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Abstract— As power systems transit to a state of high
renewable penetration, little or no presence of synchronous
generators makes the prerequisite of well-regulated frequency
for grid-following inverters unrealistic. Thus, there is a trend
to resort to grid-forming inverters which set frequency directly.
We propose a novel grid-forming frequency shaping control that
is able to shape the aggregate system frequency dynamics into a
first-order one with the desired steady-state frequency deviation
and Rate of Change of Frequency (RoCoF) after a sudden
power imbalance. The no overshoot property resulting from the
first-order dynamics allows the system frequency to monoton-
ically move towards its new steady-state without experiencing
frequency Nadir, which largely improves frequency security. We
prove that our grid-forming frequency-shaping control renders
the system internally stable under mild assumptions. The
performance of the proposed control is verified via numerical
simulations on a modified Icelandic Power Network test case.

I. INTRODUCTION

Power system frequency control by storage units has been
a topic of extensive research over the last decade, especially
under the circumstances of the increasing penetration of re-
newable generation. Compared to conventional synchronous
generators, storage units have outstanding ramping capa-
bilities, which makes them an ideal choice for provision
of various types of frequency control services. At present,
special policies for storage participation in frequency control
services are being developed by system operators around
the world [1], [2]. For instance, the existing rules of the
Enhanced Frequency Response –program introduced by Na-
tional Grid in Great Britain– already assume the power-
frequency response with a gain of up to 100 p.u. [3], far
exceeding typical capabilities of synchronous generators (15-
25 p.u.). Thus, with the fall of the power system inertia and
primary frequency reserves due to the increased penetration
of renewables, energy storage systems have a potential to
become the major providers of frequency control services in
the future power systems.

So far, synthetic inertia and droop response by storage
dominate the scientific literature. These two services are
supposed to compensate for the falling system inertia and
primary reserves, and seem to be a logical solution under
existing grid codes. Typically, the storage units are supposed
to realize the power-frequency type of response while being
in the so-called grid-following mode. That is, inverters of the
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storage units measure the grid frequency and then inject (or
consume) power based on a particular control strategy. Such
an approach seems to be effective, yet the fact that there are
certain delays associated with inverter control systems poses
a threat to the frequency security. These delays are originated
from the frequency measurement system – typically a phase-
locked-loop (PLL), and also from inverter current control and
pulse-width modulation (PWM) systems. It is foreseeable
that, in the future low-inertia grid, these delays (from several
decades of milliseconds to hundreds of milliseconds) can
become fatal to frequency security. As an example, during
the already famous South Australian blackout of 2016, the
Rate of Change of Frequency (RoCoF) has hit the values
as high as 6 Hz s−1 [4]. Clearly, it becomes vital to develop
new methods for storage participation in frequency control
so as to minimize any possible response delays.

Grid-forming inverters [5] have recently attracted a lot
of attention from the research community, mainly in the
context of autonomous microgrids. Beneficially, this type of
inverters bring a broad range of new options for frequency
control. First, they naturally adjust power almost with no de-
lays (apart from some electro-magnetic transients in filters).
Second, new control options become available. For instance,
inertial response can be realized without any low-pass filters
(hence, even less delays), since in the grid-forming mode
this type of control becomes strictly causal. Third, inverters
in the grid-forming mode are much less susceptible to grid
voltage variations that often accompany frequency transients,
which provides more reliability to the system. In the present
manuscript, we explore a new approach for frequency control
realized by grid-forming inverters – a topic that is not yet
studied sufficiently by both power and control communities.

We propose a novel grid-forming frequency shaping con-
trol that is inspired by its grid-following counterpart pro-
posed in [6]. We first show that the proposed control is
able to fashion the aggregate system frequency dynamics,
a.k.a. Center of Inertia (CoI) Frequency, into a first-order one
with the desired steady-state frequency deviation and RoCoF
(following a sudden power imbalance). Notably, a first-order
system frequency evolution naturally avoids overshoot so
that the frequency deviation moves towards its steady-state
incrementally without experiencing frequency Nadir, which
is what we mean by “Nadir elimination” hereafter. Nadir
elimination largely improves the frequency security since it
reduces the risk of under-frequency load shedding. We then
show that the proposed control ensures the internal stability
of the overall system under mild conditions by using the
decentralized stability criterion developed in [7], where the
crux of the matter is to check a positive realness (PR) [8]
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Fig. 1. Block diagram of power network.

requirement. We finally confirm the good performance of
the proposed controller through numerical simulations on the
modified Icelandic Power Network test case [9].

