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Abstract— We study the problem of finding closed-form outer
approximations of Minkowski sums and products of sets in
the complex plane. Using polar coordinates, we pose this as
an optimization problem in which we find a pair of contours
that give lower and upper bounds on the radial distance at
a given angle. Through a series of variable transformations
we rewrite this as a sum-of-squares optimization problem.
Numerical examples are given to demonstrate the performance.

I. INTRODUCTION

Set operations on complex sets naturally arise in many
control applications [1], [2]. The most prominent is ro-
bustness analysis in which Nyquist-like criteria is used to
assess the stability of a control system. Given a plant P (s)
and associated controller C(s), the Nyquist stability criteria
involves plotting their product as s travels along a contour of
the right half plane [3]. If both plant and controller are known
exactly, the numerical evaluation of this criteria at a given
s involves a simple product of two points in the complex
plane. Uncertainty in the plant and controller leads to these
points becoming sets in the complex plane. Evaluation of
the stability criteria then involves determining all possible
complex products of points drawn from the two sets. Beyond
multiplication, forming parallel or feedback connections of
uncertain transfer functions leads to addition and division
operations applied to sets. Following [4], we refer to these
various operations on complex sets as Minkowski operations.

Minkowski operations on complex sets are relevant to
other domains including computer-aided design [5] and
geometric optics [6]. More recently, the authors of [7]
use Minkowski products in analyzing the convergence of
optimization algorithms. The authors introduce the Scaled
Relative Graph which visualizes nonlinear operators as sets
in the complex plane. Composition of these operators then
involves computing Minkowski products. This can be used
to provide formal proofs of convergence with geometric
arguments.

Closed-form expressions of the sets resulting from
Minkowski operations are not known except for cases in-
volving relatively simple sets. The most widely studied case
involves discs in the complex plane which are parameterized
by their center and radius. This is sometimes referred to as
complex circular arithmetic [8]. The results of [1], [6], [7]
are limited to operations involving such disks.
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When exact closed-form expressions are not attainable,
one may instead seek to find an outer approximation. When
done through manual derivation, this quickly becomes a
time-intensive process which requires dedicated efforts for
each class of contours considered. For example, in [1], the
authors develop an outer approximation for the sum of two
complex discs.

As an alternative to manual derivation, an optimization-
based approach offers the promise of automating this process.
A recent body of literature demonstrates the versatility of
sum-of-squares (SOS) optimization for approximating semi-
algebraic sets with polynomial functions. Applications in-
clude encapsulating 3D point clouds [9], bounding regions
of stability for PID controllers [10], and representing unions
of sets with a single polynomial [11]. The main contribution
of this paper is a method for finding outer approximations
of Minkowski operations of addition, multiplication, and
division of an arbitrary number of complex sets that belong
to a fairly general class.

The rest of the paper is organized as follows. Section II
sets up the problem and defines the Minkowski operations
considered. Section III develops SOS-based optimization
problems for finding outer approximations to the Minkowski
operations. Section IV provides examples of the resulting
outer approximations. Section V concludes the paper and
discusses future directions.

A. Notation

Let r = x+ iy be a complex number with magnitude r =√
x2 + y2 and angle θ = arctan(y/x). For ξ ∈ Rn,R[ξ] is

the set of polynomials in ξ with real coefficients. The subset∑
[ξ] = {p = p21 + p22 + . . . + p2n : p1, . . . , pn ∈ R[ξ} of

R[ξ] is the set of SOS polynomials in ξ. Z (Z+) is the set of
non-negative (positive) integers. For convenience, we define
the following sets of indices

H = {0, 1, . . . ,m} ,
J = {1, 2, . . . , n} ,
K = {n+ 1, n+ 2, . . . ,m} .

We use x[j] to denote element j of vector x ∈ Rn. Similarly
we use x[j:k] to denote the vector [x[j] x[j+1] . . . x[k]]

T

Instead of
n∑
j=1

x[j], we use
∑
j

x[j], when the dimension n

is implicit from the context.



