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Abstract. Motivated by the novel coronavirus disease (COVID-19) pandemic, this paper aims5
to apply Gunter Stein’s cautionary message of respecting the unstable to the problem of controlling6
the spread of an infectious disease. With this goal, we study the effect that delays and capacity7
constraints in the test, trace and isolate (TeTrIs) process have on preventing exponential disease8
spread. Our analysis highlights the critical importance of speed and scale in the TeTrIs process.9
Precisely, having a delay in the TeTrIs process smaller than the doubling time of the disease spread10
is necessary for achieving acceptable performance. Similarly, limited TeTrIs capacity introduces a11
threshold on the size of an outbreak beyond which the disease spreads almost like the uncontrolled12
case. Along the way, we provide numerical illustrations to highlight these points.13
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1. Introduction. The opening lines of Gunter Stein’s classic paper Respect the16

Unstable [24], published 13 years after his inaugural Bode Lecture of the same name,17

read:18

“The practical, physical (and sometimes dangerous) consequences of19

control must be respected, and the underlying principles must be20

clearly and well taught.”21

The message to the control engineer and researcher is clear. Not only must the many22

benefits of feedback be understood (pedagogically, mathematically, and in practice),23

but also its limitations. The principle of feedback is after all inherently about trade-24

offs, constrained by conservation laws just as fundamental as any law of physics.25

Whilst these ‘laws of feedback’ apply to the control of all systems, Gunter Stein gave26

special attention to unstable systems for three main reasons:27

1. Unstable systems are fundamentally, and quantifiably, more difficult to con-28

trol than stable ones.29

2. Controllers for unstable systems are operationally critical.30

3. Closed-loop systems with unstable components are only locally stable.31

In this paper we aim to revisit these points from the perspective of designing contact32

tracing policies to mitigate the spread of disease throughout a population.33

1.1. Control of Disease Spread. The control of disease spread is not the34

traditional hunting ground of the control engineer, so a degree of caution from our35

community is perhaps of even greater relevance than normal. That said, controlling36

the spread of a disease has many of the elements of the most challenging control37

problems. Accurate models of the spread of a highly infectious disease are at best38
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controversial, but certainly unstable (at least in a population with high susceptibility39

to the disease). The mechanisms for identifying infectious members of the population40

may be subject to significant delays and inaccuracies, compromising the quality of the41

available information for performing feedback. And finally, the options for mitigating42

the spread can be blunt, unpredictable, and subject to severe capacity constraints.43

Since emerging in late 2019, the novel coronavirus disease (COVID-19) pandemic44

has made abundantly clear the effect that these challenges have in mitigating disease45

spread. At the time of writing, there have been nearly 45 million documented cases of46

COVID-19 [7]. Without a vaccine, the primary public health tools available to limit47

the spread are non-pharmaceutical interventions (NPIs) such as social distancing and48

contact tracing [11]. Many NPIs can be understood in terms of feedback control,49

and as such abide by the fundamental ‘laws of feedback’ that Gunter Stein referred50

to. This work aims to develop an analysis that illustrates the impact that these51

limitations, placing a particular emphasis on the role of delays and saturation. We52

focus on contact tracing as it exhibits several of the features described before.53

1.2. Contact Tracing. Contact tracing is the process of testing, tracing and54

isolating people known to have been in close proximity with infected individuals. All55

three of these steps are essential, so for this reason contact tracing is also referred56

to by the acronym TeTrIs. This intervention can disrupt chains of infection to slow57

and potentially end the spread of an infectious disease. It has been employed in the58

control of sexually transmitted diseases [6, 12, 19], in limiting the severe acute respira-59

tory syndrome (SARS) epidemic [5] and at an unprecedented scale in the COVID-1960

pandemic [23, 1].61

The ways that TeTrIs is carried out differs from region to region and are rapidly62

evolving. Regardless of the specifics, two key characteristics contribute to the success63

of TeTrIs. The first is the delay between the moment an individual becomes infected64

and the moment that individual becomes isolated from the rest of the population. A65

larger delay allows the infected individual to infect more people. The second is the66

capacity of the TeTrIs program. We think of this capacity as the number of active67

cases the TeTrIs program can process at once without the delay growing significantly.68

These characteristics are determined by the structure of the TeTrIs program. But69

more practically, achieving sufficient performance in these characteristics must be70

used to determine the structure of the TeTrIs program. Thus, in this paper we seek71

to characterize sufficient delays and capacity of a TeTrIs program to successfully72

control the spread of an infectious disease.73

These affects of these characteristics have been studied in the past. Many works74

analyze the impacts of contact tracing using computer simulations [18, 10]. Math-75

ematical analysis of TeTrIs has typically relied on two methodologies. In the first,76

an ordinary differential equation (ODE) models spread over a certain fixed contact77

graph [9, 14]. In the second, the impact of TeTrIs is modeled as a branching process78

[21, 20].79

1.3. Contributions of this Work. In this work, we take a control theoretic80

perspective on the impacts of delays and saturation. These two phenomenon have81

been widely studied in the control systems field. We provide two rules of thumb for82

the requisite speed and capacity of a TeTrIs system. First, we show that short delays83

may suffice to overwhelm a TeTrIs system by analyzing their impact on the system84

sensitivity function. For infectious diseases analogous to COVID-19, the optimistic85

allowable delay to control their initial outbreak is approximately 1 day. Another86

implication of the analysis points to the importance of effective isolation. If we fail87
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to isolate two thirds of the cases, such a system is not stabilising even without delay.88

Second, we model the contact tracing process and show that the saturation of its89

limited capacity may disable an otherwise efficacious TeTrIs system. With saturation,90

we identify a threshold behavior of disease spread that implies stability regions beyond91

capacity and potentially significant degradation of performance.92

The paper is structured as follows. First, we discuss the effects of delay on the93

efficacy contact tracing. We introduce contact tracing as a feedback loop on the classic94

SIR model. We derive an upper bound on allowable delay to control disease spread in95

this setting. Then, we generalize this analysis from the SIR model to LTI systems and96

nonlinear systems with an exponential unstable mode. Second, we discuss the effects97

of saturation on the efficacy contact tracing. We introduce two compartmental models98

that respectively capture the contact tracing efforts devoted to infected and uninfected99

population and introduce the saturation effects of tracing capacity. Reduced stability100

regions are observed based on a nonlinear threshold analysis.101

Notation. Transfer functions of linear-time-invariant (LTI) systems will be de-102

noted with bold face letters. For example G (s) = 1/ (s+ 1) is the transfer function103

from u to x for the system dx
dt = −x+u, and G (s) = exp (−sT ) the transfer function104

for the delay x (t) = u (t− T ). The set of all proper real rational transfer functions,105

i.e. functions on the form106

G (s) =
a0s

n + a1s
n−1 + . . . + an

sn + b1sn−1 + . . . + bn
, ai ∈ R, bk ∈ R107

will be denoted by R. The H-infinity norm of a transfer function G is defined as108

