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Learning to Act Safely with Limited Exposure and Almost Sure Certainty
Agustin Castellano, Hancheng Min, Juan Bazerque, and Enrique Mallada

Abstract— This paper aims to put forward the concept that
learning to take safe actions in unknown environments, even
with probability one guarantees, can be achieved without
the need for an unbounded number of exploratory trials,
provided that one is willing to navigate trade-offs between
optimality, level of exposure to unsafe events, and the maximum
detection time of unsafe actions. We illustrate this concept in
two complementary settings. We first focus on the canonical
multi-armed bandit problem and seek to study the intrinsic
trade-offs of learning safety in the presence of uncertainty.
Under mild assumptions on sufficient exploration, we provide
an algorithm that provably detects all unsafe machines in an
(expected) finite number of rounds. The analysis also unveils a
trade-off between the number of rounds needed to secure the
environment and the probability of discarding safe machines.
We then consider the problem of finding optimal policies for a
Markov Decision Process (MDP) with almost sure constraints.
We show that the (action) value function satisfies a barrier-
based decomposition which allows for the identification of
feasible policies independently of the reward process. Using
this decomposition, we develop a Barrier-learning algorithm,
that identifies such unsafe state-action pairs in a finite expected
number of steps. Our analysis further highlights a trade-off
between the time lag for the underlying MDP necessary to
detect unsafe actions, and the level of exposure to unsafe
events. Simulations corroborate our theoretical findings, further
illustrating the aforementioned trade-offs, and suggesting that
safety constraints can further speed up the learning process.

Index Terms— Uncertain systems, randomized algorithms,
Markov processes, iterative learning control, optimal control

I. INTRODUCTION

Motivated by the success of machine learning in achieving
super human performance, e.g., in vision [2], speech [3], and
video games [4], there has been recent interest in developing
learning-enabled technology that can implement highly com-
plex actions for safety-critical autonomous systems, such as
self-driving cars, robots, etc. However, without proper safety
guarantees such systems will rarely be deployed. There is
therefore the need to develop analysis tools and algorithms
that can provide such guarantees during, and after, training.
Efforts to provide such guarantees can be broadly grouped
in two lines of work with somehow complementary success.
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The first approach leverages model-based techniques,
based on Lyapunov stability [5] and robust control [6], to
provide (worst-case) safety guarantees based on a nominal
model and assumptions on uncertainty and disturbances [7]–
[17]. In such settings, safety is usually specified in terms of
stability, robust stability, or the existence of some invariant or
control invariant sets. Notably, such methods provide highly
reliable guarantees, allowing the system to operate without
ever violating safety specifications. However, they require an
a priori fixed specification of the safety notion, e.g., a set or
stability, that is implicitly encoded by the controller/agent.
Moreover, due to the worst case approach to uncertainty,
these methods tend to suffer poor performance in the average
case.

The second line of work, in which our work naturally lies
in, seeks to provide safety guarantees in model-free settings
by adding constraints to the learning problem [18]–[29].
In this way, safety specifications can be further extended,
beyond typical control notions, at the expense of introducing
uncertainty, and risk, in the safety guarantees. This lack of
certainty is usually mitigated in different ways. For example,
one can introduce soft constraints to primal methods [19],
[24], or use primal-dual methods [25], [26], that lead to
asymptotic constraint satisfaction. Such methods can indeed
provide asymptotic a.s. guarantees, but at the expense of
incurring unbounded violations of the constraints during
training [26], an undesired feature for most control problems.
A different approach consists on introducing an initial stage
in the algorithm, to be executed before the optimization
starts, that aims at learning an approximation of the safety
region [22], [28]. This approach naturally leads to high
probability guarantees on constraint satisfaction (based on
Probably Approximately Correct (PAC) sample complexity
bounds). However, due to the need to limit the running
time of the safety assessment stage, it is impossible to
provide probability one guarantees, which can in turn lead
to catastrophic consequences.

The above discussion implicitly illustrates a complemen-
tary set of challenges that one needs to overcome to develop
reliable model-free learning algorithms for safety critical
applications.
• Exposure to Failures. Due to the desire for limited con-

straint violations, one is required to perform the learning
task with limited information of the unsafe region.

• Outcome Uncertainty. Along the same line, making deci-
sions with finite number of samples intrinsically requires
one to accept the possibility of making errors.

• Assessment with Deferred Consequences. The real-time na-
ture of these problems leads to settings where information
is revealed sequentially and in a delayed manner.
The goal of this paper is to develop a novel approach
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for model-free safety assessment, considering the comple-
mentary benefits of the aforementioned techniques, with
the aim of overcoming these challenges. To achieve this
goal, we argue and demonstrate that, due to the logical
(safe/unsafe) nature of safety assessment, the problem of
finding safe actions is fundamentally different from that of
finding the best action. As a result, safety assessment can
be achieved more efficiently and independently of the opti-
mization task. This motivates the need of a separate (logical)
signalling mechanism–akin to the reward in multi-armed
bandits (MAB) [30] and reinforcement learning (RL) [31]–
dedicated to inform, either directly or indirectly, about a
violation of the safety specification. We call such signal here
a damage indicator, denoted by Dt ∈ {0, 1}.

Using this newly introduced safety signal Dt we aim at
developing safety assessment algorithms that lead to actions
At that satisfy a safety specifications of the from Dt = 0
a.s. or P (Dt = 1) ≤ µ (conditioned on the action) for
some nominal safety margin µ > 0. Our approach leads
to algorithms that can be implemented sequentially and
concurrently with other optimization algorithms (such as Q-
learning [32] or its variants [33], [34]), can achieve prob-
ability one guarantees on the safety specification, and only
incur a finite number of constraint violations. Achieving such
remarkable outcome naturally requires to navigate trade-offs
across multiple requirements. We illustrate such trade-off by
developing safety assessment methods for two exemplary
cases.

We first consider the problem of safety assessment in
MABs, where the safety specification is given by some
µ ≥ 0 (Section II). While the case µ = 0 is rather
straightforward (Section II-A), when µ > 0 requires to trade-
off between quickly discarding unsafe arms and accurately
estimating P (Dt = 1|At). We thus make the conscious
choice of focusing on prioritizing the rapid (finite time)
detection of unsafe actions almost surely, which naturally
requires to (mildly) give up optimality by possibly discarding
some safe arms (Section II-B). We then move towards the
problem of RL for Constrained Markov Decision Processes
(Section III), wherein we seek to develop algorithms that
can rapidly discard unsafe state-action pairs. In this setting
decisions can have safety consequences that may only be
realized after some time. By focusing on the almost sure
safety specification (µ = 0), we develop a decomposition
framework (Section III-A), based on hard barrier functions,
that allows to decouple the safety assessment problem from
the problem of maximizing rewards. This leads to a novel
barrier learner algorithm, that is able to identify all state-
action pairs that lead to unsafe events (Section III-B). Our
analysis further shows the explicit role that the delayed
consequences have in the learning process (Section III-C).
Numerical illustrations, in Section IV verify our theoretical
analysis and further suggest that can further aid in the
learning process.

II. MULTI-ARMED BANDITS

We consider the setting of a stochastic bandit problem,
with K arms indexed as a ∈ {1, . . . ,K}. In the standard

bandit problem an agent aims to devise an arm-pulling policy
to optimize a reward. Here, we switch focus to the safety
problem, for which we consider that pulling some the arms
could be unsafe and lead to system damage or harm to the
agent. Specifically, at each round t ≥ 1 the agent pulls an
arm At and obtains a binary-valued damage indicator Dt.
If Dt is zero (one) this means that the action led to a safe
(unsafe) result. We have that E[Dt|At] = µAt . Each machine
is therefore characterized by its safety parameter µa. The
greater this value is, the more likely it is that pulling the
machine will lead to an unsafe event. The goal of the player
in this setup is to identify all the machines that are µ-unsafe,
which is hereby defined.

