ξωn)
2

ωd
(ξωn cos ϕ1 − ωd sin ϕ1) . (3.27)
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Note that, by the way we construct ϕ1, we have

cos ϕ1 =
ωd√︂

ω2
d + (z − ξωn)

2
and sin ϕ1 =

z − ξωn√︂
ω2

d + (z − ξωn)
2

. (3.28)

Substituting (3.28) to (3.27) yields

ÿu(0) =− K (2ξωn − z) < 0

if the condition (3.25) holds. Thus, at t = 0, ẏu(t) has a tendency to decrease.

Therefore, |ẏu(0
+)| = ẏu(0

+) = K is a local maximum. We next show that

|ẏu(0
+)| is indeed a global maximum by comparing it with all other local

extrema |ẏu(t
⋆)| at any time instant t⋆ > 0 such that ÿu(t

⋆) = 0. Clearly,

ÿu(t
⋆) = 0 implies that

ξωn cos (ωdt⋆ − ϕ1) + ωd sin (ωdt⋆ − ϕ1) = 0 ,

from which we get

sin (ωdt⋆ − ϕ1)

cos (ωdt⋆ − ϕ1)
= −ξωn

ωd
= − ξ√︁

1 − ξ2
. (3.29)

Combining (3.29) with the identity sin (ωdt⋆ − ϕ1)
2 + cos (ωdt⋆ − ϕ1)

2 = 1,

we can get

| cos (ωdt⋆ − ϕ1)| =
√︂

1 − ξ2 .

Therefore,

|ẏu(t
⋆)| = Ke−ξωnt⋆

√︂
ω2

d + (z − ξωn)
2

ωd
| cos (ωdt⋆ − ϕ1)|

= Ke−ξωnt⋆

√︂
ω2

d + (z − ξωn)
2

ωd

√︂
1 − ξ2
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= Ke−ξωnt⋆

√︂
ω2

d + (z − ξωn)
2

ωn
.

Note that, if the condition (3.25) hold, it follows from 0 < z < 2ξωn that

−ξωn < z − ξωn < ξωn, i.e., |z − ξωn| < ξωn, which further implies that
√︂

ω2
d + (z − ξωn)

2

ωn
<

√︂
ω2

d + (ξωn)
2

ωn
=

√︁
ω2

n (1 − ξ2) + ξ2ω2
n

ωn
=

√︁
ω2

n
ωn

=1 .

Therefore, ∀t⋆ > 0,

|ẏu(t
⋆)| < Ke−ξωn01 = K = |ẏu(0

+)| ,

which indicates that |ẏu(0
+)| is a global maximum.

• Critically damped case (ξ = 1):

L {ẏu(t)} = K

[︄
1

s + ωn
+

z − ωn

(s + ωn)
2

]︄
,

whose inverse Laplace transform is

ẏu(t) = Ke−ωnt [1 + (z − ωn) t] . (3.30)

Taking time derivative of (3.30), we get

ÿu(t) = Ke−ωnt [(z − 2ωn)− ωn (z − ωn) t] . (3.31)

Thus, we have

ÿu(0) = K (z − 2ωn) < 0

if the condition (3.25) holds. Thus, at t = 0, ẏu(t) has a tendency to decrease.
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Therefore, |ẏu(0
+)| = ẏu(0

+) = K is a local maximum. We next show that

|ẏu(0
+)| is indeed a global maximum by comparing it with all other local

extrema |ẏu(t
⋆)| at any time instant t⋆ > 0 such that ÿu(t

⋆) = 0. From

(3.31), we know ÿu(t
⋆) = 0 implies that

(z − ωn) t⋆ =
z − 2ωn

ωn
.

Therefore,

|ẏu(t
⋆)| = Ke−ωnt⋆

⃓⃓
⃓⃓1 + z − 2ωn

ωn

⃓⃓
⃓⃓ = Ke−ωnt⋆

⃓⃓
⃓⃓z − ωn

ωn

⃓⃓
⃓⃓ = Ke−ωnt⋆ |z − ωn|

ωn
.

Note that, if the condition (3.25) hold, it follows from 0 < z < 2ωn that

−ωn < z − ωn < ωn, i.e., |z − ωn| < ωn, which further implies that,

∀t⋆ > 0,

|ẏu(t
⋆)| < Ke−ωn0 ωn

ωn
= K = |ẏu(0

+)| .

Therefore, |ẏu(0
+)| is a global maximum.

• Over damped case (ξ > 1):

L {ẏu(t)} = K
(︃

χ1

s + σ1
+

χ2

s + σ2

)︃

with

σ1,2 = ωn

(︃
ξ ±

√︂
ξ2 − 1

)︃
> 0 and χ1,2 =

1
2
∓ z − ξωn

2ωn
√︁

ξ2 − 1
,

whose inverse Laplace transform is

ẏu(t) = K
(︁
χ1e−σ1t + χ2e−σ2t)︁ . (3.32)
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Taking time derivative of (3.32), we get

ÿu(t) = −K
(︁
σ1χ1e−σ1t + σ2χ2e−σ2t)︁ . (3.33)

Thus, we have

ÿu(0) = −K (σ1χ1 + σ2χ2) = −K (2ξωn − z) < 0

if the condition (3.25) holds. Thus, at t = 0, ẏu(t) has a tendency to decrease.

Therefore, |ẏu(0
+)| = ẏu(0

+) = K is a local maximum. We next show that

|ẏu(0
+)| is indeed a global maximum by comparing it with all other local

extrema |ẏu(t
⋆)| at any time instant t⋆ > 0 such that ÿu(t

⋆) = 0. From

(3.33), we know ÿu(t
⋆) = 0 implies that

χ1e−σ1t⋆ = −σ2

σ1
χ2e−σ2t⋆ .

Therefore,

|ẏu(t
⋆)| = K

⃓⃓
⃓χ1e−σ1t⋆ + χ2e−σ2t⋆

⃓⃓
⃓ = K

⃓⃓
⃓⃓−σ2

σ1
χ2e−σ2t⋆ + χ2e−σ2t⋆

⃓⃓
⃓⃓

= Ke−σ2t⋆
⃓⃓
⃓⃓
(︃

1 − σ2

σ1

)︃
χ2

⃓⃓
⃓⃓ = Ke−σ2t⋆

⃓⃓
⃓⃓
⃓⃓
z − ξωn + ωn

√︁
ξ2 − 1

ωn

(︂
ξ +

√︁
ξ2 − 1

)︂

⃓⃓
⃓⃓
⃓⃓ .

Note that, if the condition (3.25) hold, it follows from 0 < z < 2ξωn that

−ξωn + ωn

√︂
ξ2 − 1< z − ξωn + ωn

√︂
ξ2 − 1< ξωn + ωn

√︂
ξ2 − 1 . (3.34)

Combining (3.34) with the fact that

−ξωn − ωn

√︂
ξ2 − 1 < −ξωn + ωn

√︂
ξ2 − 1 ,
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we get

−ξωn − ωn

√︂
ξ2 − 1< z − ξωn + ωn

√︂
ξ2 − 1< ξωn + ωn

√︂
ξ2 − 1 ,

which is equivalent to

⃓⃓
⃓⃓z − ξωn + ωn

√︂
ξ2 − 1

⃓⃓
⃓⃓ < ξωn + ωn

√︂
ξ2 − 1 = ωn

(︃
ξ +

√︂
ξ2 − 1

)︃
.

Therefore, ∀t⋆ > 0,

|ẏu(t
⋆)| < Ke−σ20

ωn

(︂
ξ +

√︁
ξ2 − 1

)︂

ωn

(︂
ξ +

√︁
ξ2 − 1

)︂ = K = |ẏu(0
+)| ,

which indicates that |ẏu(0
+)| is a global maximum.

The result follows.

3.2.4 Synchronization Cost

The computation of the synchronization cost defined in (2.44) for a pro-

portionally heterogeneous system in the absence of frequency control can be

found in [28]. Taking this into account, we can get corresponding results for

the system with any frequency control law readily.

Lemma 3.3 (Synchronization Cost). Let Assumptions 2.2, 3.1, and 3.2 hold. De-

fine µ̃0 := UT
⊥R− 1

2 µ0 and Γ̃ := UT
⊥R−1U⊥. Then the synchronization cost of the

system T̂ωp(s) is given by

∥ω̃∥2
L2

= µ̃T
0
(︁
Γ̃ ◦ H̃

)︁
µ̃0 , (3.35)

where ◦ denotes the Hadamard product and H̃ :=
[︁
H̃kl
]︁
∈ R(n−1)×(n−1) is the
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matrix with its klth entry given by

H̃kl :=
∫︂ ∞

0
hu,k+1(t)hu,l+1(t) dt , ∀k, l ∈ [n − 1] .

Proof. This is a direct extension of [28, Proposition 2]. According to the defini-

tion of the synchronization cost ∥ω̃∥2
L2

in (2.44), we begin with an examination

of ω̃(t)Tω̃(t), which can be obtained from the time domain counterpart of

(3.17) as

ω̃(t)Tω̃(t) = µT
0 R− 1

2 U⊥Hu⊥(t)TUT
⊥R−1U⊥Hu⊥(t)UT

⊥R− 1
2 µ0

=µ̃T
0 Hu⊥(t)TΓ̃Hu⊥(t)µ̃0

with µ̃0 := UT
⊥R− 1

2 µ0 and Γ̃ := UT
⊥R−1U⊥. Thus,

∥ω̃∥2
L2

:=
∫︂ ∞

0
ω̃(t)Tω̃(t)dt

=
∫︂ ∞

0
µ̃T

0 Hu⊥(t)TΓ̃Hu⊥(t)µ̃0dt = µ̃T
0

(︃∫︂ ∞

0
Hu⊥(t)TΓ̃Hu⊥(t)dt

)︃
µ̃0 ,

which is just another way to express (3.35).

Lemma 3.3 shows that the computation of the synchronization cost requires

knowing the inner products H̃kl. Yet, the general expressions of these inner

products for an arbitrary combination of k and l are too tedious to be useful in

analysis. Thus, we will investigate instead bounds on the synchronization cost

in terms of the inner products H̃kl when k = l, which are exactly the squared

H2 norms of the systems ĥu,k+1(s).

Lemma 3.4 (Bounds for Hadamard Product). Let E ∈ Rn×n be a symmetric
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matrix with the minimum and maximum eigenvalues given by λmin(E) and λmax(E),

respectively. Then, ∀ x := (xk, k ∈ [n]) ∈ Rn and y := (yk, k ∈ [n]) ∈ Rn,

λmin(E)
n

∑
k=1

x2
ky2

k ≤ xT
(︂

E ◦
(︂

yyT
)︂)︂

x ≤ λmax(E)
n

∑
k=1

x2
ky2

k .

Proof. First, note that

xT
(︂

E ◦
(︂

yyT
)︂)︂

x = tr
(︂

ET (x ◦ y) (x ◦ y)T
)︂
= (x ◦ y)T ET (x ◦ y) .

Since E is symmetric, by Rayleigh [50],

λmin(E) (x ◦ y)T (x ◦ y) ≤ (x ◦ y)T ET (x ◦ y) ≤ λmax(E) (x ◦ y)T (x ◦ y) .

Observing that (x ◦ y)T (x ◦ y) = ∑n
k=1 x2

ky2
k completes the proof.

Lemma 3.4 implies the following bounds on the synchronization cost.

Theorem 3.4 (Bounds on Synchronization Cost). Let Assumptions 2.2, 3.1, and

3.2 hold. Then the synchronization cost of the system T̂ωp(s) is bounded by ∥ω̃∥2
L2

≤
∥ω̃∥2

L2
≤ ∥ω̃∥2

L2
, where

∥ω̃∥2
L2

:=
∑n−1

k=1 µ̃2
0,k∥ĥu,k+1∥2

H2

maxi∈[n] (ri)
and ∥ω̃∥2

L2
:=

∑n−1
k=1 µ̃2

0,k∥ĥu,k+1∥2
H2

mini∈[n] (ri)
.

Proof. Let hu⊥(t) := (hu,k(t), k ∈ [n] \ {1}) ∈ Rn−1. By Lemma 3.3,

∥ω̃∥2
L2

= µ̃T
0
(︁
Γ̃ ◦ H̃

)︁
µ̃0 = µ̃T

0

(︃
Γ̃ ◦

∫︂ ∞

0
hu⊥(t)hu⊥(t)Tdt

)︃
µ̃0

=
∫︂ ∞

0
µ̃T

0

(︂
Γ̃ ◦

(︂
hu⊥(t)hu⊥(t)T

)︂)︂
µ̃0 dt

≥
∫︂ ∞

0
λmin(Γ̃)

n−1

∑
k=1

µ̃2
0,khu,k+1(t)2 dt = λmin(Γ̃)

n−1

∑
k=1

µ̃2
0,k∥ĥu,k+1∥2

H2
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≥ λmin(R−1)
n−1

∑
k=1

µ̃2
0,k∥ĥu,k+1∥2

H2
=

∑n−1
k=1 µ̃2

0,k∥ĥu,k+1∥2
H2

maxi∈[n] (ri)
,

which concludes the proof of the lower bound. The first inequality follows

from Lemma 3.4 by setting E = Γ̃, x = µ̃0, and y = hu⊥(t). The second

inequality follows from the interlacing theorem [50, Theorem 4.3.17]. More

precisely, Γ̃ is a (n − 1)th order principal submatrix of UTR−1U since

UTR−1U =

[︄
uT

1

UT
⊥

]︄
R−1 [︁u1 U⊥

]︁

=

[︄
uT

1 R−1u1 uT
1 R−1U⊥

UT
⊥R−1u1 UT

⊥R−1U⊥

]︄
=

[︄
uT

1 R−1u1 uT
1 R−1U⊥

UT
⊥R−1u1 Γ̃

]︄
,

which implies that λi(Γ̃) ≥ λi(UTR−1U), ∀i ∈ [n − 1], by the interlacing the-

orem. In addition, it is easy to see that UTR−1U is similar to R−1 since U−1 =

UT by the property of orthogonal matrix, which indicates that λi(UTR−1U) =

λi(R−1), ∀i ∈ [n]. Hence, ∀i ∈ [n − 1], λi(Γ̃) ≥ λi(UTR−1U) = λi(R−1),

which ensures that λmin(Γ̃) = λ1(Γ̃) ≥ λ1(R−1) = λmin(R−1). The proof of

the upper bound is similar.

