Accurate Reduced Order Models for Heterogeneous Coherent Generators

Hancheng Min, Fernando Paganini, and Enrique Mallada

Abstract— We introduce a novel framework to approximate
the aggregate frequency dynamics of coherent generators. By
leveraging recent results on dynamics concentration of tightly
connected networks, we develop a hierarchy of reduced order
models —based on frequency weighted balanced truncation—
that accurately approximate the aggregate system response.
QOur results outperform existing aggregation techniques and can
be shown to monotonically improve the approximation as the
hierarchy order increases.

I. INTRODUCTION

Accurately modeling generator frequency response to
power disturbances is essential for assessing frequency con-
trol performance in power grids. Techniques for deriving
reduced order approximations of large-scale power networks
based on coherence and aggregation have been investigated
for decades [1]. Generally, a group of generators is con-
sidered coherent if their bus frequencies exhibit a similar
response when subject to power disturbances. A widely used
modeling technique is to subsequently aggregate the response
of coherent generators into a single effective machine.

In past decades, various methods for identifying coherent
group of generators have been introduced [2]-[6]. The Linear
Simulation Method [7] groups generators whose maximum
difference in time-domain response is within some tolerance.
Similarly, [3] develops a clustering algorithm based on the
pairwise maximum difference in time-domain response. The
Weak Coupling Method [6] quantifies strength of coupling
between two areas to iteratively determine the boundaries of
coherent generator groups. The Two Time Scale Method [4],
[5] computes the eigen basis matrix associated with the elec-
tromechanical modes in the linearized network: generators
with similar entries on the basis matrix with respect to low
frequency oscillatory modes are considered coherent.

Once all generators are grouped by coherence, each group
can be aggregated into a single effective machine. Previous
work [8]-[13] has demonstrated that the best choice of
inertial and damping coefficients for the effective gener-
ator is obtained by adding among all the corresponding
generator parameters. However, in the presence of turbine
dynamics, the proper choice of turbine time constants is
unclear. Optimization-based approaches [9], [10] minimize
an error function to choose the time constant of the effective
generator. Other approaches use the average [11], or the
weighted harmonic mean [12] of time constants of generators
in the coherent group. However, these methods cannot in
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general achieve high accuracy in capturing the coherent
frequency response. Moreover, the aggregation techniques
mentioned above are proposed for coherent synchronous
generators, while more realistic scenarios generally include
both synchronous generators and grid-forming inverters [14],
[15] in a coherent group.

In this paper, we leverage new results on characterizing
coherence in tightly-connected networks [16] to propose a
general framework for aggregation of coherent generators.
We show that for n coherent generators with transfer function
gi(s), i = 1,---,n, the aggregate coherent dynamics are
accurately approximated by g(s) = (37, g; 1(5))_1. In
particular, we show that §(s) is a natural characterization
of the coherent dynamics in the sense that, as the algebraic
connectivity of the network increases, the response of the
coherent group is asymptotically §(s). In the case of hetero-
geneous turbine dynamics, the aggregate dynamics g(s) can
be as high order as the network size n, then the aggregation
of generators essentially asks for a low-order approximation
of G(s). We propose a hierarchy of reduced order models,
based on frequency weighted balanced truncation, which not
only offers as reduced model a single effective generator,
but also higher-order reduction models with significantly
improved accuracy.

Our result shows that aggregation of coherent genera-
tors can be regarded as finding a low-order approximation
of g(s). In the case of high-order §(s), the conventional
approaches [9], [10], [12] are too restrictive, where the
approximation model is given by a single effective generator
with proper time constant and all other parameters chosen
as their aggregate value. Our proposed models suggests two
improvements by enforcing less constraints: 1) Increase the
order of the approximation model; in particular for a 2nd
order generator model, a 3rd order reduced model for §(s)
is almost accurate; 2) Model reduction on the closed-loop
dynamics §(s) rather than on the turbine dynamics. Addi-
tionally, our models can still be interpreted as a generator
model with appropriate structure and parameters. Lastly, the
aggregation techniques introduced in this paper apply to any
linear model of generators, allowing us to obtain accurate
aggregate higher order generator models.