Definition 1. Given a safety specification µ ∈ [0, 1), a
machine a is said to be µ-unsafe if and only if µa > µ.
Accordingly, a machine is µ-safe whenever µa ≤ µ.

The safety requirement µ is a design parameter, and is the
only data that the player has access to along with the signal
Dt. We will look at two distinct cases:
A) Flawless setting (µ = 0): in this setting we only

allow for flawless machines, and therefore would like
to identify every machine whose probability of damage
is non-zero (albeit very small).

B) Relaxed setting (µ > 0): In this setting we want to
identify unsafe machines with µa > µ. This means that
we allow “somewhat defective” machines.

We will focus first on the flawless setting, as it will allow us
to build intuition on how to devise a proper Algorithm and
on the values of metrics involved. The solution in this case is
straightforward: let the agent pull each arm and avoid arms
that have led to an unsafe event Dt = 1. For the second case,
we will rely on building a one-sided Sequential Probability
Ratio Test (SPRT) [35], that will make us try each machine
a sufficient number of times; if the machine is unsafe, the
test will eventually decide on that hypothesis.

In both cases, our goal is the same. We want to detect all
the machines that are unsafe. To that end, let us define at
each round t ≥ 1 the candidate safe set At, which contains
all the arms that haven’t been classified as unsafe.

Assumption 1. Given a safety requirement µ, there are M
µ-unsafe machines, where 1 ≤ M ≤ K. Without loss of
generality we will assume the the first M arms to be µ-
unsafe (i.e. µa > µ, a = 1, . . . ,M )

Definition 2. For each round t ≥ 1 we define the candidate
safe set At as the set containing all the arms that have not
been classified as unsafe.

Set At is initialized as A0 = {1, . . .K}, and sequentially
trimmed down whenever an arm is found to be unsafe.
To select which arm to pull at each round, we consider
probability distribution ψ, and select actions according to
At ∼ ψ(At).

Although we recognize that detecting unsafe machines
necessarily implies pulling from those unsafe arms, we want
to have a notion of whether our decision rules choose
machines in an efficient manner. It is with that goal in mind
that we define at each round the exposure.



3

Definition 3. For t ≥ 1 we define the exposure at round t
as

Et =

t∑
τ=1

1 (µAτ > µ) . (1)

This metric counts the rounds in which µ-unsafe machines
have been pulled, regardless of whether they led to an unsafe
event or not. Notice that the exposure inherits the randomness
of the sequence of decisions At. Our results throughout this
section will deal then with the expected value E[Et]. Ideally
a good player would be one that attains low exposure—
meaning it selects unsafe machines infrequently.

Remark 1. We define the notion of exposure in the sense
of “the condition of being unprotected” as its definition
states. This marks a stark contrast with the notion of regret,
typically studied in Bandit settings [30], where unbounded
regret is unavoidable [36].

At time t, the number of times an arm a has been pulled
is

Na(t) =

t∑
τ=1

1(Aτ = a) . (2)

The following lemma states that the expected exposure
coincides with the sum of the expected number of pulls over
the unsafe machines.

Lemma 1. E[Et] =
∑M
a=1 E[Na(t)]

Proof.

E[Et]=

t∑
τ=1

E [1 (µAτ >µ)]=

t∑
τ=1

K∑
a=1

P (Aτ =a)1 (µa>µ)

=

t∑
τ=1

M∑
a=1

P (Aτ =a)=

M∑
a=1

t∑
τ=1

E [1(Aτ =a)]=

M∑
a=1

E[Na(t)]

Definition 4. The conservation ratio Cε,t is the proportion
of safe machines kept at time t

Cε,t =
|At ∩ A?ε|
|A?ε|

(3)

where At is the candidate safe set and A?ε is the set
containing all arms that are (µ− ε)-safe: A?ε = {a ∈ A :
µa ≤ µ − ε}, where 0 ≤ ε � 1 is a non-negative slack
parameter.

This ratio gives the proportion of (µ − ε)-safe machines
present in the candidate safe set at each time step. (Cε,t close
to 1 is desirable). The need for the conservativeness given
by ε is that we want to detect unsafe machines in finite
time. This will become clearer when we discuss the relaxed
setting, for now it suffices to assume ε = 0.

A. Flawless setting (µ = 0)

We start with the simplest case imaginable, which is that
of a rigorous safety requirement of µ = 0. In this setting, any
machine that has positive probability of giving damage Dt =
1 should be deemed unsafe. The strategy for discarding these

machines is pretty straightforward: at each round t select an
arm At following strategy ψ(At) and, if the resulting damage
is Dt = 1, classify the machine as unsafe by taking it out
of the candidate safe set At. This decision rule, summarized
in Algorithm 1 has two interesting properties: i) all unsafe
machines are eventually found, and ii) no safe machines are
discarded along the way, as the the following theorem states.

Algorithm 1: Flawless Inspector
Input: Number of arms K, strategy ψ
/* Initialize candidate safe set */
A0 = {1, . . . ,K}
for t = 1, 2, . . . , do

Pick arm At ∼ ψ(At)
Observe damage Dt

if Dt = 1 then
/* trim unsafe arm */
At ← At−1 \ {At}

end
end

Theorem 1. Under Algorithm 1, for every strategy ψ, the
following (in)equalities hold with probability 1 for all t ≥ 1:

E[C0,t] = 1 (4)

E[Et] ≤
M∑
a=1

1

µa
(5)

Proof. The proof for the safety ratio C0,t is immediate,
since Algorithm 1 can never discard a safe machine (the
event Dt = 0 has zero probability when pulling from a
flawless arm). For the remaining equalities, let Na be the
number of pulls of the a-th arm needed to classify it as
unsafe, which is well-defined for a = 1, . . . ,M . We have
that Na ∼ Geometric(µa), hence

E[Na] =

∞∑
n=1

P (Na = n)n =

∞∑
n=1

µa(1− µa)n−1n =
1

µa
(6)

Furthermore, for all t we have Na(t) ≤ Na. Taking expec-
tation on both sides and using (6) yields E[Na(t)] ≤ 1

µa
.

Combining this with the result of Lemma 1 gives (5).

We now state that under a uniform strategy, Algorithm 1
finds all unsafe machines in expected finite time.

Theorem 2. Consider the uniform strategy ψunif which at
each round t samples uniformly from the candidate safe set
At. Let T be the time it takes for Algorithm 1 to detect all
the unsafe machines under ψunif. Then

E[T ] ≤ K

µlow

(
M∑
k=1

1

k

)
,

where µlow ≤ µa, ∀a = 1, . . . ,M .

Proof. The proof is in the Appendix A.
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Remark 2. The uniform strategy (ψunif) in Theorem 2 is
only assumed to simplify exposition. A finite bound on E[T ]
can still be obtained whenever ψunif is replaced by any
strategy that samples all actions from the set At with positive
probability.

B. Relaxed setting (µ > 0)

We next consider the relaxed setting, in which we allow
machines that give damage Dt with (possibly low) probabil-
ity µ. This means that in order to identify unsafe machines
we can no longer discard them at first sign of damage, but
must rather pull from each arm and observe multiple unsafe
events in order to be confident that the machine in question
is defective. To check whether an arm a is defective or not
we build the following hypothesis test Ha

(Ha)

{
H0 : µa ≤ µ− ε
H1 : µa > µ

(7)

in which the alternative hypothesis is that the machine is
µ-unsafe, and where we introduce the slack parameter ε ∈
(0, µ]. In order to solve (7), we will devise a Sequential
Probability Ratio Test (SPRT) which is based on Abraham
Wald’s seminal work [35] with the following properties:

1) If the machine is unsafe —meaning H1 is true— the
test will terminate in expected finite pulls E[Na].

2) If the machine is safe, the probability that the test —
incorrectly— decides on H1 is upper bounded by α,
where α ∈ (0, 1) is the failure tolerance of the test.

3) Lowering failure tolerance α necessarily implies more
pulls Na to detect unsafe machines.