II. PRELIMINARIES

A. Representation of Complex Sets

Let R denote the set of points in the complex plane
between two polar contours, rl(θ)eiθ and ru(θ)eiθ, evaluated
over the angle range θ ∈ [θl, θu], i.e.,

R = {reiθ|0 ≤ rl(θ) ≤ r ≤ ru(θ), θl ≤ θ ≤ θu} . (1)

Throughout we use the superscripts l and u to denote lower
and upper bounds. We use subscripts where appropriate to
distinguish between different sets of this form. Figure 1
provides an example of this notation for the following set:

R={reiθ|1+
1

4
sin θ≤r≤1.5− 1

4
cos θ, 0≤θ≤ π

3
} . (2)
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Fig. 1. Complex Set of the Form (1)

B. Minkowski Operations on Complex Sets

Consider a family of n sets of the form (1) and let S⊗
denote the set obtained by forming all possible complex
products. Following [6] we refer to this as the Minkowski
product

S⊗ = {
∏
j∈J

rj |rj ∈ Rj , j ∈ J } . (3)

Similarly, we define Minkowski division as the set obtained
by forming all possible pair-wise complex divisions between
two sets:

S÷ = {r1r−12 |r1 ∈ R1, r2 ∈ R2}. (4)

The Minkowski sum is defined as follows:

S⊕ = {
∑
j∈J

rj |rj ∈ Rj , j ∈ J } (5)

In this work we focus on two operations that often
arise in control applications. The first operation contains
multiplication and division as special cases:

S⊗⊗ = {
∏
j∈J

rj
∏
k∈K

r−1k , rj ∈ Rj , rk ∈ Rk, j ∈ J , k ∈ K}

(6)

The second operation extends the Minkowski sum to allow
inversion of some sets.

S⊕+
⊕−1 = {

∑
j∈J

rj +
∑
k∈K

r−1k |rj ∈ Rj , rk ∈ Rk, j ∈ J , k ∈ K}

(7)

C. Problem Setup

In general, closed-form expressions do not exist for the
sets S• resulting from the Minkowski operation denoted by
•. Here we focus on finding a set R• of the form (1) that
provides an outer approximation of S•. A natural objective
is to minimize the volume (area) of R• subject to the set-
containment condition S• ⊆ R•. This can be posed as an
optimization problem:

min
αl,αu

∫ θu

θl
ru(θ, αu)− rl(θ, αl)dθ

s.t. S• ⊆ R•
(8)

where

R•={reiθ|0≤rl(θ, αl)≤r≤ru(θ, αu), θl≤θ≤θu}. (9)

Assumption 1. We assume that each contour r(θ, α) is a
function of cos(θ) and sin(θ) with associated real coefficient
vector α, i.e.,

r(θ, α) = α[1] + α[2] cos(θ) + α[3] sin(θ) + α[4] cos(θ)2 + . . .

=
∑
j

α[j](cos θ)uj (sin θ)vj , α[j] ∈ R, uj , vj ∈ N.

We will sometimes refer to this parameterization as a
polynomial of cos θ and sin θ, as introducing independent
variables for each would yield a polynomial expression. This
parameterization readily admits an upper bound which we
will utilize.

Lemma 1. Let r(θ, α) be a polynomial function of cos(θ)
and sin(θ) with associated real coefficient vector α. The
following inequality holds:

r(θ, α) ≤ r̄ (10)

where:
r̄ =

∑
j

∣∣∣α[j]

∣∣∣ (11)

Proof. Note the following inequality:∣∣∣α[j](cos θ)m(sin θ)n
∣∣∣ ≤ ∣∣∣α[j]

∣∣∣ ∀θ ∈ R,m, n ∈ N (12)

The inequality for the polynomial follows immediately.

Assumption 2. We assume that any set which is inverted has
a known, positive lower bound for rl(θ) which we denote rl.

rl(θ) ≥ rl > 0 ∀ θ ∈ R (13)

Assumption 2 ensures the set does not contain the origin
and therefore its inverse is bounded. The sets resulting from
the introduced Minkowski operations are then bounded as
well. This is important as seeking an outer approximation of
an unbounded set would be trivially infeasible. Knowledge



of the constant rl allows us to calculate an upper bound as
given by the following lemma.