II. POWER SYSTEM MODEL

We consider a power network composed of n buses
indexed by i ∈ N := {1, . . . , n} and transmission lines
denoted by unordered pairs {i, j} ∈ E ⊂ {{i, j} : i, j ∈
N , i 6= j}. As illustrated by the block diagram in Fig. 1,
the system dynamics are modeled as a feedback intercon-
nection of bus dynamics and network dynamics. The input
signals pin := (pin,i, i ∈ N ) ∈ Rn represent power injection
changes and the output signals ω := (ωi, i ∈ N ) ∈ Rn
represent the bus frequency deviations from its nominal
value. We now discuss the dynamic elements in more detail.

1) Bus Dynamics: The set of buses N is a disjoint union
of the set of generator buses G and the set of inverter buses
I, i.e., N = G ] I. The bus dynamics that map net power
bus imbalances uP := (uP,i, i ∈ N ) ∈ Rn to frequency
deviations ω can be described by the transfer function matrix
Ĥ(s) := diag(ĥi(s), i ∈ N ), where ĥi(s) is the transfer
function of either generator or inverter depending on whether
i ∈ G or i ∈ I.

a) Generator Dynamics: We consider generator dy-
namics that are composed of the standard swing dynamics
with turbine droop, i.e.,

ĥi(s) =

(
mis+ di +

r−1t,i

τis+ 1

)−1
, ∀i ∈ G , (1)

where mi > 0 denotes the aggregate generator inertia, di > 0
the aggregate generator damping, τi > 0 the turbine time
constant, and rt,i > 0 the turbine droop coefficient.

b) Inverter Dynamics: We consider grid-forming in-
verters, which set local grid frequency deviations ωi directly
as a function of their power output variation qr,i = −uP,i.
The detailed function depends on the control law ĥi(s)
employed to map uP,i to ωi for buses with i ∈ I.

2) Network Dynamics: The network power fluctuations
pe := (pe,i, i ∈ N ) ∈ Rn are given by a linearized model of
the power flow equations [10]:

p̂e(s) =
LB

s
ω̂(s) , (2)

where p̂e(s) and ω̂(s) denote the Laplace transforms of
pe and ω, respectively.1 The matrix LB is an undirected
weighted Laplacian matrix of the network with elements

LB,ij = ∂θj

n∑
k=1

|Vi||Vk|bik sin(θi − θk)
∣∣∣
θ=θ0

.

Here, θ := (θi, i ∈ N ) ∈ Rn denotes the angle deviation
from its nominal, θ0 := (θ0,i, i ∈ N ) ∈ Rn are the equilib-
rium angles, |Vi| is the (constant) voltage magnitude at bus
i, and bij is the line {i, j} susceptance.

3) Closed-Loop Dynamics: We are interested in the
closed-loop response of the system in Fig. 1 from the power
injection changes pin to frequency deviations ω, which can
be described by the transfer function matrix

T̂ωp(s) :=
ω̂(s)

p̂in(s)
=

(
In + Ĥ(s)

LB

s

)−1
Ĥ(s) . (3)

It is in general tough to analyze or tune the perfor-
mance of T̂ωp(s). Nevertheless, when the system is tightly-
connected [11], all buses exhibit a coherent response approx-
imated by

T̂ωp(s) ≈ ĥc(s)1n1Tn , (4)

where 1n ∈ Rn is the vector of all ones and

ĥc(s) :=

(∑
i∈G

ĥ−1i (s) +
∑
i∈I

ĥ−1i (s)

)−1
. (5)

Henceforth, we refer to ĥc(s) in (5) as the coherent dynamics
of the network.