4) If µa ∈ (µ− ε, µ) the test is inconclusive.
5) The test is one-sided: it only decides on H1. Similar to

Algorithm 1, whenever a machine is classified as unsafe
it is not pulled any longer.

For a fixed arm a, let da(t) = {Dτ : Aτ = a, τ ≤ t}
be the (binary) sequence of outcomes of the a-th machine
up to time t. The sequential probability ratio test relies on
computing the log-likelihood ratio at each time step:

Λa(t) = log
fµ−ε(da(t))

fµ(da(t))
, (8)

where fµ and fµ−ε are the likelihood that the sequence
da(t) under H0), and H1, respectively. The test terminates
by declaring H1 whenever

Λa(t) ≥ log(1/α) . (9)

By means of sufficient statistics, Λa(T ) can be written
as a function of both k, the total number of outcomes of
Dt = 1 and Na(T ), the total number of pulls up to time
T . Considering a single-machine, the testing procedure is as
follows. For each round t ≥ 1 pull the arm and (given µ
and ε) update the log-likelihood in (8). If (9) holds, then
terminate the test, otherwise observe another sample Dt and
repeat.

The following two lemmas state the desired behavior of
the SPRT. Namely, that i) if the machine is unsafe, the SPRT
will declare H1 with probability 1, ii) if the machine is safe,

the SPRT will (incorrectly) declare H1 with probability less
than or equal to α, and iii) the time of detection for unsafe
machines is finite in expectation, and is well characterized
in terms of the design parameters µ, ε and α.

Lemma 2. For a fixed arm a of parameter µa, consider the
sequential probability ratio test defined by (7)–(9), where µ,
ε and α are given. Then:

i) If H1 is true, the test will (correctly) declare H1 with
probability 1.

ii) If H0 is true, the test will keep going indefinitely with
probability ≥ 1− α

Proof. The proof is in the Appendix B.

Lemma 3. For a fixed arm a of parameter µa, consider the
sequential probability ratio test defined by (7)–(9), where µ,
ε and α are given. Then, if the alternative H1 is true, the
test is expected to terminate after Ta steps, with

E[Ta] ≤ 1 +
log (1/α)

kl(µ, µ− ε)
, (10)

where kl(µ, µ−ε) is the Kullback-Leibler divergence between
Bernoulli distributions

kl(µ, µ− ε) = µ log
µ

µ− ε
+ (1− µ) log

1− µ
1− µ+ ε

. (11)

Proof. The proof is in the Appendix B.

Remark 3. The preceeding lemma elucidates the need of the
slack parameter ε: separating the two limiting distributions
enables termination of the test under H1 in finite time.
It also unveils two fundamental trade-offs. Firstly, if the
distance between the limiting distributions increases (by
enlarging ε), then the test detects unsafe machines faster.
However, it becomes inconclusive over a larger proportion
of the machines, since nothing can be assured in the region
µa ∈ (µ − ε, µ). Secondly, α can be increased in order to
detect unsafe machines faster, though this comes at the cost
of declaring H1 for a larger proportion of the safe machines.

We build Algorithm 2 based on this SPRT, and state its
main properties in the following theorem.

Algorithm 2: Relaxed Inspector
Input: Number of arms K, strategy ψ
requirement µ, slack ε, tolerance α
/* Init. safe set and ratios */
A0 = {1, . . . ,K}, Λa = 0 ∀a = 1, . . . ,K
for t = 1, 2 . . . do

Pick arm At ∼ ψ(At)
Observe damage Dt

/* Update log-likelihood ratio */

ΛAt ← ΛAt + log
fµ(Dt)
fµ−ε(Dt)

if ΛAt ≥ log(1/α) then
/* SPRT terminates, trim unsafe

arm */
At ← At−1 \ {At}

end
end
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Theorem 3. Under Algorithm 2, for every strategy ψ, the
following inequalities hold with probability 1 for all t:

E[Cε,t] ≥ 1− α (12)

E[Et] ≤M
(

1 +
log (1/α)

kl(µ, µ− ε)

)
(13)

where kl(µ, µ−ε) is the Kullback-Leibler divergence between
Bernoulli distributions (11).

Proof. The proof follows from Lemma 2 and Lemma 3.

In the same spirit as for the flawless setting, we now state
that under a uniform strategy Algorithm 2 finds all unsafe
machines in expected finite time.

Theorem 4. Consider the uniform strategy ψunif which at
each round t samples uniformly from the candidate safe set
At. Let T be the time it takes for Algorithm 2 to detect all
the unsafe machines under ψunif. Then

E[T ] ≤M(K −M + 1)

(
1 +

log(1/α)

kl(µ, µ− ε)

)
.

Proof. The proof can be found in the Appendix C.

We end this section by uniting the flawless and relaxed
settings, arguing that Algorithm 1 can be seen as a particular
case of the SPRT used in Algorithm 2.

Proposition 1. Given fixed µ ∈ (0, 1) and ε = βµ. When
β → 1−, Algorithm 2 with any α > 0 reduces to Algorithm
1.

Proof. The flawless setting only allows for perfectly safe
machines, discarding any arm at first sign of damage Dt = 1.
We will show that this coincides with a Sequential Probabil-
ity Ratio Test that compares H0 : µa ≤ 0 vs. H1 : µa > µ.
This will hold for any µ ∈ (0, 1) and for all α > 0.

For a fixed µ, consider the test defined in (7) with ε = βµ.
As β → 1−, the null hypothesis H0 becomes µa = 0. We
show that the log-likelihood ratio Λa(t) goes to infinity at
first sign of damage, thus declaring H1 and terminating the
SPRT. A sufficient statistic for computing the log-likelihood
ratio Λa(t) is counting the k outcomes of Dτ = 1 in a total of
t pulls. Then Λa(t) = k log µ

µ−ε +(t−k) log 1−µ
1−µ+ε . Writing

ε = βµ, Λa(T ) = t log 1−µ
1−µ(1−β) + k log 1−(1−β)µ

(1−β)(1−µ) −→
β→1−

∞ ∀k > 0. Then the SPRT decides on the alternative H1 at
first sign of damage, no matter how small α is.

III. ASSURED REINFORCEMENT LEARNING

This section builds on the insights given by the MABs
to detect and discard unsafe policies in the context of RL.
In this new context, unsafe policies are those which lead
to a probable constraint violation, either immediately or
further along the trajectory. We focus on the Flawless setting
(µ = 0), identifying all unsafe actions with a nonzero
probability of damage. We start this section by defining
the RL setup, including the underlying Markov Decision
Process and the constrained value maximization problem to
solve. Then, we proceed to write an equivalent unconstrained
problem by adding a hard-barrier index to the cost, which

acts as a constraint enforcer. This equivalent formulation
allows us to derive a separation principle together with
our novel barrier function, which provides a certificate of
safety for the behavior policy. The barrier function stands
alone, satisfying a Bellman Equation that describes the set
of feasible safe policies. Naturally, this Bellman Equation
yields a stochastic Barrier learner algorithm, that uses the
damage signal observed from the system to detect and reveal
unsafe policies. We finish this section showing that all unsafe
policies can be detected in expected finite time, and present
an Assured Q-learning Algorithm that makes use of the
Barrier-learner.

A. Value function decomposition

With the goal of defining our constrained RL problem,
consider a Markov Decision Process M with finite state
space S, finite action space A, a reward set R, and a damage
indicator belonging to {0,1}. A transition kernel p, specifies
the conditional transition probability p(s′, r, d | s, a) :=
P (St+1 = s′, Rt+1 = r,Dt+1 = d | St = s,At = a), from
state s ∈ S to state s′ ∈ S resulting in a reward r ∈ R and
a damage indicator d, all under action a ∈ A. Constraints
must be satisfied so that the agent does not receive damage
along the trajectory, which amounts to imposing

E

[ ∞∑
t=0

γtDt+1

∣∣ S0 = s

]
≤ 0. (14)

In this context, our goal is to maximize the value function
for each possible starting state while ensuring the constraint
satisfaction in the long run, i.e.,

V ∗(s) := max
π

Eπ

[ ∞∑
t=0

γtRt+1

∣∣ S0 = s

]
(15)

s.t.: Eπ

[ ∞∑
t=0

γtDt+1

∣∣ S0 = s

]
≤ 0. (16)

where both expectations are taken over the trajectories in-
duced by π. While this is a case of a cumulative constraint
in expectation which could be put in Lagrangian form (see
e.g., [25] [37]), we take an alternative approach that will
lead to finite time detection. Notice that because Dt is, by
definition, non-negative, we can decouple this constraint and
force each damage indicator to be null, that is,

E

[ ∞∑
t=0

γtDt+1

∣∣ S0 = s

]
≤ 0 ⇐⇒ Dt+1 = 0 a.s. ∀t.