‖G‖∞ := sup {|G (s)| : s ∈ C,Re (s) > 0} .109

The H-infinity norm is a central notion in the robust performance of control systems,110

see for example [8, §2] for an introduction.111

2. Contact tracing: The Need for Speed. The basic rationale behind TeTrIs112

is simple. Disease spreads through the contact between infectious and susceptible113

members of a population. So by rapidly isolating infectious individual as soon as114

they are detected, as well as everyone they’ve recently contacted (who may now be115

infectious themselves), it may be possible to shut off all the routes of spread, and stop116

an outbreak in its tracks. But how accurate does the testing need to be to ensure117

that enough cases are traced? And how fast must the system be to halt an outbreak118

before it becomes an epidemic?119

In this section we will explore these questions from the control-theoretic perspec-120

tive, with a particular focus on feedback based fundamental limitations. TeTrIs is a121

feedback process, in which infectious people are isolated in response to measurements122

about a population. Therefore TeTrIs is subject to conservation laws and performance123

limitations (see [24, 2] for an introduction). We will discuss the consequences of these,124

placing a particular focus on the following inequality:125

(2.1) ‖S‖∞ ≥ 2
Tdelay

Tdoubling .126

The precise meanings of all these terms will be made clear when it is derived in127

Subsection 2.2, but here S is the sensitivity function (in the usual control theoretic128

sense), Tdoubling the doubling time of the unstable process1, and Tdelay the sum of129

1Here Tdoubling := ln 2
p

, where p > 0 is the location of the unstable pole.
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Fig. 1. Trade-off between disturbance amplification and time delay when controlling an unstable
system. Typically ‖S‖∞ less than 1.2–2 is necessary for good performance.

delays in the feedback loop. This inequality imposes a fundamental limit on the size130

of the sensitivity function, and shows that when very unstable processes (smaller131

doubling times) are controlled with large delays, the sensitivity function will always132

be large. This is illustrated in Figure 1. Since the sensitivity function determines how133

disturbances are amplified and attenuated, (2.1) demonstrates that in such systems,134

bad performance is inevitable. Indeed the conventional wisdom is that a value of135

‖S‖∞ less than 1.2–2 is a prerequisite for acceptable performance (see e.g. [3, 8]).136

The size of ‖S‖∞ is also intimately related to many other measures of performance137

and robustness, such as gain and phase margins [3, §7.2].138

Equation (2.1) gives the implication139

Tdelay > Tdoubling log2 kperf =⇒ ‖S‖∞ > kperf .140

The consequences of this inequality is quite striking in the context of controlling dis-141

ease spread using TeTrIs. For example it shows that given a disease with a doubling142

time of 8 days, if the delays between becoming infectious and being isolated are greater143

than 2 days, then ‖S‖∞ > 1.2 (picking the more conservative target might be advis-144

able when trying to control a highly uncertain system such as disease spread). This145

bound holds even under extremely optimistic assumptions about the implementation146

of contact tracing. Specific implementations can certainly be worse!147

What makes the bound useful is that it provides direct insight into our original148

questions. For example if we set a target of ‖S‖∞ ≤ 1.2, the system set up to conduct149

contact tracing must be at least four times faster than doubling time of the disease:150

‖S‖∞ ≤ 1.2 =⇒ Tdelay ≤ Tdoubling.151

Slower implementations are guaranteed to fail this objective, and as a result be more152

vulnerable to disturbances (e.g. failing to identify an infectious person could result153
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in a large number of new infections). It is interesting to note that the same rule of154

thumb based on more ad-hoc arguments can be found in [4, §III.B-4)]. Inequalities155

such as (2.1) provide further evidence for the necessity of a fast TeTrIs system.156

2.1. Understanding the Issue. In this section we will demonstrate the funda-157

mental limitation discussed above from the perspective of a simple model of contact158

tracing. This will allow us to put these abstract ideas in a more concrete setting, so159

as to better understand them. Studying a simple model will also allow us to derive160

specialised analysis tools along the way that can provide additional insight. In what161

follows we will first outline a simple SIR-based model for contact tracing, before il-162

lustrating the fundamental limitations through simulations and additional theoretical163

tools.164

2.1.1. An SIR-based Model for Disease Control with TeTrIs. The so165

called SIR model is one of the simplest and most widely used models of disease spread166

[16]. It is centred around three compartments - S (t), I (t) and R (t) - which specify the167

proportion of the population that are susceptible, infectious, and recovered at time t.168

So if S (0) = 1, then at time t = 0 the entire population is susceptible to the disease,169

or if R (1) = 0.5 then half the population has recovered (or died) at time t = 1. The170

population shifts between these compartments over time according to two rates, which171

model the effect of the infectious population mixing with the susceptible population172

and transferring the disease, and the infectious population recovering, respectively.173

This can be visualised on a graph with a node for each compartment, and a directed174

edge specifying the transition rates between them:175

IS R
βSI γI

176

Here β is a mixing parameter, specifying the average number of ‘significant’ (those177

that could result in the transmission of the disease) interactions that each individual178

has per unit time. Each infectious person then has an average of βS such events179

with the susceptible population, resulting in βSI new infections per unit time. The180

second rate is justified by saying that on average it takes 1/γ units of time for an181

infectious person to recover, which corresponds to members of the I compartment182

being transferred to the R compartment with rate γI.183

When written as a set of differential-algebraic equations, the SIR model is184

(2.2)
d

dt

SI
R

 =

−1
1
0

βSI +

 0
−1
1

 γI, 1 = S + I +R.185

Of central importance in the study of the SIR model (and disease spread in general)186

is the so called basic reproduction number R0. R0 is defined to be the number of187

secondary infections caused by a single primary infection in a population in which188

everyone is susceptible to the disease. Consequently if R0 > 1 a small outbreak will189

spread, whereas if R0 < 1 it will not. For the SIR model, R0 = β/γ. This is closely190

related to notions of stability and doubling times. For the SIR model191

(2.3) Tdoubling =
ln 2

β − γ
=

ln 2/β

1− 1/R0
.192

The SIR model describes the process of disease spread, but not the impact of TeTrIs.193

To model this, we first split the infectious population into two groups Q and Imix,194
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Fig. 2. Simulation of (2.4) and (2.5) for a range of values of Tdelay.

where Q corresponds to the subpopulation that has been quarantined, and Imix the195

remainder of the infectious population. We can incorporate the effect of quarantining,196

by modifying the rate between the susceptible and infectious population as shown197

below. The rationale here is that after taking quarantining into account there should198

be βSImix new infections per unit time, and that Imix = I −Q.199

Q

Imix
S R

βS (I −Q) γI

200

The effect of this change is to slightly modify the original SIR equation in (2.2):201

(2.4)
d

dt

SI
R

 =

−1
1
0

βS (I −Q) +

 0
−1
1

 γI, 1 = S + I +R.202

All that remains is to close the loop, and specify how the number of people who are203

quarantined at time t depends on the contact tracing. For simplicity, we propose to204

model this process through the equation205

(2.5) Q (t) = αe−γTdelayI (t− Tdelay) ,206

where 1 ≥ α ≥ 0 and Tdelay ≥ 0. In words this equation says that we are able to207

test, trace and isolate a proportion α of those that were infectious Tdelay days ago2.208

Together (2.4) and (2.5) constitute a simple model for understanding how TeTrIs can209

be used to control disease spread.210

2.1.2. Analysis of the Simple Model. Before performing a theoretical analy-211

sis of the model, it is instructive to run some simulations. The evolution of the212

2We need to include the proportional constant e−γTdelay since over those Tdelay days, (1 −
e−γTdelay ) of those that were infectious will have gone on to recover.
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infectious population after an outbreak affecting 0.01% of the poplution is shown in213