III. GRID-FORMING FREQUENCY SHAPING CONTROL

Motivated by (4), we focus in this paper on shaping
the response ĥc(s), instead of (3). Thus, given generator
dynamics ĥi(s) for buses with i ∈ G, our goal is to
design inverter dynamics ĥi(s) for buses with i ∈ I such
that the coherent dynamics ĥc(s) is a first-order transfer
function with two degrees of freedom. Such a coherent
dynamics actually naturally ensures Nadir elimination as well
as tunable steady-state frequency deviation and RoCoF, as
the following theorem formally states.

Theorem 1 (Grid-forming frequency shaping control).
Consider generator dynamics ĥi(s), i ∈ G, as in (1). Then,
the grid-forming inverter control law

ĥi(s) =
1

mI,is+ dI,i − ĝI,i(s)
, ∀i ∈ I , (6)

1We use hat to distinguish the Laplace transform from its time domain
counterpart.



with mI,i, dI,i > 0, renders a first-order coherent dynamics

ĥc(s) =
1

as+ b
, (7)

with a, b > 0 given by

a :=
∑
i∈I

mI,i +
∑
i∈G

mi , (8a)

b :=
∑
i∈I

dI,i +
∑
i∈G

di , (8b)

if and only if ∑
i∈I

ĝI,i(s) =
∑
i∈G

r−1t,i

τis+ 1
. (9)

In this case, the frequency deviations will experience no
Nadir and the steady-state frequency deviations ω(∞) and
the RoCoF |ω̇|∞ will be determined by

ω(∞)≈
∑n
i=1 u0,i
b

1n and |ω̇|∞≈
∑n
i=1 u0,i
a

1n , (10)

when the system undergoes step power injection changes,
i.e., pin = u01t≥0 ∈ Rn with u0 ∈ Rn being any arbitrary
vector direction and 1t≥0 being the unit-step function.

Proof. Applying the desired coherent dynamics given by
(7) and the generator transfer function given by (1) to the
definition of coherent dynamics given by (5) yields

as+ b =
∑
i∈G

(
mis+ di +

r−1t,i

τis+ 1

)
+
∑
i∈I

ĥ−1i (s) .

Thus, the desired inverter control law should satisfy∑
i∈I

ĥ−1i (s)=

(
a−

∑
i∈G

mi

)
s+

(
b−
∑
i∈G

di

)
−
∑
i∈G

r−1t,i

τis+ 1
.

It is straightforward that the control law determined by (6),
(8), and (9) guarantees that the above condition hold. This
concludes the proof of the first statement.

Next, combining (3) and (4), we can see that the frequency
deviations ω̂(s) of the system T̂ωp in response to step power
injection changes p̂in(s) = u0/s is given by

ω̂(s) = T̂ωp(s)p̂in(s) ≈ ĥc(s)1n1Tn
u0
s

=

n∑
i=1

u0,i
ĥc(s)

s
1n , (11)

which can be interpreted as that the frequency deviation on
each bus reacts to the aggregate step power injection change
of size

∑n
i=1 u0,i with the coherent dynamics ĥc(s). Now,

applying initial and final value theorems to (11) with ĥc(s)
given by (7), we find that a and b satisfy the following
relations:

|ω̇|∞= lim
s→∞

s2ω̂(s) ≈ lim
s→∞

s2
∑n
i=1 u0,i

s(as+ b)
1n=

∑n
i=1 u0,i
a

1n ,

ω(∞)= lim
s→0

sω̂(s) ≈ lim
s→0

s

∑n
i=1 u0,i

s(as+ b)
1n =

∑n
i=1 u0,i
b

1n ,

which concludes the proof of (10).