(17)

Notice that the factor γt in the constraint of (16) is
unsubstantial. On the other hand, its presence in the cost is
retained to ensure that the sum of rewards remains bounded.
However, γ could be also set to one in the cost of (16) if
the number of times the system outputs a non-zero reward is
finite, as it would be the case of an MDP with an almost-sure
absorbent state with zero damage.
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Given (17), we proceed to rewrite (15)–(16) as an equiv-
alent problem with one constraint per time period,

V ∗(s) := max
π

Eπ

[ ∞∑
t=0

γtRt+1

∣∣ S0 = s

]
(18)

s.t.: Dt+1 = 0 a.s. ∀t (19)

We chose to work with (18)–(19) as our most general con-
strained RL problem to solve, although we could specialized
it further by shaping the transition kernel p(s′, r, d | s, a). For
instance, we could define a feasible set F ⊂ S×A×S so that
by setting P (Dt+1 = 0

∣∣ (St, At, St+1) ∈ F) = P (Dt+1 =
1
∣∣ (St, At, St+1) /∈ F) = 1 we would model the damage

indicator as being activated whenever the transition triplet
(St, At, St+1) transgresses F . This particular case could be
further specialized to the case where the damage indicator
is turned on whenever St+1 breaks off from a feasible set
FS ⊂ S, for instance if a navigation agent crashes to a wall,
or if the action At violates a feasible set FA ⊂ A; e.g., when
exceeding a maximum force.

Returning to our general formulation in (19), let us define
the value function V π for a specific policy π, in which the
constraints are embedded inside the expectation.

V π(s) := Eπ

[ ∞∑
t=0

(
γtRt+1 + I [Dt+1]

) ∣∣ S0 = s

]
(20)

where the hard barrier index function I [·] takes the form

I [Dt+1] = log (1−Dt+1) =

{
0 if Dt+1 = 0

−∞ if Dt+1 = 1
(21)

so that it is null when the transition is safe and takes the
value −∞ in the event of an unsafe transition. Being (21)
unbounded, expectations are defined in the sense of the
Lebesgue integral for functions in the extended real line [38].

The proposed value function definition (20) will prove
useful in two senses: firstly, we will show that maximizing
(20) is the same as (18)–(19). Secondly, the additional term
in (20) will allow for a barrier-based decomposition of the
value function, which will aid in the learning of constraints.

Lemma 4 (Equivalence). Problem (15) is equivalent to the
maximization of (20), that is

max
π

Eπ

[ ∞∑
t=0

(
γtRt+1 + I [Dt+1]

) ∣∣ S0 = s

]
(22)

Proof. If a policy π0 is unfeasible for Problem (18)–(19),
then ∃t : P (Dt+1 = 1) > 0. This non-zero probability
renders the expected value in (22) to −∞ for π0. Conversely,
if a policy π1 is feasible for (22) then it must necessarily hold
that Dt+1 = 0 almost surely ∀t, and hence π1 is feasible
for (18)–(19) as well. Therefore the feasible sets of both
problems coincide. Lastly, for every feasible policy it must
hold log (1−Dt+1) = 0 ∀t, in which case the function being
maximized is the same. Then the optimal sets of the two
problems coincide.

While solving (18)–(19) is of our utmost interest, we have
just shown that, to this end, we can solve (22) instead. In

what follows we will take this one step further, and show
that (20) admits a barrier-based decomposition and can be
cast as the sum of two value functions: one that checks only
whether the policy in consideration is feasible (which will
be the main focus of this work) and one that optimizes the
return, provided the policy is feasible. The main idea behind
this decoupling being that the search for feasible policies
will be, in practice, an easier task to undergo.
To this end we define an auxiliary hard-barrier value func-
tion Hπ that will relate to V π .

Hπ(s) = Eπ

[ ∞∑
t=0

log (1−Dt+1)
∣∣ S0 = s

]
(23)

We proceed similarly for the action-value function Qπ and
its barrier counterpart Bπ

Qπ(s, a)=Eπ

[ ∞∑
t=0

(
γtRt+1 + I [Dt+1]

)∣∣S0 = s,A0 = a

]

Bπ(s, a)=Eπ

[ ∞∑
t=0

log (1−Dt+1)
∣∣S0 = s,A0 = a

]
(24)

Searching for policies that are optimal for (22) for each
possible state is our original goal. By contrast, a problem
such as maximizing (23) is one that seeks to find safe
policies, in the sense that they are feasible for (22). The main
idea underpinning our work is that we can jointly work on
optimizing (23), which reduces the search over the policy
space, while at the same time maximizing the return present
in (22). In the following Theorem we establish a fundamental
decomposition relationship between the value functions and
their auxiliary counterparts.

Theorem 5 (Barrier-based decomposition). Assume rewards
Rt+1 are bounded almost surely for all t. Then, for every
policy π

V π(s) = V π(s) +Hπ(s) (25)

Qπ(s, a) = Qπ(s, a) +Bπ(s, a) (26)

Proof. We shall prove (25) only, since the proof for (26) is
alike. The following identities hold, as explained below.

V π(s) = Eπ

[ ∞∑
t=0

(
γtRt+1 + log (1−Dt+1)

) ∣∣ S0 = s

]

= Eπ

[ ∞∑
t=0

(
γtRt+1 + log (1−Dt+1)

) ∣∣ S0 = s

]
(27)

+ Eπ

[ ∞∑
t=0

log (1−Dt+1) | S0 = s

]
(28)

To show that V π(s) can be separated in (27) and (28),
first suppose policy π is feasible (for Problem (22)). This
necessarily implies that Dt+1 = 0 a.s. ∀t, which makes
the second term in (27) vanish. Conversely, suppose that the
policy in consideration is infeasible. This together with the
fact that rewards are bounded almost surely yields V π(s) =
−∞, which is the same value attained by both (27) and
(28).
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The preceding result implies non-trivial consequences. If
the learning agent can interact with the environment and have
access to rewards Rt+1 and queries of whether a transition
has been safe (i.e. Dt+1 = 0), then it can separately learn
both Qπ(s, a) and Bπ(s, a). This is discussed in the next
remark.

Remark 4 (Properties of the optimal barrier function B∗).

B∗(s, a) = max
π

Bπ(s, a)

= max
π

Eπ

[ ∞∑
t=0

log (1−Dt+1)
∣∣ S0 = s,A0 = a

]
(29)

By definition, the entries of Bπ(s, a) will either be 0 or
−∞ for any policy π. Having B∗(s, a) = −∞ means
that if starting at s with action a and then following any
policy, there is an (albeit small) non-zero probability that an
unsafe event will be encountered. Conversely, if B∗(s, a) = 0
then following the optimal policy guarantees we will always
ensure constraints while starting from state s and action a.
Furthermore, if B∗ is available, then any policy that chooses
an action such that B∗(s, a) = 0 is a feasible policy for that
state. If, on the other hand, the policy chooses an action
which leads to B∗(s, a) = −∞, then that policy can be
deemed unsafe immediately, and can be discarded. Notice,
however, that this is a particular property of the optimal
function B∗: for a sub-optimal π, Bπ can be padded with
lots of −∞ in places where B∗ has zeros. Intuitively, this
would mean that the sub-optimal policy starting from (s, a)
makes unsafe transitions along its trajectory. In this sense,
having access to the optimal action-value function B∗ helps
constraint the search of any other known algorithms (such as
Q-Learning) to only feasible policies. This becomes a joint
work of optimizing the return (using one of many possible
techniques), while learning the feasible set of actions at the
same time.