Lemma 2. Let r be a point in S⊕+
⊕−1 as defined by (7).

Let Assumptions 1 and 2 hold. Then the following inequality
holds:

|r| ≤
∑
j∈J

(r̄uj ) +
∑
k∈K

(rlk)−1, ∀ r ∈ S⊕+
⊕−1 . (14)

Proof. Given that r ∈ S⊕+
⊕−1 , there exists points rj ∈

Rj , rk ∈ Rk, j ∈ J , k ∈ K such that the following equality
holds:

|r| =

∣∣∣∣∣∣
∑
j∈J

rj +
∑
k∈K

r−1k

∣∣∣∣∣∣
≤
∑
j∈J

∣∣rj∣∣+
∑
k∈K

∣∣∣r−1k ∣∣∣
≤
∑
j∈J

(r̄uj ) +
∑
k∈K

(rlk)−1 Lem. 1, Asm. 2

(15)

Assumption 3. Let Θ denote the set of angles in S•:

Θ = {arctan(r)|r ∈ S•} (16)

We assume that we know Θ exactly so that we can specify
the lower and upper bounds θl, θu in our objective.

The range of possible angles is easy to calculate for the
product and division of complex sets as angles simply add
and subtract. For Minkowski sums of complex sets the set of
possible angles is not easily calculated. We discuss methods
for doing so in section III-C.

D. Generalized S-Procedure and SOS Optimization

In the development that follows, we will be interested in
solving optimization problems of the following form:

min
αh

j∑
h=1

cThα
h

s.t. g1(ξ1, α
1)d1(ξ1)− f1(ξ1) ≥ 0 ∀ ξ1 ∈ X1

g2(ξ2, α
2)d2(ξ2)− f2(ξ2) ≥ 0 ∀ ξ2 ∈ X2

...

gj(ξj , α
j)dj(ξj)− fj(ξj) ≥ 0 ∀ ξj ∈ Xj

(17)

where

Xh = {ξh|hh,k(ξh) ≥ 0, k = 1, . . . , nh}. (18)

In each constraint, ξj ∈ Rnj is a vector of free variables and
gj(ξj , α

j), dj(ξj), fj(ξj), hj,k(ξj) ∈ R[ξj ] are polynomials
of these variables. The coefficients αj of gj(ξj , α

j) are
explicitly listed to highlight that they are decision variables.
The objective is linear with each cj being a given weighting
of the decision variable vector αj . The constraints consist
of non-negativity conditions that must hold for all ξj in
the semi-algebraic set Xj which is described by polynomial

inequalities of ξj . This can be seen as a set-containment
condition.

The generalized S-procedure provides an inequality that
is sufficient for the set-containment condition to hold [12].
Introducing non-negative multipliers sj,k(ξk, β

j,k) we can
replace the set-containment condition with a simple non-
negativity condition.

min
αh,βj,k

j∑
h=1

cThα
h

s.t. g1(ξ1, α
1)d1(ξ1)− f1(ξ1)

−
∑
k

s1,k(ξ1, β
1,k)h1,k(ξ1) ≥ 0 ∀ ξ1 ∈ Rn1

s1,k(ξ1) ≥ 0 ∀ ξ1 ∈ Rn1 , k ∈ 1, . . . , n1

g2(ξ2, α
2)d2(ξ2)− f2(ξ2)

−
∑
k

s2,k(ξ2, β
2,k)h2,k(ξ2) ≥ 0 ∀ ξ2 ∈ Rn2

s2,k(ξ2) ≥ 0 ∀ ξ2 ∈ Rn2 , k ∈ 1, . . . , n2
...

gj(ξj , α
j)dj(ξj)− fj(ξj)

−
∑
k

sj,k(ξj , β
j,k)hj,k(ξj) ≥ 0 ∀ ξj ∈ Rnj

sj,k(ξj) ≥ 0 ∀ ξj ∈ Rnj , k ∈ 1, . . . , nj
(19)

The left hand side of each inequality j describes a polyno-
mial of free variables ξj with decision variables αj and βj,k

entering linearly. We can replace each non-negativity con-
straint with the more restrictive condition that the polynomial
be a SOS polynomial. The resulting semidefinite program
can be solved readily.