Clearly, given specific requirements on steady-state fre-
quency and RoCoF, there are infinite ways of choosing mI,i

and dI,i to satisfy (8). A straightforward choice is to set

mI,i=
a−∑i∈Gmi

|I| and dI,i=
b−∑i∈G di

|I| ,∀i ∈ I , (13)

where |I| denotes the cardinality of I. Similarly, we propose
the following two strategies to meet (9).
• Matching individual turbine dynamics by individual

inverters: Assume the cardinality of I is no less than
that of G, i.e., |I| ≥ |G|. Let It ⊂ I such that there is
a bijection between It and G that maps each j ∈ G to
distinct i ∈ It by the following relation

ĝI,i(s) =
r−1t,j

τjs+ 1
.

∀i ∈ I \ It, simply set ĝI,i(s) = 0.
• Distributing the first-order reduced order model of the

aggregate turbine dynamics [12] over inverters: Let
zi ≥ 0,∀i ∈ I, be weighting parameters satisfying∑
i∈I zi = 1. Set

ĝI,i(s) = zi
r̃−1t

(τ̃ s+ 1)
, ∀i ∈ I ,

with r̃t and τ̃ being the turbine droop coefficient and
time constant, respectively, of a first-order reduced order
model of ∑

i∈G

r−1t,i

τis+ 1
.

Tuning ĝI,i(s) by distributing the first-order reduced order
model of the aggregate turbine dynamics over inverters seems
to be a more practical choice for two reasons. First, it gets
rid of the need to accurately estimate droop coefficients and
time constants of all individual turbines. Second, it relaxes
the cardinality assumption |I| ≥ |G|.
Remark 1 (Meeting frequency specifications (10)). Choos-
ing a and b to meet frequency specifications (10) naturally
asks for knowledge of the current network composition via
(8) and (9). The estimation of dynamic parameters, including
but not limited to inertia, is currently an active research
area [12]–[14]. This endorses our utilization of (10) for
safety specification. Arguably, whether (8) holds rigorously
for chosen a and b is not of major concern. We highlight that
the proposed control always improve RoCoF for any positive
mI,i and steady-state for large enough dI,i, ∀i ∈ I.

Remark 2 (Steady-state power output from grid-forming
frequency shaping control inverters). It is easy to show
from (1), (5), (6), and (8) that the steady-state power output
from the proposed inverters depends on the relation between
di for i ∈ I and r−1t,i for i ∈ G. Note that, if I =

∅, then ĥc(0) = 1/
∑
i∈G
(
di + r−1t,i

)
; otherwise ĥc(0) =

1/
(∑

i∈G di +
∑
i∈I dI,i

)
. Hence, as long as

∑
i∈I dI,i >∑

i∈G r
−1
t,i , the collection of inverters will provide power in



steady-state since the steady-state frequency deviation will
be reduced.

Remark 3 (Freedom of resources allocation). The coherent
dynamics ĥc(s) depends merely on the summation of the
inverse of grid-forming frequency shaping control transfer
functions ĥi(s) over i ∈ I, but not on the way of how
these control resources are distributed across the network.
Although, in our discussion above, control resources are
mainly equally distributed over inverters, there are actually
many other possibilities. Thus, a promising future research
direction will be the exploration of how to optimally allocate
control resources based on additional performance metrics
that may be of interest.

Considering the two choices of ĝI,i(s) suggested before,
we make the following assumption on the form of ĝI,i(s).

Assumption 1 (The form of ĝI,i(s)). ∀i ∈ I, ĝI,i(s) is in
one of the two forms below, i.e.,

ĝI,i(s) = 0 or ĝI,i(s) =
ρi

σis+ 1
, (14)

where ρi, σ > 0.

IV. STABILITY ANALYSIS

In this section, we show that the grid-forming frequency
shaping control given by (6) and (14) ensures internal
stability of the overall system in Fig. 1 under mild conditions
compatible with (9). To this end, we first review some
standard concepts that play a role in our stability analysis.

Definition 1 (H∞ space [15]). H∞ is the Hardy space
of functions F̂ (s) that are analytic in the open right-
half complex plane C+ with a bounded norm ‖F̂‖∞ :=
sups∈C+

|F̂ (s)|.
Definition 2 (Positive real [8]). A proper rational transfer
function matrix F̂ (s) is called positive real (PR) if:
• Poles of all elements of F̂ (s) are in the closed left-half

complex plane C−.
• For any ν ∈ R such that jν is not a pole of any element

of F̂ (s), the matrix F̂ (jν) + F̂T (−jν) is positive
semidefinite.