Figure 2 for a range of different values of the time delay. The simulation parameters214

for this figure are:215

• α = 0.8, meaning that 80% of cases are tested, traced and isolated.216

• γ = 0.1, meaning the disease has an average recovery time of 10 days.217

• β = 0.3, giving the disease a basic reproduction number of 3.218

The first thing to note is that if the delay is short, the outbreak is contained and219

no epidemic ensues. It is also interesting to see the degradation in behaviour as the220

delay increases. By the time Tdelay is 5 days, an epidemic not dissimilar to that221

without TeTrIs occurs. Even more strikingly though is that by the time Tdelay is just222

2 days, the initial outbreak sees a tenfold increase before it is brought under control.223

This relatively short delay has seemingly brought TeTrIs to the verge of instability.224

When you consider that there may be several simultaneous outbreaks, or capacity225

constraints on how many people that can be tested-and-traced, it is clear that short226

delays may already be enough overwhelm a TeTrIs system.227

A natural first question is, “Are these results in line with the fundamental limita-228

tion discussed at the beginning of this section?”. A simple calculation shows that at229

the start of the outbreak, the doubling time of the disease equals230

Tdoubling =
ln 2

β − γ
≈ 3.5 days.231

Therefore to achieve ‖S‖∞ ≤ 1.2, it is necessary that Tdelay ≤ 0.9 days. This seems232

to be in good agreement with the simulation, where the case with a one day delay233

is well controlled, with a rapid decline in performance soon after. In fact, given the234

simple nature of the model in (2.4) and (2.5) a more detailed analysis is possible.235

The following theorem characterises the stability of the linearisation of the model236

about the disease free equilibrium in terms of the system parameters. An intuitive237

explanation of this stability criterion is given at the end of the section.238

Theorem 2.1. The linearisation of the model in (2.4) and (2.5) is stable about239

the point (I,R,Q) = (0, 0, 0) if and only if240

(2.6) Tdelay <
1

γ
ln

(
αβ

β − γ

)
.241

Proof. See Appendix A.242

In order to interpret the meaning of Theorem 2.1 it helps to rearrange the bound243

a little:244

γTdelay < ln

(
αβ

β − γ

)
= ln

(
α

1− 1/R0

)
.245

The specific trade-off between parameters and delay implied by the above is shown in246

Figure 3. This figure can be used to quickly assess the amount of delay that can be247

tolerated before instability occurs. For example, in the simulations we used a model248

with R0 = 3 and γ = 0.1, with feedback parameter α = 0.8. Therefore from the figure249

we see that we require250

Tdelayγ < 0.18, =⇒ Tdelay < 1.8 days251

for the policy to be stabilising. This captures precisely the behaviour we saw in the252

simulation, where Tdelay = 2 seemed to be right on the cusp of instability. We also253
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the model is stable if and only if γTdelay < 0.18

see the importance of tracing enough cases. By the time α < 1−R−10 = 2/3, that is254

we only detect and isolate at most 66% of the cases, the policy isn’t even stabilising255

with Tdelay = 0.256

The stability criterion in Theorem 2.1 also has a nice interpretation though the257

effective reproduction number R. Suppose that α in (2.5) is the probability that258

an infectious individual is detected and isolated. The amount of time T that each259

infectious person is mixing with the susceptible population is then a random variable260

T =

{
Tr w.p. 1− α
min {Tdelay, Tr} w.p. α.

261

In the above Tr ∼ Exp (γ) is the time it takes the given person to recover from the262

disease. Therefore the expected time that each infectious person is in the mix is given263

by264

E [T ] = (1− α) E [Tr] + αE [min {Tdelay, Tr}] = (1− α)
1

γ
+ α

∫ Tdelay

0

exp (−γs) ds

=
1

γ
(1− α exp (−γTdelay)) .

265

The effective reproduction number is then the expected number of secondary infections266

generated by an individual:267

R = βE [T ] =
β

γ
(1− α exp (−γTdelay)) = R0 (1− α exp (−γTdelay)) .268

The condition that R < 1, which would correspond to an outbreak dying out, is thus269
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Fig. 4. Feedback interconnection in (2.7).

equivalent to270

1 > R0 (1− α exp (−γTdelay)) ⇐⇒ Tdelay <
1

γ
ln

(
α

1−R−10

)
,271

which is precisely the stability condition from Theorem 2.1.272

2.2. Fundamental Limitations. A natural concern with the results from Sub-273

section 2.1.2 is that they are seemingly based on a set of highly contentious modelling274

assumptions. For example, why use SIR model to capture the effect of disease spread275

in (2.4), rather that the SEIR model or indeed any of the other more complex com-276

partmental variants? What about other models for TeTrIs? Will the same conclusions277

hold if we use something more realistic than (2.5)? In this section we will demonstrate278

that the limitations we observed through Theorem 2.1 and the simulations of (2.4)279

and (2.5) are really a consequence of the interplay between instability and delay.280

The main result of this section is to derive the inequality (2.1). For simplicity281

we will stick to the LTI case, though we will show in Appendix B that a natural282

analogue of (2.1) holds in the nonlinear case also. To this end, consider the feedback283

interconnection of n subsystems described by284

(2.7)
êi = Giêi−1 + d̂i, i ∈ {1, . . . , n}
ê0 = −ên.

285

In the above the variables d̂i and êi denote the Laplace transforms of a set of scalar286

disturbances and error signals, and Gi the transfer function of the i -th subsystem.287

The basic set up is illustrated in Figure 4. This is a general framework for describing288

feedback systems, and many models for the control of a disease using TeTrIs can be289

put in this framework. For example, after linearisation about the point (I,R,Q) =290

(0, 0, 0), the model in (2.4) and (2.5) can be captured by setting n = 2, and291

(2.8) G1 (s) =
β

s− (β − γ)
, G2 (s) = α exp (−sTdelay) .292

Variants with, for example, more complicated compartmental models of disease spread293

can be similarly handled by substituting in the corresponding transfer function for294

G1.295

The advantage of the abstract formulation in (2.8) is that it allows general prop-296

erties of feedback interconnections to be studied for entire classes of model. When297

studying the properties of this feedback interconnection, the central objects are the298

sensitivity functions. These are the transfer functions from di to ei, which we denote299

as Si. In the LTI case, the sensitivity functions are all equal to each other and given300
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by301

(2.9) Si =
1

1 + G1G2 · · ·Gn
=: S, i ∈ {1, . . . , n} .302

These functions determine how the internal signals êi depend on the external303

disturbances d̂i. Hence the size of S determines how disturbances are attenuated.304

Indeed every single closed loop transfer function in (2.8) contains S (for example the305

transfer function from d̂1 to ê3 is given by G3G2S). Given its central importance to306

the process of feedback, the sensitivity function has been extensively studied both in307

theory and in practice. Indeed the requirement that the size of ‖S‖∞ be less than308