Although we only show inequality constraints above, any
equality constraint h(ξ) = 0 can be represented by two con-
straints h(ξ) ≥ 0, h(ξ) ≤ 0. In the development that follows
we focus on transforming problems of interest into the form
of (17). Once in this form, the subsequent application of the
S-procedure and SOS conditions is straight-forward and due
to page limits we do not explicitly include this step.

III. OUTER APPROXIMATIONS OF MINKOWSKI
OPERATIONS ON COMPLEX SETS

We first develop a method for finding outer approximations
of the set S⊗⊗ , a generalization of the Minkowski product
and division for complex sets. Through a series of variable
transformations we pose this as a polynomial optimization
problem with set-containment constraints. The S-procedure
and SOS-based sufficient conditions for non-negativity are
then used to obtain a convex optimization problem. A similar
approach is followed to develop a method for outer approx-
imating the set S⊕+

⊕−1 which generalizes the Minkowski
sum of complex sets.



A. Minkowski Product and Division of Complex Sets
We seek to minimize an outer approximation of S⊗⊗ . This

can be posed as follows:

min
αu,αl

∫ θu

θl
ru(θ, αu)− rl(θ, αl)dθ

s.t. rl(θ0, αl) ≤

∣∣∣∣∣∣∣∣∣
∏
j∈J

rje
iθj

∏
k∈K

rke
iθk

∣∣∣∣∣∣∣∣∣ ≤ r
u(θ0, α

u)

∀(θ[0:m], r[1:m]) ∈ X

(20)

where X is the semi-algebraic set:

X ={(θ[0:m], r[1:m]) : θ0 =
∑
j∈J

θj −
∑
k∈K

θk,

rlj(θj) ≤ rj ≤ ruj (θj), θ
l
j ≤ θj ≤ θuj , j ∈ J

rlk(θk) ≤ rk ≤ ruk (θk), θlk ≤ θk ≤ θuk , k ∈ K}

(21)

Given that we know the bounds θl, θu, we can evaluate the
integral within our objective to eliminate the dependency on
θ. This yields a linear objective in terms of the coefficients.∫ θu

θl
ru(θ, αu)− rl(θ, αl)dθ = cTl α

l + cTuα
u

We introduce intermediate variables φj such that the sum of
angles defining θ0 can be written as the sum of two angles.

φj =

m∑
h=j

chθh (22)

where

ch =

{
+1, if h ∈ J
−1, if h ∈ K

(23)

The angle summation can then be replaced with the
following semi-algebraic set:

Z = {(θ[0:m], φ[2:m−1])|θ0 = c1θ1 + φ2,

φ2 = c2θ2 + φ3,

. . .

φm−2 = cm−2θm−2 + φm−1,

φm−1 = cm−1θm−1 + cmθm}

(24)

We then obtain a superset of Z by replacing each equality
constraint with two constraints involving cos and sin.

Y = {(θ[0:m], φ[2:m−1])|
cos θ0 = cos(c1θ1 + φ2) ,

sin θ0 = sin(c1θ1 + φ2) ,

cosφ2 = cos(c2θ2 + φ3) ,

sinφ2 = sin(c2θ2 + φ3) ,

. . .

cosφm−2 = cos(cm−2θm−2 + φm−1) ,

sinφm−2 = sin(cm−2θm−2 + φm−1) ,

cosφm−1 = cos(cm−1θm−1 + cmθm) ,

sinφm−1 = sin(cm−1θm−1 + cmθm)}

(25)

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Fig. 2. Constraints for Angle Interval

Remark 1. Y is a superset of Z as the trigonometric
identities still hold when angles have multiples of 2π added.
Given we are working with periodic functions (Assumption
1) this is a subtlety of no consequence.