• For any ν ∈ R such that jν is a pole of some
element of F̂ (s), the pole jν is simple and the residue
matrix lims→jν (s− jν) F̂ (s) is positive semidefinite
Hermitian.

Here, j represents the imaginary unit that satisfies j2 = −1.

Remark 4 (Real rational subspace of H∞). The real
rational subspace of H∞ consists of all proper real rational
stable transfer matrices. Thus, in order to check whether a
proper real rational transfer function belongs to H∞ or not,
it is sufficient to check whether it is stable or not.

Remark 5 (Applications of positive realness). The positive
realness was originally introduced in electrical network
synthesis [16] and recently extended to mechanical network
synthesis [17]. Moreover, it has been applied a lot to stability
analysis for both linear and nonlinear systems.

We are now ready to conduct a stability analysis.

Theorem 2 (Internal stability under grid-forming fre-
quency shaping control). Let Assumption 1 hold. The sys-
tem T̂ωp with (1) and (6) is internally stable if dI,i > ρi,
∀i ∈ I with nonzero ĝI,i(s).

Proof. According to the decentralized stability criterion pro-
posed in [7], the system T̂ωp is internally stable if ∃τα, ε > 0
such that

γiĥi(s) ∈ Q , ∀i ∈ N , (15)

with

Q :=

{
q̂(s) ∈ H∞

∣∣∣∣ q̂(0) 6= 0,
s

s+ τα

(
1+

q̂(s)

s

)
−ε∈PR

}
,

γi := 2

n∑
j=1

V iV jbij ,

where V i and V j denote the maximum allowable voltage
magnitudes at endpoints of the line {i, j}. Thus, the key
is to check whether the condition in (15) holds for ĥi(s),
∀i ∈ N .

Combining (6) and (14), we know that ∀i ∈ I,

ĥi(s)=
1

mI,is+ dI,i
or ĥi(s)=

(
mI,is+ dI,i−

ρi
σis+ 1

)−1
.

We begin with the later case, from which we get

γiĥi(s) =
γi (σis+ 1)

mI,iσis2 + (mI,i + dI,iσi) s+ dI,i − ρi
. (16)

First, it is well-known that a second-order transfer function
is stable if all coefficients of its denominator have the same
sign. Thus, mI,i, dI,i, σi > 0, and dI,i > ρi, ∀i ∈ I,
guarantee the stability of (16), i.e., γiĥi(s) ∈ H∞. Second,
it is trivial to check that γiĥi(0) = γi/ (dI,i − ρi) 6= 0. Last
but not least, we need to show that ∃τα, ε > 0 such that

1

s+ τα

[
s+

γi (σis+ 1)

mI,iσis2+(mI,i + dI,iσi) s+dI,i−ρi

]
−ε∈PR ,

which is equivalent to

ξ3,is
3 + ξ2,is

2 + ξ1,is+ ξ0,i
η3,is3 + η2,is2 + η1,is+ η0,i

∈ PR (17)

with

ξ0,i := γi − (dI,i − ρi) ταε , (18a)
ξ1,i := (dI,i−ρi) (1−ε) + γiσi − (mI,i+dI,iσi) ταε , (18b)
ξ2,i := (mI,i + dI,iσi) (1− ε)−mI,iσiταε , (18c)
ξ3,i := mI,iσi (1− ε) , (18d)
η0,i := (dI,i − ρi) τα , (18e)
η1,i := (dI,i − ρi) + (mI,i + dI,iσi) τα , (18f)
η2,i := mI,i + dI,iσi +mI,iσiτα , (18g)
η3,i := mI,iσi . (18h)

We now show that (17) holds by performing the algebraic
test for positive realness proposed in [18]. That is, for the



nondegenerate case, i.e., (ξ0,i, ξ1,i, ξ2,i, ξ3,i)
T ∈ R4

≥0 and
(η0,i, η1,i, η2,i, η3,i)