1.2–2 is widely used, and is arguably of more important than the criteria on the gain309

margin and phase margin3 [3, §7.2].310

The following theorem shows that when the feedback loop contains a system with311

an unstable pole p and a time delay of Tdelay, ‖S‖∞ ≥ exp (pTdelay). This places312

a fundamental limit on the size of the sensitivity function. Surprisingly this result313

doesn’t seem to be known (for example the lower bound ‖S‖∞ ≥ exp (pTdelay)− 1 is314

presented in [3, §14.3, Table 14.1]), though the existence of such a bound is certainly315

implicit in the work on sensitivity optimisation from the 1980s [17, 13]. We give a316

simple proof based on the maximum modulus principle.317

Theorem 2.2. If L =
exp(−sTdelay)

s−p H, where Tdelay > 0, p > 0 and H ∈ R, then318 ∥∥∥∥ 1

1 + L

∥∥∥∥
∞
≥ exp (pTdelay) .319

Proof. Let a > 1, and note that the Möbius transform f (z) = (1− az) / (a− z)320

maps the closed unit disc into the closed unit disc. This implies that given any transfer321

function G, we have the equivalence322

‖G‖∞ ≤ 1 ⇐⇒ ‖f (G)‖∞ ≤ 1.323

Therefore ‖1/ (1 + L)‖∞ ≤ a if and only if324

1 ≥
∥∥∥∥f (1

a

1

1 + L

)∥∥∥∥
∞

=

∥∥∥∥ aL

a2L + a2 − 1

∥∥∥∥
∞
,

=

∥∥∥∥ aH exp (−sTdelay)

a2H exp (−sTdelay) + (s− p) (a2 − 1)

∥∥∥∥
∞
.

325

Now recall that given any transfer function G, ‖G exp (−sTdelay)‖∞ = ‖G‖∞ (delay-326

ing the input to a transfer function doesn’t affect its norm). Therefore327 ∥∥∥∥ aH exp (−sTdelay)

a2H exp (−sTdelay) + (s− p) (a2 − 1)

∥∥∥∥
∞
=

∥∥∥∥ aH

a2H exp (−sTdelay) + (s− p) (a2 − 1)

∥∥∥∥
∞

≥ 1

a exp (−pTdelay)
,

328

3Indeed it can be shown that [3, §7.2]

gain margin ≥
‖S‖∞
‖S‖∞ − 1

, phase margin ≥ 2 arcsin

(
1

2 ‖S‖∞

)
,

whereas no guarantees in the converse direction hold (positive gain and phase margins only guarantee
that ‖S‖∞ <∞).
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where the inequality follows from the maximum modulus principle applied at the329

point s = p (see e.g. [8, §6.2]). This demonstrates that ‖1/ (1 + L)‖∞ ≤ a only if330

a ≥ exp (pTdelay) as required.331

It is readily verified that this bound is equivalent to the inequality presented332

earlier in (2.1) by substituting in the relationship between p and Tdoubling. That is333

setting p = ln (2) /Tdoubling shows that334

‖S‖∞ ≥ exp (pTdelay) = 2
Tdelay

Tdoubling .335

Theorem 2.2 shows that if the transfer function G1G2 · · ·Gn (typically referred336

to as the return ratio) can be written on the form337

(2.10) G1G2 · · ·Gn =
exp (−sTdelay)

s− p
H,338

where H is any transfer function in R, then ‖S‖∞ ≥ exp (pTdelay). We therefore339

see from (2.8) that Theorem 2.2 applies to our simple model for disease control with340

TeTrIs (set H = αβ). However the true power of Theorem 2.2 is that it holds for341

any feedback interconnection on the form of (2.7) that satisfies (2.10). This means342

that the same fundamental limits on performance hold even if we replace our simple343

model of disease spread from (2.4) with a general compartmental model which predicts344

an initial period of exponential spread of the disease (if there is no spread, TeTrIs345

is not really necessary anyway). To see this, suppose that the linearisation of our346

compartmental model of choice can be written on the general form4:347

(2.11)
dx

dt
= Ax+BQ, I = Cx.348

If the model predicts a period of exponential spread of the disease, then the A matrix349

will have an eigenvalue p > 0. Provided this mode is observable and controllable350

(which would also be necessary for there to be any chance of controlling it through351

TeTrIs), the transfer function associated with (2.11) will have a pole at p. That is352

Î =
1

s− p
MQ̂.353

Assuming the same model for TeTrIs we can now write the linearisation of the354

feedback interconnection of (2.5) and (2.11) in the framework of (2.7) by setting355

G1 = 1/ (s− p)M, and leaving G2 = α exp (−sTdelay). The transfer functions in this356

interconnection also satisfy (2.10), and so the same fundamental limit holds. In fact357

it will continue to hold even if we use more complex models for TeTrIs, provided they358

still include a total time delay of Tdelay. We conclude the section with some final359

remarks on Theorem 2.2.360

Remark 2.3. The bound from Theorem 2.2 also applies to the complementary361

sensitivity function. That is, under the conditions of Theorem 2.2, ‖L/ (1 + L)‖)∞ ≥362

exp pTdelay.363

4This is the general form of the linearisation of a compartmental model

dx

dt
= f (x,Q) , I = g (x) .

It may seem restrictive that g doesn’t depend on Q. However if it did, this would mean the effect
of quarantining someone would instantly affect whether or not they are infectious, which is rather
implausible.
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Remark 2.4. Theorem 2.2 continues to hold in the nonlinear setting under the364

assumption that the feedback interconnection in question has a linearisation. This365

essentially follows from the fact that the induced L2-norm of a nonlinear system366

(the natural generalisation of the H-infinity norm) is always greater than the induced367

L2-norm of its linearisation. This effectively shows that by considering the nonlinear368

effects in more realistic models, performance (as measured using sensitivity functions)369

can only get worse. This makes it all the more important to aim for performance370

requirements on the conservative end (i.e. ‖S‖∞ ≤ 1.2 rather than ‖S‖∞ ≤ 2),371

necessitating a speedier response. This is discussed in Appendix B.372

2.3. Discussion. The purpose of this section has been to expose fundamental373

limits in epidemic control that arise from the combination of two factors: the natural374

open loop instability of the system, and the existence of delays in the feedback loop.375

Some of our results were stated in general form, but the main motivating example376

is the stabilization and regulation of an epidemic by means of testing, tracing and377

isolation of infections. The bounds derived apply to any control strategy of this kind,378

and can be summarized in ”the need for speed”: if the delays involved in identifying,379

testing and isolating cases are not very tight, the success of the entire approach is in380

jeopardy.381

There are other strategies for an epidemic control, which are also subject to382

fundamental limits of this kind. The most commonly deployed one is social distancing383

of the entire population. In the context of the classical SIR models, this means making384

the parameter β itself a control variable, attempting to stabilize the dynamics at a385

nonzero number of infections, compatible with the capacity of the healthcare system.386

Of course, a model of social behavior that would cover the control of β is not easy387

to obtain, and will not be pursued here. We remark, nonetheless, that for instance a388

strategy of ordering a lockdown when infections hit a certain threshold is also subject389

to time delays (due to disease latency times) which will compromise performance.390

Staying within the realm of contact tracing based control, there is another fun-391

damental limit that will be analyzed in the following section.392

3. Track-and-trace: The Need for Scale. The analysis of the preceding393

section set the focus on the effect feedaback delays in limiting the performance of the394

TeTrIs strategy for epidemic control. Here we will address a different limitation of the395

control strategy that manifests in the presence of disturbances. That is, the above396

control strategy relies on scarce resources: the availability of technology and trained397

personnel for taking samples and laboratory testing, for the proactive tracking down398

of potential infections, and for ensuring appropriate quarantine.399

These resources are usually orders of magnitude smaller than the full scale of400

the population, and thus often saturate in a widespread epidemic such as COVID-401