Remark 3.4 (Synchronization Cost in Homogeneous Case). In the system

T̂ωp(s) with homogeneous parameters, i.e., R = rIn for some r > 0, the identi-

cal lower and upper bounds on the synchronization cost imply that

∥ω̃∥2
L2

= r−1
n−1

∑
k=1

µ̃2
0,k∥ĥu,k+1∥2

H2
.
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3.2.5 Frequency Variance

We seek to characterize the effect of the stochastic power fluctuations and

frequency measurement noise on the frequency variance by quantifying the

squared H2 norm of the system T̂ωn(s).

We first show that the squared H2 norm of the system T̂ωn(s) is a weighted

sum of the squared H2 norms of each system ĥp,k(s) and ĥω,k(s) in the diago-

nalized system (3.12).

Theorem 3.5 (Frequency Variance). Define Γ := UTR−1U. If Assumptions 2.2,

3.1, and 3.3 hold, then

∥T̂ωn∥2
H2

=
n

∑
k=1

Γkk

(︂
κ2

p∥ĥp,k∥2
H2

+ κ2
ω∥ĥω,k∥2

H2

)︂
.

Proof. It follows from (2.35) and (2.45) that

∥T̂ωn∥2
H2

:=
1

2π

∫︂ ∞

−∞
tr
(︁
T̂ωn(jὼ)∗T̂ωn(jὼ)

)︁
dὼ

=
1

2π

∫︂ ∞

−∞
tr
(︂[︁

T̂ωnp(jὼ) T̂ωnω(jὼ)
]︁∗ [︁T̂ωnp(jὼ) T̂ωnω(jὼ)

]︁
)
)︂

dὼ

=
1

2π

∫︂ ∞

−∞
tr
(︂

T̂ωnp(jὼ)∗T̂ωnp(jὼ)
)︂

dὼ+
1

2π

∫︂ ∞

−∞
tr
(︁
T̂ωnω(jὼ)∗T̂ωnω(jὼ)

)︁
dὼ

=: ∥T̂ωnp∥2
H2

+ ∥T̂ωnω∥2
H2

.

We now compute ∥T̂ωnp∥2
H2

. Using (3.12b) and the fact that Ŵp(s) = κpR
1
2 by
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Assumption 3.3, we can get

T̂ωnp(s) = κpR− 1
2 UĤp(s)UT .

Therefore,

T̂ωnp(jὼ)∗T̂ωnp(jὼ) = κ2
pUĤp(jὼ)∗UTR−1UĤp(jὼ)UT

= κ2
pUĤp(jὼ)∗ΓĤp(jὼ)UT

with Γ := UTR−1U. It follows that

∥T̂ωnp∥2
H2

=
1

2π

∫︂ ∞

−∞
tr
(︂

T̂ωnp(jὼ)∗T̂ωnp(jὼ)
)︂

dὼ

=
1

2π

∫︂ ∞

−∞
tr
(︂

κ2
pUĤp(jὼ)∗ΓĤp(jὼ)UT

)︂
dὼ

=
κ2

p

2π

∫︂ ∞

−∞
tr
(︂

UTUĤp(jὼ)∗ΓĤp(jὼ)
)︂

dὼ

=
κ2

p

2π

∫︂ ∞

−∞
tr
(︁

Ĥp(jὼ)∗ΓĤp(jὼ)
)︁

dὼ

=
κ2

p

2π

∫︂ ∞

−∞

n

∑
k=1

Γkkĥp,k(jὼ)∗ĥp,k(jὼ)dὼ

= κ2
p

n

∑
k=1

Γkk
2π

∫︂ ∞

−∞
ĥp,k(jὼ)∗ĥp,k(jὼ)dὼ =: κ2

p

n

∑
k=1

Γkk∥ĥp,k∥2
H2

,

where the third equality is due to the cyclic property of the trace and the

fourth equality is by the property of orthogonal matrix, i.e., UTU = In. A

similar argument on ∥T̂ωnω∥2
H2

yields the desired result.

Theorem 3.5 allows us to compute the H2 norm of the system T̂ωn(s) by
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computing the H2 norms of a set of simple scalar transfer functions. Although

the specific transfer functions ĥp,k(s) and ĥω,k(s) will change according to

the detailed generator and inverter dynamics involved, in the case where

these transfer functions are of fourth-order or lower, the following lemma will

suffice for the purpose of our comparison.

Lemma 3.5 (H2 Norm of a Fourth-Order Transfer Function). Consider a stable

transfer function

ĥ(s) =
b3s3 + b2s2 + b1s + b0

s4 + a3s3 + a2s2 + a1s + a0
+ b4 . (3.36)

Then its H2 norm is given by

∥ĥ∥2
H2

=

⎧
⎪⎨
⎪⎩

∞ if b4 ̸= 0
ζ0b2

0 + ζ1b2
1 + ζ2b2

2 + ζ3b2
3 + ζ4

2a0
(︁
a1a2a3 − a2

1 − a0a2
3
)︁ if b4 = 0

, (3.37)

where

ζ0 := a2a3 − a1 , ζ1 := a0a3 , ζ2 := a0a1 , ζ3 := a0a1a2 − a2
0a3 ,

ζ4 :=− 2a0(a1b1b3 + a3b0b2) . (3.38)

Proof. We can calculate ∥ĥ∥2
H2

by applying the approach provided at the end of

Section 2.3.1 to the scalar transfer function ĥ(s). That is, given any state-space

realization of the stable transfer function ĥ(s), i.e.,

Σĥ(s) =

[︃
A B
C D

]︃
,
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we have

∥ĥ∥2
H2

=

{︄
∞ if D ̸= 0
CXCT if D = 0

, (3.39)

where X denotes the solution to the Lyapunov equation

AX + X AT = −BBT . (3.40)

Consider the observable canonical form [51, Section 4.1.6] of ĥ(s) given by

Σĥ(s) =

⎡
⎢⎢⎢⎢⎣

0 0 0 −a0 b0
1 0 0 −a1 b1
0 1 0 −a2 b2
0 0 1 −a3 b3
0 0 0 1 b4

⎤
⎥⎥⎥⎥⎦

. (3.41)

Since D = b4, it is trivial to see from (3.39) that if b4 ̸= 0 then ∥ĥ∥2
H2

= ∞.

Hence, in the rest of the proof, we assume b4 = 0. We will now solve the

Lyapunov equation analytically for the realization (3.41). From (2.38), we

know that X must be symmetric. Thus, it can be parameterized as

X =
[︁
Xij
]︁
∈ R4×4 with Xij = Xji . (3.42)

Since it is easy to see that CXCT = X44, the problem becomes solving for X44.

Substituting (3.41) and (3.42) into (3.40) yields the following equations

2a0X14 = b2
0 , (3.43a)

X12 − a2X14 − a0X34 =− b0b2 , (3.43b)

2(X12 − a1X24) =− b2
1 , (3.43c)

81



X23 − a3X24 + X14 − a1X44 =− b1b3 , (3.43d)

2(X23 − a2X34) =− b2
2 , (3.43e)

2(X34 − a3X44) =− b2
3 . (3.43f)

Since ĥ(s) is stable, by the Routh-Hurwitz criterion a0 ̸= 0. Thus, (3.43a)

yields

X14 =
b2

0
2a0

. (3.44)

Applying (3.44) to (3.43b) and (3.43d) gives

X12 = a0X34 +
a2b2

0
2a0

− b0b2 , (3.45a)

X23 − a3X24 = a1X44 −
b2

0
2a0

− b1b3 . (3.45b)

We now parameterize unknowns in X44. Equation (3.43f) yields

X34 = a3X44 −
b2

3
2

. (3.46)

Substituting (3.46) into (3.43e) and (3.45a) gives

X23 = a2a3X44 −
a2b2

3 + b2
2

2
, (3.47a)

X12 = a0a3X44 −
a0b2

3
2

+
a2b2

0
2a0

− b0b2 , (3.47b)

respectively. Plugging (3.47b) into (3.43c) leads to

a1X24 = a0a3X44 −
a0b2

3
2

+
a2b2

0
2a0

− b0b2 +
b2

1
2

. (3.48)
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Combining (3.45b), (3.47a), and (3.48), we can solve for X44 as the right hand

side of (3.37) for b4 = 0, which concludes the proof; the denominator is

guaranteed to be nonzero by the Routh-Hurwitz criterion.

Remark 3.5 (H2 Norm of a Transfer Function Lower Than Fourth-Order).

Although Lemma 3.5 is stated for a fourth-order transfer function, it can also be

used to find the H2 norm of third-, second-, and first-order transfer functions by

considering appropriate limits. For example, setting a0 = b0 = ρ and considering

the limit ρ → 0, (3.37) gives the H2 norm of a generic third-order transfer function.

This process shows that, given a stable transfer function ĥ(s), if b4 = 0 and:

• (third-order) a0 = b0 = 0, then

∥ĥ∥2
H2

=
a3b2

1 + a1b2
2 + a1a2b2

3 − 2a1b1b3

2a1(a2a3 − a1)
;

• (second-order) a0 = b0 = a1 = b1 = 0, then

∥ĥ∥2
H2

=
b2

2 + a2b2
3

2a2a3
;

• (first-order) a0 = b0 = a1 = b1 = a2 = b2 = 0, then

∥ĥ∥2
H2

=
b2

3
2a3

;

otherwise, ∥ĥ∥2
H2

= ∞.

Remark 3.6 (Well-Definedness by the Stability). Note that the stability of ĥ(s)

guarantees that the denominators in all the above H2 norm expressions are nonzero

by the Routh-Hurwitz stability criterion.
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3.2.6 Steady-State Effort Share

As indicated by (2.46), the key of computing the steady-state effort share

lies in computing the steady-state frequency deviation ω(∞) of the system

T̂ωp(s). By Lemma 3.2, in the steady-state, the system T̂ωp(s) synchronizes

to ω(∞) = ωsyn1n. With the formula for ωsyn in (3.18), we can easily get an

explicit expression for the steady-state effort share as provided in the theorem

below.

Theorem 3.6 (Steady-State Effort Share). Let Assumptions 2.2 and 3.2 hold. If

pb,i is determined by a control law ĉi(s), ∀i ∈ [n], then the steady-state effort share

of the system T̂ωp(s) is given by

ηes =

⃓⃓
⃓⃓ ∑n

i=1 ĉi(0)
∑n

i=1 (αl,i + αt,i − ĉi(0))

⃓⃓
⃓⃓ . (3.49)

Proof. It follows directly from Lemma 3.2 that ωi(∞) = ωsyn and

n

∑
i=1

pin,i(0+) =
n

∑
i=1

µ0,i = ωsyn

n

∑
i=1

(αl,i + αt,i − ĉi(0)) .

Plugging these two equations to the definition of the steady-state effort share

ηes in (2.46) yields (3.49).

84



Chapter 4

Performance Analysis of Frequency
Control via Inverter-Interfaced
Energy Storage

This chapter formally compares the performance of the traditional control

laws—droop control (DC) and virtual inertia (VI)—with that of our proposed

control laws—dynamic droop control (iDroop) and frequency shaping control

(FS)—for frequency control via inverter-interfaced energy storage, which

serves as both a motivation and a justification for our research. In Section 4.1,

we illustrate the limitations of DC and VI so as to motivate the need for new

control laws. In Section 4.2, we suggest iDroop as an improved alternative to

DC and VI, whose advantages are verified through rigorous analysis using

explicit expressions for performance metrics with the aid of the generic results

in Chapter 3. In Section 4.3, we extend iDroop to FS by providing it with the

extra ability to tune the RoCoF.
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4.1 Traditional Control Laws: Droop Control and
Virtual Inertia

Both DC and VI rest on the idea of imitating synchronous generator be-

havior via inverter-interfaced energy storage, where the former only provides

additional droop response but the latter also compensates for inertial response.

Inverter Dynamics 1 (Droop Control). The dynamics of an inverter with DC is

given by the transfer function

ĉi(s) = −αb,i , (4.1)

where αb,i > 0 is the inverter inverse droop coefficient.

Inverter Dynamics 2 (Virtual Inertia). The dynamics of an inverter with VI is

given by the transfer function

ĉi(s) = − (mv,is + αb,i) , (4.2)

where mv,i > 0 is the virtual inertia constant.

Under Assumption 3.1, the representative inverters under DC in (4.1) and

VI in (4.2) are given by

ĉo(s) = −αb,o (4.3)

and

ĉo(s) = − (mv,os + αb,o) (4.4)

with mv,i = rimv,o and αb,i = riαb,o, ∀i ∈ [n]. To streamline the notation, we

define α̌o := αl,o + αb,o and m̌o := mo + mv,o.
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We now offer the following toy example to develop intuition about the

impact of DC and VI via inverter-interfaced energy storage on frequency

dynamics in power systems.

