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Abstract—This paper focuses on the operation of an electricity
market that accounts for participants that bid at a sub-minute
timescale. To that end, we model the market-clearing process as
a dynamical system, called market dynamics, which is temporally
coupled with the grid frequency dynamics and is thus required
to guarantee system-wide stability while meeting the system
operational constraints. We characterize participants as price-
takers who rationally update their bids to maximize their utility
in response to real-time schedules of prices and dispatch. For two
common bidding mechanisms, based on quantity and price, we
identify a notion of alignment between participants’ behavior
and planners’ goals that leads to a saddle-based design of
the market that guarantees convergence to a point meeting all
operational constraints. We further explore cases where this
alignment property does not hold and observe that misaligned
participants’ bidding can destabilize the closed-loop system. We
thus design a regularized version of the market dynamics that
recovers all the desirable stability and steady-state performance
guarantees. Numerical tests validate our results on the IEEE
39-bus system.

Index Terms—market dynamics, economic dispatch, frequency
control, asymptotic stability, saddle flow dynamics.

I. INTRODUCTION

ELECTRICITY markets aim to foster competition by al-
lowing participants to make individual bids in the market

clearing process [2]. The shift of the electricity generation
mix towards intermittent less-controllable renewable sources
requires electricity markets to exploit resources with fast-
acting capabilities. However, the traditional market clearing
process for economic dispatch, that spans five-minute intervals
or longer, is unable to make full use of such fast resources.
This limitation poses a challenge on the efforts to incentivize
their market participation. Faster market clearing, e.g., at
the sub-minute level, provides a potential solution by (a)
increasing flexibility to better accommodate the increasing
system variability; and (b) increasing efficiency with finer-
granularity economic dispatch. However, such a fast-timescale
market clearing process could interfere with the grid reliability,
e.g., when market actions interact with the electromechanical
swings of generators [3], thus raising concerns of grid opera-
tors.
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Fast-timescale markets therefore have to further account for
stability issues while pursuing economic efficiency. This inter-
play, between physics (grid dynamics) and economics (market
operation), overlaps with the existing cross-timescale fre-
quency control architecture of grid operators [4], [5]: primary
– frequency regulation (10s of seconds), secondary – nominal
frequency restoration (1 minute), and tertiary – economic
dispatch (5+ minutes). While there have been many recent
efforts to integrate these temporally decoupled architecture,
exploiting hierarchical structures and optimization decompo-
sition across space [6]–[13] and time [14], such approaches
follow an engineering perspective and render control laws
on participants that do not necessarily reflect their individual
economic incentives.

Instead, in this work we take into account participants’
incentives and seek to incorporate the cross-timescale goals
of frequency control in the market clearing process. In this
setting, participants can bid in real time, and the market un-
dertakes the role of ensuring economic efficiency and meeting
a wide set of operational constraints (frequency regulation,
power flow bounds, etc.) via pricing and dispatching. In
particular, we aim to design a fast-timescale sub-minute market
that uses market signals as control signals and thereby operates
as a controller. Thus, the market rules can be seen as a
dynamical system, which is usually referred to as market
dynamics [3], [15]–[19]. The fundamental challenge for such a
market is to simultaneously account for the physical response
of the power grid and the economic incentives of its partici-
pants, e.g., generators. We model market dynamics with bids,
based on quantity or price, as inputs, reflecting participants’
preferences, and prices and dispatch as outputs. The market is
dynamically coupled with participants (that bid according to
their own preferences) and the power grid (that is constrained
by Newton’s and Kirchhoff’s Laws).

The notion of market dynamics was first introduced in
[3], where a dynamic pricing signal reflecting a filtered ver-
sion of system energy imbalance was proposed. Any excess
(resp. shortage) of power supplied was viewed as depress-
ing (resp. lifting) its value. In that setting, generators and
loads respond to this signal by adjusting generation and
consumption, which in turn changes the energy imbalance
and thus affects the price. This work pioneered the study of
the grid-market-participant interplay, yet it did not provide an
explicit economic interpretation of this price signal and the
corresponding participants’ response. Since then, follow-up
work has aimed at accommodating more physical constraints
[15]–[17], including congestion management [17], as well as
providing control theoretical guarantees, including delays [18]
and discrete updates [19]. However, they are still predicated
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on the similar ad-hoc designs that lack economic guarantees
of efficiency and incentive alignment.

Recently, designs for dynamic price signals, based on La-
grange dual gradient algorithms of an economic dispatch prob-
lem, have been proposed [20]–[23]. These pricing schemes
systematically embody a diverse range of operational con-
straints, and lead to a principled design with a direct eco-
nomic interpretation of equilibrium prices as well as stability
guarantees. This Lagrangian-based approach further allows
market participation based on both quantity [20], [21] and
price bids [22], [23]. However, such techniques only allow
for a limited homogeneous set of individual behavioral laws –
mapping market outcomes to individual bid updates – that are
analyzed on a case by case basis without systematic guarantee
of incentive compatibility.

Contributions of this work: This work builds upon recent
saddle-based distributed optimization study to develop a gen-
eral framework for the design and analysis of market dynamics
that account for a wide range of participants’ (rational) bidding
behavior, market efficiency goals and network operational con-
straints, while preserving system-wide stability and ensuring
incentive compatibility. More precisely, we consider a setting
in which participants receive price and dispatch information
from the current market outcome, and seek to maximize their
individual utility by updating their bids via a version of
dynamic gradient play or best response.

We identify a particular notion of alignment, between
participants’ bidding behavior and the grid planner’s goals,
that leads to a systematic design of market dynamics. Such
a design is guaranteed to drive the closed-loop system to
an equilibrium that (a) is economically efficient and satisfies
all operational constraints required by the grid planner; (b)
is incentive compatible with all individual participants. Our
alignment condition may be satisfied even when different
participants choose different update strategies.

We show that this alignment condition provides a ratio-
nal explanation for observations of participants’ behavior in
previous literature, in both quantity [3], [20], [21] and price
[22] bidding settings. More specifically, we find that our
alignment condition is implicitly satisfied in all of these cases.
These results suggest that this framework can provide deeper
understanding of previously proposed methods.

Finally, we investigate an exemplar of rational yet mis-
aligned price bidding strategy, and show that the absence of
this alignment property can lead to unstable behavior. We
thus propose a more robust version of the proposed market
dynamics, based on regularization, that recovers asymptotic
convergence and desirable steady-state performance of the
closed loop. Our solution can be interpreted as an implicit
regularization that aims to penalize the system misalignment,
thus driving the system closer to alignment. We illustrate our
results with numerical simulations on the IEEE 39-bus system.

The remainder of the paper is organized as follows. Sec-
tion II formalizes the grid planner’s goals and sets up the
general framework. Section III defines the notion of alignment
and characterizes the resulting systematic design of market
dynamics, with applications to the quantity and price bidding
settings. Section IV introduces misaligned bidding behavior
and highlights the required market modification to restore
(approximate) alignment. Section V presents simulation results
that validate the theory. Section VI provides conclusions.

Notation: Let R, R≥0 and N be the sets of real, nonnegative
real and natural numbers, respectively. For a finite set H ⊂ N,
its cardinality is denoted as |H|. For a set of scalar variables
{yj , j ∈ H}, its column vector is denoted as yH. The subscript
H might be dropped if the set is clear from the context. Given
vectors y ∈ R|H| and u ∈ R|H|, y ≤ u implies yj ≤ uj ,
∀j ∈ H. We define an element-wise projection [y]+u where

[yj ]
+
uj =

{
yj , if yj > 0 or uj > 0 ,

0 , otherwise.
(1)

This projection is non-expansive in the sense that for any u∗ ≥
0, the following holds:

[y]+u
T

(u− u∗) ≤ yT (u− u∗) , (2)

since the element-wise projection is active ([yj ]+uj = 0) only
when yj ≤ 0 and uj ≤ 0, which still implies [yj ]

+
uj (uj−u

∗
j ) =

0 ≤ yj(uj − u∗j ).
For an arbitrary matrix Y , Y T denotes its transpose. If Y is

symmetric (Y = Y T ), we use Y � 0, Y � 0, Y � 0 and Y ≺
0 to denote that Y is positive semidefinite, positive definite,
negative semidefinite and negative definite, respectively. Y −1

is the inverse of Y . 1 is a column vector of all 1’s. In an
abuse of notation we employ 0 to denote a column vector, a
row vector or a matrix of all 0’s if its dimension is clear from
the context. Given a column vector of variables y ∈ R|H|, we
use two corresponding diagonal matrices Γy, T y ∈ R|H|×|H|
to denote rate of change and time constants, respectively, with
Γy = T y−1. Their jth diagonal elements are denoted as γyj
and τyj , respectively.

II. PROBLEM FORMULATION AND SETUP

We consider a continuous-time model for the interaction
among grid dynamics, participants’ bidding behavior, and the
electricity market clearing process, i.e., market dynamics. We
focus on the performance of this coupled system, in terms
of steady-state economic dispatch and incentive alignment,
from the market perspective, and frequency stability, from the
control perspective. For simplicity, we restrict active market
participants to controllable generators and assume that loads
are inelastic, though the framework can be extended to incor-
porate elastic consumers and prosumers.

In the next subsections, we start with a planner’s problem
formulation that embodies all the target cross-timescale goals.
We also set up the real-time interactive structure of the coupled
system, followed by our models for power network dynamics
and rational participants’ bidding.

A. Planner’s Problem
We adopt the viewpoint of a grid planner to formalize the

cross-timescale economic and frequency control goals in a
single problem. Consider a power network with a connected
directed graph (N , E), where N := {1, 2, . . . , |N |} is the set
of nodes and E ⊂ N × N is the set of edges connecting
nodes. Each node is usually a bus, while each edge describes
a connection between two buses, e.g., a transmission line.
Without loss of generality, we assume there is only one
(aggregate) controllable generator at each bus. We use (j, k) to
denote the line from bus j to bus k. An arbitrary orientation is
applied such that any (j, k) ∈ E implies (k, j) /∈ E . Each line
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(j, k) ∈ E is endowed with an impedance zjk. We further
define an incidence matrix C ∈ R|N |×|E| for the network
graph with its element Cj,e = 1 if e = (j, k) ∈ E , Cj,e = −1
if e = (k, j) ∈ E and Cj,e = 0 otherwise.