The rest of the paper is organized as follows. In Section
I, we provide the theoretical justification of the coherent
dynamics §(s). In Section III, we propose reduced order
models for §(s) by frequency weighted balanced truncation.
We then show via numerical illustrations that the proposed
models can achieve accurate approximation (Section IV).
Lastly, we conclude this paper with more discussions on the
implications of our current results.



II. AGGREGATE DYNAMICS OF COHERENT GENERATORS

Consider a group of n generators, indexed by ¢ =
1,---,n, dynamically coupled through an AC network.
Assuming the network is in steady-state, the block diagram
of the linearized system around this operating point is shown
in Fig.1.
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Fig. 1. Block Diagram of Linearized Power Networks

For generator 4, the transfer function from net power devi-
ation at its generator axis to its angular frequency deviation
w, relative to their equilibrium values, is given by g;(s).
The net power deviation at generator ¢, includes disturbance
u; reflecting variations in mechanical power or local load,
minus the electrical power p{ drawn from the network.

The network power fluctuations p© are given by a lin-
earized (lossless) DC model of the power flow equation
p°(s) = LLw(s). Here L is the Laplacian matrix of
an undirected weighted graph, with its elements given by
Lij = %E:Zl |‘/;||Vk‘bzk sin(GZ- —Gk) 9o s where 90

are angles at steady state, |V;| is the voltage maggnitude at bus
1 and b;; is the line susceptance. Without loss of generality,
we assume the steady state angular difference 6y; — 0o
across each line is smaller than g Moreover, because L
is a symmetric real Laplacian, its eigenvalues are given by
0= A (L) < A(L) < -+ < Ap(L). The overall linearized
frequency dynamics of the generators is given by

wi(s) = gi(s)(uils) — pi(s));
éLw(s) .

(1a)
(1b)

i=1,,n,

pe(s) =

In this section, we are interested in characterizing the
dynamic response of coherent generators to system distur-
bances, which we term here coherent dynamics. With this
aim, we seek conditions on the network (1) under which
the entire set of generators behave coherently. The same
approach can be used on subgroups of generators.

To motivate our results, we follow the typical assumption,
which is to impose an equal response w;(s) = w(s) at
the output of the coherent generators [8]-[10], to derive a
closed form expression for the coherent dynamics; the theory
that justifies the result of this derivation is then provided in
Section II-A. By assuming w;(s) = w(s), it is possible to
sum over all equations in (la) to get

(Z g;1<s>> () = > uils) =Y opi(s). @

Notice that the last term )" ; p$(s) = 17 L 14 (s) = 0 since
1=1[1,---,17 is an eigenvector of \;(L) = 0. Then the

aggregate model for the coherent group is given by

w(s) = (Zgﬂ(s)) Zui(s). 3)

From (3), the coherent group of generators is aggregated into
a single effective machine with its transfer function given by

9(s) = (Z g:1<s)> : (4)

While insightful, equation (4) is not properly substanti-
ated. In what follows we provide a principled justification
for using (4) as our model for the coherent dynamics by
leveraging recent results on coherence of tightly connected
networks [16].

A. Coherence in Tightly Connected Networks

We now lay down the basic theory that justifies the
use of (4) as an accurate descriptor of the dynamics of
coherent generators. Our analysis will highlight the role of
the algebraic connectivity \o(L) of the network as a direct
indicator of how coherent a group of generators is.

For the network shown in Fig.1, the transfer matrix from
the disturbance u to the frequency deviation w is given by

T(s) = (I, + diag{gi(s)}L/s) " diag{gi(s)}, (5

where I, is the n X n identity matrix. To justify the coherent
response of generators, we show that the transfer matrix 7'(s)
converges, as algebraic connectivity \o(L) increases, to one
where all entries are given by §(s).