Example 4.1 (Great Britain Power System with DC/VI). Consider the Great

Britain power system described in Example 2.1 under the high renewable penetration

scenario. Suppose that the inverter-interfaced energy storage characterized by (2.15)

is deployed to improve the frequency dynamics of this low-inertia power system. To

illustrate the impact of the parameters of DC in (4.1) and VI in (4.2) on frequency

dynamics, Figure 4.1 plots system frequency deviations excited by the same pl as in

Example 2.1 when ĉ(s) = − (mvs + αb) for different values of the virtual inertia

constant mv ≥ 0 and the inverter inverse droop coefficient αb ≥ 0. Here, we allow

the degenerate cases where mv = 0 or αb = 0 for the purpose of investigating the

role of these two parameters one at a time. Obviously, in the case that mv = αb = 0,

we recover the original system, where there is no additional control from inverter-

interfaced energy storage. Figure 4.1(a) shows the effect of mv on frequency dynamics

by fixing αb = 0, from which we learn that mv plays a part only in the transient

duration. More precisely, in contrast to the irrelevance of the steady-state frequency

to mv, the RoCoF significantly depends on the choice of mv. That is, greater values of

mv lead to a decrease of RoCoF, one of whose by-prodcuts is the improved Nadir until

the Nadir elimination is achieved. Figure 4.1(b) shows the effect of αb on frequency

dynamics by fixing mv = 0, from which we know that αb picks the whole frequency

curve up. Especially, αb directly contributes to raising the steady-state frequency up

towards the nominal value, which results in the improved Nadir as well. Yet, αb has

no influence on the initial RoCoF.
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(a) Frequency deviations for various values of mv, where αb = 0

(b) Frequency deviations for various values of αb, where mv = 0

Figure 4.1: Frequency deviations in Great Britain system with DC or VI via Energy
Storage (Example 4.1)
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4.1.1 Performance Analysis

We now apply the results in Section 3.2 to illustrate the performance

limitations of the traditional control laws DC and VI. With this aim, we seek to

quantify the frequency variance (2.45) under DC and VI through the squared

H2 norms of the systems T̂ωn,DC(s) and T̂ωn,VI(s), as well as the synchronous

frequency, Nadir (2.42), RoCoF (2.43), synchronization cost (2.44), and steady-

state effort share (2.46) through the step response characterizations of the

systems T̂ωp,DC(s) and T̂ωp,VI(s).1

Synchronous Frequency

Corollary 4.1 (Synchronous Frequency via DC and VI). Let Assumptions 2.2

and 3.2 hold. If pb,i is defined by the control law DC in (4.1) or VI in (4.2), ∀i ∈ [n],

then the steady-state frequency deviation of the respective system T̂ωp,DC(s) or

T̂ωp,VI(s) synchronizes to the synchronous frequency, i.e., ω(∞) = ωsyn1n with

ωsyn =
∑n

i=1 µ0,i

∑n
i=1 (αl,i + αt,i + αb,i)

. (4.5)

Proof. The result follows directly from Lemma 3.2 if it is recognized that

ĉi(0) = −αb,i, ∀i ∈ [n], for both DC and VI.

Corollary 4.1 shows that the magnitude of the synchronous frequency is

inversely proportional to the aggregate compensated inverse droop coefficient.

Thus, with all other things unchanged, the greater the inverter inverse droop

1Depending on the specific inverter dynamics involved, we may add a subscript in the
name of a transfer function (matrix) without making a further declaration in the rest of this
thesis. Particularly, for the case where there is no additional control from inverter-interfaced
energy storage, i.e, ĉi(s) = 0, ∀i ∈ [n], we would add the subscript “SG”.
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coefficient αb,i is, the closer the synchronous frequency ωsyn is to zero. Yet,

without a secondary control layer, which is out of the scope of this thesis, in

general, ωsyn cannot be made zero unless ∑n
i=1 µ0,i = 0.

Nadir

With the help of Theorem 3.1, we can determine the conditions that the

parameters of DC and VI must satisfy to realize the Nadir elimination of the

COI frequency.

Theorem 4.1 (Nadir Elimination via DC and VI). Let Assumptions 2.2, 3.1, and

3.2 hold. Then the Nadir elimination of the COI frequency of

• the system T̂ωp,DC(s) is achieved if and only if the parameter αb,o of DC satisfies

mo ≥ τt,o
(︁√

αt,o +
√︁

αl,o + αb,o + αt,o
)︁2 ; (4.6)

• the system T̂ωp,VI(s) is achieved if and only if the parameters αb,o and mv,o of VI

satisfy

mo + mv,o ≥ τt,o
(︁√

αt,o +
√︁

αl,o + αb,o + αt,o
)︁2 . (4.7)

Proof. We start by deriving the Nadir elimination condition for VI. According

to (3.16), the COI frequency deviation of the system T̂ωp,VI(s) is given by

ω̄VI(t) =
∑n

i=1 µ0,i

∑n
i=1 ri

hu,1,VI(t) ,

where hu,1,VI(t) is the unit-step response of ĥp,1,VI(s). Clearly, as long as

hu,1,VI(t) achieves the Nadir elimination, so does ω̄VI(t). Thus, as shown later,
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the core is to apply Theorem 3.1 to ĥp,1,VI(s). Substituting (3.2) and (4.4) to

(3.10) yields

ĥp,1,VI(s) =
1

m̌o

s + 1/τt,o

s2 + 2ξωns + ω2
n

, (4.8)

where

ωn :=

√︄
α̌o + αt,o

m̌oτt,o
and ξ :=

1/τt,o + α̌o/m̌o

2
√︁
(α̌o + αt,o) / (m̌oτt,o)

. (4.9)

Now we are ready to search the Nadir elimination tuning region by means of

Theorem 3.1. An easy computation shows that the following inequality holds:

2ξωn −
1

τt,o
=

α̌o

m̌o
<

α̌o + αt,o

m̌o
= ω2

nτt,o .

Equivalently, it holds that

ξ <
1
2

(︃
1

ωnτt,o
+ ωnτt,o

)︃
,

which indicates that the second set of conditions in (3.22) cannot be satisfied.

Hence, we turn to the first set of conditions in (3.22), which holds if and only

if ξ ≥ 1 and ξωn ≤ 1/τt,o. Via simple algebraic computations, we know this

is equivalent to
{︄

m̌2
o − 2τt,o (α̌o + 2αt,o) m̌o + τ2

t,oα̌2
o ≥ 0

m̌o ≥ τt,oα̌o
. (4.10)

The first condition in (4.10) can be viewed as a quadratic inequality with

respect to m̌o, which holds if and only if

m̌o ≥ τt,o

(︂√
αt,o +

√︁
α̌o + αt,o

)︂2
or m̌o ≤ τt,o

(︂√
αt,o −

√︁
α̌o + αt,o

)︂2
.
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However, only the former region satisfies the second condition in (4.10). This

concludes the proof of the second statement. The first statement follows

trivially by setting mv,o = 0.

Important inferences can be made from Theorem 4.1. The fact that a small

mo tends to violate the requirement in (4.6) implies that in a low-inertia power

system it is hard to achieve the Nadir elimination using only DC. Undoubtedly,

the addition of mv,o makes the requirement in (4.7) more accessible, which

indicates that VI can help a low-inertia power system largely improve the

Nadir.

Remark 4.1 (Critical Value of m̌o for Nadir Elimination). Theorem 4.1 suggests

a critical value of the (compensated) representative inertia constant m̌o dependent on

the turbine time constant τt,o as well as the inverse droop coefficients αl,o, αt,o, and

αb,o of the representative equipment, beyond which DC and VI are able to realize the

Nadir elimination. We denote this value as mc which is determined by

mc := τt,o
(︁√

αt,o +
√︁

αl,o + αb,o + αt,o
)︁2 .

If it is recognized that in reality αl,o and αb,o is much smaller than αt,o, an approximate

expression for mc can be derived as

mc = τt,o

(︄
2αt,o + αl,o + αb,o + 2αt,o

√︄
αl,o + αb,o

αt,o
+ 1

)︄

≈ τt,o

[︃
2αt,o + αl,o + αb,o + 2αt,o

(︃
1 +

αl,o + αb,o

2αt,o

)︃]︃

= 2τt,o (2αt,o + αl,o + αb,o) ,
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where the second line is obtained by ignoring higher order terms in the binomial series.

Noticeably, the required mc for Nadir elimination has rather high values, which makes

it unrealistic to rely on DC or VI to take charge of this.

RoCoF

Corollary 4.2 (RoCoF under DC and VI). Let Assumptions 2.2, 3.1, and 3.2 hold.

Then the RoCoF of the COI frequency of the systems T̂ωp,DC(s) and T̂ωp,VI(s) are

given by

∥ω̇̄DC∥L∞ =
|∑n

i=1 µ0,i|
∑n

i=1 ri

1
mo

and ∥ω̇̄VI∥L∞ =
|∑n

i=1 µ0,i|
∑n

i=1 ri

1
mo + mv,o

,

respectively.

Proof. We start by deriving the RoCoF for VI. From the proof of Theorem 4.1,

we know that

ω̂̄VI(s) =
∑n

i=1 µ0,i

∑n
i=1 ri

ĥp,1,VI(s)
s

with ĥp,1,VI(s) given by (4.8). Thus, ω̄VI(t) is equivalent to the unit-step re-

sponse of the second-order system ĥp,1,VI(s) scaled by (∑n
i=1 µ0,i)/(∑n

i=1 ri).

Thus, we can apply Theorem 3.3 to ĥp,1,VI(s). Clearly,

2ξωn = 2
1/τt,o + α̌o/m̌o

2
√︁
(α̌o + αt,o) / (m̌oτt,o)

√︄
α̌o + αt,o

m̌oτt,o
=

1
τt,o

+
α̌o

m̌o
>

1
τt,o

= z .

Thus, by Theorem 3.3,

∥ω̇̄VI∥L∞ =

⃓⃓
⃓⃓∑

n
i=1 µ0,i

∑n
i=1 ri

⃓⃓
⃓⃓K =

|∑n
i=1 µ0,i|

∑n
i=1 ri

1
m̌o

,

which concludes the proof for VI. The result for DC follows trivially by setting

mv,o = 0.
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Remark 4.2 (RoCoF of the Original System). From the proof of Corollary 4.2,

we can directly get the RoCoF of the original system without additional control from

inverter-interfaced energy storage by further setting αb,o = 0 on top of DC which in

fact is a parameter that is irrelative to RoCoF. By doing so, we can get

∥ω̇̄SG∥L∞ =
|∑n

i=1 µ0,i|
∑n

i=1 ri

1
mo

.

Synchronization Cost

Theorem 3.4 implies that the synchronization costs of the system T̂ωp,DC(s)

and the system T̂ωp,VI(s) are bounded by a weighted sum of ∥ĥu,k+1,DC∥2
H2

and ∥ĥu,k+1,VI∥2
H2

over k ∈ [n − 1], respectively. Hence, in order to see the

limited ability of DC and VI to reduce the synchronization cost, we need to

first gain a deeper understanding of ∥ĥu,k+1,DC∥2
H2

and ∥ĥu,k+1,VI∥2
H2

.

Theorem 4.2 (Bounds of ∥ĥu,k+1,DC∥2
H2

and ∥ĥu,k+1,VI∥2
H2

). Let Assumptions 2.2,

3.1, and 3.2 hold. Then, ∀k ∈ [n − 1], given αb,o > 0, ∀mv,o > 0,

1
2λk+1 (α̌o + αt,o)

< ∥ĥu,k+1,VI∥2
H2

< ∥ĥu,k+1,DC∥2
H2

< ∥ĥu,k+1,SG∥2
H2

.

Proof. Considering that DC can be viewed as VI with mv,o = 0 and the

case without additional control from inverters can be viewed as VI with

mv,o = αb,o = 0, we only compute ∥ĥu,k+1,VI∥2
H2

, which straightforwardly

implies ∥ĥu,k+1,DC∥2
H2

and ∥ĥu,k+1,SG∥2
H2

. Applying (3.2) and (4.4) to (3.10)

shows that ĥu,k+1,VI(s) = ĥp,k+1,VI(s)/s is a transfer function in the form of

(3.36) with b4 = a0 = b0 = 0, a1 = λk+1/ (m̌oτt,o), b1 = 1/ (m̌oτt,o), a2 =

(α̌o + αt,o + λk+1τt,o) / (m̌oτt,o), b2 = 1/m̌o, a3 = (m̌o + α̌oτt,o) / (m̌oτt,o), and
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b3 = 0. Then it follows from Lemma 3.5 that

∥ĥu,k+1,VI∥2
H2

=
m̌o + τt,o (λk+1τt,o + α̌o)

2λk+1 [τt,oα̌o (λk+1τt,o + α̌o + αt,o) + m̌o (α̌o + αt,o)]
.

Since ∥ĥu,k+1,VI∥2
H2

is a function of αb,o and mv,o, in what follows we denote

it by ζ(αb,o, mv,o). In order to have an insight on how ∥ĥu,k+1,VI∥2
H2

changes

with αb,o and mv,o, we take partial derivatives of ζ(αb,o, mv) with respect to

αb,o and mv,o, i.e.,

∂αb,oζ(αb,o, mv,o) =− [m̌o + τt,o (λk+1τt,o + α̌o)]
2 + λk+1τ3

t,oαt,o

2λk+1 [τt,oα̌o (λk+1τt,o + α̌o + αt,o) + m̌o (α̌o + αt,o)]
2 ,

∂mv,oζ(αb,o, mv,o) =− τ2
t,oαt,o

2 [τt,oα̌o (λk+1τt,o + α̌o + αt,o) + m̌o (α̌o + αt,o)]
2 .

Clearly, ∀αb,o≥ 0, we have ∂αb,oζ(αb,o, mv,o)< 0, which means that ζ(αb,o, mv,o)

is a monotonically decreasing function of αb,o. Similarly, ∀mv,o ≥ 0, we

have ∂mv,oζ(αb,o, mv,o) < 0, which means that ζ(αb,o, mv,o) is a monotonically

decreasing function of mv,o. Therefore, given αb,o > 0, ∀mv,o > 0, it holds that

lim
mv,o→∞

ζ(αb,o, mv,o) < ζ(αb,o, mv,o) < ζ(αb,o, 0) < ζ(0, 0) .

Finally, recall that ∥ĥu,k+1,VI∥2
H2

= ζ(αb,o, mv,o), ∥ĥu,k+1,DC∥2
H2

= ζ(αb,o, 0),

and ∥ĥu,k+1,SG∥2
H2

= ζ(0, 0). The result follows.

Corollary 4.3 (Ordering of Synchronization Costs in Homogeneous Case).

Let Assumptions 2.2, 3.1, and 3.2 hold. If R = rIn for some r > 0, then, given

αb,o > 0, ∀mv,o > 0, we can order the synchronization costs as:

∑n−1
k=1

(︂
µ̃2

0,k/λk+1

)︂

2r (α̌o + αt,o)
< ∥ω̃VI∥2

L2
< ∥ω̃DC∥2

L2
< ∥ω̃SG∥2

L2
.
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Proof. The result follows by combining Remark 3.4 and Theorem 4.2.

Corollary 4.4 (Lower Bound of Synchronization Costs under DC and VI).