T ∈ R4
≥0 \ 04 with 04 being the zero

vector of size 4, the condition (17) holds if and only if

(ξ1,i + η1,i) (ξ2,i + η2,i) ≥ (ξ0,i + η0,i) (ξ3,i + η3,i) . (19)

We check the nonnegativity of all coefficients in (17) first.
Suppose τα > 0 and 0 < ε < 1. Clearly, it follows
directly from mI,i, dI,i, σi > 0, and dI,i > ρi, ∀i ∈ I, that
ξ3,i, η0,i, η1,i, η2,i, η3,i > 0. Also, for any given τα > 0,
ξ0,i, ξ1,i, ξ2,i > 0 if ε is sufficiently small. Now we are ready
to check whether (19) holds or not. Applying (18) to the left
hand side of (19) yields

(ξ1,i + η1,i) (ξ2,i + η2,i) (20)
= [(dI,i − ρi) (2− ε) + γiσi + (mI,i + dI,iσi) τα (1− ε)]

[(mI,i + dI,iσi) (2− ε) +mI,iσiτα (1− ε)] .

Applying (18) to the right hand side of (19) yields

(ξ0,i + η0,i) (ξ3,i + η3,i) (21)
= [γi + (dI,i − ρi) τα (1− ε)]mI,iσi (2− ε) .

Through standard algebra, using (20) and (21), we get

(ξ1,i + η1,i) (ξ2,i + η2,i)− (ξ0,i + η0,i) (ξ3,i + η3,i)

= (dI,i − ρi) (mI,i + dI,iσi) (2− ε)2

+ (mI,i + dI,iσi)
2
τα (2− ε) (1− ε) + γidI,iσ

2
i (2− ε)

+ [γiσi + (mI,i + dI,iσi) τα (1− ε)]mI,iσiτα (1− ε)
≥ 0 ,

for any sufficiently small ε, which means (19) holds. Thus,
the required positive realness in (17) has been proved.
Therefore, γiĥi(s) ∈ Q in this case.

We then turn to the simple case where

γiĥi(s) =
γi

mI,is+ dI,i
. (22)

First, the stability of (22), i.e., γiĥi(s) ∈ H∞, follows from
the fact that the only pole of it is −dI,i/mI,i < 0. Second,
γiĥi(0) = γi/dI,i 6= 0. As for the required positive realness,
(22) can be considered as a special case of (16) with ρi = 0
and σi = 0. Plugging ρi = 0 and σi = 0 into (18) gives
ξ0,i, ξ1,i, ξ2,i, η0,i, η1,i, η2,i > 0, ξ3,i = η3,i = 0, and

(ξ1,i + η1,i) (ξ2,i + η2,i)− (ξ0,i + η0,i) (ξ3,i + η3,i)

= dI,imI,i (2− ε)2 +m2
I,iτα (2− ε) (1− ε) ≥ 0 ,

for any sufficiently small ε, which lead to the required
positive realness. Therefore, γiĥi(s) ∈ Q in this case.

Finally, from (1), we know that ∀i ∈ G,

γiĥi(s) =
γi (τis+ 1)

miτis2 + (mi + diτi) s+ di + r−1t,i

. (23)

Observe that (23) and (16) have the same form except for
some minor sign differences. Thus, the proof of γiĥi(s) ∈ Q
follows from a similar argument on (16). This concludes the
proof that the system T̂ωp is internally stable.

V. NUMERICAL ILLUSTRATIONS

In this section, we present simulation results that com-
pare the novel grid-forming frequency shaping control with
the popular grid-forming virtual inertia control [19]. The
simulations are conducted on the Icelandic Power Network
available in the Power Systems Test Case Archive [9].
Instead of the linearized network model used in the analysis,
the simulations are built upon a nonlinear setup including
nonlinear power flows and line losses. The original dynamic
model contains 35 generator buses and 83 load buses, whose
union is denoted as N . To mimic a low-inertia scenario, we
only keep 6 generator buses that are equipped with turbines
out of original 35 generator buses. Each of above 6 generator
buses is distinctly indexed by some i ∈ {1, . . . , 6} := G here.
We then randomly pick 6 buses from the set N \G as inverter
buses. Each of above 6 inverter buses is distinctly indexed
by some i ∈ {7, . . . , 12} := I here. The remaining buses
are left as load buses denoted by L := N \ (G ∪ I).