19. The question we wish to address is the characterization of these limitations in402

mathematical models for the epidemic under TeTrIs-based control. To accommodate403

the nonlinear effect of saturation in a tractable way, for this analysis we will simplify404

the delay-to-quarantine model to a finite dimensional dynamics instead of a pure405

delay. This alternative is natural in the context of compartmental models: rather406

than assume that the TeTrIs process takes a fixed amount of time to remove infected407

people, we assume a rate of removal is given; this can be seen as the macroscopic408

aggregate of the random times involved in the contract tracing process.409

3.1. A Model for Contact Tracing. We thus introduce a compartmental410

model that incorporates as a state the number of people in quarantine Q, in addition411
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to the the standard susceptible (S), infected (I) and removed (R) populations. We412

assume that people in quarantine effectively isolate and thus are no longer producing413

new infections.414

IS R

Q

βSI γI

µI γQ

415

The TeTrIs control strategy is modeled as follows: Infected people are individually416

tracked, tested and isolated at a rate µ, meaning that on average, we need a time 1/µ417

to effectively put these people into quarantine.418

Under these assumptions, the dynamics become:419

(3.1)
d

dt


S
I
Q
R

 =


−1
1
0
0

βSI +


0
−1
1
0

µI +


0
−1
0
1

 γI +


0
0
−1
1

 γQ.420

This model was already proposed in [22] and its analysis is simple, since quaran-421

tined people can be considered as “early recoveries”. More formally, if we consider the422

dynamics in S̃ = S, Ĩ = I, R̃ = Q + R, then the model becomes a simple SIR model423

with recovery rate γ + µ and therefore the critical reproduction rate parameter is:424

(3.2) Rµ :=
β

γ + µ
.425

In the model without quarantine, the open loop critical rates is R0 = β/γ (cor-426

responding to the case µ = 0). The net effect of contact tracing is to reduce the427

reproduction rate: Rµ < R0. In particular, if the contact tracing rate µ→ 0 (contact428

tracing is extremely slow), things go by as if contact tracing is not operating. If con-429

tact tracing is extremely fast (µ → ∞), it can stabilize any open loop transmission430

rate.431

In fact, the above analysis gives a first rule of thumb to determine the contact432

tracing speed. That is, provided that the open loop system is unstable (R0 > 1), we433

need:434

(3.3)
1

µ
<

1

β − γ
,435

i.e., the average isolation time must be controlled. Eq. (3.3) can be compared with436

(2.6), the main difference stems from the fact that here we are continuously isolating437

people after a random delay, instead of a fixed one. As an example, if we fix the438

average recovery time in 1/γ = 10 days and R0 = 3 (β = 0.3), the average time to439

isolate is bounded by 5 days.440

While this family of quarantining models is well known, we would like to analyze441

the effect of saturating the contact tracing capability. To this end, consider that there442

is a maximum fraction of the population K that can be tested, tracked, and isolated443

simultaneously. This can be due to a limit in the total test processing capability, the444

number of contact tracing agents that are deployed or any combination thereof.445
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In such a scenario, if the number of infected people is low, then the quarantining446

rate should be µI, since every infected person is being tracked (equivalently there447

exists idle tracking and testing capacity). However, if the number of infected people448

is high (I > K), then the quarantining rate should be µK because of the saturation449

of the control capabilities.450

Under these assumptions, the dynamics become:451

(3.4)
d

dt


S
I
Q
R

 =


−1
1
0
0

βSI +


0
−1
1
0

µmin{K, I}+


0
−1
0
1

 γI +


0
0
−1
1

 γQ.452

Note that if K ≥ 1 in (3.4), we recover the first model.453

3.2. Understanding the Issue. To highlight the issues introduced by this sat-454

uration, we first analyze the dynamics (3.4) under the assumption that S ≈ 1 (i.e. at455

the beginning of the epidemic). In that case, the important part of the dynamics is456

the evolution of infected people, which becomes autonomous:457

(3.5)
d

dt
I = βI − γI − µmin{K, I}.458

The above differential equation is extremely simple to analyze. However it yields459

an important insight into the effect of saturation in this kind of dynamics. Consider460

the case where R0 > 1, i.e. the system is open loop unstable, but Rµ < 1, meaning461

that the system can be stabilized by an “infinite” contact tracing capability, as in462

(3.1). Then the phase diagram becomes:463

I
0 I∗K

saturated region

464

The new unstable equilibrium that emerges in the approximate dynamics can be465

readily computed by imposing dI/dt = 0 in (3.5) to yield:466

(3.6) I∗ =
µK

β − γ
.467

The appearance of this new equilibrium means that the saturation of contact468

tracing measures leads to a threshold behavior in the number of infected people,469

a phenomenon already observed in several countries that have lost track of disease470

spread [15]. Of course, the value I∗ is not an equilibrium of the full non-linear dy-471

namics (3.4), but it should operate as a threshold value. We revisit this more formally472

below.473

In addition, using that Rµ < 1, we have µ > β− γ and thus I∗ > K. This means474

that the stability region is larger that the saturation point of the contact tracing475

capability. One way to interpret the threshold is to rearrange (3.6) in the following476

manner:477

(3.7) K =

(
β

µ
− γ

µ

)
I∗.478

Here the factor β
µ −

γ
µ acts as a reproduction number: it can be interpreted as the479

number of “children” of a single infected individual generated until it is traced, minus480
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Fig. 5. Simulation of the system in (3.4) with I(0) = 2× 10−3 < I∗ and I(0) = 3× 10−3 > I∗.
Note the different scales in the y-axis.

the ones that recover in that same period. If the total number of new infections481

generated by a pool I of infected people is larger than the tracing capacity, then the482

disease will spread in the long run.483

Example. To demonstrate the validity of the approximation S ≈ 1 at the begin-484

ning of the epidemic, consider the following scenario: let γ = 1/10, i.e. recovery time485

around 10 days and R0 = 3 (β = 0.3) so the system is open loop unstable. Assume486

that we need two days on average to test, trace and isolate people, which amounts to487

a choice of µ = 1/2. In that case I∗ = µ
β−γK = 2.5K, that is every unit of tracing488

capability can deal with up to 2.5 simultaneous infections without crossing the thresh-489

old. Let us simulate the system for an initial condition with S ≈ 1. In particular490

we choose K = 10−3, meaning that 1 in 1000 people can be tracked simultaneously.491

With this choice of K, I∗ = 2.5 × 10−3 and we choose I(0) slightly below or above492

I∗. Results are shown in Fig. 5. We can see that the simulated (nonlinear) system493

indeed enters the exponential phase immediately after reaching the threshold.494

The above analysis, albeit simplistic, illustrates the effects of local non-linearities495

in the stability behavior of the epidemics, namely that a stable region appears around496

the extinction equilibrium, but instability can be reinstated if the number of infected497

people grows large, overwhelming the control capabilities. We now analyze this further498

in the complete dynamics (3.4), and then extend the framework to consider the case499

where the tracing effort is in part spent on contacts that do not become infected.500