Let Assumptions 2.2, 3.1, and 3.2 hold. For a proportionally heterogeneous power

system, the ordering of the sizes of the bounds on the synchronization cost in the

case without additional control from inverters, the case with DC, and the case with

VI depends on the parameter values. Thus, we cannot order ∥ω̃VI∥2
L2

, ∥ω̃DC∥2
L2

,

and ∥ω̃SG∥2
L2

strictly in general. Instead, we highlight that, given αb,o > 0, the

synchronization cost under DC and VI are bounded below by

∑n−1
k=1

(︂
µ̃2

0,k/λk+1

)︂

2 maxi∈[n] (ri) (α̌o + αt,o)
.

Proof. The result follows from Theorems 3.4 and 4.2.

Corollary 4.3 provides both upper and lower bounds for the synchroniza-

tion costs under DC and VI in the homogeneous case. The upper bound

verifies that DC and VI do reduce the synchronization cost by introducing

additional droop and inertial response while the lower bound indicates that

the reduction of the synchronization cost through DC and VI is limited by

certain value that is dependent on αb,o. Corollary 4.4 implies that, in the pro-

portionally heterogeneous case, the synchronization costs under DC and VI

are also bounded below by a value that is dependent on αb,o. More precisely,

the lower bound of the synchronization costs under DC and VI is reduced as

αb,o increases.
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Frequency Variance

Using Theorem 3.5 and Lemma 3.5, it is possible to get closed-form ex-

pressions of the squared H2 norms for the systems T̂ωn,DC(s) and T̂ωn,VI(s),

which can be interpreted as the frequency variances of the respective systems

facing stochastic power fluctuations and frequency measurement noise.

Corollary 4.5 (Frequency Variances under DC and VI). Let Assumptions 2.2,

3.1, and 3.3 hold. The squared H2 norms of the systems T̂ωn,DC(s) and T̂ωn,VI(s)

are given by

∥T̂ωn,DC∥2
H2

=
κ2

p + κ2
ωα2

b,o

2moα̌o

n

∑
i=1

1
ri

, (4.11a)

∥T̂ωn,VI∥2
H2

= ∞ , (4.11b)

respectively.

Proof. We study the two cases separately.

We begin with ∥T̂ωn,DC∥2
H2

. Applying (3.1) and (4.3) to (3.10) and (3.11)

shows that ĥp,k,DC(s) is a transfer function in the form of (3.36) with b4 =

a0 = b0 = a1 = b1 = 0, a2 = λk/mo, b2 = 0, a3 = α̌o/mo, b3 = 1/mo, while

ĥω,k,DC(s) is a transfer function in the form of (3.36) with b4 = a0 = b0 =

a1 = b1 = 0, a2 = λk/mo, b2 = 0, a3 = α̌o/mo, b3 = −αb,o/mo. Thus, by

Lemma 3.5,

∥ĥp,k,DC∥2
H2

=
1

2moα̌o
and ∥ĥω,k,DC∥2

H2
=

α2
b,o

2moα̌o
, ∀k ∈ [n] .

97



Then it follows from Theorem 3.5 that

∥T̂ωn,DC∥2
H2

=
n

∑
k=1

Γkk
κ2

p + κ2
ωα2

b,o

2moα̌o
=

κ2
p + κ2

ωα2
b,o

2moα̌o

n

∑
k=1

Γkk . (4.12)

Note that

n

∑
k=1

Γkk =
n

∑
i=1

λi(Γ) =
n

∑
i=1

λi(UTR−1U) =
n

∑
i=1

λi(R−1) =
n

∑
i=1

1
ri

. (4.13)

The first and last equalities use the property of the trace. The second equality

is a direct result of the definition that Γ := UTR−1U. The third equality is due

to the similarity between R−1 and UTR−1U, which has been discussed in the

proof of Theorem 3.4. Applying (4.13) to (4.12), we get (4.11a).

We now turn to show that ∥T̂ωn,VI∥2
H2

is infinite. Applying (3.1) and (4.4)

to (3.11) yields

ĥω,k,VI(s) =− mv,os2 + αb,os
m̌os2 + α̌os + λk

,

which if turned into the form of (3.36) has b4 = ĥω,k,VI(∞) = −mv,o/m̌o ̸= 0.

Thus, by Lemma 3.5, ∥ĥω,k,VI∥2
H2

= ∞. Then (4.11b) follows directly from

Theorem 3.5.

Corollary 4.6 (Optimal αb,o for ∥T̂ωn,DC∥2
H2

). Let Assumptions 2.2, 3.1, and 3.3

hold. Then

α⋆b,o := argmin
αb,o>0

∥T̂ωn,DC∥2
H2

= −αl,o +

√︄
α2

l,o +

(︃
κp

κω

)︃2

. (4.14)

Proof. The partial derivative of ∥T̂ωn,DC∥2
H2

with respect to αb,o is

∂αb,o∥T̂ωn,DC∥2
H2

=
κ2

ωα2
b,o + 2κ2

ωαl,oαb,o − κ2
p

2moα̌2
o

n

∑
i=1

1
ri

. (4.15)
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By equating (4.15) to 0, we can solve for the corresponding αb,o as α⋆b,o± =

−αl,o ±
√︂

α2
l,o + (κp/κω)2. The only positive root is therefore α⋆b,o := −αl,o +√︂

α2
l,o + (κp/κω)2. Clearly, ∑n

i=1(1/ri) > 0 since ri > 0, ∀i ∈ [n]. Thus, we

only need to focus on the polynomial in αb,o in (4.15). Since the denominator

of that polynomial is always positive and the highest order coefficient of the

numerator is positive, whenever 0 < αb,o < α⋆b,o, then ∂αb,o∥T̂ωn,DC∥2
H2

< 0,

and, if αb,o > α⋆b,o, then ∂αb,o∥T̂ωn,DC∥2
H2

> 0. Therefore, α⋆b,o is the minimizer

of ∥T̂ωn,DC∥2
H2

.

Two main observations can be made from Corollaries 4.5 and 4.6. First, the

control parameter αb,o of DC has a direct effect on the size of the frequency

variance. Particularly, by tuning αb,o = α⋆b,o, we can minimize the frequency

variance. The other important point is that VI will induce unbounded fre-

quency variance, which poses a threat to the operation of the power system.

Steady-State Effort Share

The corollary below gives the expression for the steady-state effort share of

inverter-interfaced energy storage when the control law DC or VI is employed.

Corollary 4.7 (Steady-State Effort Share of DC and VI). Let Assumptions 2.2

and 3.2 hold. If pb,i is defined by the control law DC in (4.1) or VI in (4.2), ∀i ∈ [n],

then the steady-state effort share of of the respective system T̂ωp,DC(s) or T̂ωp,VI(s)

is given by

ηes =
∑n

i=1 αb,i

∑n
i=1 (αl,i + αt,i + αb,i)

. (4.16)

Proof. The result follows directly from Theorem 3.6 if it is recognized that

ĉi(0) = −αb,i, ∀i ∈ [n], for both DC and VI.
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Table 4.1: A Comparison Between Traditional Control Laws

METRICS DROOP CONTROL VIRTUAL INERTIA

Synchronous
frequency

∑n
i=1 µ0,i

∑n
i=1 (αl,i + αt,i + αb,i)

Nadir elimination
condition

mo ≥ mc mo + mv,o ≥ mc

mc := τt,o
(︁√

αt,o +
√

α̌o + αt,o
)︁2

RoCoF
|∑n

i=1 µ0,i|
∑n

i=1 ri

1
mo

|∑n
i=1 µ0,i|

∑n
i=1 ri

1
mo + mv,o

Synchronization cost
lower bound

∑n−1
k=1

(︂
µ̃2

0,k/λk+1

)︂

2 maxi∈[n] (ri) (α̌o + αt,o)

Frequency variance
κ2

p + κ2
ωα2

b,o

2moα̌o
∑n

i=1
1
ri

∞

Steady-state effort
share

∑n
i=1 αb,i

∑n
i=1 (αl,i + αt,i + αb,i)

Corollary 4.7 indicates that DC and VI have the same steady-state effort

share, which increases as αb,i increases. However, αb,i is a parameter that also

directly affects the frequency response performance of the system, which can

be seen clearly from the frequency response performance analysis provided

before.

4.1.2 Need for a Better Solution

Table 4.1 summarizes the performance metrics determined for DC and VI

in Section 4.1.1, from which some important comments can be made.

First, DC and VI share the same synchronous frequency and steady-state

effort share, of which the former gets improved but the latter gets worse as αb,i

increases. This is easy to understand since it is natural for a better steady-state
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frequency performance to require a higher steady-state power output from

inverter-interfaced energy storage.

Second, the (compensated) representative inertia constant m̌o has to be

greater than the critical value mc for the purpose of Nadir elimination via

DC or VI. Thus, DC alone can barely achieve the Nadir elimination for a

low-inertia power system due to its inability to provide additional inertial

response. As for VI, although the additional inertial response provided by

it does make the Nadir elimination condition easier to meet, the resultant

extremely high m̌o can largely slow down the dynamics of a power system.

Third, the synchronization costs under DC and VI are bounded below by a

value depending upon αb,o. The fact that the lower bound of the synchroniza-

tion costs under DC and VI is reduced as αb,o increases is not satisfactory, since,

from the steady-state effort share point of view, a smaller αb,o is preferred.

However, given a small αb,o, even if the virtual inertia constant is very high,

i.e., mv,o → ∞, the synchronization cost under VI can never reach zero, not to

mention the one under DC, which poses a limitation on the synchronization

cost reduction.

Last but not least, caution is needed before widely using VI since it could

introduce unbounded frequency variance in response to noise. As for DC,

although there is a way to optimize the frequency variance by properly tuning

αb,o, the coupling between the values of the steady-state effort share and

the frequency variance through this unique control parameter αb,o makes it

impossible to require DC to bear an assigned amount of the steady-state effort

share and reduce the frequency variance at the same time.
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Above comments assist us to weigh up the pros and cons of DC and VI:

• DC has only one control parameter αb,o, which not only leads to an unde-

sirable coupling between the steady-state effort share and most of the fre-

quency response performance metrics but also prevents itself from achiev-

ing the Nadir elimination in a low-inertia power system.

• VI has one more control parameter mv,o besides αb,o, which provides itself

the freedom to relatively improve the Nadir, RoCoF, and synchronization

cost without affecting the steady-state effort share. However, this comes

at the price of introducing unbounded frequency variance in response to

noise. Moreover, the achievement of the Nadir elimination via VI requires

sufficient large αb,o, which can slow down the dynamics of a power system

a lot.

Therefore, although mimicking synchronous generator characteristics via

inverter-interfaced energy storage seems to be a straightforward choice for

frequency control in low-inertia power systems, there is a need for a better

solution that overcomes the above mentioned performance limitations. This

motivates our research on novel control laws that are able to strike a good

trade-off among various performance metrics.

4.2 Dynamic Droop Control

We now show how, by moving away from the broadly proposed approach

of mimicking synchronous generator response, one can overcome the weak-

nesses presented in Section 4.1. With this aim, we introduce an alternative
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dynam-i-c Droop (iDroop) control that uses dynamic feedback to make a

trade-off among the several different objectives described in Section 2.3.2. The

proposed solution is described below.

Inverter Dynamics 3 (Dynamic Droop Control). The dynamics of an inverter

with iDroop is given by the transfer function

ĉi(s) = −νis + δiαb,i

s + δi
, (4.17)

where δi > 0 and νi > 0 are tunable parameters.

Under Assumption 3.1, the representative inverter under iDroop in (4.17)

is given by

ĉo(s) = −νos + δoαb,o

s + δo
(4.18)

with νi = riνo, αb,i = riαb,o, and δi = δo, ∀i ∈ [n].

4.2.1 Performance Analysis

We now expose iDroop to the same performance analysis done for DC and

VI in Section 4.1.1.

Synchronous Frequency

Corollary 4.8 (Synchronous Frequency via iDroop). Let Assumptions 2.2 and

3.2 hold. If pb,i is defined by the control law iDroop in (4.17), ∀i ∈ [n], then the

steady-state frequency deviation of the system T̂ωp,iDroop(s) synchronizes to the

synchronous frequency given by (4.5).

Proof. The result follows directly from Lemma 3.2 if it is recognized that
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ĉi(0) = −αb,i, ∀i ∈ [n], for iDroop.

Corollary 4.8 shows that iDroop preserves the synchronous frequency

given by DC and VI.

Nadir

We now show that, with δo and νo tuned appropriately, iDroop enables the

COI frequency of the system T̂ωp,iDroop(s) to evolve as a first-order response

to a step power imbalance, which effectively realizes the Nadir elimination.

The following theorem summarizes this idea.

Theorem 4.3 (Nadir Elimination via iDroop). Let Assumptions 2.2, 3.1, and 3.2

hold. By setting δo = 1/τt,o and νo = αb,o + αt,o, the Nadir elimination of the COI

frequency of the system T̂ωp,iDroop(s) is achieved.

Proof. From (3.16), we know that the COI frequency deviation of the system

T̂ωp,iDroop(s) is given by

ω̄iDroop(t) =
∑n

i=1 µ0,i

∑n
i=1 ri

hu,1,iDroop(t) , (4.19)

where hu,1,iDroop(t) is the unit-step response of ĥp,1,iDroop(s). If we set δo =

1/τt,o and νo = αb,o + αt,o, then (4.18) can be rewritten as

ĉo(s) =
αt,o

τt,os + 1
− (αb,o + αt,o) . (4.20)

Applying (3.2) and (4.20) to (3.10) yields

ĥp,1,iDroop(s) =
1

mos + α̌o + αt,o
,
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+
1

mos+ αl,o

− αt,o

τt,os+ 1

+

αt,o

τt,os+ 1
− (αb,o + αt,o)

∑n
i=1 µ0,i∑n
i=1 ri

1n

ω̄iDroop1t≥0 ω̄iDroop1n

Figure 4.2: Block diagram for the main mode under iDroop with the Nadir elimi-
nation tuning

whose unit-step response hu,1,iDroop(t) must be a first-order evolution. Thus,

(4.19) indicates that ω̄iDroop(t) is also a first-order evolution, which naturally

achieves the Nadir elimination.