We make the following assumptions: 1) 7'(s) is stable;
2) all g;(s) are minimum phase systems; 3) g(s) in (4) is
stable. For generators that satisfy these assumptions, we have
the following result.

Theorem 1. Given the assumptions above, the following
holds for any ng > 0:

lim sup || T(jm) — a(in)11"|| =0,

A2(L) =400 pe[—ng,no)
where j =+/—1 and 1 € R" is the vector of all ones.

Due to space constraints, we refer to [17] for the proof.
The analysis relies on the fact that T(s) is close to §(s)117
(L)

if the effective algebraic connectivity ’/\%

‘ is large. For
any frequency band [—jno, jno] on the imaginary axis, the
effective algebraic connectivity is lower bounded by %
hence one can make sure 7'(s) is arbitrarily close to §(s)117
on this frequency band by increasing Ao(L).

The transfer matrix §(s)117 can be interpreted as follows.
Given any arbitrary disturbance u(s), the frequency response
to such disturbance is given by

>

w(s) = §(s)11 u(s) = (g(s)Zui(s)> 1. (6

i=1
In other words, every bus frequency reacts to the aggregate
disturbance ), u;(s) based on the response gG(s). As a



result, for any disturbance limited over band [0,7], the
response of the network T'(s)u(s) is approximated by the
one in (6). Therefore generator networks with large algebraic
connectivity should be considered coherent and g(s) gives
the coherent dynamics.

B. Aggregate Dynamics for Different Generator Models

Having characterized how the coherent dynamics given by
§(s) represent the network’s aggregate behavior, from now
on we will use with no distinction the terms “aggregate” and
“coherent” dynamics. Now we look into the explicit forms
these dynamics take for different generator models.

Example 1. Generators with 1st order model, of two types:
1) For synchronous generators [13], g;(s) = m,

where m;,d; are the inertia and damping of generator 1,

respectively. The coherent dynamics are §(s) = L

. ms+d’
where m =Y. m; and d =", d;.
2) For droop-controlled inverters [14], g;(s) = Tpki’;l ,

where kp,; and Tp,; are the droop coefficient and the filter
time constant of the active power measurement, respectively.

The coherent dynamics are G(s) = +Pkf+1 )

—1 ~
(22;1 k;;) L #p = kp (0, T kp)-

Notice that both dynamics are of the same form; by
suitable reparameterization, we may use the “swing” model
gi(s) = m to model both types of generators.

The aggregate model given in Example 1 is consistent with
the conventional approach of choosing inertia /m and damp-
ing d as the respective sums over all generators. Theorem 1
explains why such a choice is indeed appropriate.

The aggregation is more complicated when considering
generators with turbine droop control:

where kp =

Example 2. Synchronous generators given by the swing
model with turbine droop [13]
1
gi(s) = T (N

r.
m;s + dl + 7'1,;-1-1

where r; Y and 7; are the droop coefficient and turbine time
constant of generator i, respectively. The coherent dynamics
are given by

1
g(s) = . (8)

~ —1
~ n T'i
s +d+ 32 Tist1

This example illustrates, in particular, the difficulty in
aggregating generators with heterogeneous turbine time con-
stants. When all generators have the same turbine time
constant 7; = 7, then §(s) in (8) reduces to the typical
effective machine model of the form (7) with parameters
(r,d,7#~1,7), where 7~ = 3" 77!, ie. the aggregation
model is still obtained by choosing parameters as the respec-
tive sums of their individual values. However, if the 7; are
heterogeneous, then g(s) is a high-order transfer function
and cannot be accurately represented by a single generator
model. The aggregation of generators essentially requires a
low-order approximation of §(s).