We first formalize the primary and secondary control goals.
Given a demand vector d := (dj , j ∈N ) ∈R|N |, we adopt a
linearized dynamical model for the power network in transient:

θ̇ = ω (3a)

Mω̇ = q − d−Dω − CBCT θ (3b)

where θ := (θj , j ∈ N ) ∈ R|N | denotes bus phase angles,
ω := (ωj , j ∈ N ) ∈ R|N | denotes bus frequencies, and
q := (qj , j ∈ N ) ∈ R|N | denotes generation dispatch. Here
M := diag(Mj , j ∈ N ) ∈ R|N |×|N| represents the gen-
erators’ inertia, and D := diag(Dj , j ∈ N ) ∈ R|N |×|N|
summarizes the generators’ damping or frequency-dependent
demand with Dj > 0 in general. B := diag(Bjk, (j, k) ∈
E) ∈ R|E|×|E| characterizes the sensitivity of each line flow to
the phase angle difference between its two end nodes (cf. the
appendix of [1] for the derivation of B). Standard assumptions
are made to linearize the power flow equations in (3b): 1) bus
voltage magnitudes are fixed constant; 2) lines are lossless; 3)
reactive power is ignored [24]. Note that the linearized network
model (3) implicitly assumes that the variables θ, ω, q as well
as the parameter d are deviations from their nominal values.
Therefore, ω = 0 represents the nominal frequency (the goal of
secondary control), while ω̇ = 0 implies stabilized frequencies
(the goal of primary control).

It will be convenient for the analysis to define θ̃ := CT θ ∈
R|E| as the phase angle differences that determine (deviations
of) line flows Bθ̃ across the network, and rewrite the swing
dynamics (3) in the form:

˙̃
θ = CTω (4a)

Mω̇ = q − d−Dω − CBθ̃ (4b)

We then introduce a canonical tertiary control problem that
seeks to find an optimal economic dispatch of generation.
At the steady state of the power network, the stationary
frequencies at the nominal value, i.e., ω = 0 and ω̇ = 0,
render (4b) a characterization of the nodal power balance over
the network:

q − d− CBθ̃ = 0 . (5)

We further impose the lower and upper thermal limits F and
F on the (deviations of) line flows:

F ≤ Bθ̃ ≤ F . (6)

Then the tertiary control (economic dispatch) problem that
minimizes the aggregate generation cost to meet the demand
over the network is given by

min
q,θ

1TJ(q) (7a)

s.t. (5), (6) (7b)

where J(q) := (Jj(qj), j ∈ N ) is a column vector-valued
function, with Jj(·) : R 7→ R representing the cost function

of generator j.1 We assume that Jj(·) is strictly convex and
twice differentiable.

The problem (7) can be expressed compactly in terms of q
by first rewriting the nodal power balance (5) in terms of the
network power balance

1T
(
q − d− CBθ̃

)
= 1T (q − d) = 0 , (8)

where the first equality follows from 1TC = 0. Then defining
the weighted Laplacian matrix of the power network as L :=
CBCT enables (5) to be reorganized as

q − d = CBθ̃ = CBCT θ = Lθ . (9)

The line flows Bθ̃ can accordingly be expressed in terms of
the bus net power injections q − d:

Bθ̃ = BCTL†(q − d) , (10)

where L† denotes the Moore-Penrose inverse of L. Here
BCTL† is the power injection shift matrix of the power net-
work. We further let HT := [(BCTL†)T ,−(BCTL†)T ]T ∈
R2|E|×|N| and F := [F

T
,−FT ]T be the stacked shift matrix

and thermal limit vector, respectively. The resulting equivalent
reformulation of the tertiary control problem (7) is then

min
q

1TJ(q) (11a)

s.t. 1T (q − d) = 0 : λ (11b)
HT (q − d) ≤ F : η ≥ 0 (11c)

where the Kirchhoff’s Laws are embedded in the matrix
H , and λ ∈ R, η ∈ R2|E|

≥0 are the respective Lagrange
dual variables for (11b), (11c). The equivalence between the
formulations (7) and (11) is formally stated below (proof by
contradiction).

Lemma 1. (q∗, θ̃∗) is an optimal solution to (7) if and only
if θ̃∗ = CTL†(q∗ − d) holds and q∗ is an optimal solution to
(11).

The optimal primal-dual solution (q∗, λ∗, η∗) to (11) leads
to an implicit definition of clearing prices based on the dual
optimizers (λ∗, η∗) [14], given by the locational marginal
prices (LMPs) λ∗ · 1 − Hη∗. As guaranteed by the KKT
conditions of (11), they are incentive compatible for individual
generators in the sense that the clearing prices match the
marginal generation costs, i.e., ∇J(q∗) = λ∗ · 1 − Hη∗,
where ∇J(q) := (∇Jj(qj), j ∈ N ) is a column vector-valued
function of element-wise increasing gradients ∇Jj(qj).

Adding now the primary and secondary control goals to
the tertiary control problem leads to the following planner’s
problem:
Planner’s problem

min
p,q,ω,θ̃

1TJ(p) +
1

2
ωTDω (12a)

s.t. q = p : α (12b)
1T (q − d) = 0 : λ (12c)
HT (q − d) ≤ F : η ≥ 0 (12d)

1Here Jj(·) is defined on the deviation of generation. For convenience of
the analysis, we ignore generation capacity constraints. An alternative is to
incorporate them in properly redesigned cost functions [8].
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q − d−Dω − CBθ̃ = 0 : ν (12e)

where p := (pj , j ∈ N ) ∈ R|N | (used also to denote
quantity bids) here represents more broadly individual output
scheduling of generators, and is required to align with market
dispatch through (12b). Note that we abuse the notation to
define the Lagrange dual variables α ∈ R|N | (used also to
denote price bids), λ ∈ R, η ∈ R2|E|

≥0 and ν ∈ R|N | for (12b)-
(12e), respectively.

All the cross-timescale control goals are implicitly embed-
ded in the optimum of the planner’s problem. This fact is
characterized in the following theorem (proof in Appendix A).

Theorem 1. (p∗, q∗, ω∗, θ̃∗) is an optimal solution to (12) if
and only if p∗ = q∗, ω∗ = 0 and θ̃∗ = CTL†(q∗ − d) hold
and q∗ is an optimal solution to (11).

Corollary 1. The optimum of the planner’s problem realizes
• (primary control) frequency stabilization ω̇ = 0, i.e.,

(12e);
• (secondary control) the nominal frequency ω∗ = 0;
• (tertiary control) the economic dispatch q∗ of (11);
• (compatible participants’ incentives) fully incentivized

generation ∇J(p∗) = λ∗ · 1−Hη∗.
The last statement follows from the KKT conditions of (12),
in particular ν∗ = ω∗ = 0. Indeed, the planner’s problem (12)
suggests another way of defining clearing prices based on dual
optimizes (λ∗, η∗, ν∗), given by λ∗ · 1−Hη∗ − ν∗, such that
they are incentive compatible with the economic dispatch q∗:

∇J(q∗) = λ∗ · 1−Hη∗ − ν∗ . (13)

This means of pricing essentially boils down to the canonical
LMPs λ∗ · 1−Hη∗ with ν∗ = 0.

Central to our developments will be the Lagrangian for the
convex planner’s problem (12), i.e.,

L(p, q, ω, θ̃, α, λ, η, ν)

:= 1TJ(p)︸ ︷︷ ︸
generators

+
1

2
ωTDω+νT

(
q−d−Dω−CBθ̃

)
︸ ︷︷ ︸

network

+ αT (q−p)︸ ︷︷ ︸
generators or market

−λ · 1T (q−d)+ηT
(
HT (q−d)−F

)
︸ ︷︷ ︸

market

,

(14)

which we refer to as the planner’s Lagrangian, with the
potential responsible party for each term. It is easy to see that
(14) is convex in the primal variables (p, q, ω, θ̃) and concave
(linear) in the dual variables (α, λ, η, ν). The KKT conditions
establish a bijective mapping between a min-max saddle point
(p∗, q∗, ω∗, θ̃∗, α∗, λ∗, η∗ ≥ 0, ν∗) of the planner’s Lagrangian
(14) and an optimal primal-dual solution to the planner’s
problem (12). We further refer to a function as a reduced
planner’s Lagrangian, if it is the optimum of the planner’s
Lagrangian (14) over a subset of the primal and dual variables.

B. Real-Time Interactive Structure
In practice, the planner’s problem (12) is not implementable

due to the lack of knowledge of generators’ cost functions.
This poses significant challenges for the grid planner to realize
economic dispatch in an incentive-compatible manner. To
overcome this obstacle, we propose to use the real-time in-
teraction among the grid, market, and participants to automat-
ically achieve all the economic and frequency control goals.

We thus consider a continuous-time setting and investigate two
classes of dynamic bidding mechanisms, based on quantity
and price, that allow each generator to determine its own bid
while simultaneously allowing the market to update its prices
and dispatch.

We propose a unified framework for the grid-market-
participant loop, with a schematic layout of the interactive
structure shown in Fig. 1. The power network shares real-
time bus frequencies (ω) and (given) inelastic demand (d)
with the market. The market determines the signals of clearing
prices (π) and generation dispatch (q) based on the network
conditions and generators’ bids. The bids can take the form of
a quantity (p), suggesting the desired output of a generator, or
a price (α), indicating the desired unit price of a generator for
its output. Each individual generator responds to the market
signals by implementing the prescribed dispatch and updating
its own bid to reflect its preference to the market. The dispatch
immediately implemented affects the power network dynamics
and may interfere with the frequency stability.

Individual
Generators

Power Network

Market

frequency !
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

dispatch q
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

bid p
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

↵
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or
dispatch q
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Fig. 1. Interactive structure. Only time varying exchanged information is
depicted.

Inspired by (13) from the planner’s problem (12), we then
define transient clearing prices π in Fig. 1 to generalize the
canonical LMPs as follows.

Definition 1. Market clearing prices are defined as

π := λ · 1−Hη − ν . (15)

Intuitively, λ prices global network power imbalance, Hη
prices line congestion, and ν prices local bus power imbal-
ance. This dynamic version of LMPs can be interpreted as
transient shadow prices, and are bus-dependent and time-
varying, embodying the sufficient control authority of the
market to react to the changing network operational conditions
and participants’ bids.

The fundamental challenge for the coupled system in Fig. 1
to simultaneously realize the primary, secondary and tertiary
control, with a particular guarantee for compatible partici-
pants’ incentives, now boils down to two problems. First, How
to characterize individual bidding behavior? Second, How
to design market control laws of pricing and dispatch? We
aim to identify their underlying connections and address them
systematically.