Recall the following trigonometric identities involving
angles a and b with signs ca, cb ∈ {−1, 1}:

cos(caa+ cbb) = cos a cos b− cacb sin a sin b , (26)
sin(caa+ cbb) = ca sin a cos b+ cb cos a sin b . (27)

Applying these identities we can write the constraints defin-
ing Y in terms of cos θh, sin θh, cosφl, sinφl. We then elim-
inate the trigonometric terms by introducing new variables
along with a quadratic equality constraint.

zcθh = cos(θh), zsθh = sin(θh), z2cθh + z2sθh = 1

∀h ∈ 0 ∪ J ∪ K
zcφl

= cos(φl), zsφl
= sin(φl), z

2
cφl

+ z2sφl
= 1

∀ l = 2, . . . ,m− 1

Next, we rewrite the angle constraints θlh ≤ θh ≤ θuh
in terms of zcθh , zsθh . In the new variables, the points
satisfying the angle interval constraint can be represented
by the intersection of the quadratic equality constraint and a
halfplane that passes through the points (cos θlh, sin θ

l
h) and

(cos θuh, sin θ
u
h). Figure 2 visualizes this for θl = 0, θu = π

3 .
Defining the midpoint angle θmh = 1

2 (θlh + θuh), it can be
shown that the halfplane is the set of points (zcθh , zsθh)
satisfying:

achzcθh + ashzsθh ≥ bh (28)

where

ach = cos θmh , a
s
h = sin θmh , bh = cos θmh cos θuh + sin θmh sin θmh

(29)
With this change of variables, the optimization problem



is rewritten as follows:

min
αl,αu

cTl α
l + cTuα

u

s.t. rl(zcθ0 , zsθ0 , α
l)
∏
k∈K

rk ≤
∏
j∈J

rj

ru(zcθ0 , zsθ0 , α
u)
∏
k∈K

rk ≥
∏
j∈J

rj

∀(zcθ[0:m]
, zsθ[0:m]

, zcφ[2:m−1]
,zsφ[2:m−1]

, r[1:m]) ∈ W

(30)

where:

W = {(zcθ[0:m]
, zsθ[0:m]

, zcφ[2:m−1]
, zsφ[2:m−1]

, r[1:m]) :

zcθ0 = zcθ1zcφ2 − c1zsθ1zsφ2

zsθ0 = c1zsθ1zcφ2 + zcθ1zsφ2

zcφl
= zcθlzcφl+1

− clzsθlzsφl+1
, l ∈ 2, . . . ,m− 2

zsφl
= clzsθlzcφl+1

+ zcθlzsφl+1
, l ∈ 2, . . . ,m− 2

zcφm−1
= zcθm−1

zcθm − cm−1cmzsθm−1
zsθm

zsφm−1
= cm−1zsθm−1

zcθm + cmzcθm−1
zsθm

z2cθh + z2sθh = 1 h ∈ 0, . . . ,m

z2cφl
+ z2sφl

= 1 l ∈ 2, . . . ,m− 1

rlh(zcθh , zsθh) ≤ rh ≤ ruh(zcθh , zsθh) h ∈ 1, . . . ,m

achzcθh + ashzsθh ≥ bh h ∈ 1, . . . ,m}

(31)

This is a polynomial optimization problem with set-
containment constraints of the form (17). Following the
process outlined in section II-D it is easily turned into a
semidefinite program involving SOS conditions. Due to page
limits we do not list the SOS program.

B. Minkowski Sum of Complex Sets

Calculating the Minkowski sum of complex sets is more
involved as we must convert between polar and Euclidean
coordinates. We develop an outer approximation of (7) in
which points belonging to sets Rk, k ∈ K, are inverted. The
resulting Euclidean coordinates (x, y) are given by:

xj = rj cos θj , yj = rj sin θj , ∀ rj ∈ Rj , j ∈ J ,
xk = cos θk/rk, yk = − sin θk/rk, ∀ rk ∈ Rk, k ∈ K.