C. Aggregate Dynamics for Mixture of Generators

We have shown the aggregate dynamics for generators of
three different types. When a mixture of these different types
is present!, we propose (7) to be a general representation of
the three types; in particular, the first order models can be
regarded as (7) with r; 1 = 0. Therefore, (8) provides a
general representation of the aggregate dynamics resulting
from a mixture of generators. Again, high-order coherent
dynamics arise when the network includes heterogeneous
turbines.

III. REDUCED ORDER MODEL FOR COHERENT
GENERATORS WITH HETEROGENEOUS TURBINES

As shown in the previous section, the coherent dynamics
g(s) are of high-order if the coherent group has generators
with different turbine time constants. This suggests that
substituting §(s) with an equivalent machine of the same
order as each g;(s) may lead to substantial approximation
error. In this section we propose instead a hierarchy of
reduction models with increasing order, based on balanced
realization theory [18], such that eventually an accurate
reduction model is obtained as the order of the reduction
increases. We further explore other avenues of improvement
by applying the reduction methodology over the coherent
dynamics itself, instead of the standard approach of applying
a reduction only on the turbines [9], [10], [12].

In this paper, we use frequency weighted balanced trun-
cation [19] to approximate §(s). Frequency weighted bal-
anced truncation identifies the most significant dynamics
with respect to particular LTI frequency weight by computing
the weighted Hankel singular values, the square root of
eigenvalues of X_.Y,, where X. and Y, are the frequency
weighted controllability and observability gramians of the
system to be reduced. In many cases, the Hankel singular val-
ues decay fast, allowing us to accurately approximate high-
order systems. More importantly, the reduction procedure
favors approximation accuracy in certain frequency range
specified by the frequency weights.

Due to space constraints, we refer to [17] for the detailed
procedure of frequency weighted balanced truncation. It
suffices to regard this model reduction method as a tool
that, given a SISO proper transfer function G(s), a frequency
weight W (s), and a number k, returns a transfer function

~ bk,lskfl—i—-w—ﬁ—bls—i—bo

() = = et ©)
guaranteed to be stable [19], and such that the weighted error
sup,er [W(jn)(G(jn) — Gi(jn))| is upper bounded, with
an upper bound decreasing to zero with the order k. For our
purposes, W (s) must have high gain in the low frequency
range, so that the DC gains of the original and reduced
dynamics are approximately matched, i.e., G(0) ~ G(0).
We propose two model reduction approaches for high-order
g(s) in (8) based on frequency weighted balanced truncation.

Generally, when considering a mixture of synchronous generators and
grid-forming inverters, our network model is valid only when synchronous
generators make up a significant portion of the composition.



A. Model Reduction on Turbine Dynamics

Our first model is based on applying balanced truncation to
the turbine aggregate. Essentially, g(s) in (8) is of high order
1

because it has high-order turbine dynamics ", Tr; 15 we
seek to replace it with a reduced order model. This is akin to
the existing literature [9], [10] which replaces an aggregate
of turbines in parallel by a first order turbine model with
parameters obtained by minimizing certain error functions.

We denote the aggregate turbine dynamics as g:(s) :=
-1
Yoy 7. We also denote the (k — 1)-th reduction
model of g:(s) by frequency-weighted balanced truncation
as G x—1(s). Then the k-th order reduction model of §(s) is
given by

1

~tb
9k (S) = S~ )
ms+d+ Gex—1(8)
with, again, 1 = >.", m;,d = Y., d;. We highlight two
special instances of relevance for our numerical illustration.
1) 2nd order reduction model: When k = 2, the reduced
model g 1(s) can be interpreted as a first order turbine model

bo 7l

Geals) = ai1s + ag - Fs+1"7

(10)

with parameters (771, 7) chosen by the weighted balanced
truncation method. Then the overall reduction model G5’ (s)
is second order, which is a single generator model.

Unlike [9], [10], there is a DC gain mismatch between
Gi(s) and the original §(s) since 7~ #£ 71 =30 it
Later in the simulation section, by choosing a proper fre-
quency weight W (s), we effectively make the DC gain
mismatch negligible. Unfortunately, as we will see in the
numerical section, k& = 2 may not suffice to accurately
approximate the coherent dynamics.