C. Rational Bidding of Individual Generators

We provide a principled approach to the first problem by
capturing the incentives of individual participants, which are
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assumed to be rational price takers. A rational generator j ∈ N
can be modeled to pursue an input-output optimization of a
bidding problem, parameterized by market dispatch qj and
price πj (inputs), that decides its bid for quantity pj or price
αj (outputs). Therefore, we formulate a general form of the
bidding problem for each generator j as
Individual generator bidding problem
input: clearing price π and dispatch q; output: bid p, α

max
pj

Uj(pj ; qj , πj) (16a)

s.t. Gj(pj ; qj , πj) ≤ 0 : αj (16b)

where Uj(·) and Gj(·) are respectively real-valued concave
and convex functions to represent the objective and constraint
of generator j. We use the dual variable αj , a proxy for the
marginal cost, as the price bid. We will provide more intuitions
later. Note that only one type of bid p or α will be present
and the general expression describing inequality constraints
also captures equality constraints.

We adopt a gradient-based methodology to characterize
the rational bidding behavior of individual generators. To
solve the bidding problem (16), we define its Lagrangian
Lj(pj , αj ; qj , πj) and choose between

ṗj = γpj · ∇pjLj (resp. α̇j = −γαj · ∇αjLj) (17a)

pj = arg max
pj

Lj (resp. αj = arg min
αj

Lj) (17b)

as the individual dynamic gradient play [25] or best response
for bidding. We will discuss next the explicit formulations of
the bidding problem (16) and the resulting bidding behavior,
and further develop the countermeasure of market control laws
to address the second problem.

III. ALIGNED MARKET DYNAMICS

In this section, we develop a systematic design of market
dynamics that is able to accommodate a family of participants’
bidding behavior, referred to as aligned bidding. The design
is inspired by an formulation of a network problem based
on the swing dynamics (4) as well as its connection with
the planner’s Lagrangian (14). We will first characterize the
general paradigm of alignment, and then showcase two specific
examples of such market dynamics designs from existing
literature.

A. Network Problem
We first formulate a network problem that implicitly em-

bodies the physical swing dynamics (4):
Network problem
input: dispatch q; output: frequencies ω

min
ω,θ̃

1

2
ωTDω (18a)

s.t. q − d−Dω − CBθ̃ = 0 : ν (18b)

By defining its Lagrangian

Ln(ω, θ̃, ν) :=
1

2
ωTDω + νT (q − d−Dω − CBθ̃) , (19)

we can express the swing dynamics (4) as

ω = arg min
ω
Ln (20a)

˙̃
θ = − Γθ̃∇θ̃Ln (20b)
ν̇ = Γν∇νLn (20c)

with Γθ̃ = B−1 and Γν = M−1. Note that (20a) enforces
ω ≡ ν even in transient, which allows us to use ω ↔ ν
interchangeably. Therefore, the clearing prices π in (15) are
equivalently

π = λ · 1−Hη − ω . (21)

Note that the network problem (18) can be viewed as part
of the planner’s problem (12). More formally, we define the
relation between the network and the grid planner as aligned
below.

Definition 2. The power network dynamics (4) is aligned with
the grid planner’s goals in the sense that

∇uLn = ∇uL (22)

holds for the network variables u = ω, θ̃, ν.

The alignment (22) means that (20) can be equivalently
expressed in terms of the planner’s Lagrangian L in (14). It
further implies that the physical response of the power network
automatically implements a partial saddle flow (22) of L or its
possibly reduced variant. Similar interpretations are identified
in [6]–[10]. Since the network chooses (20a) for ω (reduction),
we accordingly define a reduced planner’s Lagrangian

L̄(p, q, θ̃, α, λ, η, ν) := min
ω

L(p, q, ω, θ̃, α, λ, η, ν) . (23)

B. Aligned Bidding and Market Dynamics Design
We model the individual bidding behavior of generator j ∈
N by the dynamic gradient play or best response in (17) with
respect to a Lagrangian Lj of its bidding problem. In light of
the same gradient-based structure as (22), a particular family
of participants’ behavior is identified to satisfy the following
notion of alignment.

Definition 3. Individual generators’ bidding behavior is
aligned with the grid planner’s goals if

∇uLj = ∇uL̃ (24)

holds for the bidding variables u = pj , αj , where L̃ is a
possibly reduced variant of L̄ in (23).

We will make the following assumption on L̃:

Assumption 1. L̃ is a finite function in its domain.

Remark 1. In practice the value of L̃, or any other reduced
planner’s Lagrangians, may be infinite after the reduction.
This circumstance usually arises when the planner’s La-
grangian L is linear with respect to the variables to be
optimized. Assumption 1 basically does not allow such vari-
ables to be optimized alone in the reduction. An alternative
to overcoming this limitation is to introduce an additional
regularization term of the form of ‖x − x̂‖2, with x̂ being
an auxiliary variable, whenever optimizing x leads to infinite
values [26], [27]. Therefore, we will implicitly assume all the
reduced Lagrangians discussed later to be finite.

This alignment between participants and the grid planner in
Definition 3 also connects the way each individual participant
bids (17) with a partial saddle flow of L̃ (or its possibly
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reduced variant), in addition to (22) realized by the swing
dynamics (4). Note that the saddle points of the planner’s
Lagrangian L in (14), and thus also L̃, optimally solve the
planner’s problem (12) and achieve all of its goals. This
connection inspires a design of aligned market dynamics that
complements the saddle flow through pricing and dispatch.

In general, with either dynamic bidding mechanism of
quantity p or price α, the market seeks to solve an input-output
variant of the planner’s problem (12), where some quantities,
e.g., bids and frequencies, are assumed as given (inputs),
and prices and dispatch are to be computed and released
to participants (outputs). We formulate such a problem in a
generic form as follows:
Market problem
input: bids α, p and frequencies ω; output: clearing prices π
and dispatch q

min
q

Um(q; p, α, ω) (25a)

s.t. Gm(q; p, α, ω) ≤ 0 : (λ, η ≥ 0) (25b)

where Um(·) and Gm(·) are real- and vector-valued convex
functions that respectively represent the market objective and
constraints.

We could also develop gradient-based market control laws
for pricing and dispatch that can be interpreted as a primal-
dual algorithm to solve the market problem (25). In partic-
ular, we define for the market problem (25) its Lagrangian
Lm(q, λ, η; p, α, ω) and likewise choose between

u̇ = −Γu∇uLm (resp. u̇ = Γu [∇uLm]
+
η ) (26a)

u = arg min
u
Lm (resp. u = arg max

u:η≥0
Lm) (26b)

for any primal variable u = q (resp. dual variable u = λ, η)
to solve for its optimal value. The projection [·]+η applies only
to u = η, which guarantees that the trajectory of η(t) starting
from an arbitrary non-negative point remains non-negative.

Given the alignment of both the power network (22) and
participants (24), the key design is to exploit L̃ and the choice
of participants’ bidding update (dynamic gradient play or
best response) in (24), and extract the corresponding market
problem (25) from the planner’s problem (12). In particular,
suppose L̃ is the optimum of L̄ over a subset of (reduced)
variables vm, i.e., L̃ = L̄|v∗m with v∗m being the optimizer, and
the bidding of each generator j involves (17b) for a subset of
its variables vj . We propose to design the market such that

1) for the market variables u = q, λ, η,

∇uLm = ∇uL̄|v∗j (27)

holds (thus also aligned), where v∗j is the optimizer;
2) (26b) is chosen for vm to yield L̃ in (24).

Based on the bidding mechanism, we can always apply
optimization decomposition to the planner’s problem (12) to
obtain the desired market problem (25) (see examples in
Section III-C). By this means, the market control laws (26)
are basically designed to complement the saddle flow of a
particular reduced planner’s Lagrangian that accounts for all
the reduced parts, given by

L̂ := L̄|v∗m,v∗j ,j∈N . (28)

Such aligned market dynamics render the joint dynamics of

the grid, market, and participants a (projected) saddle flow of
L̂. Thus, the grid-market-participant loop can be expressed as[

T z

Tσ

] [
ż
σ̇

]
=

 −∇zL̂(z, σ)[
∇σL̂(z, σ)

]+
η

 , (29)

where z and σ are subsets of the respective primal variables
(p, q, θ̃) and the dual variables (α, λ, η, ν), which are updated
using the gradient information via (17a), (20b), (20c) and
(26a). We slightly abuse the notation such that the projection
[·]+η only applies to part of the gradient corresponding to η in
σ. The rest variables are updated based on (17b), (20a) and
(26b).

To gain insights into this closed-loop interaction (29), we
next show that its equilibria correspond to optimal solutions to
the planner’s problem (12). We further show that it converges
asymptotically to one such equilibrium point under mild
conditions. If η is contained in σ, define

I :=

{
(z, σ) | η ∈ R2|E|

≥0

}
(30)

as the set of initial points in order to guarantee a non-negative
trajectory for η; otherwise, define I := R|z|+|σ|. Then the
equilibrium of the grid-market-participant loop (29) can be
characterized by the following theorem (proof in Appendix B):

Theorem 2. Let Assumption 1 hold. For the grid-market-
participant loop (29), a point (z∗, σ∗) ∈ I is an equilibrium
if and only if (z∗, σ∗) corresponds to an optimal primal-dual
solution to the planner’s problem (12).

Theorem 2 indicates that each equilibrium point not only
restores the nominal frequency, but also achieves underlying
economic dispatch - demand met in an economically efficient
manner and line thermal limits respected - while fulfilling
compatible participants’ incentives through individual bidding.

We proceed to show the convergence of the closed-loop sys-
tem (29) to one equilibrium point. Given the initial condition
of I, define

E := {(z, σ) | ż, σ̇ = 0} (31)

as the set of its equilibrium points. We make the follow-
ing assumption on the system observability that leads to
the asymptotic stability of the equilibrium set described in
Theorem 3 (proof in Appendix C).

Assumption 2 (Observability). The grid-market-participant
loop (29) has an observable output such that for any of its
trajectories (z(t), σ(t)) that satisfy L̂(z∗, σ(t)) ≡ L̂(z∗, σ∗)
and L̂(z(t), σ∗) ≡ L̂(z∗, σ∗), we have ż, σ̇ ≡ 0.