Remark 4.3 (Intuition Behind the Nadir Elimination via iDroop). The intu-

ition behind the Nadir elimination tuning of iDroop is the following. Observe that

(4.20) is composed of a lag element and a proportional element, where the former is

used to cancel out the turbine-governor dynamics in the representative generator and

the latter is used to improve the synchronous frequency, as illustrated in Figure 4.2.

This makes the main mode of the system the one effectively first-order with a specified

synchronous frequency.

RoCoF

Corollary 4.9 (RoCoF under iDroop). Let Assumptions 2.2, 3.1, and 3.2 hold.

Then the (maximum) RoCoF of the COI frequency of the systems T̂ωp,iDroop(s) is
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bounded below as follows:

∥ω̇̄iDroop∥L∞ ≥
⃓⃓
ω̇̄iDroop(0)

⃓⃓
=

|∑n
i=1 µ0,i|

∑n
i=1 ri

1
mo

.

Proof. From the proof of Theorem 4.3, we know that

ω̂̄iDroop(s) =
∑n

i=1 µ0,i

∑n
i=1 ri

ĥp,1,iDroop(s)
s

. (4.21)

Applying (3.2) and (4.18) to (3.10) yields

ĥp,1,iDroop(s) (4.22)

=
(τt,os + 1) (s + δo)

[moτt,os2 + (mo + αl,oτt,o) s + αl,o + αt,o] (s + δo)+(τt,os + 1) (νos + δoαb,o)
.

Thus, ω̄iDroop(t) is equivalent to the unit-step response of the third-order

system ĥp,1,iDroop(s) in (4.22) scaled by (∑n
i=1 µ0,i)/(∑n

i=1 ri). It is in general

tough to analyze the (maximum) RoCoF of a third-order system. However, we

can bound it from below by
⃓⃓
ω̇̄iDroop(0)

⃓⃓
, a value can be easily found. Thus,

applying the initial value theorem to (4.21) with ĥp,1,T,iDroop(s) given by (4.22),

we get

ω̇̄iDroop(0) = lim
s→∞

s2ω̂̄iDroop(s) = lim
s→∞

∑n
i=1 µ0,i

∑n
i=1 ri

s2ĥp,1,iDroop(s)
s

=
∑n

i=1 µ0,i

∑n
i=1 ri

1
mo

,

which concludes the proof.

Corollary 4.9 reflects the shortcoming of iDroop. That is, iDroop cannot

reduce the RoCoF below the RoCoF of the original system without additional

control from inverter-interfaced energy storage.
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Synchronization Cost

Theorem 3.4 implies that the bounds on the synchronization cost of the

system T̂ωp,iDroop(s) are closely related to ∥ĥu,k+1,iDroop∥2
H2

. If we can find

a tuning that forces ∥ĥu,k+1,iDroop∥2
H2

to be zero, ∀k ∈ [n − 1], then both the

lower and upper bounds on the synchronization cost under iDroop converge

to zero. Then, the zero synchronization cost is achieved naturally. The next

theorem addresses this problem.

Theorem 4.4 (Zero Synchronization Cost Tuning of iDroop). Let Assump-

tions 2.2, 3.1, and 3.2 hold. By setting δo → 0 and νo → ∞, a zero synchronization

cost of the system T̂ωp,iDroop(s), i.e., ∥ω̃iDroop∥2
L2

= 0, can be achieved.

Proof. Since the key is to show that, ∀k ∈ [n − 1], ∥ĥu,k+1,iDroop∥2
H2

→ 0 as

δo → 0 and νo → ∞, we can use Lemma 3.5. Applying (3.2) and (4.18) to

(3.10) shows that ĥu,k+1,iDroop(s) = ĥp,k+1,iDroop(s)/s is a transfer function in

the form of (3.36) with

a0 =
λk+1δo

moτt,o
, a1 =

δo (α̌o + αt,o + λk+1τt,o) + λk+1

moτt,o
,

a2 =
δo (mo + α̌oτt,o) + αl,o + αt,o + λk+1τt,o + νo

moτt,o
, a3 = δo+

1
τt,o

+
αl,o + νo

mo
,

b0 =
δo

moτt,o
, b1 =

δoτt,o + 1
moτt,o

, b2 =
1

mo
, b3 = 0 , b4 = 0 .

Considering that a0 → 0 and b0 → 0 as δo → 0 and νo → ∞, we can employ

the H2 norm computation formula for the third-order transfer function in
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Remark 3.5. Then

lim
δo→0,νo→∞

∥ĥu,k+1,iDroop∥2
H2

= lim
δo→0,νo→∞

a3b2
1 + a1b2

2
2a1 (a2a3 − a1)

= lim
δo→0,νo→∞

(νo/mo) [1/ (moτt,o)]
2 + [λk+1/ (moτt,o)] (1/mo)

2

2 [λk+1/ (moτt,o)] {[νo/ (moτt,o)] (νo/mo)−[λk+1/ (moτt,o)]}
= 0 .

Thus, by Theorem 3.4, we have

∥ω̃iDroop∥2
L2

= ∥ω̃iDroop∥2
L2

= 0 ,

which forces ∥ω̃iDroop∥2
L2

= 0.

Theorem 4.4 shows that, unlike DC and VI that require changes on αb,o

to arbitrarily reduce the synchronization cost, iDroop can achieve zero syn-

chronization cost without affecting the steady-state effort share. Naturally,

δo ≈ 0 may lead to slow response and νo → ∞ may hinder robustness. Thus

this result should be appreciated from the viewpoint of the additional tuning

flexibility that iDroop provides.

Frequency Variance

The following theorem quantifies the squared H2 norm of the system

T̂ωn,iDroop(s), which corresponds to the frequency variance in response to

stochastic power fluctuations and frequency measurement noise under iDroop.

Corollary 4.10 (Frequency Variance under iDroop). Let Assumptions 2.2, 3.1,
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and 3.3 hold. The squared H2 norm of the system T̂ωn,iDroop(s) is given by

∥T̂ωn,iDroop∥2
H2
=

(︂
κ2

p + κ2
ωα2

b,o

)︂
moδ2

o +
(︂

κ2
p + κ2

ων2
o

)︂
(α̌oδo + λk)

2mo [α̌omoδ2
o + (αl,o + νo) (α̌oδo + λk)]

n

∑
i=1

1
ri

. (4.23)

Proof. The proof is based on the Theorem 3.5 and Lemma 3.5. Applying

(3.1) and (4.18) to (3.10) and (3.11) shows that, after being written in the

form of (3.36), ĥp,k,iDroop(s) is a transfer function with b4 = a0 = b0 =

0, a1 = (λkδo) /mo, b1 = 0, a2 = (α̌oδo + λk) /mo, b2 = δo/mo, a3 =

(moδo + αl,o + νo) /mo, b3 = 1/mo, while ĥω,k,iDroop(s) is a transfer function

with b4 = a0 = b0 = 0, a1 = (λkδo) /mo, b1 = 0, a2 = (α̌oδo + λk) /mo,

b2 = − (αb,oδo) /mo, a3 = (moδo + αl,o + νo) /mo, b3 = −νo/mo. Thus, by

Lemma 3.5, ∀k ∈ [n],

∥ĥp,k,iDroop∥2
H2

=
moδ2

o + α̌oδo + λk
2mo [α̌omoδ2

o + (αl,o + νo) (α̌oδo + λk)]
,

∥ĥω,k,iDroop∥2
H2

=
α2

b,omoδ2
o + ν2

o (α̌oδo + λk)

2mo [α̌omoδ2
o + (αl,o + νo) (α̌oδo + λk)]

.

Then it follows from Theorem 3.5 that

∥T̂ωn,iDroop∥2
H2

=
n

∑
k=1

Γkk

(︂
κ2

p + κ2
ωα2

b,o

)︂
moδ2

o +
(︂

κ2
p + κ2

ων2
o

)︂
(α̌oδo + λk)

2mo [α̌omoδ2
o + (αl,o + νo) (α̌oδo + λk)]

=

(︂
κ2

p + κ2
ωα2

b,o

)︂
moδ2

o +
(︂

κ2
p + κ2

ων2
o

)︂
(α̌oδo + λk)

2mo [α̌omoδ2
o + (αl,o + νo) (α̌oδo + λk)]

n

∑
k=1

Γkk .

Recall that in the proof of Corollary 4.5, we have shown that ∑n
k=1 Γkk =

∑n
i=1 (1/ri), which concludes the proof of (4.23).
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The explicit expression of ∥T̂ωn,iDroop∥2
H2

given in Corollary 4.10 is use-

ful to show that iDroop can reduce the frequency variance relative to DC

and VI. Given the fact that ∥T̂ωn,VI∥2
H2

is infinite, the question indeed lies

in whether we can find a set of values for parameters δo and νo that ensure

∥T̂ωn,iDroop∥2
H2

≤ ∥T̂ωn,DC∥2
H2

. Fortunately, we can not only find such a set

but also the optimal setting for (4.23). The following three lemmas set the

foundation of this important result which is given as Theorem 4.5.

Lemma 4.1 (Limit of ∥T̂ωn,iDroop∥2
H2

). Let Assumptions 2.2, 3.1, and 3.3 hold. If

δo → ∞, then ∥T̂ωn,iDroop∥2
H2

= ∥T̂ωn,DC∥2
H2

.

Proof. The limit of (4.23) as δo → ∞ can be computed as

lim
δo→∞

∥T̂ωn,iDroop∥2
H2

=
κ2

p + κ2
ωα2

b,o

2moα̌o

n

∑
i=1

1
ri

= ∥T̂ωn,DC∥2
H2

,

where the second equality follows from (4.11a).

Lemma 4.1 shows that ∥T̂ωn,iDroop∥2
H2

converges to ∥T̂ωn,DC∥2
H2

as δo → ∞.

The next lemma shows that this convergence is monotonically from either

above or below depending on the value of the parameter νo.

Lemma 4.2 (νo-Dependent Monotonicity of ∥T̂ωn,iDroop∥2
H2

in Regard to δo ).

Let Assumptions 2.2, 3.1, and 3.3 hold. Define

σ1(νo) :=
−α̌oκ2

ων2
o +

(︂
κ2

p + κ2
ωα2

b,o

)︂
νo + αl,oα2

b,oκ2
ω − αb,oκ2

p

αl,o + νo
.

Then

• ∥T̂ωn,iDroop∥2
H2

is a monotonically increasing or decreasing function of δo > 0 if

and only if σ1(νo) is positive or negative, respectively.
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• ∥T̂ωn,iDroop∥2
H2

is independent of δo > 0 if and only if σ1(νo) is zero.

Proof. Provided that ∥T̂ωn,iDroop∥2
H2

is a function of δo and νo, in what follows

we denote it by Π(δo, νo). To make it clear how Π(δo, νo) changes with δo, we

firstly put it into the equivalent form of

Π(δo, νo) =

[︃
σ1(νo)δ2

o
σ2δ2

o + σ3(νo)δo + σ4(νo, λk)
+ σ5(νo)

]︃ n

∑
i=1

1
ri

with

σ1(νo) :=
−α̌oκ2

ων2
o +

(︂
κ2

p + κ2
ωα2

b,o

)︂
νo + αl,oα2

b,oκ2
ω − αb,oκ2

p

αl,o + νo
,

σ2 := 2moα̌o , σ3(νo) := 2 (αl,o + νo) α̌o ,

σ4(νo, λk) := 2 (αl,o + νo) λk , σ5(νo) :=
κ2

p + κ2
ων2

o

2mo (αl,o + νo)
.

We then take the partial derivative of Π(δo, νo) with respect to δo as

∂δoΠ(δo, νo) = σ1(νo)

[︄
σ3(νo)δ2

o + 2σ4(νo, λk)δo

(σ2δ2
o + σ3(νo)δo + σ4(νo, λk))

2

]︄
n

∑
i=1

1
ri

.

Since mo > 0, αl,o > 0, νo > 0, and αb,o > 0, σ2 and σ3(νo) are positive.

Also, given that all the eigenvalues of the scaled Laplacian matrix LR are

nonnegative, σ4(νo, λk) must be nonnegative. Thus, ∀δo > 0, (σ3(νo)δ2
o +

2σ4(νo, λk)δo)/
(︁
σ2δ2

o + σ3(νo)δo + σ4(νo, λk)
)︁2

> 0. In addition, ri > 0, ∀i ∈
[n]. Therefore, sign (∂δoΠ(δo, νo)) = sign (σ1(νo)), ∀δo > 0, which concludes

the proof.

By Lemma 4.2, for a given νo, if σ1(νo) < 0, then ∥T̂ωn,iDroop∥2
H2

always

decreases as δo increases. However, according to Lemma 4.1, even if δo → ∞,
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we can only obtain ∥T̂ωn,iDroop∥2
H2

= ∥T̂ωn,DC∥2
H2

. Similarly, if σ1(νo) = 0,

then ∥T̂ωn,iDroop∥2
H2

keeps constant as δo increases, which means that whatever

δo is we will always obtain ∥T̂ωn,iDroop∥2
H2

= ∥T̂ωn,DC∥2
H2

. Therefore, iDroop

cannot outperform DC when σ1(νo) ≤ 0. To put it another way, Lemmas 4.1

and 4.2 imply that, in order to improve the frequency variance through iDroop,

one needs to set νo such that σ1(νo) > 0 and δo as small as practically possible.

The following lemma characterizes the minimizer ν⋆o of ∥T̂ωn,iDroop∥2
H2

when

δo = 0.

Lemma 4.3 (Minimizer ν⋆o of ∥T̂ωn,iDroop∥2
H2

for δo = 0). Let Assumptions 2.2,

3.1, and 3.3 hold. Then

ν⋆o := argmin
δo=0,νo>0

∥T̂ωn,iDroop∥2
H2

= −αl,o +

√︄
α2

l,o +

(︃
κp

κω

)︃2

. (4.24)

Proof. Recall from the proof of Lemma 4.2 that ∥T̂ωn,iDroop∥2
H2

= Π(δo, νo).