B. Barrier learning

Given the previous discussion on the properties of the
Barrier function B(s, a), we will focus on the feasibility
problem aiming to learn the optimal B?(s, a) from data.
Before that, we state the following optimality condition, in
the standard form of the Bellman’s equations.

Theorem 6 (Bellman equation for B?(s, a)). The optimal
barrier function satisfies

B?(s, a) = E
[
I [Dt+1] + max

a′∈A
B?(s′, a′)

∣∣ St = s,At = a

]
.

(30)

Proof. It follows from Proposition 4.1.1 in [39, pp. 217] with
the value function being minimized, and assuming possibly
unbounded but non-negative costs C(St, At) = −I[Dt+1].

Besides providing a certificate for optimality, the Bellman
Equations for B?(s, a) hint towards a stochastic iterative
algorithm to optimize (29) from data, the same way the Q-
learning algorithm is derived from the standard unconstrained

value function [39]. We will elaborate on this stochastic algo-
rithm next. As introduced in (29), our goal is to learn a safe
policy π with an associated optimal Barrier function B?(s, a)
that encodes the trajectories that satisfy the constraints at all
time steps almost surely. For this purpose we first devise
an iterative algorithm that attempts to reach a fixed point
satisfying (30), that would be

Bk+1(s, a) = E
[
I [Dt+1] + max

a′∈A
Bk(s′, a′)

∣∣ St = s,At = a

]
.

(31)

Next, we appeal to the stochastic approximation machinery
[40] to drop the unknown expectations yielding a data driven
version of (31). The resulting stochastic update is given next.

Algorithm 3: barrier update

Input: B-function and (st, at, st+1, dt+1) tuple
Output: Barrier-function B

B(st, at)← B(st, at)+log(1−dt+1)+max
a′

B(st+1, a
′)

return B

The update in Algorithm 3 incorporates the information
carried in dt+1, which signals whether the constraint has
been violated or not during the transition from time t to
t+1. Moreover, the update does not only consider immediate
violations, but also the future effect of the action at that
is summarized in the second term maxa′ B(st+1, a

′). This
bootstrapping mechanism leverages on stationarity to collect
damage information from all previous state transitions, and
summarize it in B(st+1, a

′) which predicts long-run future
effect of the state-action pairs at time t + 1. Thus, by
repeating the update in Algorithm 3 with new data coming
from successive system interactions, an agent can synthesize
the whole information about all past constraint violations in
the barrier function B(s, a) for unveiling the set of unsafe
policies.

We leave the details of this iterative algorithm and its
performance guarantees for the next subsection. Now that
we have introduced this data-driven strategy for securing the
environment, let us turn back our attention to the implications
of our decomposition result in Theorem 5. The identity (26)
can be used to embed the safety information provided by
B(s, a) in the Q-function Q(s, a). Hence, we identify that
the condition Q(s, a) = −∞ is equivalent to B(s, a) = −∞
and this propagates information about safety from successor
states. For those which do satisfy the constraints we have
B(s, a) = 0, and then Q(s, a) will carry the information of
the observed rewards. The following update is complemen-
tary to Algorithm 5, and amounts to the standard Q-learning
algorithm for maximizing rewards at safe pairs of states and
actions.

Next we specify how to use Algorithm 3 to ensure safety,
and demonstrate the sample complexity of the learning
process. After that, we combine algorithms 3 and 4 with
the goal of safely maximizing rewards. We will borrow the
well-known convergence results of Q-learning [41] together
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Algorithm 4: q update

Data: Step size η, discount factor γ
Input: Functions Q, B, and (st, at, st+1, rt+1)
Output: Q-function

Q(st, at)←(1−η)Q(st, at)+η
(
rt+1+γmax

a′
Q(st+1, a

′)
)

Q(st, at)←B(st, at) +Q(st, at)

return Q

with our separation principle in Theorem 5 to provide
performance guarantees for our novel Assured Q-learning
algorithm.

C. Performance analysis of Barrier-Learner
First, we consider a simple barrier learner algorithm

where one can query on any state-action pair (s, a)
and obtain sampled transition (s, a, s′, d) according to
P (S1 = s′, D1 = d|S0 = s,A0 = a). The barrier learner is
shown in Algorithm 5. Our analysis shows that the expected
queries/samples required until all unsafe state-action pairs
are detected is finite, given that any non-zero transition
probability is lower bounded by µ.

Algorithm 5: Barrier Learner Algorithm
Data: Constrained Markov Decision Process M
Result: Optimal action-value function B∗

Initialize B(0)(s, a) = 0,∀(s, a) ∈ S ×A
for t = 0, 1, · · · do

Draw
(st, at) ∼ Unif({(s, a) : B(t)(s, a) 6= −∞})

Sample transition (st, at, s
′
t, dt) according to

P (S1 = s′t, D1 = dt|S0 = st, A0 = at)
B(t+1) ←
barrier update(B(t), st, at, s

′
t, dt)

end

In an MDP, an (s, a) pair is unsafe (B∗(s, a) = −∞) if
either it immediately causes damage, i.e. P (D1 = d|S0 =
s,A0 = a) > 0, or it transitions to an unsafe state, namely
P (S1 = s′|S0 = s,A0 = a) > 0 for some s′ with
B∗(s′, a) = −∞,∀a ∈ A. As a result, when an (s, a) is
taken, one may observe the damage after several steps. We
let L be the lag of the MDP, which is the maximum steps one
need to wait until observing the potential damage by taking
an unsafe (s, a) pair. The exact definition of L is given in
Appendix D. Regarding Algorithm 5, we have the following
Theorem.

Theorem 7. Given an MDP. Assume that exists µ > 0 such
that the transition probability P (S1 = s′|S0 = s,A0 = a), is
either zero or lower bounded by µ, for all s, s′ ∈ S, a ∈ A.
Let T be earliest time when Algorithm 5 detects all unsafe
state-action pairs, i.e. T := min{t : B(t) = B∗}, then we
have

E[T ] ≤ (L+ 1)
|S||A|
µ

|S||A|∑
k=1

1

k

 , (32)

where L is the lag of the MDP.

Proof Sketch. Theorem 7 is proved in three steps. We refer
the readers to Appendix D for the complete proof.

First, we reformulate the algorithm so that the sampling
process of (st, at) is independent of the current progress
of the B(t)-function: at iteration t, one samples an (st, at)
pair uniformly from the entire S ×A set, then the algorithm
chooses to either accept or reject the sample depending on the
value of B(t)(st, at). This way, we turn to study the number
of acceptance by the reformulated algorithm before it detects
all unsafe state-action pairs. Secondly, we provide a modified
algorithm with more restrictions on accepting the sample
compared to the reformulated algorithm. Such restrictions
allow the modified algorithm to learn unsafe state-action
pairs in multiple stages: at each stage, the algorithm only
allows to detect a subset of unsafe state-action pairs, but the
detection process in every stage can be viewed as a safe
multi-arm bandits problem discussed in Section II.

Lastly, we derive an upper bound on the expected number
queries of the modified algorithm until successfully detecting
all unsafe state-action pairs, based on Theorem 2, which is
also an upper bound on E[T ].

While the bound for E[T ] in Theorem 7 is admittedly loose
(we use a lower-bound µ for the transition probabilities and a
provably slower surrogate algorithm with more restrictions),
it serves the purpose of upholding our main claim in the
paper, which is that all unsafe policies can be detected in
finite time. The resulting simplicity of the bound in (32),
also let us observe the fundamental factors adding to the
detection time T . Specifically, with larger spaces S and A
more exploration is needed, with a smaller µ or longer lag L
unsafe actions take longer to be revealed as damage, all three
factors adding to a longer detection time. A tighter bound is
presented in Appendix D when we prove Theorem 7.