For every generator bus i ∈ G, the aggregate generator
inertia mi, the turbine time constant τi, and the turbine droop
coefficient rt,i are directly obtained from the dataset. In
addition, turbine governor deadbands are taken into account
such that turbines are only responsive to frequency deviations
exceeding ±0.036 Hz [20]. Given that the values of generator
damping coefficients are not provided by the dataset, we
set di = 1 p.u.. For every load buses i ∈ L, the damping
coefficient is chosen as 1/20 of the mean of all generator
damping coefficients, i.e., d̄ := (

∑
i∈G di)/|G|.

The inverter control law on buses i ∈ I is either grid-
forming virtual inertia (GF-VI) or grid-forming frequency
shaping (GF-FS). The GF-VI is modelled as

ĥi(s) =
1

mv,is+ dv,i
, ∀i ∈ I ,

where mv,i > 0 is the virtual inertia constant and dv,i > 0
is the virtual damping constant. ∀i ∈ I, we set mv,i =
m̄ := (

∑
i∈Gmi)/|G| and dv,i = d̄. As for the GF-FS in

(6), we only test the more practical tuning method suggested
in Section III, where ĝI,i(s) is obtained by distributing the
first-order reduced model of the aggregate turbine dynamics
over inverters. Thus, ∀i ∈ I, we set mI,i = m̄,

dI,i = d̄+
r̃−1t

6
and ĝI,i(s) =

r̃−1t

6 (τ̃ s+ 1)
,

which ensures that the RoCoF and steady-state frequency
deviations under GF-VI and GF-FS are the same so as to
provide a fair comparison. Note that, with this setting, the
stability condition required in Theorem 2 is satisfied since
dI,i = d̄+ r̃−1t /6 > r̃−1t /6 = ρi, ∀i ∈ I.

For the purpose of comparison, the frequency deviation
of the system without inverters when there is a step change
of −0.3 p.u. in power injection at a randomly picked bus
at time t = 1 s is provided in Fig. 2(a). The performances
of the system under the two inverter control laws are given
in Fig. 2(b) and Fig. 2(c). Some observations can be made.
First, the system under GF-FS almost exhibits a first-order
coherent dynamics as predicted by Theorem 1, while the
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(a) System without inverters, where inverters on buses i ∈ I are replaced by
loads with damping coefficients given by d̄/20 and the generator damping
is increased so as to exactly compensate the lost inverter damping
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(b) System with GF-VI inverters
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(c) System with GF-FS inverters

Fig. 2. Performance of the system when a −0.3 p.u. step change in power
injection is introduced to a randomly picked bus.

system under GF-VI experiences a deep Nadir. Second, Nadir
elimination via GF-FS only requires an acceptable amount
of control effort.

VI. CONCLUSIONS AND FUTURE WORK

A novel grid-forming frequency shaping control has been
proposed for inverter-based frequency control in low-inertia
power systems. The proposed control is able to force the
system frequency to exhibit first-order coherent dynamics
with specified steady-state frequency deviations and RoCoF
in response to sudden power injection changes. The key ben-
efit of a first-order frequency response is that the frequency
deviations gradually evolve towards the final equilibrium
without experiencing Nadir so as to improve frequency
security. The internal stability of the system is guaranteed
by the proposed control under mild conditions. The perfor-
mance of the proposed control is verified through numerical
simulations.

Future work include: (i) developing a more advanced
control to achieve a second-order coherent dynamics with de-
sired steady-state frequency deviations, RoCoF, and tunable
Nadir; (ii) investigating the problem of optimal allocation
of the proposed control resources over the network; (iii)

considering a more detailed inverter model to throw light
to device-level execution of the proposed control.
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