We sum the Euclidean coordinates to obtain the point
(x0 + iy0) ∈ S⊕+

⊕−1 . We then must determine the angle
θ0 and non-negative radial distance of this point. This is
achieved with the following equations:

x0 =
∑

h∈J∪K

xh, y0 =
∑

h∈J∪K

yh

x0 = r0 cos θ0, x0 = y0 cos θ0, r0 ≥ 0

The optimization problem is then:

min
αl,αu

∫ θu

θl
ru(θ, αu)− rl(θ, αl)dθ

s.t. rl(θ0, αl) ≤ r0 ≤ ru(θ0, α
u) ,

∀ (θ[0:m], r[0:m], x[0:m], y[0:m]) ∈ X

(32)

where X is the semi-algebraic set

X = {(θ[0:m], r[0:m], x[0:m], y[0:m]) :

r0 ≥ 0, r0 cos θ0 = x0, r0 sin θ0 = y0

x0 =
∑

h∈J∪K

xh, y0 =
∑

h∈J∪K

yh

rj cos θj = xj , rj sin θj = yj∀ j ∈ J
rkxk = cos θk, rkyk = − sin θk∀ k ∈ K

rlj(θj) ≤ rj ≤ ruj (θj), θ
l
j ≤ θj ≤ θuj ,∀ j ∈ J

rlk(θk) ≤ rk ≤ ruk (θk), θlk ≤ θk ≤ θuk ,∀ k ∈ K}

(33)

Following a similar procedure as before, we first integrate
the objective to eliminate the dependence on θ. We then
introduce new variables for the trigonometric terms:

zcθh = cos θh, zsθh = sin θh

z2cθh + z2sθh = 1 ∀h ∈ 0 ∪ J ∪ K

With this change of variables the optimization problems is
rewritten as:

min
αl,αu

cTl α
l + cTuα

u

s.t. rl(zcθ0 , zsθ0 , α
l) ≤ r0

ru(zcθ0 , zsθ0 , α
u) ≥ r0

∀ (zcθ[0:m]
, zsθ[0:m]

, r[0:m], x[0:m], y[0:m]) ∈ W

(34)

where W is the semialgebraic set:

W = {(zcθ[0:m]
, zsθ[0:m]

, r[0:m], x[0:m], y[0:m]) :

r0 ≥ 0, x0 =
∑

h∈J∪K

xh, y0 =
∑

h∈J∪K

yh

r0zcθ0 = x0, r0zsθ0 = y0,

rjzcθj = xj , rjzsθj = yj , ∀ j ∈ J
rkxk = zcθk , rkzsθk = −yk, ∀ k ∈ K

z2cθh + z2sθh = 1 h ∈ 0, . . . ,m

rlh(zcθh , zsθh) ≤ rh ≤ ruh(zcθh , zsθh) h ∈ 1, . . . ,m

achzcθh + ashzsθh ≥ bh h ∈ 1, . . . ,m}

(35)

As before, applying the S-procedure followed by replacing
the non-negativity conditions with SOS constraints yields a
semidefinite optimization problem.

C. Determining Angle Interval

As stated in Assumption 2, we assume that we know
the exact set of angles Θ contained in the set S•. For
the Minkowski sum this is not readily calculated. Here we
outline an iterative approach for conservatively bounding Θ
within an interval Θ̃ = [θ̃l, θ̃u] such that Θ ⊆ Θ̃.

We initialize our estimate to Θ̃ = [0, 2π]. If Θ is a strict
subset of this interval, then there exists an angle ψ such
that ψ ∈ Θ̃ \ Θ. Along this angle, there is no element of
S• constraining rl(ψ, αu) and ru(ψ, αu). Thus our objective
which minimizes ru and maximizes rl would be unbounded.
To resolve this, we add known upper and lower bounds, r̄l

and ru, on rl(·, αl) and ru(·, αu), respectively. For ru(θ, αu)
we use the trivial lower bound of zero. For rl(θ, αl) we



make use of the bound provided by Lemma 2. To enforce
these bounds, we augment problem (32) with the following
conditions:

rl(zcθ0 , zsθ0 , α
l) ≤

∑
j∈J

(r̄uj ) +
∑
k∈K

(rlk)−1 ∀ (zcθ0 , zsθ0) ∈ V

ru(θ, αu) ≥ 0 ∀ (zcθ0 , zsθ0) ∈ V
(36)

where
V = {(zcθ0 , zsθ0)|z2cθ0 + z2sθ0 = 1}. (37)