Theorem 3. If Assumptions 1 and 2 hold, the equilibrium set
E is globally asymptotically stable on I. In particular, starting
from any initial point in I, a trajectory (z(t), σ(t)) of the grid-
market-participant loop (29) remains bounded for t ≥ 0 and
converges to (z∗, σ∗) with t → ∞, where (z∗, σ∗) is one
specific equilibrium point in E.

Theorem 3 implies that, under mild observability condi-
tions, the aligned participants’ bidding behavior together with
the proposed market dynamics can essentially function as
a feedback controller on the power network dynamics to
simultaneously realize the cross-timescale primary, secondary
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and tertiary control with compatible participants’ incentives.
Indeed, this notion of alignment establishes connections to the
rationale of saddle flow dynamics [26]–[28] that underlies such
principled grid-market-participant loop (29).

C. Illustrative Examples
We next present two examples of aligned market dynamics,

based on the two common bidding mechanisms of quantity
and price, respectively. The two examples take root in existing
literature [1], [21], [22]. For illustration purposes we follow a
uniform choice of bidding behavior (either (17a) or (17b) for
all participants) as in [1], [21]. We note, however, the results
presented in this paper can accommodate mixed choices,
thus generalizing previous works. We also show through the
examples that the observability condition in Assumption 2 is
readily satisfied for the grid-market-participant loop (29).

1) Quantity Bidding: The quantity bidding mechanism al-
lows individual generator participants to bid their own de-
cisions on the amount of electricity generation p into the
market. All the accepted quantity bids p are respected and
taken as the generation dispatch q. However, the market aims
to match the supply with given demand and meet the network
operational constraints by setting appropriate clearing prices
π to coordinate these quantity bids.

Since the dispatch qj of generator j follows its quantity bid
pj , it is able to maximize its profit from the market, given the
clearing price πj at bus j ∈ N , by solving its bidding problem

Uj(pj ;πj) := πjpj − Jj(pj) (32a)
Gj(pj ;πj) ≤ 0 : ∅ (32b)

The unconstrained problem (32) immediately suggests

Lj(pj ;πj) := πjpj − Jj(pj) , (33)

and the dynamic gradient play of (17a) on pj gives the bidding
strategy of generator j [1], [21]:

τpj ṗj = πj −∇Jj(pj) , j ∈ N . (34)

Note that (34) reveals a direct economic interpretation that
generator j tends to augment production pj if the offered
clearing price πj exceeds its marginal cost ∇Jj(pj); other-
wise, it will curtail production pj . It is therefore incentivized
to adapt its production pj in a way that matches its marginal
cost ∇Jj(pj) with the clearing price πj , which will bring it
the maximum profit. Therefore, (34) represents exactly the
rational quantity bidding behavior of a price-taking generator.

Further, (34) satisfies the alignment condition in Definition 3
based on the following reduced planner’s Lagrangian:

L̃(p, θ̃, λ, η, ν) := min
q

max
α

L̄(p, q, θ̃, α, λ, η, ν) , (35)

which leads to q ≡ p even in transient, i.e., dispatch follows
quantity bids, exactly as the bidding mechanism mandates.

Given (34) and (35), vm contains q and α, while vj is ∅, j ∈
N . Based on (27), we aim for Lm such that ∇uLm = ∇uL̄
holds for u = q, λ, η. Note that now the market enforces q = p.
Then, by inheriting all the market-related terms (independent
of ω) from the planner’s Lagrangian (14), we obtain Lm as

Lm(q, λ, η; p) := αT (q−p)−λ·1T (q−d)+ηT
(
HT (q − d)− F

)
.

(36)

It implies the explicit market problem formulation (25) as

Um(q; p) := 0 (37a)
Gm(q; p) ≤ 0 : (12b)− (12d) (37b)

The market problem (37) is a feasibility problem that
coordinates quantity bids of individual generation scheduling
through pricing (π = λ·1−Hη−ω). We need to further select
(26a) for (λ, η) and (26b) for (q, α) (to yield L̃ in (35)). The
resulting formal aligned market dynamics are

q ≡ p (38a)

Tλλ̇ = −1T (q − d) (38b)

T η η̇ =
[
HT (q − d)− F

]+
η

(38c)

Under the quantity bidding mechanism, the grid-market-
participant loop, consisting of (4), (34), (38), equivalently
implements the projected saddle flow (29) of the underlying
reduced planner’s Lagrangian L̂ = L̃ in (35) that optimizes L̄
over (vm, vj , j ∈ N ), i.e.,

L̂(z, σ) := min
q

max
α

L̄(p, q, θ̃, α, λ, η, ν) , (39)

with z := (p, θ̃) ∈ R|N |+|E| and σ := (λ, η, ν) ∈ R|N |+2|E|+1.
In this setting, the observability in Assumption 2 indeed holds
as claimed below (proof in Appendix D).

Proposition 1. Given L̂(z, σ) in (39), if any trajectory
(z(t), σ(t)) of the grid-market-participant loop (29) satisfies
L̂(z∗, σ(t)) ≡ L̂(z∗, σ∗) and L̂(z(t), σ∗) ≡ L̂(z∗, σ∗), ż, σ̇ ≡
0 holds.

2) Price Bidding: The price bidding mechanism allows
individual generator participants to bid into the market the
desired prices α of electricity at which they are willing to sell.
Such a price bid is expected to implicitly reflect the marginal
generation cost without revealing a generator’s truthful cost
function. The market targets an economic schedule of gener-
ation dispatch q with the corresponding incentive compatible
clearing prices π based on these price bids.

Given the market dispatch qj and clearing price πj at
bus j ∈ N , generator j is obliged to follow the designated
generation dispatch but still can strive for profit maximization
through its price bid:

Uj(pj ; qj , πj) := πjqj − Jj(pj) (40a)
Gj(pj ; qj , πj) ≤ 0 : (12b) (40b)

We interpret the price bid from the dual perspective and define
a corresponding Lagrangian Lj :

Lj(pj , αj ; qj , πj) := πjqj − Jj(pj) + αj(pj − qj) . (41)

We adopt (17a) for α and (17b) for p to characterize the
bidding strategy of generator j [22]:

ταj α̇j = qj − (∇Jj)−1(αj) , j ∈ N , (42)

where we have substituted pj = (∇Jj)−1(αj) from (17b) for
p. The rational bidding behavior (42) reveals generator j’s
effort to align its desired generation (∇Jj)−1(αj), conveyed
through the price bid αj , with the given dispatch qj . For
example, an increase in αj implies raised desired generation
(∇Jj)−1(αj) (by convexity), and meanwhile signals the mar-
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ket to decrease the corresponding dispatch qj , thus diminishing
the gap in between.

It can be readily verified that (42) also satisfies Definition 3
of alignment with L̃ = L̄ in (23). Therefore, vm is ∅, while we
have vj = pj , j ∈ N , from (42). Based on (27), we aim for Lm
such that ∇uLm = ∇u minp L̄ holds for u = q, λ, η. Note that
now p = q is accounted for by individual generators in (40b).
Then, inheriting all the market-related terms (independent of
p) from the planner’s Lagrangian (14), including νT q and αT q
that capture interactions, leads to

Lm(q, λ, η;α, ω) := (α+ω)T q−λ·1T (q−d)+ηT
(
HT (q−d)−F

)
(43)

with interchangeable ω ↔ ν. It corresponds to the desired
market problem as

Um(q;α, ω) := (α+ ω)T q (44a)
Gm(q;α, ω) ≤ 0 : (12c)− (12d) (44b)

The market problem (44) uses the price bids and the
frequencies, α + ω, as a proxy for the unit generation costs,
and minimizes the corresponding aggregate generation cost –
a frequency-aware variant of economic dispatch.2 Since vm is
∅, we will just implement (26a) for (q, λ, η), leading to the
formal aligned market dynamics:

T q q̇ = λ · 1−Hη − ω − α (45a)

Tλλ̇ = −1T (q − d) (45b)

T η η̇ =
[
HT (q − d)− F

]+
η

(45c)

Under the price bidding mechanism, the grid-market-
participant loop, consisting of (4), (42), (45), equivalently
implements the projected saddle flow (29) of the underlying
reduced planner’s Lagrangian

L̂(z, σ) := min
p

L̄(p, q, θ̃, α, λ, η, ν) , (46)

based on (28), with z := (q, θ̃) ∈ R|N |+|E| and σ :=
(α, λ, η, ν) ∈ R2|N |+2|E|+1. Here p ≡ (∇J)−1(α) is enforced
with the column vector-valued inverse function (∇J)−1(·) :=
((∇Jj)−1(·), j ∈ N ) : R|N | → R|N | representing the
element-wise inverse of gradients. The observability in As-
sumption 2 likewise holds here as formally stated below (proof
analogous to that of Proposition 1).

Proposition 2. Given L̂(z, σ) in (46), if any trajectory
(z(t), σ(t)) of the grid-market-participant loop (29) satisfies
L̂(z∗, σ(t)) ≡ L̂(z∗, σ∗) and L̂(z(t), σ∗) ≡ L̂(z∗, σ∗), ż, σ̇ ≡
0 holds.

IV. MISALIGNED MARKET DYNAMICS

In general, individual participants are not obliged to con-
form with any behavior pattern aligned with the market. If they
do not bid in an aligned manner, the role of market dynamics
has to be reevaluated. In this section, we propose an exemplar
of rational price bidding strategy for price-taking participants
that is misaligned. To maintain the desirable properties of the
market dynamics, a modification on the market control laws
is necessary to accommodate the misalignment.

2The linear programming formulation (44) may not be well defined (finite)
in general without generation capacity constraints. However, it is sufficient to
derive control laws that make the closed loop steady-state optimal.

A. Misaligned Price Bidding

We still consider the dynamic price bidding mechanism
where each generator j interacts with the market through
its price bid αj . From a generator’s perspective, given the
market dispatch qj and clearing price πj , one alternative
to fully exploit the market information is to check whether
the pair (qj , πj) satisfies incentive compatibility, i.e., whether
its marginal generation cost matches the clearing price,
∇Jj(qj) = πj . Note that

(∇Jj)−1(πj) = arg max
pj

πjpj − Jj(pj) (47)

is indeed the individual desired output that maximizes gen-
erator j’s profit given the clearing price πj . If this output is
matched by the market dispatch qj , the generator should be
satisfied with its current clearing price and dispatch. Other-
wise, any discrepancy between the individual desired output
and the market dispatch would drive generator j to strive for
compatible incentives.