The Barrier Learning Algorithm 5 stands alone as a data-
driven method to assess safety feasibility. However, our sepa-
ration principle allow us to combine it with standard existing
reward optimization algorithms in order to add safety. For
instance, by wrapping Algorithm 5 around the acclaimed
Q-learning algorithm we obtain a Generative Assured Q-
learning method to maximize the rewards over the set of
safe policies, as is shown in Algorithm 6.

As a corollary of Theorem 7, and borrowing the con-
vergence results of Q-learning from [41] we establish the
following result.

Corollary 1. With finite state space S and action space
A, bounded rewards Rt ≤ C, and diminishing step-sizes
satisfying

∑
t ηt = ∞ and

∑
t η

2
t < ∞, the iterates Q(t)

of the Algorithm 6 converge almost surely to the optimal
Q-function Q? satisfying

lim
t→∞

Q(t)(s, a) = Q∗(s, a) (w.p.1) ∀(s, a) ∈ S ×A

with

Q∗(s, a) = E
[

log (1−Dt+1)
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Algorithm 6: Generative Assured Q-Learning
Data: Constrained Markov Decision Process M
Result: Optimal action-value functions B∗ and Q∗

Initialize
B(0)(s, a) = 0, Q(0)(s, a) = 0∀(s, a) ∈ S ×A

for t = 0, 1, · · · do
Draw (st, at) ∼ Unif({(s, a) : B(s, a) 6= −∞})
Sample transition (st, at, s

′
t, dt) according to

P (S1 = s′t, D1 = dt|S0 = st, A0 = at)
B(t+1) ←
barrier update(B(t), st, at, s

′
t, dt)

Q(t+1) ← q update(B(t), Q(t), st, at, s
′
t, rt)

end

+ max
a′∈A

Q∗(s′, a′)
∣∣ St = s,At = a

]
. (33)

Moreover, all unsafe state action pairs corresponding to
Q∗(s, a) = −∞ are detected in expected finite time Ts,a
such that

Q(t)(s, a) = −∞, ∀ t ≥ Ts,a,

and

E [Ts,a] ≤ |S|
2|A|
µ

|S||A|∑
k=1

1

k

 . (34)

Proof. In order to apply the convergence results of [41] we
need iterates Q(t) to be finite for all t. But this is guaranteed
by Theorem 7 for all safe pairs (s, a) such that B∗(s, a) = 0.
Indeed, or all values such that B∗(s, a) = 0, we have B(t) =
0 for all t and the updates of the function Q(t) in Algorithm
6 amount to the asynchronous Q-learning updates with finite
rewards and diminishing step-size required by [41].

For the pairs such that B∗(s, a) = −∞, Theorem 5
implies Q∗(s, a) = −∞ and according to Theorem 7 there
must exist a time instant Ts,a satisfying (34) such that
B(t) = −∞ ∀t ≥ Ts,a. Since by construction the q update
in Algorithms 6 and 3 implies that Q(t) = −∞ whenever
B(t) = −∞, then limt→∞Q(t)(s, a) = −∞ for all pairs
(s, a) such that B∗(s, a) = Q∗(s, a) = −∞.

The previous result applies to the specific case of di-
minishing step-sizes and immediate restarts after episodes
of length one. However, Q-learning is widely applied with
longer episodes and convergence is guaranteed provided that
each state-action pair is visited infinitely often While one step
episodes in Algorithm 6 were used in order to simplify the
proof of Corollary 1, the numerical experiments of the next
section will demonstrate that these safe convergence results
carry out to an episodic version of Assured Q-learning with
ε-greedy exploratory modes.

IV. NUMERICAL EXPERIMENTS

We now proceed to some numerical experiments that back
up the results presented throughout the paper. We first focus
on the multi-armed bandit setup and on the problem of
detecting unsafe machines under a uniform strategy, then we
demonstrate the barrier learner and the characterization of

Fig. 1. Final safety ratio Cε,∞ for µ = 0.1 as a function of ε, for varying
α. More safe machines are kept when using small values of ε and α, but
this in turn implies longer training time (c.f. Figure 2)

Fig. 2. Normalized final exposure for µ = 0.1 as a function of ε, for
varying tolerance level α. Larger values of α and ε achieve lower handicap
(which implies faster detection).

a globally unsafe MDP and how this can be achieved in
finite time, and finally we compare our Assured Q-learning
algorithm against classic Q-learning on a grid-world.

A. Multi-armed bandits

We illustrate the performance of the Relaxed Inspector
(Algorithm 2) on a setup of K = 1000 arms, with a safety
requirement of µ = 1

10 . Each arm’s true safety parameter
is uniformly sampled between 0 and 1

5 . This means that if
ε ≈ 0, around half of the machines are safe and the other
half unsafe. We run the Relaxed Inspector on this setting
under a uniform strategy, for varying levels of both the
failure tolerance α and the slack ε. After all unsafe machines
have been detected —which happens and is certified to be
done in finite time in virtue of Theorem 3— we consider
Cε,∞, the final conservation ratio and the normalized final
exposure 1

KE∞ . Figures 1 and 2 show both this metrics
for varying α and ε. The curves in these figures show the
average value obtained after 16 independent runs. Shaded
intervals correspond to ±σ/

√
16, with σ being the sample

deviation.
These figures certify the intrinsic trade-off in our method-

ology: if a large value of α is used, one can obtain low
exposure Et (less pulls of unsafe machines), but at the cost
of discarding more safe machines (smaller conservation ratio
Cε,t). For further examples we refer the reader to [1].
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B. Barrier learner

We now turn to identification of unsafe states on MDPs via
the barrier learner algorithm. We will try our methodology
in the unstable grid-world shown on the upper-left panel of
Fig. 3. At each time step, the agent starts in one of the white
states and takes an action which is up, down, left or right.
Moving between white states is allowed. Bumping into walls
—black states— is ok as well, and leaves the agent at the
same place he was in. Purple states are holes, and moving
into a hole is unsafe (Dt = 1) Whenever an action is taken,
there is a probability p = 0.6 that the agent moves to the
corresponding neighboring state. However, with probability
1−p = 0.4 he moves to a random neighboring state instead.
Given this unstable nature of the state transitioning, it is clear
that states adjacent to the holes sadj are unsafe. Indeed, the
probability to be damaged at sadj is at least 1−p

4 = 0.1.
Notice though that the whole state-action space is unsafe,
since with every action there is a probability of transitioning
to a random neighboring state. The question then is how
long it takes the barrier learner to characterize the whole
state space as unsafe.

The top section of Fig. 3 shows the evolution of the barrier
learner algorithm on this grid. At each step the starting state
s0 is taken uniformly, and then a random action is sampled.
When the agent is assured that B(s0, a) = −∞ ∀a it marks
that state as unsafe, and paints it red in Fig. 3. At first, only
the states close to the holes are classified as unsafe. Soon
enough, detection of unsafe states stems from the holes to
the edges of the grid. Near the t = 10000 mark all states are
correctly detected, as is shown in the bottom plot of Fig. 3.
There we show the proportion of unsafe states detected by the
barrier learner, along with the bound obtained in Theorem
7, where we use

∑|S||A|
k=1

1
k ∼ log (|S||A|) . In this case

the non-zero transition probabilities of the MDP are lower-
bounded by µ = 1−p

4 = 0.1. The bound is admittedly loose
as we discussed in Section II, but demonstrates our main
claim in 7 about being able to detect unsafe actions in finite
time.

C. Towards learning safely

In this part we compare the performance of Classic Q-
learning against a modified version which makes use of the
barrier learner, which we dub Episodic Assured Q-learning.
This algorithm works in the same fashion as Algorithm 6,
but it runs episodes following a behavioral policy instead of
drawing state-action pairs generatively.