We solve this augmented problem and then examine the
bounding contours rl(θ, αl, ru(θ, αl. For any angles ψ at
which the lower bound exceeds the upper bound (rl(ψ) >
ru(ψ)), we can conclude that ψ 6∈ Θ and update our angle
interval Θ̃ appropriately. We then repeat this process, solving
the augmented problem with the tighter approximation of Θ,
examining the resulting bounds to further tighten the interval
Θ̃ and repeating. We stop once the returned bounds satisfy
(rl(θ) ≤ ru(θ)∀ θ ∈ Θ̃).

As an aside we note that determining the range of angles
in S⊕+

⊕−1 can also be solved via global optimization
methods using branch-and-bound techniques. Our initial ex-
perience with this approach yielded solutions in under a
second for the examples considered herein.

IV. EXAMPLES

A. Minkowski Product

Consider the following set formed from Minkowski prod-
ucts and division:

S = R1
⊗R2

⊗
(R3

⊗R4)−1 (38)

where each set Rj is as shown in Figure 1.

Rj={reiθ|1+
1

4
sin θ≤r≤1.5− 1

4
cos θ, 0≤θ≤ π

3
}

j = 1, 2, 3, 4
(39)

By inspection, the possible angles of S are Θ ∈ [− 2π
3 ,

2π
3 ].

Limiting ourselves to 4th-order contours we solve the SOS
form of (30). Figure 3 plots the resulting contour along with
points sampled from S. Empirically the outer approximation
is close to the true contour suggested by the sampled points.

B. Minkowski Sum

Using the same sets as in the previous example, we now
find an outer approximation for the following Minkowski
sum

S = R1
⊕R2

⊕
(R3)−1

⊕
(R4)−1 (40)

We do not know the possible range Θ of S so we use
the iterative approach previously outlined. For the given set
operation, it is straight-forward to obtain an upper bound on
r of 2 × 1.75 + 2 × (0.75)−1 = 6.1667. We impose the
conditions rl(θ) ≤ 6.1667 and ru(θ) ≥ 0. We then solve the
SOS form of (34) conservatively assuming θl = 0, θu = 2π
and augmenting the problem with the bounds of (36). Figure
4 plots the resulting bounds as a function of θ. Examining the
plot it is seen that rl(θ) ≤ ru(θ) for θ ∈ [−27.1◦, 40.6◦].

Fig. 3. Outer Bound of Minkowski Product and Ratio (38)
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Fig. 4. Iterative Bounds of Minkowski Sum

Outside of this interval, rl(θ) approaches its upper bound
of 6.1667 and ru(θ) approaches its lower bound of zero.
We again solve the problem now with θl = −27.1◦, θu =
40.6◦ and obtain the dashed lines in Figure 4. With the
new bounds, rl(θ) ≤ ru(θ) for θ ∈ [−27.1◦, 40.4◦]. We
again solve the problem with our slightly tightened angle
interval. The resulting bounds have rl(θ) ≤ ru(θ) for all
θ ∈ [−27.1◦, 40.4◦]. At this point we can no longer improve
our estimate of Θ so we stop. Figure 5 plots the resulting
contour along with points sampled from S. Empirically the
outer approximation is close to the true contour suggested
by the sampled points.

C. Implementation Details

All examples were solved using MOSEK [13] in conjunc-
tion with the SOS module of YALMIP [14].

V. CONCLUSIONS
In this work we developed optimization-based methods

for finding outer approximations of Minkowski sums and



Fig. 5. Outer Bound of Minkowski Sum (40)

products of complex sets. We make few assumptions about
the shape and number of these sets. Thus our method is
quite general. By introducing some variable transformations,
we posed this problem as a sum-of-squares optimization
problem which is readily solved by off-the-shelf solvers.
Examples provided empirical evidence that the resulting
approximations are good. In future work we plan to consider
cases in which complex sets are more naturally described
using Euclidean coordinates. In addition we plan to leverage
these results to develop new methods for certifying the robust
stability of networked dynamic systems using Nyquist-like
criteria [15].
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