This idea inspires a new formulation of the individual price
bidding problem:

Uj(pj ; qj , πj) := 0 (48a)

Gj(pj ; qj , πj) ≤ 0 :

{
(12b)

pj = (∇Jj)−1(πj)
(48b)

where (48b) still enforces the market dispatch qj to be strictly
followed while generator j requires it to be incentive compati-
ble with the clearing price πj . This is a feasibility problem and
we still interpret the price bidding from the dual perspective.
We define Lj to be a partial Lagrangian of (48) that only
relaxes (12b):

Lj(αj ; qj , πj) := αj
(
(∇Jj)−1(πj)− qj

)
, (49)

where we have plugged in pj = (∇Jj)−1(πj) to indicate the
individual desired output. The dynamic gradient play (17a) on
α defines an alternative price bidding strategy for generator j:

ταj α̇j = qj − (∇Jj)−1(πj) , j ∈ N . (50)

Compared with the previous aligned bidding behavior (42),
the clearing price information is exploited here instead of each
local bid. To some extent, the current strategy (50) is even
more straightforward and compelling for rational individual
generators since it directly reflects their economic incentives.
For instance, if a generator is dispatched more than its desired
generation output, it raises its price bid to indicate more costly
production, in anticipation of a reduced dispatch or a lifted
clearing price, at which it is willing to output more. The price
bid αj will remain fixed only when the pair of the market
dispatch qj and clearing price πj satisfies ∇Jj(qj) = πj to be
incentive compatible. Note that a generator bidding according
to (50) is still a price taker since it just responds to the given
dispatch and clearing price.

Suppose the market still maintains the market control laws
(45), attained from the market problem (44) under the price
bidding mechanism. The alignment condition does not hold
here for such a grid-market-participant loop since there does
not exist any reduced planner’s Lagrangian that satisfies Def-
inition 3. In fact, the insertion of p = (∇J)−1(π) into the
planner’s Lagrangian (14) could deprive it of the concavity in
the dual variables (α, λ, η, ν). The next illustrative example
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Fig. 2. Simulation run of illustrative example (53).

further suggests that such misalignment can lead to system
instability.
Single-bus example

We adopt a quadratic form for Jj(·) as

Jj(qj) :=
cj
2
q2j + c̄jqj , (51)

which is parametrized by constants cj > 0 and c̄j . Consider
the following illustrative single-bus example. We can ignore
the state variables of θ, η as a result and further drop all the
subscripts. Suppose there is a step change in power demand
d. The coupled system is given by

ω̇ = q − d−Dω (52a)

α̇ = q − c−1(λ− ω − c̄) (52b)
q̇ = λ− ω − α (52c)

λ̇ = −(q − d) (52d)

where the inertia and all the updating step sizes are set to 1.
For computational convenience, we further look at the case
with D = 1 and c = 1, and write the coupled system in a
compact form as

ω̇
α̇
q̇

λ̇

 =

−1 0 1 0
1 0 1 −1
−1 −1 0 1
0 0 −1 0


︸ ︷︷ ︸

=:A

ωαq
λ

+

−dc̄0
d


︸ ︷︷ ︸
constant

. (53)

It can be checked that the matrix A has a pair of complex-
conjugate eigenvalues 0.16 ± i1.75 with positive real parts.
Thus, the system (53) is not stable, as also illustrated in Fig. 2.

The example indicates that individual participants being
rational price-takers is not sufficient to guarantee alignment
between participants and the grid planner. Further, such mis-
alignment can render the design of saddle-flow based market
dynamics (45) closed-loop unstable. The source of the mis-
alignment in this case can be understood as having partici-
pants’ bidding dynamics based on saddle flows of different
reduced Lagrangians.

More precisely, for the closed-loop system (4), (45), (50),
one can identify that individual participants choose the desired
generation outputs p‡ from the following reduced planner’s
Lagrangian:

p‡ := arg min
p

{
max
α

min
q

L̄(p, q, θ̃, α, λ, η, ν)

}
=(∇J)−1(λ · 1−Hη − ν) .

However, all the remaining decisions are taken from another
reduced planner’s Lagrangian (with p = p‡):

T z ż = −∇zL̄(p, q, θ̃, α, λ, η, ν)
∣∣∣
p=p‡

Tσσ̇ =

[
∇σL̄(p, q, θ̃, α, λ, η, ν)

∣∣∣
p=p‡

]+
η

(54)

with z = (q, θ̃) and σ = (λ, ν, α, η). This variant (54) of
saddle flow dynamics matches exactly the current closed-
loop system (4), (45), (50). Obviously, participants’ bidding
behavior is not aligned since they adopt two different reduced
Lagrangians to update their variables p and α. We can also ex-
pect the malfunction of (54), due to the improper enforcement
of a minimizer from a different reduced Lagrangian.

B. Market Modification
In this subsection we propose a solution that modifies the

market control laws (45) to accommodate such misaligned
bidding behavior (50). To simplify the analysis and presen-
tation, we still use the quadratic generation cost in (51).
We introduce an auxiliary primal variable q̂ ∈ R|N | and
reformulate the market problem with an extra regularization
term in the objective function to minimize:

Um(q, q̂;α, ω) := (α+ ω)T q +
ρ

2

∥∥q − q̂∥∥2 (55a)

Gm(q, q̂;α, ω) ≤ 0 : (12c)− (12d) (55b)

where ρ > 0 is a constant regularization coefficient. Due to the
positive regularization, the minimum of (55) is lower bounded
by that of (44) and the bound is tight only when q∗ = q̂∗

holds. Therefore, (q∗, q̂∗ = q∗, λ∗, η∗) is optimal w.r.t. (55) if
and only if (q∗, λ∗, η∗) is optimal w.r.t. (44). In this sense, we
refer to q̂ as virtual dispatch since it is consistent with real
dispatch q at optimality.

We still follow the general idea of gradient-based market
control laws to define the Lagrangian Lm of (55):

Lm(q, q̂, λ, η;α, ω) := (α+ ω)T q +
ρ

2

∥∥q − q̂∥∥2
− λ · 1T (q − d) + ηT

(
HT (q − d)− F

)
,

(56)
and select (26a) for (q̂, λ, η) and (26b) for q, which yields the
modified market dynamics

q ≡ 1

ρ
(λ · 1−Hη − ω − α) + q̂ (57a)

T q̂ ˙̂q = λ · 1−Hη − ω − α (57b)

Tλλ̇ = −1T
(

1

ρ
(λ · 1−Hη − ω − α) + q̂ − d

)
(57c)

T η η̇ =

[
HT

(
1

ρ
(λ · 1−Hη − ω − α) + q̂ − d

)
− F

]+
η

(57d)

The virtual dispatch q̂ is internal to the market, while the real
dispatch q is released to individual participants for implemen-
tation along with prices π = λ · 1−Hη − ω.

C. Equilibrium Analysis and Asymptotic Stability

In this subsection we examine the interaction among the
physical power network dynamics (4), the modified market
control laws (57) and the rational bidding behavior (50)
of individual participants. We will formally characterize the
steady state and stability of this new closed-loop system.
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We first define z := (q̂, θ̃) ∈ R|N |+|E| and σ :=
(λ, ω, α, η) ∈ R2|N |+2|E|+1, and note that q in (57a) is the
reduced variable. We retain the sets of initial points and
equilibrium points defined in (30) and (31), respectively. The
corresponding equilibrium set is then explicitly characterized
as follows (proof in Appendix E).

Theorem 4. For the grid-market-participant loop (4), (50),
(57) that starts from any initial point in I, a point (z∗, σ∗)
is an equilibrium if and only if (z∗, σ∗) corresponds to an
optimal primal-dual solution to the planner’s problem (12).

Having secured the desirable steady state, we next show that
given the initial condition of I, the grid-market-participant loop
(4), (50), (57) indeed converges to one equilibrium point in E
with proper choice of the coefficient ρ, as summarized below
(proof in Appendix F).

Theorem 5. The equilibrium set E is globally asymptotically
stable on I, given ρ ∈ (0, infj∈N 4cj). In particular, starting
from any initial point in I, a trajectory (z(t), σ(t)) of the grid-
market-participant loop (4), (50), (57) remains bounded for
t ≥ 0 and converges to (z∗, σ∗) with t→∞, where (z∗, σ∗)
is one specific equilibrium point in E.

Remark 2. Recall cj > 0, j ∈ N is the given quadratic
coefficient in each generation cost function (51). Therefore,
we can always pick a sufficiently small ρ that satisfies the
condition such that the grid-market-participant loop (4), (50),
(57) asymptotically converges to a target equilibrium point.

Theorem 5 suggests that the proposed market modification
with regularization (55) is able to accommodate the misalign-
ment from the way (50) each participant bids, such that the
modified market dynamics and the misaligned individual bid-
ding behavior can still function as a feedback controller on the
power network dynamics to realize all the primary, secondary
and tertiary control with compatible participants’ incentives.
The required modification, however, highlights the necessity
of robust market control laws that can better accommodate
diverse participants’ behavior and potential misalignment.

D. Underlying Rationale: Implicit Regularization
In this subsection we provide more intuitions about the

modified market dynamics design (57). We first point out that
the minimizer of the real dispatch q in (57a) is equivalent to
the proximal operator (as a function of q̂) associated with the
original Lm (in the variable q) in (43), and is commonly used
in dealing with non-differentiable optimization problems [28].
In light of the linear programming formulation of the original
market problem (44), we can expect this proximal gradient
based market control laws (57) to secure convergence under
milder conditions from an optimization perspective.

We note, however, from a design perspective, the proposed
market modification does not recover alignment to connect
with standard saddle flows. Indeed, the current grid-market-
participant loop (4), (50), (57) still corresponds to the follow-
ing improper form:

T z ż = −∇z
{

min
q
L̄(p, q, θ̃, α, λ, η, ν) +

ρ

2
‖q − q̂‖2

} ∣∣∣
p=p‡

Tσσ̇ =

[
∇σ
{

min
q
L̄(p, q, θ̃, α, λ, η, ν) +

ρ

2
‖q − q̂‖2

} ∣∣∣
p=p‡

]+
η
(58)

with z = (q̂, θ̃) here. Compared with (54) (q̂ in place of q), the
only difference between the target convex-concave functions
(with respective minimizers plugged in) is an extra implicit
regularization term

− 1

2ρ
‖λ · 1−Hη − ν − α‖2 . (59)

Note that essentially the misaligned price bidding behavior
(50) deviates from the aligned one (42) by using the clearing
price information π = λ ·1−Hη−ω instead of the local bids
α. Thus, one can understand the role of the regularization term
(59) as penalizing the mismatch between the clearing prices
π and the local bids α. The smaller ρ is, the stronger this
regularization impact will be and the closer the clearing prices
π and the local bids α will be tied to each other. Theorem 5
provides a threshold for ρ under which the two quantities are
close enough such that the misalignment can be accommo-
dated despite the use of the clearing price information.