Let us first describe the environment. Consider an agent
that is bound to navigate a narrow corridor, as shown in
Fig. 4. Each episode starts on the leftmost state and the
goal is to reach the rightmost state. The agent can move
deterministically between adjacent states by taking actions
up-down-left-right. However, bumping into a wall is con-
sidered unsafe (Dt = 1) and terminates the episode. For a
fair comparison, for the classic Q-learning setup we let the
reward be −∞ whenever the agent bumps into a wall. In both
settings the agents follow a behavioral policy that is ε-greedy
with respect to the policy derived by their learnt Q-function,
that is to say, selects a = argmaxa′ Q(s, a′) with probability

Fig. 3. On the top: evolution of the Barrier Learner Algorithm on a
15 by 15 unstable grid. As time advances, detection of unsafe states (in
red) backpropagates from the immediately unsafe holes (purple), eventually
classifying the whole state space as unsafe. On the bottom: proportion of
states classified as unsafe as a function of time. All states are correctly
identified in finite time, respecting the bound of Theorem 7.

. . .s1 s2 s3 s4 s14 s15

Fig. 4. Example grid-world: narrow corridor of length 15. An agent starts
each episode at the green state and must learn to reach the red state.
Actions are up-down-left-right, and they move the agent to the adjacent
state deterministically, if possible. Bumping into a purple wall is unsafe,
and leads to episode termination. Transitioning to the red state has reward
+100. All other rewards are zero.

1− ε or takes a uniformly random action with probability ε.
We fix ε = 0.1 and the learning-rate α = 0.1.

As a metric of performance, we count the number of steps
it takes for the agent to reach the goal for the first time, which
is shown in Fig. 5. Reaching the goal is not as straightforward
as it seems, since whenever the agent bumps into a wall he
gets sent to the leftmost state. A histogram depicting the
number of wall bumps before reaching the goal for the first
time is show in Fig. 6. Notice that this is exactly the same
as counting the number of episodes taken to reach the goal.

As is evident of both figures, the assured agents generally
outperform their classic counterparts. In particular, training
time for the assured agents is faster —see e.g. Fig. 5, where
the total number of transitions for these agents has both
smaller sample mean and sample variance. The reason for
this performance improvement is the fact that the assured
agents quickly learn that there are actions that must not
be taken again, while standard ε-greedy Q-learning keeps
drawing poor actions indefinitely.

V. CONCLUSIONS

In this work we address the problem of learning to
act safely in unknown environments. We make the case
that learning safe policies is fundamentally different from
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Fig. 5. Comparison between Assured Q-learning (blue) and classic
Q-learning (green) on the time taken to reach the goal (s15) on the
narrow corridor of Fig. 4. To build the histogram we train 1000 agents
independently with each algorithm.

Fig. 6. Comparison between Assured Q-learning (blue) and classic Q-
learning (green) on the number of bumps into walls (i.e. episodes) until
first reaching the goal (s15) on the narrow corridor of Fig. 4. To build the
histograms we train 1000 agents independently with each algorithm. Mind
the difference on the x-axis between graphs.

learning optimal policies, and is a task that can be done
separately and in a more efficient manner. By incorporating
in the model a binary damage signal that indicates constraint
violations, our results show that we can identify all unsafe
actions (MABs) and state-action pairs (MDPs) in expected
finite time with probability one guarantees. These results
imply that the learner is not indefinitely exposed to damage,
and could aid in the design of new algorithms that rapidly
learn to act safely while jointly optimizing returns.

APPENDIX

A. Proof of Theorem 2
We prove Theorem 2 by induction.

Proof. Each iteration of Algorithm 1 can be view as doing
a Bernoulli trial with success rate being the probability of
detecting an unsafe machine.

When M = 1, the algorithm repeats the same Bernoulli
trial until a success, the success rate for that Bernoulli trial
is

P (“detecting an unsafe machine”)

= P (“the unsafe machine is selected and detected”) =
µ1

K
,

Λ0

1 2 3 4

C(1, 0, 1, 1)

t

Λ1 Λ2

Λ3

Λ4 log(1/α)

Fig. 7. Visualization of the cylinder set C(1, 0, 1, 1). It contains all
trajectories {xτ}τ=1,...,∞ that start with 1, 0, 1, 1.

Then T is a geometric random variable with parameter µ1

K ,
hence ET = K

µ1
≤ K

µlow
.

Now suppose Theorem 2 holds for M = m, consider
detecting m+1 unsafe machines among in total K machines,
the algorithm repeat the same Bernoulli trial until one
success, the success rate for that Bernoulli trial is

P (“detecting an unsafe machine”)

=

m+1∑
k=1

P (“unsafe machine k is selected and detected”)

=

m+1∑
k=1

1

K
· µk ,

Let T1 := min{t : Dt = 1} be the time epoch for the
first success. Then T1 is a geometric random variable with
parameter

∑m+1
k=1

µk
K , hence

E[T1] =

(
m+1∑
k=1

µk
K

)−1
≤

(
m+1∑
k=1

µlow

K

)−1
=

K

µlow

1

M + 1
.

(35)
Now T − T1 is exactly distributed as the time Algorithm 1
takes to detect m unsafe machines among in total K − 1
machines. By our induction assumption, we have

E[T − T1] ≤ K − 1

µlow

(
m∑
k=1

1

k

)
≤ K

µlow

(
m∑
k=1

1

k

)
. (36)

Adding (35) and (36), we obtain the desired result

E[T ] ≤ K

µlow

(
m+1∑
k=1

1

k

)
,

for the case M = m+ 1, which finishes the proof.

B. Proof of Lemmas 2–3
In order to prove these lemmas we first review cylinder

sets, which were first described by Wald [35]. Consider an
infinite sequence {dτ}, τ ≥ 1 and define C∞ as the space of
all such sequences. The set C(x1, . . . , xt) is called a cylinder
set of order t, and is defined as the subset of C∞ which
collects sequences with d1 = x1, . . . , dt = xt. A cylinder
set will be said to be of the unsafe type if

Λt = log
fµ (x1, . . . , xt)

fµ−ε (x1, . . . , xt)
≥ log(1/α) , (37)
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and

Λτ =
fµ (x1, . . . , xτ )

fµ−ε (x1 . . . , xτ )
< log(1/α) ∀τ < t . (38)

The first condition guarantees that all sequences {dτ} be-
longing to the unsafe cylinder C(x1, . . . , xt) will lead to the
acceptance of H1. This will occur at time t, regardless of the
future samples dτ , τ > t. The second condition states that
the threshold is not surpassed sooner than t. Conditions (37)–
(38) imply that cylinders of different orders are disjoint sets,
since Λt exceeds the threshold for the first time at t and no
sooner than that, and this cannot be true for different values
of t.

The union of all unsafe cylinder sets (of any order) defines
the set of sequences that lead to deciding H1. Let us name
this (disjoint) union as QU . Let us also define QS as the
complement of QU

QS = Q{
U . (39)

QS is the set of all sequences for which Λt < log(1/α) for
all t. Since the sets are complementary, it holds that

Pµa(QU +QS) = 1 ∀µa ∈ [0, 1] , (40)

with Pµa(Q) being the probability of any subset Q of C∞,
under the assumption that the sequence is generated by i.i.d.
Bernoulli random variables with parameter µa.

We now turn to the proof of Lemmas 2–3 by restating
them in terms of the cylinder sets just described.

Lemma 2 (Restated). Let Pµa(Q) be the probability of
Q ⊂ C∞, under the assumption that the sequence of data is
generated by i.i.d. Bernoulli random variables of parameter
µa. Then the following statements hold:

i) Under H1 (µa > µ), i.i.d. sequences produced by such
a distribution are correctly classified almost surely, that
is

Pµa(QU ) = 1 . (41)

ii) Under H0 (µa ≤ µ), the probability that a trajectory
never rises above log(1/α) is greater than 1− α, that
is

Pµa(QS) ≥ 1− α .