Then we have

Π(0, νo) = σ5(νo)
n

∑
i=1

1
ri

=
κ2

p + κ2
ων2

o

2mo (αl,o + νo)

n

∑
i=1

1
ri

,

whose derivative with respect to νo is given by

dΠ(0, νo)

dνo
=

κ2
ων2

o + 2κ2
ωαl,oνo − κ2

p

2mo (αl,o + νo)
2

n

∑
i=1

1
ri

. (4.25)

Note that (4.25) and (4.15) are in the same form. Thus, ν⋆o is determined in the

same way as in the proof of Corollary 4.6.

We are now ready to prove the next theorem.

Theorem 4.5 (∥T̂ωn,iDroop∥2
H2

Optimal Tuning). Let Assumptions 2.2, 3.1, and

112



3.3 hold. Define ν⋆o as in (4.24).

• Whenever (κp/κω)2 ̸= 2αb,oαl,o + α2
b,o, ∀ δo > 0 and νo such that

νo ∈ [ν⋆o , αb,o) or νo ∈ (αb,o, ν⋆o ] , (4.26)

iDroop outperforms DC in terms of frequency variance, i.e.,

∥T̂ωn,iDroop∥2
H2

< ∥T̂ωn,DC∥2
H2

.

Moreover, the global minimum of ∥T̂ωn,iDroop∥2
H2

is obtained by setting δo → 0

and νo → ν⋆o .

• If (κp/κω)2 = 2αb,oαl,o + α2
b,o, then, ∀δo > 0, by setting νo → ν⋆o = αb,o,

iDroop matches DC in terms of frequency variance, i.e.,

∥T̂ωn,iDroop∥2
H2

= ∥T̂ωn,DC∥2
H2

.

Proof. As discussed before, to guarantee ∥T̂ωn,iDroop∥2
H2

< ∥T̂ωn,DC∥2
H2

, one

needs to set νo to such that σ1(νo) > 0. In this case, ∥T̂ωn,iDroop∥2
H2

always

increases as δo increases, so choosing δo arbitrarily small is optimal for any

fixed νo.

We now look for the values of νo that satisfy the requirement σ1(νo) > 0.

Since the denominator of σ1(νo) is always positive, the sign of σ1(νo) only

depends on its numerator. Denote the numerator of σ1(νo) as Nσ1(νo). Clearly,

Nσ1(νo) is a univariate quadratic function in νo, whose roots can be calculated
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as:

νo1,2 =
−
(︂

κ2
p + κ2

ωα2
b,o

)︂
±
√︃(︂

κ2
p + κ2

ωα2
b,o

)︂2
+ 4α̌oκ2

ω

(︂
αl,oα2

b,oκ2
ω − αb,oκ2

p

)︂

−2α̌oκ2
ω

=
κ2

p + κ2
ωα2

b,o ∓
√︂

κ4
p − 2κ2

pκ2
ωαb,o (αb,o + 2αl,o) + κ4

ωα2
b,o (αb,o + 2αl,o)

2

2α̌oκ2
ω

=
κ2

p + κ2
ωα2

b,o ∓
[︂
κ2

p − κ2
ωαb,o (αb,o + 2αl,o)

]︂

2α̌oκ2
ω

.

They can be further simplified to

νo1 = αb,o and νo2 =
(κp/κω)2 − αb,oαl,o

α̌o
.

Provided that the highest order coefficient of Nσ1(νo) is negative, the graph

of Nσ1(νo) is a parabola that opens downwards. Therefore, if νo1 < νo2, then

νo ∈ (νo1, νo2) guarantees σ1(νo) > 0; if νo1 > νo2, then νo ∈ (νo2, νo1) ∩ (0, ∞)

guarantees σ1(νo) > 0. Notably, if νo1 = νo2, there is no feasible point of νo to

make σ1(νo) > 0.

The condition νo1 = νo2 happens only if (κp/κω)2 = 2αb,oαl,o + α2
b,o, from

which it follows that ν⋆o = αb,o = νo1 = νo2. Then σ1(ν
⋆
o) = σ1(αb,o) = 0.

Therefore, by setting νo → ν⋆o = αb,o, we get ∥T̂ωn,iDroop∥2
H2

= ∥T̂ωn,DC∥2
H2

.

This concludes the proof of the second part.

We now focus on the case where the set

S := (νo1, νo2) ∪ {(νo2, νo1) ∩ (0, ∞)}

is nonempty. Recall from the proof of Lemma 4.2 that ∥T̂ωn,iDroop∥H2 =
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Π(δo, νo). For any fixed νo ∈ S , it holds that σ1(νo) > 0 and thus Π(δo, νo) >

Π(0, νo), ∀δo > 0. Recall from the proof of Lemma 4.3 that ν⋆o is the minimizer

of Π(0, νo). Hence, (0, ν⋆o) globally minimizes Π(δo, νo) as long as ν⋆o ∈ S . In

fact, we will show next that ν⋆o is always within S whenever S ̸= ∅.

Firstly we consider the case when νo1 < νo2, which implies that (κp/κω)2 >

2αb,oαl,o + α2
b,o. Then we have

ν⋆o > −αl,o +
√︂

α2
l,o + 2αb,oαl,o + α2

b,o = −αl,o + (αl,o + αb,o) = αb,o = νo1 .

We also want to show ν⋆o < νo2 which holds if and only if
√︄

α2
l,o +

(︃
κp

κω

)︃2

<
(κp/κω)2 − αb,oαl,o

α̌o
+ αl,o =

(κp/κω)2 + α2
l,o

α̌o
.

This is equivalent to

α̌o <

√︄
α2

l,o +

(︃
κp

κω

)︃2

,

which always holds since (κp/κω)2 > 2αb,oαl,o + α2
b,o. Thus, νo1 < ν⋆o < νo2.

Similarly, we can prove that in the case when νo1 > νo2, νo2 < ν⋆o < νo1 holds

and thus ν⋆o ∈ (νo2, νo1) ∩ (0, ∞).

Therefore, (0, ν⋆o) is the global minimizer of Π(δo, νo).

Finally, by Lemma 4.1, ∥T̂ωn,DC∥2
H2

= Π(∞, νo). The condition (4.26)

actually guarantees νo ∈ S and thus σ1(νo) > 0. Then, by Lemma 4.2, we

have ∥T̂ωn,DC∥2
H2

= Π(∞, νo) > Π(δo, νo). This concludes the proof of the

first part.

Theorem 4.5 shows that, to optimally improve the frequency variance,

iDroop needs to first set δo arbitrarily close to zero. Interestingly, this implies
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δo δo (αb,o/νo)

20log|ĉo(jὼ)|

20logαb,o

20logνo

νo < αb,o

ὼ

(a) As a lag compensator

δo (αb,o/νo) δo

20log|ĉo(jὼ)|

20logαb,o

20logνo

νo > αb,o

ὼ

(b) As a lead compensator

Figure 4.3: Asymptotic approximation of Bode diagram for dynamic droop control

that the transfer function ĉo(s) ≈ −νo except for ĉo(0) = −αb,o. In other

words, iDroop uses its first-order lead/lag property to effectively decouple the

dc gain ĉo(0) from the gain at all the other frequencies such that ĉo(jὼ) ≈ −νo,

∀ὼ ̸= 0. Once we rewrite (4.18) as

ĉo(s) = −νo
s + δo (αb,o/νo)

s + δo
,

this decouple is particularly easy to understand in two special regimes as

illustrated in Figure 4.3: (i) If κp ≪ κω, the system is dominated by frequency

measurement noise and therefore, by Lemma 4.3, ν⋆o ≈ 0 < αb,o which makes

iDroop a lag compensator. Thus, by using the low gain at high frequencies

in the lag compensation (setting νo < αb,o), iDroop can attenuate frequency

measurement noise; (ii) If κp ≫ κω, the system is dominated by stochastic

power fluctuations and therefore, by Lemma 4.3, ν⋆o ≈ κp/κω > αb,o which

makes iDroop a lead compensator. Thus, by using the high gain at high

frequencies in the lead compensation (setting νo > αb,o), iDroop can mitigate

stochastic power fluctuations.
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Steady-State Effort Share

The corollary below shows that iDroop is able to preserve the steady-state

effort share of DC and VI.

Corollary 4.11 (Steady-State Effort Share of iDroop). Let Assumptions 2.2 and

3.2 hold. If pb,i is defined by the control law iDroop in (4.17), ∀i ∈ [n], then the

steady-state effort share of of the system T̂ωp,iDroop(s) is given by (4.16).

Proof. The result follows directly from Theorem 3.6 if it is recognized that

ĉi(0) = −αb,i, ∀i ∈ [n], for iDroop.

Corollaries 4.8 and 4.11 suggest that iDroop achieves the same steady-

state behavior as DC and VI do, which depends on αb,i. Note that, besides

αb,i, iDroop provides us with two more degrees of freedom by δi and νi.

Thus, iDroop makes it possible to improve the dynamic frequency response

performance of the system discussed above without affecting the steady-state

performance.

4.2.2 Trade-Off among Performance Metrics

Table 4.2 summarizes the performance metrics determined for iDroop in

Section 4.2.1, with which we can review the advantages of iDroop over DC

and VI.

Clearly, iDroop achieves the same synchronous frequency and steady-state

effort share as DC and VI do, both of which depend on αb,i. Yet, besides αb,i,

iDroop provides us with two more degrees of freedom, δi and νi, which makes

it capable of provably enhancing the dynamic frequency response performance
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Table 4.2: Performance under Dynamic Droop Control

METRICS DYNAMIC DROOP CONTROL

Synchronous
frequency

∑n
i=1 µ0,i

∑n
i=1 (αl,i + αt,i + αb,i)

Nadir
elimination
condition

δo =
1

τt,o
and νo = αb,o + αt,o

(Maximum)
RoCoF lower

bound

|∑n
i=1 µ0,i|

∑n
i=1 ri

1
mo

Synchronization
cost

0 if δo → 0 and νo → ∞

Frequency
variance

(︂
κ2

p + κ2
ωα2

b,o

)︂
moδ2

o +
(︂

κ2
p + κ2

ων2
o

)︂
(α̌oδo + λk)

2mo [α̌omoδ2
o + (αl,o + νo) (α̌oδo + λk)]

∑n
i=1

1
ri

Steady-state
effort share

∑n
i=1 αb,i

∑n
i=1 (αl,i + αt,i + αb,i)

while preserving the desired steady-state performance. More precisely, iDroop

can be tuned to achieve the Nadir elimination, zero synchronization cost, and

low noise sensitivity, all of which are done in a way that incurs no influence

on the steady-state performance.

Particularly, the Nadir elimination tuning given by δo = 1/τt,o and νo =

αb,o + αt,o has the potential to strike a good trade-off among various perfor-

mance metrics in reality for the following reason. Usually, in real power sys-

tems, the stochastic power fluctuations are larger than the frequency measure-

ment noise, i.e., κp ≫ κω. Provided that κp ≫ κω, we know from Lemma 4.3

that ν⋆o ≈ κp/κω. Thus, for realistic values of parameters, ν⋆o ≫ αb,o always

holds. It follows directly that νo = αb,o + αt,o ∈ (αb,o, ν⋆o ]. By Theorem 4.5,

iDroop performs better than DC in terms of frequency variance. Therefore,
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no matter in step or noise input scenarios, the Nadir elimination tuning of

iDroop is a promising choice.

Nevertheless, iDroop has no control over the RoCoF, which is undesirable.

It is known that a large RoCoF can trigger Loss of Mains protection [44] which

is designed to ensure that generators shut down safely if a disconnection from

the main grid is detected. However, in low-inertia power systems, this kind

of protection is regarded as overly sensitive to distinguish between a local

disconnection and the normal operation. Thus, we wish to propose a control

law that is able to tune the RoCoF.

4.3 Frequency Shaping Control

Inverter Dynamics 4 (Frequency Shaping Control). The dynamics of an in-

verter with FS is given by the transfer function

ĉi(s) = −mv,is2 + νis + δiαb,i

(τh,is + 1) (s + δi)
, (4.27)

where mv,i ≥ 0, νi ≥ 0, αb,i ≥ 0, δi ≥ 0, and τh,i ≥ 0 are tunable parameters.

Under Assumption 3.1, the representative inverter under FS in (4.27) is

given by

ĉo(s) = −mv,os2 + νos + δoαb,o

(τh,os + 1) (s + δo)
(4.28)

with mv,i = rimv,o, νi = riνo, αb,i = riαb,o, δi = δo, and τh,i = τh,o, ∀i ∈ [n].

Again, we define α̌o := αl,o + αb,o and m̌o := mo +mv,o as in previous chapters.

Theorem 4.6 (Frequency Shaping Tuning). Let Assumptions 2.2, 3.1, and 3.2
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hold. By setting

νo = αb,o + αt,o +
mv,o

τt,o
, δo =

1
τt,o

, and τh,o ≫ τt,o (4.29)

in (4.28), the COI frequency deviation of the system T̂ωp,FS(s) is shaped approxi-

mately into a first-order response given by

ω̄FS(t) ≈ ∑n
i=1 µ0,i

(αl,o + αb,o + αt,o)∑n
i=1 ri

(︃
1 − e−

αl,o+αb,o+αt,o
mo+mv,o t

)︃
, (4.30)

whose Nadir elimination is achieved naturally. In this case, the synchronous frequency

and RoCoF of the system T̂ωp,FS(s) are determined by (4.5) and

∥ω̇̄FS∥L∞ ≈ |∑n
i=1 µ0,i|

∑n
i=1 ri

1
mo + mv,o

, (4.31)

respectively.

Proof. From (3.16), we know that the COI frequency deviation of the system

T̂ωp,FS(s) is given by

ω̄FS(t) =
∑n

i=1 µ0,i

∑n
i=1 ri

hu,1,FS(t) , (4.32)

where hu,1,FS(t) is the unit-step response of ĥp,1,FS(s). Suppose that our desired

ĥp,1,FS(s) is a first-order transfer function given by

ĥp,1,FS(s) =
1

m̌os + α̌o + αt,o
. (4.33)

Then, using (3.2) and (4.33), one can directly solve for the desired representa-

tive control law ĉod(s) from (3.10) as

ĉod(s) =
ĥp,1,FS(s)− ĝo(s)

ĥp,1,FS(s)ĝo(s)
= −mv,os2 + νos + δoαb,o

s + δo
(4.34)

120



with νo and δo given by (4.29).