V. NUMERICAL RESULTS

We test the proposed aligned market dynamics based on
quantity and price bidding, as well as the modified market
dynamics for misaligned price bidding on the IEEE 39-bus
system to illustrate their interplay with grid dynamics and
respective participants’ behavior. Despite basing our analysis
on a linear approximation of the physical swing dynamics, we
adopt a high-fidelity model for the numerical tests, including
nonlinear power flows and voltage dynamics. All of the
10 generators, located at buses 30-39, are taken as market
participants. We randomly select three lines 4, 19 and 26 and
endow them with relatively small transmission capacity ±3
p.u. such that the line thermal limits will be binding. 1 p.u.
(100 MW) of step load increase is imposed at bus 30 at time
0. The 150-second simulation runs of transient dynamics in
response to this instant power imbalance for all the three grid-
market-participant loops are presented in Fig. 3.

As we can observe from Fig. 3, all the three market
dynamics are able to drive the respective systems to steady
state within 150 seconds. At equilibrium, they all restore the
frequency to its nominal value, respect line thermal limits,
and achieve the optimal generation dispatch, which is the
unique solution to the planner’s problem (12), with an identical
set of incentive compatible clearing prices. Fig. 3(c) and
Fig. 3(d) indicate the convergence of the market dispatch q
and individual generators’ desired output p to the same value,
which further suggests that their incentives are aligned. In the
price bidding setting, the generators’ bids always converge to
their local prices, as displayed in Figure 3(f), despite different
market information used in the bidding strategies.

In addition, Fig. 4 shows a representative profile of fre-
quency deviation at bus 34 with the modified market dynamics
for misaligned price bidding, as we vary the regularization
coefficient ρ subject to Theorem 5. A smaller ρ, e.g., 0.1,
enhances the role of the regularization in (59) and amplifies
oscillations, while a larger ρ, e.g., 10, damps the oscillations
and leads to smoother convergence.

VI. CONCLUSION

This paper studies the interaction among grid dynamics,
market dynamics and bidding dynamics of individual market

10



0 50 100 150
-0.2

-0.1

0

0.1

0 50 100 150 0 50 100 150

(a) Frequency deviation

0 50 100 150
-10

-5

0

5

10

0 50 100 150 0 50 100 150

(b) Selected line flows (thermal limits indicated by dashed lines)

0 50 100 150
-4

-2

0

2

4

0 50 100 150 0 50 100 150

(c) Generation dispatch

0 50 100 150
-4

-2

0

2

4

0 50 100 150 0 50 100 150

(d) Individual desired generation

0 50 100 150
-100

-50

0

50

100

0 50 100 150 0 50 100 150

(e) Clearing prices

0 50 100 150
-100

-50

0

50

100

0 50 100 150

(f) Price bids

Fig. 3. Comparison across different market dynamics on instant power imbalance.
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Fig. 4. Modified market dynamics for misaligned price bidding: impact of ρ
on frequency deviation at bus 34.

participants. We first develop a principled framework for the
design and analysis of aligned market dynamics, conditioned
on a family of alignment characterization for individual bid-
ding behavior. The alignment connects the associated grid-
market-participant loop to a saddle flow whose min-max
saddle points, i.e., equilibrium points, optimally solve the
target planner’s problem to realize the primary, secondary,
and tertiary frequency control with compatible participants’
incentives. We show that the framework is general for the
bidding mechanisms based on quantity and price, and, under
mild conditions, the asymptotic convergence of the closed-
loop system to an equilibrium can be guaranteed. Two specific
examples of aligned market dynamics are demonstrated. We

further study an exemplar of misaligned bidding behavior
that can lead to system instability in the absence of the
alignment property. A solution of modified market control laws
is proposed to accommodate such misalignment, highlighting
the necessity of market robustness against diverse individual
bidding behavior. Numerical simulations on the IEEE 39-
bus system validate our market dynamics designs in terms of
steady-state equilibrium and global asymptotic stability.

APPENDIX

A. Proof of Theorem 1
Before we prove the sufficient and necessary condi-

tions, we first show that any optimal primal-dual solution
(p∗, q∗, ω∗, θ̃∗, α∗, λ∗, η∗, ν∗) to the planner’s problem (12)
satisfies ω∗ = 0. Since (12b)-(12e) are affine, the KKT
conditions are both sufficient and necessary to characterize
the optimality of (12):
Stationarity

∇J(p∗)− α∗ = 0 (60a)
α∗ − λ∗ · 1 +Hη∗ + ν∗ = 0 (60b)
D(ω∗ − ν∗) = 0 (60c)

BCT ν∗ = 0 (60d)

Primal feasibility

q∗ = p∗ (60e)

11



1T (q∗ − d) = 0 (60f)

HT (q∗ − d) ≤ F (60g)

q∗ − d−Dω∗ − CBθ̃∗ = 0 (60h)

Dual feasibility

η∗ ≥ 0 (60i)

Complementary slackness

diag(η∗)
(
HT (q∗ − d)− F

)
= 0 (60j)

(60d) implies CT ν∗ = 0 due to B � 0. Since C is the
incidence matrix of the connected graph (N , E), CT ν∗ = 0
basically means ν∗j = ζ, ∀j ∈ N , where ζ is a constant. (60c)
implies ν∗ = ω∗ due to D � 0. Therefore, ω∗j = ζ holds for
∀j ∈ N . By summing (60h) up over all the buses in N , we
attain

1T (q∗ − d−Dω∗ − CBθ̃∗)
= − 1TDω∗ = −ζ · 1TD1 = 0

(61)

where the first equality follows from (60f) and 1TC = 0. (61)
enforces ζ = 0 and ω∗ = ζ · 1 = 0.

We are now ready to prove Theorem 1 by contradiction.
Necessary condition: Given an optimal solution

(p∗, q∗, ω∗, θ̃∗) to (12) with ω∗ = 0, we assume q∗ is
not optimal with respect to (11). It means that there
exists an optimal solution q◦ 6= q∗ to (11) that satisfies
(11b)-(11c) and meanwhile achieves a strictly smaller
objective value, i.e., 1TJ(p◦) < 1TJ(p∗). Define p◦ := q◦,
ω◦ := 0 and θ̃◦ := CTL†(q◦ − d). We can readily
observe that (p◦, q◦, ω◦, θ̃◦) satisfies (12b)-(12e) and is
thus feasible for (12) with a strictly smaller objective value
than (p∗, q∗, ω∗, θ̃∗). However, this contradicts the fact that
(p∗, q∗, ω∗, θ̃∗) is optimal with respect to (12). As a result,
q∗ is an optimal solution to (11).

Sufficient condition: Given an optimal solution q∗ to
(11), we assume (p∗, q∗, ω∗, θ̃∗) with p∗ = q∗, ω∗ = 0
and θ̃∗ = CTL†(q∗ − d) is not optimal with respect
to (12). It means that there exists an optimal solution
(p◦, q◦, ω◦, θ̃◦) 6= (p∗, q∗, ω∗, θ̃∗) to (12) that satisfies (12b)-
(12e) and meanwhile achieves a strictly smaller objective
value, i.e., 1TJ(p◦) + 1

2ω
◦T dω◦ = 1TJ(p◦) < 1TJ(p∗) =

1TJ(p∗)+ 1
2ω
∗T dω∗, where ω◦ = 0 holds from its optimality.

Since q◦ satisfies (12c)-(12d), it automatically satisfies (11b)-
(11c), and is therefore feasible for (11) with a strictly smaller
objective value than q∗. However, this contradicts the fact that
q∗ is optimal with respect to (11). As a result, (p∗, q∗, ω∗, θ̃∗)
with p∗ = q∗, ω∗ = 0 and θ̃∗ = CTL†(q∗ − d) is an optimal
solution to (12).

B. Proof of Theorem 2

Define φ := (p, q, ω, θ̃, α, λ, η, ν)\(z, σ) to be the variables
that are reduced and updated by taking their optimizers based
on (17b), (20a) and (26b).

Necessary condition: We first ignore the particular projec-
tion to guarantee η ≥ 0. An equilibrium (z∗, σ∗) of the grid-
market-participant loop (29) means

∇zL̂(z∗, σ∗) = 0 , (62a)

∇σL̂(z∗, σ∗) = 0 , (62b)

with
L̂(z∗, σ∗) := L(z∗, σ∗, φ(z∗, σ∗)) ,

where φ(z, σ) contains the corresponding maximizers or min-
imizers of L(z, σ, φ), always satisfying

∇φL(z∗, σ∗, φ(z∗, σ∗)) = 0 , (62c)

due to the finiteness of L̂ by Assumption 1.
Let φ∗ := φ(z∗, σ∗) be the short hand. Note that (62a),

(62b) imply

∇zL̂(z∗, σ∗) =

(
∇zL+

∂φ

∂z

T

∇φL
) ∣∣∣∣∣

(z∗,σ∗,φ∗)

= 0 , (63a)

∇σL̂(z∗, σ∗) =

(
∇σL+

∂φ

∂σ

T

∇φL
) ∣∣∣∣∣

(z∗,σ∗,φ∗)

= 0 , (63b)

where ∂φ
∂z and ∂φ

∂σ contain the (sub)gradients of φ with respect
to z and σ, respectively. (62c) and (63) jointly lead to

∇zL(z∗, σ∗, φ∗) = 0 and ∇σL(z∗, σ∗, φ∗) = 0 . (64)

Indeed, (62c), (64) equate with all the stationarity conditions
and equality feasibility conditions in the KKT conditions (60).

We next consider the effect of the projection for η ≥ 0. If
η is contained in σ, we have[

∇ηL̂(z∗, σ∗)
]+
η

=
[
HT (q∗ − d)− F

]+
η

= 0 , (65)

which suggests for any eth elements of these vectors either(
HT (q∗ − d)

)
e

= Fe with η∗e ≥ 0 or
(
HT (q∗ − d)

)
e
< Fe

with η∗e = 0. In either case, the inequality feasibility conditions
(60g), (60i) and the complementary slackness condition (60j)
are simultaneously guaranteed.