2) 3rd order reduction model: To obtain a more accurate
reduced order model, one may consider £k = 3 as the next
suitable option. In fact, according to numerical observations,
a 2nd order turbine model §; 2(s), i.e., kK = 3, is sufficient
to give an almost exact approximation of §(s).

We can also interpret g, 2(s), by means of partial fraction
expansion, i.e.,

~—1 ~—1
b1$+bo _ ’I"l 7'2

82 +a1s+ay Tis+1 Tos+17
assuming the poles are real. Then the reduced turbine dy-

namics g 2(s) can be interpreted as two first order turbines
in parallel with parameters (7, *,7;) and (75 ', 72).

§t,2(5) =

B. Model Reduction on Closed-loop Coherent Dynamics

Our second proposal is: instead of reducing the turbine dy-
namics (10), to apply weighted balanced truncation directly
on §(s). Thus, we denote g¢'(s) as the k-th order reduction
model, via frequency weighted balanced truncation, of the
coherent dynamics §(s). Again, DC gain mismatch can be
made negligible by properly choosing W (s).

As compared to Section III-A, the reduced model might
not be easy to interpret in practice. Nevertheless, the proce-
dure described below often leads to such an interpretation.

1) 2nd order reduction model: When k = 2, we wish
to interpret §5'(s) in terms of a single generator with a
first order turbine of the form in (7), with parameters
(m,d, 71, 7). Given

~c b18 + bo
921(5) = =

ass? 4+ a5+ ag

N(s)
D(s)’

obtained via the proposed method: write the polynomial
division D(s) = Q(s)N(s)+ R, where Q(s), R are quotient
and remainder, respectively. This leads to the expression

N(s) B 1
Q(s)N(s)+ R Q(s) + % ’

Here the first order polynomial ()(s) can be matched to
ms + cz, and % to % Provided the obtained constants
(m, d, i1, 7) are positive, the interpretation follows.

2) 3rd order reduction model: Similarly, when k& = 3,
the reduced model is g§'(s) = ggig, with N(s) of 2nd
order and D(s) of 3rd order. The polynomial division
D(s) = Q(s)N(s) + R(s), still gives a first order quotient
Q(s), which is interpreted as s + cz; the second order
transfer function ﬁ(z)) can be expressed, by partial fraction
expansion, as two first order turbines in parallel, provided
the obtained constants remain positive. We explore this in

the examples studied below.

~cl

gs (s) =

IV. NUMERICAL SIMULATIONS

We now evaluate the reduction methodologies proposed
in the previous section, and compare their performance with
the solutions proposed in [9], [10]. In our comparison,
we consider 5 generators forming a coherent group®. All
parameters are expressed in a common base of 100 MVA.

The test case: 5 generators, m = 0.0683(s?/rad), d =
0.0107. The turbine and droop parameters of each generator
are listed in Table 1. In all comparisons, a step change of
—0.1 p.u. is used.

TABLE I
DROOP CONTROL PARAMETERS OF GENERATORS IN TEST CASE

Index
Parameter 1 2 3 4 5

droop r;l (p.u.) 0.0218  0.0256  0.0236  0.0255 0.0192

time constant 7; (s) | 9.08 5.26 2.29 7.97 3.24

Remark. In the test case, we only aggregate 5 generators
and report all parameters explicitly in order to give more
insights on how the distribution of time constant 7; affects
our approximations. It is worth noting that similar behavior
is observed when reducing coherent groups with a much
larger number of generators. In particular, the accuracy found
below with 3rd order reduced models is also observed in
these higher order problems.

2More specifically, we assume sufficiently strong network coupling
among these generators such that the frequency responses are coherent.
The numerical simulation will only illustrate the approximation accuracy
with respect to the coherent response rather than individual ones.