However, ĉod(s) could introduce unbounded frequency variance in re-

sponse to noise for a similar reason as in the case of VI. To see this, we apply

(3.1) and ĉo(s) = ĉod(s) to (3.11), which yields

ĥω,k,FSd(s) = − mv,os3 + νos2 + δoαb,os
m̌os3 + (moδo + αl,o + νo) s2 + (δoα̌o + λk) s + δoλk

.

This can be turned into the form of (3.36) with b4 = ĥω,k,FSd(∞) =−mv,o/m̌o ̸=
0. Thus, by Lemma 3.5, ∥ĥω,k,FSd∥2

H2
= ∞. Then, ∥T̂ωn,FSd∥2

H2
= ∞ follows

directly from Theorem 3.5. Therefore, to overcome this problem, we add a

high frequency pole at s = −1/τh,o with τh,o ≫ τt,o to ĉod(s), which yields the

representative FS in (4.28).

Since the added high frequency pole in the representative FS would not

interfere the desired evolution of the COI frequency deviation so much, from

(4.32) and (4.33), we have

ω̂̄FS(s) ≈ ∑n
i=1 µ0,i

∑n
i=1 ri

1
s (m̌os + α̌o + αt,o)

=
∑n

i=1 µ0,i

(α̌o + αt,o)∑n
i=1 ri

[︃
1
s
− 1

s + (α̌o + αt,o) /m̌o

]︃
,

whose time domain counterpart is exactly (4.30). From (4.30), we know

ω̄FS(∞) ≈ ∑n
i=1 µ0,i

(αl,o + αb,o + αt,o)∑n
i=1 ri

=
∑n

i=1 µ0,i

∑n
i=1 (αl,i + αt,i + αb,i)

.

Note that ω̄FS(t) is equivalent to the unit-step response of the first-order

system ĥp,1,FS(s) in (4.33) scaled by (∑n
i=1 µ0,i)/(∑n

i=1 ri). Thus, we can apply
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Theorem 3.2 to ĥp,1,FS(s), which yields

∥ω̇̄FS∥L∞ =

⃓⃓
⃓⃓∑

n
i=1 µ0,i

∑n
i=1 ri

⃓⃓
⃓⃓K =

|∑n
i=1 µ0,i|

∑n
i=1 ri

1
m̌o

.

This concludes the proof.

Theorem 4 reflects the most outstanding feature of FS. That is, with the

tuning in (4.29), FS is able to fashion the COI frequency dynamics following a

sudden power imbalance into a first-order one with the specified synchronous

frequency and RoCoF by adjusting the control parameters αb,o and mv,o, re-

spectively. Notably, a first-order COI frequency evolution naturally avoids the

overshoot so that the Nadir elimination is achieved inherently.

Remark 4.4 (Relationship Between FS and iDroop). Note that FS reduces to

iDroop if we set mv,i = 0 and τh,i = 0. Thus, it preserves all the properties of iDroop.

More precisely, it can achieve low noise sensitivity and zero synchronization cost with

properly chosen νi and δi. Although the preferred values of parameters for different

performance metrics may not necessarily coincide with each other, FS does provide us

with the extra freedom to tune the RoCoF compared with iDroop.

Remark 4.5 (Simple Frequency Security Certification Procedure under FS).

The significance of Nadir elimination lies in that it allows us to certify the frequency

security of the power system by performing simple algebraic calculations instead

of running explicit dynamic simulations. For example, given the expected maxi-

mum magnitude of net power imbalance |∑n
i=1 µ0,i|allowed as well as the accept-

able maximum magnitude of RoCoF ∥ω̇̄∥L∞,allowed and COI frequency deviation
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∥ω̄∥L∞,allowed, according to the frequency shaping tuning, one can simply choose:

mv,o =max
(︃ |∑n

i=1 µ0,i|allowed

∥ω̇̄∥L∞,allowed ∑n
i=1 ri

− mo, 0
)︃

,

αb,o =max
(︃ |∑n

i=1 µ0,i|allowed

∥ω̄∥L∞,allowed ∑n
i=1 ri

− αl,o − αt,o, 0
)︃

,

and νo, δo, τh,o as in (4.29).

Remark 4.6 (Generalization of FS Tuning). The FS tuning described by (4.29)

was derived for a simplified first-order turbine-governor model. Actually, the same

methodology can be applied to deriving FS tuning for more general cases. To see this,

we rewrite (4.28) with FS tuning in (4.29) as

ĉo(s) = −mv,os2 + (αb,o + αt,o + mv,o/τt,o) s + αb,o/τt,o

(τh,os + 1) (s + 1/τt,o)

= −mv,os (s + 1/τt,o) + αb,o (s + 1/τt,o) + αt,os
(τh,os + 1) (s + 1/τt,o)

= − 1
τh,os + 1

(︃
mv,os + αb,o +

αt,oτt,os
τt,os + 1

)︃

=
1

τh,os + 1

[︃
−mv,os − (αb,o + αt,o) +

αt,o

τt,os + 1

]︃
. (4.35)

Observe from (4.35) that the FS tuning is a filtered combination of VI and iDroop with

Nadir elimination tuning. More precisely, the −mv,os term from VI represents the

inertial response that is responsible for the RoCoF, while the − (αb,o + αt,o) term and

the αt,o/ (τt,os + 1) term from iDroop are responsible for the synchronous frequency

and Nadir elimination, respectively. As discussed in Remark 4.3, the key to achieving

Nadir elimination is to cancel out the turbine-governor dynamics. Thus, if we denote

the transfer function of any arbitrary turbine-governor as −αt,iυ̂i(s) with υ̂i(0) = 1,
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then we can easily generalize (4.35) by replacing the simplified αt,o/ (τt,os + 1) with

αt,oυ̂o(s) satisfying

αt,oυ̂o(s) :=
∑n

i=1 αt,iυ̂i(s)
∑n

i=1 ri
and υ̂o(0) = 1 . (4.36)

This leads to the following generalization of FS tuning for any arbitrary turbine-

governor modelled as −αt,iυ̂i(s) with υ̂i(0) = 1:

ĉo(s) =
1

τh,os + 1
[−mv,os − (αb,o + αt,o) + αt,oυ̂o(s)] . (4.37)

Similarly, the Nadir elimination tuning of iDroop can be generalized to

ĉo(s) = − (αb,o + αt,o) + αt,oυ̂o(s) . (4.38)

Note that, although it is possible to use the fully detailed αt,oυ̂o(s) as defined in (4.36),

numerical simulations suggest that even a simple second-order reduced model [43] of

αt,oυ̂o(s) obtained from the balanced truncation procedure provides remarkably good

performance for above tuning.
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Chapter 5

Numerical Illustrations

This chapter validates our theoretical results through a numerical example

with more complex models for both the energy storage and the power system.

In Section 5.1, we provide a more detailed representation of the energy stor-

age, which explicitly models the dynamics of the interfacing voltage source

converter (VSC) with the phase-locked loop (PLL) and inner current control

loop. In Section 5.2, we perform simulations on a more realistic power system

test case using Power System Toolbox (PST) [60] for Matlab.

5.1 Modelling of Voltage Source Converter

When conducting our theoretical analysis, we have assumed that the

measurement process of the grid frequency is rather fast and accurate. Thus,

we used the grid frequency as an input signal to the frequency control directly.

Likewise, an assumption of rapid power injection variations by the energy

storage was made so that the energy storage is considered to follow power

commands for frequency control instantly. However, in practice, energy
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Figure 5.1: Energy storage control scheme

storage is interfaced to the grid through power electronic converters, where a

VSC is commonly applied. Therefore, we extend our modelling approach to

explicitly account for VSC dynamics in this section.

Figure 5.1 shows the configuration of the energy storage feeding into the

grid through a VSC for frequency control. Here, the main objective of the

grid-following VSC acting as a current source is to adjust its power injection

to the grid according to the grid frequency deviation at the bus where it is

located [61, 62]. With this aim, the VSC first measures the grid frequency

deviation using a PLL, and then generates the current reference following the

power control, and finally yields the modulation reference that is fed to the

pulse width modulation (PWM) from the inner current control loop.

We now discuss the elements mentioned above in more detail. We mostly

follow the approach from [63], since the energy storage models presented

there are specifically derived and tested for power systems transient stability
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dq
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s
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s+ kv
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1

vpll,i
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Figure 5.2: Block diagram of the SRF-PLL

analysis. We also refer to [16, 64–66].

5.1.1 Phase-Locked Loop

We adopt a typical synchronous reference frame PLL (SRF-PLL) [65] com-

posed of a phase detector, a loop filter, and a voltage-controlled oscillator as

shown in Figure 5.2 to measure the grid frequency deviation at the ith bus,

∀i ∈ [n].

The phase detector provides the phase error information by transforming

the three-phase grid voltage at the ith bus vabc,i from the abc natural reference

frame to the dq synchronous reference frame. Here, we assume ideal grid

conditions with neither imbalance nor harmonics, i.e,

vabc,i :=

⎡
⎣

va,i
vb,i
vc,i

⎤
⎦ = |Vi|

⎡
⎣

cos (Ω0t + Θi)
cos

(︁
Ω0t + Θi − 2π

3

)︁

cos
(︁
Ω0t + Θi +

2π
3

)︁

⎤
⎦ , (5.1)

where |Vi| and Θi are the amplitude (in p.u.) and phase (in rad) of the grid

voltage at the ith bus, respectively. Then the d- and q-axis components of the

grid voltage at the ith bus are known to be

vd,i =|Vi| cos
(︁
Θi − Θpll,i

)︁
, (5.2a)
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vq,i =|Vi| sin
(︁
Θi − Θpll,i

)︁
, (5.2b)

where Θpll,i is the estimated grid phase (in rad) at the ith bus. Equation

(5.2) indicates that the key to estimate Θi is to keep vq,i close to zero since

vq,i ≈ |Vi|
(︁
Θi − Θpll,i

)︁
≈ 0 requires Θpll,i ≈ Θi. It also follows that vd,i ≈ |Vi|,

which means that vd,i estimates the amplitude of the grid voltage at the ith bus.

To make the PLL performance insensitive to variations in |Vi|, a normalization

dividing vq,i by vpll,i is included [65], where vpll,i is obtained by passing vd,i

through a low-pass filter with a cutoff frequency kv, i.e.,

v̂pll,i =
kv

s + kv
v̂d,i or v̇pll,i = kv

(︁
vd,i − vpll,i

)︁
. (5.3)

The loop filter forces vq,i to zero through a proportional–integral controller.

Thus, the estimated grid frequency deviation (in p.u.) at the ith bus ωpll,i

is determined from the normalized vq,i, i.e., vn,i := vq,i/vpll,i, through the

following dynamics

Ω0ω̂pll,i =

(︃
kp +

ki

s

)︃
v̂n,i or Ω0ω̇pll,i = kpv̇n,i + kivn,i , (5.4)

where kp and ki are the proportional and integral gains.

The voltage-controlled oscillator generates the estimated grid phase at the

ith bus Θpll,i via the integration of the estimated grid frequency deviation (in

rad s−1) at the ith bus Ω0ωpll,i , i.e.,

Θ̂pll,i =
Ω0ω̂pll,i

s
or Θ̇pll,i = Ω0ωpll,i . (5.5)

Therefore, the PLL dynamics is included in our simulations through
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the model described by (5.2)–(5.5), where we set kv = 140 s−1 [66], kp =

8.4 rad s−1, and ki = 100 rad s−2, corresponding to a bandwidth around

17.4 rad s−1 [16, Table 4.1].

5.1.2 Power Controller

The inverter control laws discussed in Chapter 4, including DC, VI, iDroop,

and FS, play the role of a active power controller. The active power controller

at the ith bus maps the estimated grid frequency deviation ωpll,i to a real power

output variation reference (in p.u.) pb,ref,i around the equilibrium operating

point according to the particular law ĉi(s) adopted, i.e.,

p̂b,ref,i = ĉi(s)ω̂pll,i , (5.6)

where pb,ref,i is used to generate the reference signals (in p.u.) id,ref,i and iq,ref,i

for the inner current controller. Note that we assume that no reactive power

control is executed by the converter, i.e., iq,ref,i = 0. Thus, id,ref,i can be found

from the active power expression

pb,ref,i =
3
2
(︁
vd,iid,ref,i + vq,iiq,ref,i

)︁
=

3
2

vd,iid,ref,i

as

id,ref,i =
2pb,ref,i

3vd,i
. (5.7)

5.1.3 Converter and Current Controller

We consider a conventional converter and inner current control loop in

the dq-frame [16, 63, 64] with the block diagram as shown in Figure 5.3. The
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dynamics of the d- and q-axis components of the converter output current at

the ith bus iabc,i are given by

Lf,i i̇d,i =− Rf,iid,i + ωpll,iLf,iiq,i + vc,d,i − vd,i , (5.8a)

Lf,i i̇q,i =− Rf,iiq,i − ωpll,iLf,iid,i + vc,q,i − vq,i , (5.8b)

with Rf,i and Lf,i being the resistance and inductance of the converter output

filter at the ith bus. Here, vc,dq,i are the converter output voltages before the

filter in the dq-frame at the ith bus. A standard technique for decoupling id,i

and iq,i is to set [64]

vc,dq :=
[︃

vc,d,i
vc,q,i

]︃
=

[︃
ud,i − ωpll,iLf,iiq,i + vd,i
uq,i + ωpll,iLf,iid,i + vq,i

]︃
, (5.9)

where ud,i and uq,i are control signals to be chosen. Applying (5.9) to (5.8)

yields

Lf,i i̇d,i = −Rf,iid,i + ud,i and Lf,i i̇q,i = −Rf,iiq,i + uq,i ,

where id,i and iq,i are independent. Now, by choosing

ûd,i = K̂c,i(s)
(︁
îd,ref,i − îd,i

)︁
and ûq,i = K̂c,i(s)

(︁
îq,ref,i − îq,i

)︁

with

K̂c,i(s) =
Rf,i + sLf,i

sτc
,

we can compensate for the converter output filter dynamics so as to make

îd,i =
1

τcs + 1
îd,ref,i and îq,i =

1
τcs + 1

îq,ref,i (5.10)
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Figure 5.3: Block diagram of the converter and the inner current control loop in
the dq-frame

with the desired inner current control time constant τc (in s) typically around

milliseconds. In our simulations, we set τc = 0.001 s.