If η is contained in φ, it follows from (26b) and Assump-
tion 1 that

∇ηL(z∗, σ∗, φ∗) ≤ 0 and diag(η∗)∇ηL(z∗, σ∗, φ∗) = 0
(66)

should hold to guarantee the finiteness of L̂ in the presence of
η ≥ 0. Therefore, the inequality feasibility conditions (60g),
(60i) and the complementary slackness condition (60j) are also
met.

All the KKT conditions (60) are satisfied in any case
and thus (z∗, σ∗, φ∗) is an optimal solution to the planner’s
problem (12).

Sufficient condition: Given an optimal solution (z∗, σ∗, φ∗)
to the planner’s problem (12) that satisfies the KKT conditions
(60), if η is contained in σ, all the stationarity conditions
and equality feasibility conditions basically equate with (62c),
(64), and thus (62a), (62b), for all the variables except η.
Further, the inequality feasibility condition (60g) suggests
∇ηL̂(z∗, σ∗) = 0 immediately if it attains equality; otherwise,
the complementary slackness condition (60j) mandates η∗ = 0,
which projects the negative ∇ηL̂(z∗, σ∗) to zero through the
projection [·]+η . Therefore, (z∗, σ∗) is an equilibrium point of
(29).

If η is contained in φ, indeed the optimality condition of
(26b) suggests that

diag(η)∇ηL(z, σ, φ) = diag(η)
(
HT (q − d)− F

)
= 0 (67)

should always hold, by Assumption 1. In this case, L̂ is
independent of η. Then all the stationarity conditions and
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equality feasibility conditions in the KKT conditions (60)
suffice to show (62a), (62b) and validate that (z∗, σ∗) is still
an equilibrium point of (29).

C. Proof of Theorem 3

We explicitly demonstrate the asymptotic convergence of
the grid-market-participant loop (29). Denote the largest in-
variant set between the on-off switches of the projection [·]+η
as

S :=

{
(z, σ) | V̇ (z(t), σ(t)) ≡ 0, t ∈ R≥0\T

}
, (68)

where V (z, σ) is a real-valued Lyapunov function and T
consists of all the time epochs when the projection switches
between on and off. The whole proof boils down to three steps:
• Step 1: Each trajectory (z(t), σ(t)) converges to the

largest invariant set S.
• Step 2: Any trajectory (z(t), σ(t)) in the largest invariant

set S is an equilibrium of the closed-loop system (29), i.e.,
S ⊂ E.

• Step 3: Each trajectory (z(t), σ(t)) literally converges to
a single equilibrium point of the closed-loop system (29).

We next prove each individual step.
Step 1:

The grid-market-participant loop (29) is essentially im-
plementing a (projected) saddle flow on L̂(z, σ), and each
equilibrium point (z∗, σ∗) is therefore a min-max saddle point
of L̂(z, σ) (within a specified domain). Consider the following
quadratic Lyapunov function for V (·):

V (z, σ) :=
1

2

[
z − z∗
σ − σ∗

]T [
T z

Tσ

] [
z − z∗
σ − σ∗

]
, (69)

where (z∗, σ∗) is one arbitrary equilibrium of the closed-
loop system (29). The time derivative of V (z, σ) along the
trajectory of (z(t), σ(t)) is given by

V̇ (z, σ)

= (z − z∗)TT z ż + (σ − σ∗)TTσσ̇ (70a)

= − (z − z∗)T∇zL̂(z, σ) + (σ − σ∗)T
[
∇σL̂(z, σ)

]+
η

(70b)

≤ − (z − z∗)T∇zL̂(z, σ) + (σ − σ∗)T∇σL̂(z, σ) (70c)

≤ L̂(z∗, σ)− L̂(z, σ) + L̂(z, σ)− L̂(z, σ∗) (70d)

= L̂(z∗, σ)− L̂(z∗, σ∗)︸ ︷︷ ︸
≤0

+ L̂(z∗, σ∗)− L̂(z, σ∗)︸ ︷︷ ︸
≤0

. (70e)

(70b) applies (29). (70c) uses the non-expansive property of
the projection [·]+η demonstrated in (2). (70d) results from the
convexity (resp. concavity) of L̂(z, σ) in z (resp. σ). (70e)
finally follows from the saddle property of the equilibrium
point (z∗, σ∗).

Since V (z, σ) is radially unbounded, V̇ (z, σ) ≤ 0 indicates
that all the trajectories (z(t), σ(t)) remain bounded. It then
follows from the invariance principle for Caratheodory systems
[29] that (z(t), σ(t)) converges to the largest invariant set S.
Step 2:

For any trajectory (z(t), σ(t)) ∈ S, V̇ (z, σ) ≡ 0 enforces
(70e) to be zero with

L̂(z(t), σ∗) ≡ L̂(z∗, σ∗) and L̂(z∗, σ(t)) ≡ L̂(z∗, σ∗) . (71)

By Assumption 2, we have ż, σ̇ ≡ 0 for any trajectory
(z(t), σ(t)) in the largest invariant set S, which is therefore
an equilibrium of the closed-loop system (29), i.e., S ⊂ E.
Step 3:

We now show any trajectory (z(t), σ(t)) indeed converges
to one single equilibrium. First of all, along any trajectory
(z(t), σ(t)), V (z, σ) is non-increasing in t. Since V (z, σ)
is lower bounded given its quadratic form, there exists an
infinite sequence of time epochs {tk, k = 1, 2, . . . } such
that with k → ∞, we have V̇ (z(tk), σ(tk)) → 0, i.e.,
(z(tk), σ(tk)) → (ẑ∗, σ̂∗) ∈ S ⊂ E. We use this specific
(ẑ∗, σ̂∗) as the equilibrium point in the definition of V (z, σ),
which implies V (z(t), σ(t)) → V (ẑ∗, σ̂∗) = 0. Due to the
continuity of V (z, σ), (z(t), σ(t)) → (ẑ∗, σ̂∗) is enforced,
which therefore suggests that (z(t), σ(t)) indeed converges to
one single equilibrium point in S ⊂ E.

D. Proof of Proposition 1

Given L̂ in (39) and an arbitrary trajectory (z(t), σ(t)) of
the grid-market-participant loop (29) that satisfies

L̂(z(t), σ∗) ≡ L̂(z∗, σ∗) (72)

and
L̂(z∗, σ(t)) ≡ L̂(z∗, σ∗) , (73)

differentiating (72) with respect to time yields

0 ≡
(
∇zL̂(z(t), σ∗)

)T
ż

≡−
(
∇zL̂(z(t), σ∗)

)T
T z−1∇zL̂(z(t), σ∗) ,

(74)

which indicates ∇zL̂(z(t), σ∗) ≡ 0 due to T z−1 � 0. Given
σ∗, the fact of ∇pL̂(z(t), σ∗) ≡ 0 enforces p(t) ≡ p∗, due to
the monotonicity of ∇J(·).

Similarly, differentiating (73) with respect to time gives

0 ≡
(
∇σL̂(z∗, σ(t))

)T
σ̇

≡
(
∇σL̂(z∗, σ(t))

)T
Tσ−1

[
∇σL̂(z∗, σ(t))

]+
η
,

(75)

which still enforces ∇νL̂(z∗, σ(t)) ≡ 0, ∇λL̂(z∗, σ(t)) ≡ 0
and meanwhile(

∇ηL̂(z∗, σ(t))
)T

T η−1
[
∇ηL̂(z∗, σ(t))

]+
η
≡ 0 (76)

due to Tσ−1 � 0.
Given p(t) ≡ p∗, the fact of ∇λL̂(z∗, σ(t)) ≡ 0 implies

λ̇ ≡ 0. Meanwhile, in terms of (76), the inner term HT (p∗ −
d)−F of the projection [·]+η is a constant vector. Consider an
arbitrary eth element of the vector which falls into three cases:
(a) (HT (p∗ − d) − F )e > 0; (b) (HT (p∗ − d) − F )e = 0;
(c) (HT (p∗ − d)− F )e < 0. In case (a), η̇e > 0 drives ηe(t)
to infinity, which cannot happen since all the trajectories in
the largest invariant set S are bounded. Case (b) immediately
implies η̇e ≡ 0. In case (c), since T η−1 � 0 is diagonal,(
∇ηL̂(z∗, σ(t))

)
e
< 0 enforces

[(
∇ηL̂(z∗, σ(t))

)
e

]+
ηe
≡ 0,

i.e., η̇e ≡ 0, in order for (76) to hold. As a result, η̇ ≡ 0 is
guaranteed. On top of λ̇, η̇ ≡ 0, T pṗ = λ(t) · 1 − Hη(t) −
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ν(t)−∇pJ(p∗) ≡ 0 enforces ν̇ ≡ 0, or ν(t) ≡ ν̄, where ν̄ is
constant. The fact of ∇νL̂(z∗, σ(t)) ≡ 0 suggests

p∗ − d−Dν̄ − CBθ̃∗ ≡ 0 . (77)

Due to p∗ − d−Dν∗ −CBθ̃∗ = 0 from (60e), (60h), ν(t) ≡
ν̄ = ν∗ = 0 follows immediately due to D � 0, which further
implies ˙̃

θ ≡ 0. This completes the proof of ż, σ̇ ≡ 0.

E. Proof of Theorem 4
Note that the closed-loop system (4), (50), (57) is defined

on z = (q̂, θ̃) and σ = (λ, ω, α, η).
Necessary condition: Note that the reduced variables

p∗, q∗, ν∗ are recovered to satisfy p∗ = (∇J)
−1

(λ∗·1−Hη∗−
ω∗), q∗ = 1

ρ (λ∗ · 1 − Hη∗ − ω∗ − α∗) + q̂∗ and ν∗ = ω∗.
Therefore, (60c) is self-evident. Given an equilibrium (z∗, σ∗)
of the closed-loop system (4), (50), (57), ˙̂q = 0 enforces (60b)
and further indicates q∗ = q̂∗ and (60a). ˙̃

θ, ω̇, λ̇ = 0 similarly
suffice to show ω∗ = ν∗ = 0, suggesting (60d), from the
previous analysis (61). Besides, α̇ = 0 implies q∗ = p∗, i.e.,
(60e). (60f), (60h) then immediately follow from λ̇, ω̇ = 0,
respectively. The definition of the projection [·]+η and η̇ = 0
can guarantee (60g), (60i) and (60j), based on the previous
discussion in Appendix B. So far the KKT conditions (60) of
the planner’s problem (12) have all been met from ż, σ̇ = 0,
indicating its optimality.