3.3. Nonlinear Analysis. To understand the effect of the saturation without501

approximating S ≈ 1, it is of use to first understand the behavior of S(t). Since,502

by (3.4), d
dtS ≤ 0, S(t) is a decreasing function of time. This allows to derive the503

following monotonicity property for I(t).504

Proposition 3.1 (Monotonicity of I(t) under (3.4)). Consider the dynamics505

(3.4). Then the following property holds506

(3.8)
d

dt
I(t0) < 0 =⇒ d

dt
I(t) < 0, ∀t ≥ t0.507

Proof. Without loss of generality we assume I(t0) > 0. We first consider the508

case I(t0) ≤ K. In this case, it follows from (3.4) that S(t0) < 1/Rµ. This is the509

standard scenario where the amount of susceptible people is not enough to sustain510

the epidemic, thus we expect d
dtI(t) < 0 for all t > t0.511
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Indeed, if we assume by contradiction that there is a time t1 such that d
dtI(t1) = 0512

then we get513

0 =
d

dt
I(t1) = (βS(t1)− γ − µ)I(t1) =⇒ S(t1) =

1

Rµ
> S(t0),514

which contradicts the fact that S(t) is decreasing in time.515

The analysis for the case I(t0) ≥ K follows a similar reasoning. Indeed, by516

considering the saturated version of (3.4), i.e.,517

(3.9)
d

dt
I = βSI − γI − µK,518

we get that d
dtI(t0) < 0 implies519

(βS(t0)− γ)I(t0) < µK.(3.10)520521

Thus, assuming again by contradiction the existence of t1, being the first time d
dtI(t) =522

0 for t > t0, we obtain523

(βS(t0)− γ)I(t0) < µK = (βS(t1)− γ)I(t1) ≤ (βS(t0)− γ)I(t1)(3.11)524525

where the first inequality follows from d
dtI(t0) < 0 and the second from the mono-526

tonicity of S(t). It follows then that I(t1) > I(t0), and therefore527

0 < I(t1)− I(t0) =

∫ t1

t0

d

dt
I(t)dt < 0,528

where the last inequality holds by the definition of t1. Thus, such a time t1 cannot529

exists.530

The preceding proposition illustrates the critical role of the nullcline d
dtI = 0531

in (3.4) in understanding the threshold behavior in the nonlinear case. To simplify532

exposition and further understand the role of the nullcline, we consider only the most533

relevant case when Rµ < 1 and R0 > 1, as before.534

I this case, the nullcline is fully within the saturated region, and Proposition 3.1535

leads to the simple condition536

(3.12) I ≤ Ĩ(S) :=
µK

βS − γ
=

µK

β(S − 1
R0

)
.537

for the disease to dissipate without a major outbreak. Indeed, for the number of538

infectious people to increase, d
dtI(t) must be positive, thus violating (3.12).539

A few remarks are in order. First, the threshold is only valid for the range540

0 ≤ Ĩ(S) ≤ 1. Outside such range, the disease dies out. In particular, 0 ≤ Ĩ(S) leads541

to the already known S ≤ 1/R0 condition, and Ĩ(S) ≥ 1 ≥ I guarantees d
dtI < 0 for542

all I. Second, the nonlinear threshold Ĩ(S), is a decreasing function of S (see Figure543

6), which implies that the most conservative bound is obtained at S = 1, which leads544

to545

Ĩ(S) =
µK

βS − γ
≥ µK

β − γ
= I∗ > K,546

where the last inequality follows from our assumption Rµ < 1. Thus, the analysis547

of the previous section leads to a lower bound on the critical threshold which, as548

expected, is quite accurate when S ≈ 1.549
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Fig. 6. S-I region of the phase plane. Trajectories for uncontrolled evolution (green), unsatu-
rated TeTrIs (purple), and TeTrIs with K = 0.01 (red) are presented for two initial conditions. On
the left, I(0) is above the nullcline and the pandemic spreads. On the right, I∗ < I(0) < Ĩ(S(0))
and the pandemic is contained successfully. The Ĩ(S) nullcline (solid black) thus acts as a threshold
between successful and unsuccessful TeTrIs.

Example. Consider again the set of parameters β = 0.3, γ = 1/10 and µ = 1/2.550

As mentioned before, since in this case Rµ < 1 < R0, Ĩ(S) ≥ I∗ > K holds for all S.551

Fig. 6 consider the case of K = 0.01 (red) and compare its trajectory on the (S, I)552

plane with two additional cases, the unsaturated dynamics (UnSatTeTrIs, purple)553

and the regular dynamics with no track-and-trace (No TeTrIs, red). On the left, an554

initial condition I(0) = 0.65, S(0) = 1−I(0), with I(0) above the threshold Ĩ(S) (solid555

black) is considered. On the right, a similar setting but with I(0) = 0.0255 between556

Ĩ(S(0)) = Ĩ(.974) = .026 and I∗ = .025 is considered. This therefore validates the557

very slight conservativeness in the I∗ threshold.558

3.4. Modeling the Tracing of Uninfected Contacts. One thing the pre-559

ceding models do not capture is that the resources of a contact tracing system are560

also invariably used to test and trace people that have been in contact with infected561

individuals, but have not developed the infection. As we analyze in this section,562

the stability region obtained by TeTrIs control policy will be reduced because of this563

phenomenon.564

Consider the following compartmental model for the epidemic spread. As usual565

I denotes the infected population at a given time. These infected individuals have566

multiple contacts which generate secondary infections at rate β, but also have other567

contacts, say at rate β1, which do not generate infection. Since this classification568

can only be ascertained by testing, the TeTrIs capability is in part spent on these569

non-infected contacts. We will denote the population of potential infections by P ,570

and separate it from the rest of the susceptible population which for which we use the571

variable S.572

For our model, we choose β1 = νβ. Here ν can be thought as the “odds ratio” that573

a contacted individual does not develop the infection. If ν = 0 all potential contacts574

are infected and the model operates as before, but typically ν > 0 meaning that not all575

contacts are infected. In particular, in Uruguay where we have access to fine grained576

data, its value is around ν = 10, meaning that for each infected individual, 10 more577

people should be tracked.578

The open loop model given below carries out the classification of susceptible579
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individuals into the P and S categories, before incorporating contact tracing:580

(3.13)
d

dt


S
P
I
R

 =


−1− ν
ν
1
0

βIS +


0
−1
1
0

βIP +


0
0
−1
1

 γI.581

Of course, if we combined both categories of susceptibles into one class S̃ = S+P ,582

the model reduces to a classical SIR model with infection rate β and recovery rate583

γ. Thus the reproduction number for the model in (3.13) is given as before by:584

R0 =
β

γ
.585

Consider now that the contact tracing effort u is split between uP and uI , mean-586

ing that the tracking is performed over the whole potentially infected population.587

Those that are tracked and are infected are isolated, the others are simply “cleared”588

and return to the normal susceptible class. Adding as before a state variable for589

quarantined population we obtain the model:590

(3.14)

d

dt


S
P
I
Q
R

 =


−1− ν
ν
1
0
0

βIS+


0
−1
1
0
0

βIP +


1
−1
0
0
0

uP +


0
0
−1
1
0

uI +


0
0
−1
0
1

 γI+


0
0
0
−1
1

 γQ.591

Following the analysis in the previous sections, in the case where there is no limit592

to the tracing capabilities, we can assume that:593

(3.15) uP = µP, uI = µI594

where 1/µ is the average time to trace and test one individual, either potential or595

infected.596

I

S

R

Q

P

βSI γI

µI γQ

νβSI

βPIµI

597

Substituting this control law in eq. (3.14), we can easily observe that, since there598

is no coupling between uP and uI , the model reduces to the contact tracing and599

quarantining model of Section 3.1. Namely, the state S̃ = S + P, Ĩ = I, Q̃ = Q and600