5.1.4 Effective Power-Frequency Response of Energy Storage

The power injection variation of the inverter-interfaced energy storage to

the grid at the ith bus can be calculated by

pb,i =
3
2
(︁
vd,iid,i + vq,iiq,i

)︁
≈ 3

2
vd,iid,i ,

where iq,i ≈ 0 is ensured by our setting that iq,ref,i = 0. Therefore, after

considering the converter and inner current control loop, we can characterize

the effective power response of the energy storage to the estimated grid
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frequency deviation as

p̂b,i ≈
3vd,i

2
îd,i =

3vd,i

2
1

τcs + 1
îd,ref,i =

3vd,i

2
1

τcs + 1
2p̂b,ref,i

3vd,i
=

ĉi(s)ω̂pll,i

τcs + 1
, (5.11)

where the first equality is due to (5.10), the second equality is due to (5.7), and

the third equality is due to (5.6). Last but not least, although in our simulations

we use the nonlinear PLL model described by (5.2)–(5.5), we can substitute its

linearized counterpart [65, 66], i.e.,

ω̂pll,i =
kps + ki

s2 + kps + ki
ω̂i ,

to (5.11) to get a concise transfer function from the true grid frequency devia-

tion to the power injection variation of energy storage given by

p̂b,i

ω̂i
=

kps + ki

s2 + kps + ki

ĉi(s)
τcs + 1

. (5.12)

For a device-level implementation, the control process abstracted by (5.12) is

usually realized on a digital signal processor. The details of a device-level

control realization are out of the scope of this thesis.

5.2 Case Study

We compare the performance of different frequency control laws by con-

ducting simulations on the Western System Coordinating Council (WSCC)

9-bus 3-generator system given in Figure 5.4, using PST [60]. Attributed to

PST, instead of the linear network model used in the analysis, the simulations

are built upon a realistic setup including nonlinear power flows, line losses,

and voltage dynamics.
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Figure 5.4: Single line diagram of the 9-bus 3-generator WSCC test case

5.2.1 System Description

The original test case contains 3 generator buses and 9 load buses. Each

of the generator buses is distinctly indexed by some i ∈ [3] and each of the

load buses is distinctly indexed by some i ∈ [9] \ [3]. To mimic a low-inertia

scenario, we modify parameter values of generator buses to emulate the Great

Britain power system under the high renewable penetration scenario (see

Examples 2.1 and 4.1). More precisely, the total system inertia is split slightly

unevenly among three generator buses with m1 = 5.8 s, m2 = 5.64 s, and

m3 = 1.7 s, while the load-frequency sensitivity coefficients on three generator

buses are equal, i.e., αl,1 = αl,2 = αl,3 = 1 p.u.. Note that, although the simple
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first- or second-order generator models are used in our analysis, the sub-

transient generator models with multi-stage turbine-governors [67] equipped

are adopted in our simulations, where the turbine dc gains (corresponding

to the turbine inverse droop coefficients in the first-order turbine-governor

model) are equal, i.e., αt,1 = αt,2 = αt,3 = 15 p.u., but the turbine time con-

stants are chosen to be somewhat heterogenous to make the test case more

realistic. As before, we refer to this system without additional control from

inverter-interfaced energy storage as SG. Clearly, the proportionality assump-

tion (Assumption 3.1) required in our theoretical analysis is violated here.

We then place three inverter-interfaced energy storage units with explicit

VSC models described in Section 5.1 at buses 4, 7, and 9, respectively, which are

the load buses that are closest to the generator buses 1, 2, and 3, respectively.

The active power controller ĉi(s) in (5.6) imposed on each VSC can be either

one of DC, VI, iDroop, and FS with ĉ1(s), ĉ2(s), and ĉ3(s) taking charge

of the buses 4, 7, and 9, respectively.1 Although our theoretical analysis

does not contemplate jointly the effects of step disturbances and stochastic

noise, we would like to explore here numerically the performance of different

control laws in response to such combined input signals. To this end, for all

simulations below, we add a step increase of active power load by 0.1689 p.u.

to bus 5 at time t = 1 s as well as stochastic power fluctuations to all buses and

frequency measurement noise to the estimated grid frequency deviation ωpll,i

at buses 4, 7, and 9. Since in reality power fluctuations are usually larger than

measurement noise, we focus on the case dominated by power fluctuations,
1One trick for implementing FS is to let the high frequency pole s = −1/τc introduced to

(5.11) by the inner current control loop serve as the high frequency pole s = −1/τh,i needed
in FS.
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where κp = 10−4 and κω = 10−5.

5.2.2 Controller Design

The design of control parameters in ĉi(s) still relies on the knowledge

of representative generator in some form even though the proportionality

assumption is violated. We define the representative generator inertia constant

as the mean of individual generator inertia constants, i.e.,

mo :=
1
3

3

∑
i=1

mi =
5.8 + 5.64 + 1.7

3
s = 4.38 s . (5.13)

Accordingly, the proportionality parameters are given by

ri :=
mi

mo
, ∀i ∈ [3] . (5.14)

Combining (5.13) and (5.14), we can get

3

∑
i=1

ri =
∑3

i=1 mi

mo
= 3 ,

which is a result used frequently in the design of control parameters. Since

the inertia constants are not defined for load buses in the original test case, we

define

ri := 0.01 min
j∈[3]

(︁
rj
)︁

, ∀i ∈ [9] \ [3] ,

for the purpose of scaling the noise according to the proportionally weighted

noise assumption (Assumption 3.3). Then, we define the representative load-

frequency sensitivity coefficient as

αl,o :=
∑3

i=1 αl,i

∑3
i=1 ri

.
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Since the complex multi-stage turbine-governors are involved in simulations,

we can define the representative turbine-governor as suggested in Remark 4.6,

i.e.,

αt,oυ̂o(s) := balred

(︄
∑3

i=1 αt,iυ̂i(s)

∑3
i=1 ri

, 2

)︄
and υ̂o(0) = 1 , (5.15)

where balred(ĥ(s), n) computes a nth-order reduced model of ĥ(s) using the

balanced truncation procedure [68].

Now, we are ready to design control parameters. We start by examining the

performance of SG as shown in Figure 5.5. Clearly, the Nadir is too close to the

maximum allowed value for the Great Britain power system setting, which is

500 mHz. This is mainly a by-product of a large RoCoF, which should be clear

soon. The synchronous frequency and RoCoF can be estimated algebraically

by applying the results in Table 4.1 since SG can be considered as DC with

αb,o = 0. Thus, we get

ωsyn,SG ≈ µ0,5

∑3
i=1 (αl,i + αt,i)

=
−0.1689

3 × (1 + 15)
p.u. = −0.0035 p.u. ,

∥ω̇̄SG∥L∞ ≈ |µ0,5|
∑3

i=1 ri

1
mo

=
|−0.1689|

3
× 1

4.38
p.u. s−1 = 0.0129 p.u. s−1 .

We can also write the results above as

fsyn,SG ≈ −175 mHz and ∥ ḟ̄ SG∥L∞ ≈ 0.645 Hz s−1

which match well with the simulation results in Figure 5.5. Recall from Sec-

tion 2.3.2 that the maximum allowed quasi-steady-state frequency deviation

is ±200 mHz and the highest allowed RoCoF is 0.5 Hz s−1. This means that
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Figure 5.5: Performance of the modified WSCC test case when a step power imbal-
ance and stochastic power fluctuations are introduced

the existing system SG suffices to provide satisfactory synchronous frequency

but fails to meet the RoCoF requirement. Hence, there is no need to provide

additional droop response via energy storage. Yet, it is desirable to reduce

the RoCoF with the help of energy storage. In view of the above analysis, we

directly rule DC out of our options since it contributes to frequency control

solely by adding droop response which is not a necessity here. For the same

reason, from now on, we only consider VI, iDroop, and FS with αb,o = 0,

which in fact helps to save energy by avoiding keeping power output from

storage for nonzero frequency deviations.

Noticeably, FS seems tailor-made for the task of improving the frequency

response performance of this system since, with the tuning proposed in (4.37),

it is able to achieve both Nadir elimination and RoCoF reduction. A quick

check of (4.37) shows that the only parameter remains to be designed is mv,o.

This can be done easily by following Remark 4.5. When calculating mv,o, we set

∥ ḟ̄ ∥L∞,allowed = 0.4 Hz s−1 < 0.5 Hz s−1, i.e., ∥ω̇̄∥L∞,allowed = 0.008 p.u. s−1, to
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preserve some margin for frequency security. Thus, we have

mv,o =max

(︄
|µ0,5|

∥ω̇̄∥L∞,allowed ∑3
i=1 ri

− mo, 0

)︄

=max
[︃(︃ | − 0.1689|

0.008 × 3
− 4.38

)︃
s, 0
]︃
= max (2.6575 s, 0) = 2.6575 s .

Then, we set the ith active power controller under FS to be ĉi(s) = ri ĉo(s) with

ĉo(s) given by (4.37).

5.2.3 Performance Comparison

To provide a fair comparison of FS designed above with VI and iDroop,

we do numerical experiments as illustrated in Figures 5.6 and 5.7.

Figures 5.6(a) and 5.7(a) compare the frequency deviations and net power

output from energy storage, respectively, of the system under FS and VI for the

case when VI is also tuned to provide a RoCoF of 0.4 Hz s−1 (0.008 p.u. s−1).

More precisely, we set mv,o = 2.6575 s for the representative active power

controller ĉo(s) under VI given by (4.4). Then, the ith active power controller

under VI is ĉi(s) = ri ĉo(s). A quick check can be done by applying the RoCoF

expression of VI in Table 4.1 to verify that

∥ω̇̄VI∥L∞ ≈ |µ0,5|
∑3

i=1 ri

1
mo + mv,o

=
|−0.1689|

3
× 1

4.38 + 2.6575
p.u. s−1 = 0.008 p.u. s−1 .

In this setting, the synchronous frequency and RoCoF are the same under FS

and VI. Thus, considering that FS significantly picks up the frequency drop,
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(a) When VI and FS are tuned to provide 0.4 Hz s−1 RoCoF

(b) When iDroop and FS are tuned to achieve Nadir elimination

Figure 5.6: Frequency deviations in the modified WSCC test case under different
frequency control laws when a step power imbalance as well as stochastic power
fluctuations and frequency measurement noise are introduced
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(a) When VI and FS are tuned to provide 0.4 Hz s−1 RoCoF
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(b) When iDroop and FS are tuned to achieve Nadir elimination

Figure 5.7: Net power output from inverter-interfaced energy storage in the mod-
ified WSCC test case under different frequency control laws when a step power
imbalance as well as stochastic power fluctuations and frequency measurement
noise are introduced
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there is no surprise that it requires a somewhat higher peak power compared

with VI. However, FS is clearly smarter since it trades slightly increased peak

power for complete Nadir elimination. Actually, the difference between the

two power curves can be understood as an approximation of the energy used

by the FS for Nadir elimination, whose amount is modest.

Remark 5.1 (Possible Instability Caused by VI). One aspect we would like to

highlight here is that it is not realistic to further increase mv,o of VI until achieving

Nadir elimination. An extremely large mv,o is required to achieve Nadir elimination

via VI for this system. However, simulations suggest that such a large mv,o actually

makes the system unstable rather than provides any benefit.

Figures 5.6(b) and 5.7(b) compare the frequency deviations and net power

output from energy storage, respectively, of the system under FS and iDroop

for the case when iDroop is also tuned to achieve Nadir elimination. More

precisely, we tune the representative active power controller ĉo(s) under

iDroop as described in (4.38). Then, the ith active power controller under

iDroop is ĉi(s) = ri ĉo(s). In this setting, the frequency responses under FS and

iDroop are both shaped well into first-order evolution. The only difference

between the two frequency curves lies in the RoCoF. FS succeeds in reducing

the RoCoF to 0.4 Hz s−1, while iDroop leaves it unchanged. Nevertheless,

iDroop has much lower noise sensitivity compared with FS, which can be seen

clearly from its smooth power curve. Last but not least, although the power

curve of FS is quite noisy, its envelope suggests a similar amount of energy

consumption by the grid as in iDroop.
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Remark 5.2 (A Motivation for Grid-Forming Inverters). Our simulations ver-

ify the high noise sensitivity of those active power controllers where there exist param-

eters playing the role of inertia. This is one of the drawbacks of the grid-following

inverters which have to adjust their power output variations based on the grid fre-

quency measurements. Recently, grid-forming inverters [24] have attracted a lot of

attention from the research community. They set the grid frequency directly as a

function of their power output variations, which makes them a potential solution to

the problem of reducing noise sensitivity for two reasons. First, they help to avoid the

noise introduced by the frequency measurements since there is no need to measure

the grid frequency any more. Second, the inertial response can be realized through a

proper transfer function in the grid-forming mode, which gets rid of the derivative

terms that are sensitive to noise.
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Chapter 6

Conclusion

This thesis studies the impact of various frequency control laws imposed

on inverter-interfaced energy storage to the power system performance. When

it comes to the existing two common control laws, we show that DC cannot

decouple the dynamic performance improvement from the steady-state per-

formance and VI can introduce unbounded frequency variance in the presence

of frequency measurement noise. Thus, we propose a new control law named

iDroop, which is able to enhance the dynamic performance and preserve the

steady-state performance at the same time. Specifically, we show that iDroop

can be tuned to achieve Nadir elimination, zero synchronization cost, and low

noise sensitivity. Yet, in view of the inability of iDroop to adjust RoCoF, we

generalize it to FS which provides the extra freedom to tune RoCoF without

loss of any property of iDroop. Although all analyses are conducted under a

proportionality assumption, we illustrate numerically that the insights and

advantages of the proposed control laws are still present even if the assump-

tion is violated. All in all, this thesis confirms the superiority of principled

control design over the naive imitation of synchronous generator behavior.
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