Sufficient condition: Given the KKT conditions (60) of the
planner’s problem (12), we now aim to attain ż, σ̇ = 0. First of
all, due to (60b), real dispatch q∗ defined in (57a) reduces to
q∗ = q̂∗, immediately suggesting ˙̂q = 0. (60a), (60b) and (60e)
jointly enforce α̇ = 0. ω∗ = 0, (60f) and (60h) imply ˙̃

θ, λ̇, ω̇ =
0, respectively. Given (60g), η̇ = 0 holds immediately if it
attains equality; otherwise, (60j) enforces η∗ = 0, which still
indicates η̇ = 0 due to the projection [·]+η . So far we have
shown ż, σ̇ = 0, indicating that (z∗, σ∗) is an equilibrium of
the closed-loop system (4), (50), (57), starting from one initial
point in I.

F. Proof of Theorem 5
Recall the quadratic form of generation cost function (51),

parameterized by c := (cj , j ∈ N ) and c̄ := (c̄j , j ∈ N ). We
further define c−1 := (c−1j , j ∈ N ). Therefore, (50) can be
more explicitly expressed as

Tαα̇ =
1

ρ
(λ·1−Hη−ω−α)+q̂−diag(c−1)(λ·1−Hη−ω−c̄).

With the closed-loop system (4), (50), (57) defined on z =
(q̂, θ̃) and σ = (λ, ω, α, η), we can define a square matrix
W ∈ R(3|N |+3|E|+1)×(3|N |+3|E|+1) to summarize the right-
hand-side linear dependence of the differential equations (4),
(50), (57) on (z, σ) such that we attain a more compact form:[

T z

Tσ

] [
ż
σ̇

]
=

[
W

[
z
σ

]
+ β

]+
η

, (78)

with a constant input β ∈ R3|N |+3|E|+1 given by

β :=
[
0 0 1T d −dT c̄T diag(c−1) −dTH − FT

]T
.

(79)
We focus on the trajectories (z(t), σ(t)) that start with initial

points in I. Note that we still have the equilibrium set and

the largest invariant set denoted as E and S, respectively,
from (31), (68). Given the condition ρ ∈ (0, infj∈N 4cj), the
whole proof still follows the same three steps in the proof of
Theorem 3 in Appendix C. We now show each individual step.

Step 1:

We still adopt the standard quadratic Lyapunov function
(69), but now (z∗, σ∗) is one arbitrary equilibrium of the
closed-loop system (4), (50), (57). We can acquire the time
derivative of V (z, σ) along the trajectory of (z(t), σ(t)) as

V̇ (z, σ)

=

[
z − z∗
σ − σ∗

]T [
T z ż
Tσσ̇

]
(80a)

=

[
z − z∗
σ − σ∗

]T [
W

[
z
σ

]
+ β

]+
η

(80b)

≤
[
z − z∗
σ − σ∗

]T (
W

[
z
σ

]
+ β

)
(80c)

=

[
z − z∗
σ − σ∗

]T
W

[
z − z∗
σ − σ∗

]
− (η − η∗)Tψ∗ (80d)

≤
[
z − z∗
σ − σ∗

]T
W

[
z − z∗
σ − σ∗

]
(80e)

= − (σ − σ∗)TWσ(σ − σ∗) , (80f)

where ψ∗ ∈ R2|E|
≥0 denotes a complementary vector variable

and Wσ ∈ R(2|N |+2|E|+1)×(2|N |+2|E|+1), with its explicit
expression in (83), is a symmetric matrix re-arranged from
the submatrix of −W that contains all the rows and columns
with regard to σ. Note that (80d) follows from the equilibrium
condition

W

[
z∗

σ∗

]
+ β +

[
03|N |+|E|+1

ψ∗

]
= 0 (81)

along with the complementarity condition

0 ≤ η∗ ⊥ ψ∗ ≥ 0 . (82)

(80e) results from the fact (η − η∗)Tψ∗ = ηTψ∗ − η∗Tψ∗ =
ηTψ∗ ≥ 0. (80f) is attained with all the terms regarding z−z∗
canceled out due to the specific structure of W .

We next claim the positive semidefiniteness of Wσ . Let

R := I − ρ

2
· diag(c−1) (84)

be a diagonal matrix and we can re-express Wσ as

Wσ = ρ−1QT

 I −I −R −I
−I I + ρD R I
−R R I R
−I I R I


︸ ︷︷ ︸

=:W in
σ

Q (85)

with

Q := blockdiag(1, I, I,H) ∈ R4|N |×(2|N |+2|E|+1) . (86)

The inner matrix W in
σ ∈ R4|N |×4|N | of (85) can be further

block diagonalized by the following bijective linear transfor-
mation P ∈ R4|N |×4|N |:

Wσ = ρ−1QTPT

I 0 0 0
0 ρD 0 0
0 0 I −R2 0
0 0 0 0

PQ (87)
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Wσ :=


|N |ρ−1 −ρ−1 · 1T 1

2 · c
−1T − ρ−1 · 1T −ρ−1 · 1TH

−ρ−1 · 1 ρ−1 · I +D ρ−1 · I − 1
2 · diag(c−1) ρ−1 ·H

1
2 · c

−1 − ρ−1 · 1 ρ−1 · I − 1
2 · diag(c−1) ρ−1 · I

(
ρ−1 · I − 1

2 · diag(c−1)
)
H

−ρ−1 ·HT1 ρ−1 ·HT HT
(
ρ−1 · I − 1

2 · diag(c−1)
)

ρ−1 ·HTH

 (83)

with

P :=

I I R I
0 I 0 0
0 0 I 0
0 0 0 I


−1

. (88)

Note that I − R2 is still diagonal and it is easy to verify
that any arbitrary ρ ∈ (0, infj∈N 4cj) guarantees its positive
definiteness. Wσ � 0 then follows from I, ρD, I −R2 � 0.

Therefore, following (80f), we arrive at

V̇ (z, σ) ≤ −(σ − σ∗)TWσ(σ − σ∗) ≤ 0 . (89)

Since V (z, σ) is radially unbounded, V̇ (z, σ) ≤ 0 indicates
that all the trajectories (z(t), σ(t)) remain bounded. It then
follows from the invariance principle for Caratheodory systems
that (z(t), σ(t)) converges to the largest invariant set S.
Step 2:

For an arbitrary trajectory (z(t), σ(t)) ∈ S, V̇ (z, σ) ≡ 0
basically enforces (σ − σ∗)TWσ(σ − σ∗) ≡ 0. In light of
the structure of Wσ in (85), its semidefiniteness results from
the nontrivial null space of W in

σ and Q. As a result, we can
characterize the largest invariant set S as the union of the
following three sets:

S1 :=
{

(z, σ) | σ(t) ≡ σ∗
}

S2 :=
{

(z, σ) | H(η(t)− η∗) ≡ 0, λ(t) ≡ λ∗,

ω(t) ≡ ω∗, α(t) ≡ α∗
}

S3 :=
{

(z, σ) | (λ(t)− λ∗) · 1 ≡ H(η(t)− η∗),

ω(t) ≡ ω∗, α(t) ≡ α∗
}

We next claim S2 ≡ S3 by first showing 1TH = 0.
Recall H = [(BCTL†)T ,−(BCTL†)T ] and L = CBCT . By
definition of the Moore-Penrose inverse, it is straightforward
to have L†1 = 0 due to

L†1 = (CBCT )†(CBCT )(CBCT )†1

= (CBCT )†((CBCT )(CBCT )†)T1

= (CBCT )†(CBCT )†
T
CBCT1︸︷︷︸

=0

.
(90)

1TH = 0 then follows immediately.
In S3, (λ(t)− λ∗) · 1 ≡ H(η(t)− η∗) leads to

1T · (λ(t)− λ∗) · 1︸ ︷︷ ︸
=|N |(λ(t)−λ∗)

≡ 1TH(η(t)− η∗)︸ ︷︷ ︸
=0

, (91)

which enforces λ(t) ≡ λ∗ and H(η(t)−η∗) ≡ 0, i.e., S3 ⊂ S2.
Obviously by definition we have S2 ⊂ S3. Therefore, S2 and
S3 are equivalent.

Note that in any of the three sets, we have λ(t) ≡ λ∗,
ω(t) ≡ ω∗, α(t) ≡ α∗ and Hη(t) ≡ Hη∗, which suffice to
guarantee ˙̂q,

˙̃
θ ≡ 0 immediately, or ż ≡ 0; recall (4a), (57b).

Then it suggests that the inner term of the projection [·]+η in

(57d) is a constant vector. For its eth entry, it could be (a)
positive; (b) zero; (c) negative. In case (a), η̇e > 0 drives ηe(t)
to infinity, which contradicts the fact that all the trajectories
in the largest invariant set S are bounded. Case (b) directly
implies η̇e ≡ 0. In case (c), ηe(t) will be driven to stay at
0 that also suggests η̇e ≡ 0. As a result, η̇ ≡ 0 holds.3 So
far, σ̇ ≡ 0 has also been guaranteed. Therefore, any trajectory
(z(t), σ(t)) in the largest invariant set S is an equilibrium of
the closed-loop system (4), (50), (57), i.e., S ⊂ E.
Step 3:

We now prove any trajectory (z(t), σ(t)) indeed converges
to one single equilibrium for completeness, despite similar pro-
cedures to Step 3 in the proof of Theorem 3. We observe that
along any trajectory (z(t), σ(t)), V (z, σ) is non-increasing in
t. Since V (z, σ) is lower bounded given its quadratic form,
there exists an infinite sequence of time epochs {tk, k =
1, 2, . . . } such that with k →∞, we have V̇ (z(tk), σ(tk))→
0, i.e., (z(tk), σ(tk)) → (ẑ∗, σ̂∗) ∈ S ⊂ E. We use this
specific (ẑ∗, σ̂∗) as the equilibrium point in the definition
of V (z, σ), which implies V (z(t), σ(t)) → V (ẑ∗, σ̂∗) = 0.
Due to the continuity of V (z, σ), (z(t), σ(t)) → (ẑ∗, σ̂∗) is
enforced, which suggests that (z(t), σ(t)) literally converges
to one single equilibrium point in S ⊂ E.
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