As mentioned in the previous section, one of the draw-
backs of the balanced truncation method is that it does not
match the DC gain of the original system, which leads to
an error on the steady-state frequency. In our simulation, the
DC gain mismatch is effectively cancelled by picking proper
frequency weights for different reduced models. Due to space
constraints, we refer to [17] for the comparison between
reduced models with and without frequency weights.

A. Effect of Reduction Order k in Accuracy

We now evaluate the effect of the order of the reduction
in the accuracy. That is, we compare 2nd and 3rd order
balanced truncation on the turbine dynamics, g&°(s) (BT2-
tb), §i°(s) (BT3-tb), as well as balanced truncation on the
closed-loop coherent dynamics §§'(s) (BT2-cl), g§'(s) (BT3-
cl). The frequency weights are given by Wy, (s) = %
and W (s) = %, respectively. The step response and
step response error with respect to §(s) are shown in Fig. 2.

Step Step Error
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Fig. 2.  Comparison of all reduced order models by balanced truncation
It is clear that, compared to 2nd order models, 3rd order
reduced models give a very accurate approximation of g(s).
While it is not surprising that approximation models with
higher order (kK = 3) outperform models with lower order
(k = 2), we highlight that with only a 3rd order model one
can accurately approximate the entire aggregate response.
Moreover, when we examine the transfer function given
by Gi(s) (from input u in p.u. to output w in rad/s), we find
an interesting interpretation. That is, the turbine model for
g (s) is given by
0.02664s + 0.00566
52 +0.50465 + 0.04891°
which, after doing partial fraction expansion, gives

~ 0 0.0473 0.0684
T 26759s+1  T.64s+1°

The latter can be viewed as two turbines (one fast turbine
and one slow turbine) in parallel, and the choices of droop
coefficients for these two turbines reflects the aggregate
droop coefficients of fast turbines (generators 3 and 5) and
slow turbines (generators 1,2, and 4), respectively, in g(s).

gt,Q(s) =

Gt.2(s)

B. Reduction on Turbines vs. Closed-loop Dynamics

Another interesting observation that can also be derived
from Fig. 2 is that balanced truncation on the closed-loop
is more accurate than balanced truncation on the turbine.
To get a more straightforward comparison, we list in Table

II the approximation errors of all 4 models in Fig 2 using
the following metrics: 1) Lo-norm of step response error
e(t) (in rad/s"/2): ([ |e(t)[2dt)"/?; 2) Loo-norm of e(t)
(in rad/s): max;>¢ |e(t)|; 3) Hoo-norm difference between
reduced and original models (from input v in p.u. to output
w in rad/s).

TABLE 11
APPROXIMATION ERRORS OF REDUCED ORDER MODELS

Metric | Lo diff. Lo diff. .
Model (rad/sl/Q) (rad/s) Hoo diff.
Guggilam [10] 7.2956 3.8287 10.2748
Germond [9] 3.9594 1.9974 5.1431
BT2-tb 4.3737 2.1454 7.5879
BT2-cl 2.0376 0.9934 2.0381
BT3-tb 0.0967 0.0361 0.1315
BT3-cl 0.0704 0.0249 0.0317

We observe from Table II that for a given the reduc-
tion order, balanced truncation on the closed-loop dynamics
(@51 (s), g5'(s)) has smaller approximation error than bal-
anced truncation on turbine dynamics (§4°(s), g&°(s)) across
all metrics. Such observation seems to be true in general. For
instance, Fig. 3 shows a similar trend by plotting the same
configuration (metrics and models) of Table II for different
values of of the aggregate inertia 1, while keeping all other
parameters the same.