R̃ = R follows exactly the dynamics in (3.1). In particular, the reproduction rate for601

a given value of µ is the same as in (3.2):602

(3.16) Rµ =
β

µ+ γ
.603
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Again with sufficiently fast contact tracing, one can cope with any transmission rate.604

The interesting case, however, is when contact tracing is limited by the total605

number of trackers or simultaneous tests that can be performed. Since these tests are606

performed before knowing if a person is a potential infection or a infected individual,607

the coupling between uP and uI becomes608

(3.17) uP + uI 6 µK.609

In particular, if we assume that the effort is equally split between all P + I610

potentially infected individuals, then:611

uP (P, I) = µ
P

P + I
min{P + I,K} = µP min

{
1,

K

P + I

}
,(3.18)612

uI(P, I) = µ
I

P + I
min{P + I,K} = µI min

{
1,

K

P + I

}
.(3.19)613

614

Note that uP + uI = µmin{K,P + I} and thus satisfies (3.17). Also when I and P615

are near zero, the feedback law reduces to (3.15).616

3.5. Threshold Analysis. In comparison with (3.4), a full non linear analysis617

in this case is more involved. Therefore, we resort to the strategy of analyzing the618

behavior of the saturated policy around the disease free equilibrium where S ≈ 1.619

In this setting, P � 1 and I � 1 so the product term IP can be disregarded.5620

Substituting this condition and the control law (3.18) in (3.14), the dynamics becomes621

autonomous in P and I with equation:622

(3.20)
d

dt

[
P
I

]
=

[
0 νβ
0 β − γ

] [
P
I

]
− µmin

{
1,

K

P + I

}[
P
I

]
.623

We have the following:624

Proposition 3.2. Under the condition R0 > 1 (uncontrolled open loop) and625

Rµ < 1, the dynamics in (3.20) have a locally asymptotically stable disease free equi-626

librium P = I = 0, and a further unstable equilibrium emerges at:627

(3.21) P ∗ =
νβ

((1 + ν)β − γ)(β − γ)
µK, I∗ =

1

(1 + ν)β − γ
µK.628

Proof. We begin by analyzing the disease free case, which is readily verified it is629

an equilibrium after substitution in (3.20). The Jacobian matrix in this case retains630

a diagonal term −µ since the saturation is not in effect near the origin. Thus the631

Jacobian is:632

J1 =

[
−µ νβ
0 β − γ − µ

]
.633

The Jacobian has two eigenvalues, −µ < 0 and β − γ − µ which is negative because634

of the assumption that Rµ < 1, hence the equilibrium is locally stable.635

To find the second equilibrium, we assume that the saturation is active and impose636

equilibrium in (3.20):637 [
0 νβ
0 β − γ

] [
P ∗

I∗

]
− µ K

P ∗ + I∗

[
P ∗

I∗

]
=

[
0
0

]
638

5This is equivalent to considering that every potential contact only arises from a single infected
interaction
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After some algebra one arrives at the expressions in (3.21) for P ∗ and I∗.639

Furthermore:640

(3.22) P ∗ + I∗ =
µ

β − γ
K > K641

under the hypothesis that µ > νβ − γ ⇔ Rµ < 1. Hence, for any testing rate that642

stabilizes under infinite contact tracing assumptions, one gets an unstable equilibrium643

when the saturation comes into play. Moreover, note that the total number being644

tracked in this new equilibrium coincides with the threshold (3.6).645

That this equilibrium in indeed unstable can be seen analyzing its Jacobian ma-646

trix, which is just:647

J2 =

[
0 νβ
0 β − γ

]
648

which corresponds to the open loop model that has a positive eigenvalue β − γ > 0649

under the assumption R0 > 1.650

As a final remark, note that the equilibrium (3.21) verifies:651

(3.23)
P ∗

I∗
=

νβ

β − γ
=

R0

R0 − 1
ν.652

This supports the intuitive observation that, when ν is large, most of the contact653

tracing effort is spent only in the potential contacts, reducing the stability margin.654

Below we analyze this in a numerical example.655

Example. To depict the behavior of the dynamics (3.20), we choose as before656

γ = 1/10 (10 days average recovery time) and β = 3γ, yielding R0 = 3. The ratio ν657

is taken as ν = 10 as observed in some cases, consistent with current measurements658

in the real epidemiological scenario in Uruguay, where approximately 10 contacts are659

traced per infected individual, generating only one new infection.660

If we assume that K = 10−3, meaning that 1 in 1000 people can be tracked and661

tested simultaneously, then the unstable equilibrium occurs at:662

P ∗ + I∗ = 2.5× 10−3,663

but with a lower number of infections, namely:664

P ∗ = 2.34× 10−3, I∗ = 0.16× 10−3.665

Observe that these parameters are also consistent with the numerical example666

in Section 3.1, where the stability threshold was at I = 2.5 × 10−3. Now that the667

contact tracing is burdened with potential contacts the stability region diminishes in668

consequence.669

The phase plot is depicted in Figure 7. In particular, starting from an initial670

condition I(0) = 0.5×10−3 (which would be clearly stable in (3.4)) and P (0) = 0, the671

system enters the exponential phase due to the secondary contacts that burden the672

contact tracing capabilities. In particular, in Fig. 8 we can observe that at the peak673

70% of the population becomes a potential contact simultaneously, and the susceptible674

people go quickly to 0, meaning that the whole population has become into contact675

with an infected individual, clearly overwhelming the tracking and testing capabilities.676
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Fig. 7. Phase diagram of (3.20) and unstable equilibrium point of the approximate dynamics.
We superimpose the solution of the nonlinear version depicted in Fig. 8.
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Fig. 8. Unstable trajectories of the saturated system with limited contact tracing.

3.6. Discussion. To conclude this section, let us recap the main results derived.677

The first result is that, whenever there is a cap on the contact tracing capability, a678

threshold behavior develops in the dynamics. This emphasizes the need for scale,679

summarized succinctly in eq. (3.6) and its nonlinear counterpart (3.12). Whenever680

the infected number grows, the testing and tracing capacity should grow linearly681

with the number of infections in order to avoid saturation. On the other hand, the682

system can work in the saturated regime without becoming overwhelmed, but once683

the threshold is crossed the epidemic will spread.684

The second result is that this stability margin is greatly compromised by the fact685

that testing and tracing capacity is burdened with the need of following contacts that686

do not become infected. This is summarized in eqs. (3.22) and (3.23), that evidence687

how saturation comes into play due to the total number of contacts, and that this688

total number is dominated by potential contacts.689

4. Conclusions. This work presents a cautionary message of the fundamental690

limits involved in preventing disease propagation during an epidemic. Our results691

highlight the particularly dangerous combination of instability and non-linearity, in-692

trinsic of the disease spread process (our plant), together with delays and capacity693
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constraints, intrinsic of the TeTrIs process (our actuator), that makes the disease con-694

trol problem fundamentally challenging. It is important to notice that some of our695

quantitative predictions, are up to a certain extent pessimistic, as we only consider696

one method for disease spread prevention, i.e., TeTrIs . Clearly, complementing such697

process with other control mechanisms, such as social distancing, using masks, etc.,698

can improve the effectiveness and robustness of the disease spread mitigation efforts.699

Nevertheless, irrespective of the methods used, we believe that the need for speed and700

scale are at its core necessary for effective disease prevention.701
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Appendix A. Proof of Theorem 2.1.758

Eliminating S using the algebraic equation in (2.4) and then linearising about the759

point (I,R,Q) = (0, 0, 0) shows that for small deviations,760

(A.1)
d

dt

[
I
R

]
=

[
β − γ 0

0 −γ

] [
I
R

]
−
[
β
0

]
Q.761

Equation (2.5) is already linear. We are therefore required to show that the in-762

terconnection of (A.1) and (2.5) is stable. The equation in R is decoupled and763

stable, so can be safely ignored. It is convenient to introduce the transfer func-764

tions G1 = −β/ (s− β + γ) and G2 = α exp (−γTdelay) exp (−sTdelay). These are the765

transfer functions from Q to I in (A.1) and from I to Q in (2.5) respectively. Since G1766

is unstable, we are therefore required to show that G1 (1−G1G2)
−1

is stable. This767

is equivalent to the saying that the denominator of this transfer function has no poles768

in the closed right-half-plane. For the transfer functions in question, the condition is769

that:770

s+ γ + αβ exp (−γTdelay) exp (−sTdelay)− β 6= 0, ∀s ∈ C+.771

Putting s̃ = s/β and rearranging shows that this is equivalent to772

s̃+R−10 + α exp
(
−βTdelay

(
s̃+R−10

))
6= 1, ∀s̃ ∈ C+.773

A standard Nyquist argument then shows that this holds if and only if the curve774

f (s̃) := s̃+R−10 +α exp
(
−βTdelay

(
s̃+R−10

))
when evaluated along the usual Nyquist775

D-contour does not encircle 1. A simple sufficient condition for this is that776

(i) f (0) > 1;777

(ii) d
dω (Im (f (jω))) > 0;778

since together (i)–(ii) ensure that the curve only crosses the real axis to the right of 1779

(technically we also need limx→∞ f (x) > 1, but this is trivially satisfied by our f). It780

is readily checked that (i) is equivalent to the condition from the theorem statement.781

That is782

(A.2) (i) ⇐⇒ Tdelay <
1

γ
ln

(
α

1−R−10

)
.783

For (ii), observe that784

d

dω
(Im (f (jω))) = 1− αβTdelay exp

(
−βTdelayR−10

)
cos (βTdelayω) .785

Therefore it is sufficient that αβTdelay exp
(
−βTdelayR−10

)
< 1. We will demonstrate786

this in two stages. First observe that αβTdelay exp
(
−βTdelayR−10

)
≤ αR0 exp (−1).787

Therefore if R0 ≤ exp (1), (ii) holds (recall that 0 ≤ α ≤ 1). Now assume that788

R0 > exp (1). We then see that if this is the case789

(A.3) ln

(
α

1−R−10

)
≤ ln

(
1

1− exp (−1)

)
≈ 0.5 ≤ 1.790
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Next observe that for x ≤ R0, the function x exp (−x/R0) is monotonically increasing791

in x. Therefore given any T ≥ Tdelay, if βT ≤ R0, then792

(A.4) αβTdelay exp
(
−βTdelayR−10

)
≤ αβT exp

(
−βTR−10

)
.793

Now define794

T ∗ =
1

γ
ln

(
α

1−R−10

)
.795

By (A.3), βT ∗ ≤ R0. Furthermore796

αβT ∗ exp
(
−βT ∗R−10

)
= R0

(
1−R−10

)
ln

(
α

1−R−10

)
≤ 1.797

Therefore by (A.4), (ii) holds for any Tdelay ≤ T ∗. However by (A.2), (i) =⇒ Tdelay <798

T ∗. So (i) =⇒ (ii) and (i) is sufficient for stability. Necessity follows since increasing799

Tdelay causes f(1) = 1 indicating a change in the winding number, and hence the800

onset of instability.801

Appendix B. Extending Theorem 2.2 to the Nonlinear Setting.802

In this section we will demonstrate that under appropriate assumptions, a natural803

analogue of Theorem 2.2 holds in the nonlinear setting. To do this we will prove that804

the induced L2-norm of a system is always lower-bounded by the induced L2-norm805

of its linearisation. Since the induced L2-norm of an LTI system is equal to its H-806

infinity norm, this shows that if the linearisation of a nonlinear system is LTI, then807

the induced L2-norm of the sensitivity function of the nonlinear system must satisfy808

the same bound from Theorem 2.2.809

The result we are trying to prove is in fact rather elementary. However it requires810

a bit of set up to lay out the appropriate definitions and concepts. The difficulties811

stem from the fact that we would like to combine nonlinear state-space models (to812

describe general compartmental models for disease spread) and delays. Accordingly813

we adopt the standard operator theoretic set up on L2 which covers both these types814

of model. More specifically, L2 is the space of functions f : [0,∞) → R with finite815

norm816

‖f‖ :=

√∫ ∞
0

|f (t)|2 dt.817

This is a subspace of L2e, who’s members need only be square integrable on finite818

intervals. An operator is a function G : L2e → L2e, and the induced L2-norm of an819

operator is defined as820

‖G‖L2
:= sup

{
‖G (u)‖
‖u‖

: u ∈ L2e, u 6= 0

}
.821

In the case that the operator G is describing the dynamics of a LTI system with822

transfer function G, ‖G‖L2
= ‖G‖∞ .823

The natural generalisation of a linearisation in this setting is given by the Fréchet824

derivative. An operator G is Fréchet differentiable at a point x ∈ L2 if there exists a825

linear operator A such that826

lim
h→0

‖G (x+ h)− G (x)−A (h)‖
‖h‖

= 0.827
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If such a linear operator exists, it is unique, and we denote the Fréchet derivative of828

G at x as DG (x) = A.829

With these definitions in place, we are ready to state the main result of this sec-830

tion. The following lemma shows that provided the linearisation exists, the induced831

L2-norm of the linearisation of an operator about a fixed point (an equilibrium point)832

is always smaller than the L2-norm of the operator itself. This means that if we have833

a nonlinear system G with linearisation described by an LTI system with transfer func-834

tion G, then ‖G‖L2
≥ ‖G‖∞. This immediately gives us a nonlinear generalisation of835

Theorem 2.2. In particular if we instead study the nonlinear feedback interconnection836

(B.1)
ei = Gi (ei−1) + di, i ∈ {1, . . . , n}
e0 = −en,

837

and define the sensitivity functions to be the operators Si : di → ei, then provided the838

linearisations of Si are LTI, then ‖Si‖L2
must satisfy exactly the same lower bound839

from Theorem 2.2.840

Lemma B.1. Given an operator G, if G (0) = 0 and G is Fréchet differentiable at841

0, then842

‖G‖L2
≥ ‖DG (0)‖L2

.843

Proof. Let A = DG (0). Using the reverse triangle inequality shows that for any844

non-zero x ∈ L2e and non-zero ε ∈ R,845

‖G‖L2
≥ ‖G (εx)‖ / ‖εx‖ = ‖G (εx)−A (εx) +A (εx)‖ / ‖εx‖

≥ ‖A (x)‖ / ‖x‖ − ‖G (εx)−A (εx)‖ / ‖εx‖ .
846

Taking the limit ε→ 0, we see from the definition of the Fréchet derivative that this847

implies that ‖G‖L2
≥ ‖A (x)‖ / ‖x‖. Taking the sup over x ∈ L2e gives the result.848
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