Second Order Model Third Order Model
. — — L, diff. —— L an

i \
— — Lo diff N — — L diff

o

Approximation error

0.05 0.1 0.15 0.2 0.25 0.05 0.1 0.15 0.2 0.25
Aggregated inertia (s%/rad) Aggregated inertia (s%/rad)

Fig. 3.  Approximation errors of second order models (left) and third
order models (right) by balanced truncation. Different metrics are shown
in different colors. Approximation errors of reduced order models §§b (s),
ggb(s) by reduction on turbine dynamics are shown in dashed lines;
Approximation errors of reduced order models §§l(s), ggl(s) by reduction
on closed-loop dynamics are shown in solid lines. The approximation errors
are in their respective unit shown in Table.Il

It can be seen from Fig. 3 that reduction on closed-
loop dynamics improves the approximation in every metric,
uniformly, for a wide range of aggregate inertia m values.
The main reason is that, when applying reduction on closed-
loop dynamics, the algorithm has the flexibility to choose the
corresponding values of inertia and damping to be different
from the aggregate ones in order to better approximate the
response. More precisely, from the reduced model we obtain

ol 4.9733s + 1
92 (S) = )
(0.067155 + 0.01464)(4.97335 + 1) + 0.1118

3For reduced order models obtained via frequency weighted balanced
truncation, there exists an extremely small but non-zero DC gain mismatch
that makes the £o-norm unbounded. We resolve this issue by simply scaling
our reduced order models to have exactly the same DC gain as §(s).



from which we can get the equivalent swing and turbine
model as

1 turbi 0.1118
urbine:
0.06715s + 0.01464°

The equivalent inertia and damping are m = 0.06715 and
d = 0.01464, which are different from the aggregate values
m,(i. Therefore, when compared to reduction on turbine
dynamics, reduction on closed-loop dynamics is essentially
less constrained on the parameter space, thus achieving
smaller approximation errors.

swing model:

C. Comparison with Existing Methods

Lastly, we compare reduced order models via balanced
truncation on the closed-loop dynamics, 5'(s), §§'(s), with
the solutions proposed in [9], [10]. The step responses and
the approximation errors are shown in Fig. 4 and Table. II.
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Fig. 4. Comparison with existing reduced order models

In the comparison, j§'(s) outperforms all other reduced
order models and it is the most accurate reduced order
model of §(s). It is also worth noting that §S5'(s) has the
least approximation error among all 2nd order models. In
general, such results suggest us that to improve the accuracy
of reduced order model of coherent dynamics of generators
g(s), we should consider: 1) increasing the complexity
(order) of the reduction model; 2) reduction on closed-loop
dynamics instead of on turbine dynamics.

V. CONCLUSION AND FUTURE WORK

This paper proposes a novel method to derive reduced
order models for coherent generators. We derive a novel
characterization of the aggregate response of coherent gen-
erators, i.e., g(s) = (X1, g;l(s))_l. We show that this
aggregate dynamics g(s) is asymptotically accurate as the
coupling between generators (characterized via As(L)) in-
creases. Our characterization not only explains why methods
to aggregate generators with homogeneous time constants
are accurate, but also explains the difficulties of aggregating
generators with heterogeneous turbine time constants, i.e.,
when the coherent dynamics ¢(s) becomes a high-order
transfer function. We solve this problem by leveraging tools
from control theory to develop a methodology that finds
accurate reduced order models of G(s). For {g;(s)}?_, given
by the 2nd order generator models, the numerical simulations
show that 3rd order models based on frequency weighted
balanced truncation on closed-loop dynamics are sufficient
to accurately recover §(s).

497335+ 1"

There are many possible extensions to the existing results.
Firstly, it has been shown in [13] that, whenever all the
generator transfer functions {g;(s)}?_, are proportional to
each other, §(s) is a perfect descriptor of of the Center of
Inertia (COI) frequency w = (1, miw;) / (Ooi my).
It is currently an on-going effort to show that §(s) is a
reasonable approximation of the dynamics of COI frequency
w even when the proportionality condition fails. Secondly,
further experimentation with higher-order generator models
as well as an extension of our analysis to multiple groups of
coherent generators is a subject of future research.
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