Proof. We start by showing i).
For a given sequence (d1, . . . , dt, · · · ) we have

Λt = log

t∏
i=1

fµ(di)

fµ−ε(di)
=

t∑
i=1

log
fµ(xi)

fµ−ε(xi)
. (42)

Dividing by t:

Λt
t

=
1

t

t∑
i=1

log
fµ(xi)

fµ−ε(xi)
. (43)

By the Law of large numbers, as t grows (43) converges to
the expectation of the right hand side under µa:

Λt
t
→ Eµa

[
log

fµ(x)

fµ−ε(x)

]
= µa

(
log

µ

µ− ε
− log

1− µ
1− (µ− ε)

)
+ log

1− µ
1− (µ− ε)

> µ

(
log

µ

µ− ε
− log

1− µ
1− (µ− ε)

)
+ log

1− µ
1− (µ− ε)

= kl(µ, µ− ε) > 0 , (44)

where kl is the Kullback-Leibler divergence between two
Bernoulli distributions of parameters µ and µ − ε. The
inequality holds because µa > µ and the expression in
brackets is positive. It follows that

lim
t→∞

Λt =∞, a.s.

Therefore there must exist a positive integer t for which Λt
exceeds log(1/α), so that the sequence {dτ} belongs to an
unsafe cylinder of order t and thus {dτ} ∈ QU , which is
what we wanted to show.

Next, we prove ii). First, by showing that Pµ−ε(QS) ≥ 1−
α for the limiting case µa = µ− ε, and then by generalizing
it for µa ≤ µ − ε. For µa = µ − ε, the core of the proof
relies in showing that when the threshold for declaring H1

is set to log(1/α), then

Pµ(QU ) ≥ 1

α
Pµ−ε(QU ) . (45)

Once we prove (45), we use the fact that Pµ(QU ) = 1
(see (41)) and obtain

Pµ−ε(QU ) ≤ α⇒ Pµ−ε(QS) ≥ 1− α , (46)

as desired. To prove (45) we start by decomposing QU as
the union across time t of the union of all unsafe cylinders
of order t, that is

QU =

∞⋃
t=1

⋃
(x1,...,xt)∈Xt

C(x1, . . . , xt) ,

where Xt collects the tuples (x1, . . . , xt) that define unsafe
cylinders of order t, i.e., those satisfying (37) and (38). By
construction all the cylinder sets are disjoint, hence

Pµ(QU ) =

∞∑
t=1

∑
(x1,...,xt)∈Xt

Pµ (C(x1, . . . , xt))

=

∞∑
t=1

∑
(x1,...,xt)∈Xt

fµ(x1, . . . , xt)

≥
∞∑
t=1

∑
(x1,...,xt)∈Xt

1

α
fµ−ε(x1, . . . , xt)

=
1

α

∞∑
t=1

∑
(x1,...,xt)∈Xt

Pµ−ε(C(x1, . . . , xt))

=
1

α
Pµ−ε(QU ) ,

where the second identity follows from marginalizing over
future trajectories (see Fig. 7), and the inequality holds since
Xt is defined so as to satisfy (37).

Now that we have (45), (46) follows immediately, and we
move to the second part of the proof. We need to prove
that Pµa(QS) ≥ Pµ−ε(QS), or equivalently Pµa(QU ) ≤
Pµ−ε(QU ), when µa < µ − ε. This essentially means that



13

the probability of (incorrectly) classifying a safe machine as
unsafe decreases as µa lowers, which is intuitively true.

To show this, notice that the log-likelihood ratio Λt can
be put in terms of k, the number of outcomes of Dτ = 1
over t total pulls:

Λt = k log
µ

µ− ε
+ (t− k) log

1− µ
1− (µ− ε)

, (47)

and k ∼ Binomial(t, µa). What we want to show is that
as µa lowers, the probability that Λt ≥ log(1/α) lowers as
well, which is to be expected since k will likely be lower.
Assume then we declare H1, so departing from (47) we can
write

Λt = kλ0 + (k − t)λ1 ≥ log(1/α) ,

where λ0 = log µ
µ−ε and λ1 = log 1−µ+ε

1−µ are both positive.
Since log(1/α) is also positive we have k/t ≥ λ1

λ0+λ1
=(

1 + λ0

λ1

)−1
. From the definition of λ0 and λ1 it yields

k

t
≥
(

1 +
λ0
λ1

)−1
=

(
1 +

log µ
µ−ε

log 1−µ+ε
1−µ

)−1

≥

(
1 +

µ
µ−ε − 1

1− 1−µ
1−µ+ε

)−1
=

(
1 +

ε
µ−ε
ε

1−µ+ε

)−1
(48)

=

(
1

µ− ε

)−1
= µ− ε > µa , (49)

where the inequality in (48) follows from the usual bounds
of the logarithm 1−1/x ≤ log(x) ≤ x−1. Rearranging (49)
we get k− tµa > 0. Then, the derivative of fµa(a1, . . . , at)
takes the form
d

dµa
fµa(a1, . . . , at) =

d

dµa

(
t

k

)
µka(1− µa)t−k

=

(
t

k

)(
kµk−1a (1− µa)t−k + µka(−1)(t− k)(1− µa)t−k−1

)
=

(
t

k

)
µk−1a (1− µa)t−k−1 (k − tµa) > 0 , (50)

where the last inequality stems from (49). Putting (40), (46),
and (50) together results in Pµa(QS) ≥ 1 − α for all µa ≤
µ− ε.

Lemma 3. For a fixed arm a of parameter µa, consider the
sequential probability ratio test defined by (7)–(9), where µ,
ε and α are given. Then, if the alternative H1 is true, the
test is expected to terminate after T steps, with

E[T ] ≤ 1 +
log (1/α)

kl(µ, µ− ε)
, (51)

where kl(µ, µ−ε) is the Kullback-Leibler divergence between
Bernoulli distributions

kl(µ, µ− ε) = µ log
µ

µ− ε
+ (1− µ) log

1− µ
1− µ+ ε

.

Proof. Let T be the smallest integer for which the test leads
to the acceptance of H1. Such variable is well defined and
finite as a result of Lemma 2. Consider the sequence of
damage up to time t (dt)

T
t=1, and let Eµa [·] be the expectation

with respect to the true distribution of the damage data (that
is, D ∼ Bernoulli(µa)). Then

Eµa [ΛT ] = Eµa

[
T∑
t=1

log
fµ(dt)

fµ−ε(dt)

]

= E[T ]Eµa
[
log

fµ(d)

fµ−ε(d)

]
= E[T ]Ra , (52)

with Ra = Eµa
[
log

fµ(d)
fµ−ε(d)

]
. Here we used Wald’s identity

[42] in the second equality. Furthermore

Eµa [ΛT ] = Eµa
[
ΛT−1 + log

fµ(dT )

fµ−ε(dT )

]
= Eµa [ΛT−1] +Ra ≤ log(1/α) +Ra . (53)

Combining (52) and (53):

E[T ] ≤ 1 +
log (1/α)

Ra
≤ 1 +

log (1/α)

kl(µ, µ− ε)
,

in virtue of Ra ≥ kl(µ, µ− ε) for µa > µ− ε, as was shown
in (44).

C. Proof of Theorem 3
By lemma 3, we have

E[ET ] =

M∑
a=1

E[Ta] ≤M
(

1 +
log(1/α)

kl(µ, µ− ε)

)
.

Then by Wald’s identity [42], we have

E[ET ] = E

[
T∑
t=1

E[1{µAt > µ}]

]
≥ E

[
T

1

K −M + 1

]
,

where the second inequality is due to the fact that before
T , the probability of sampling an unsafe machine is at least
1/(K −M + 1). Recalling the upper bound for E[ET ] in
Theorem 3, one obtain

E[T ] ≤M(K −M + 1)

(
1 +

log(1/α)

kl(µ, µ− ε)

)
.

D. Proof of Theorem 7
We prove Theorem 7 in three steps:
1) Reformulation of Algorithm 5: We reformulate Algo-

rithm 5 as in Algorithm 7.
In the reformulated Algorithm 7, the sampling process is

independent of B-function: At each iteration τ , an (sτ , aτ )
pair is drawn uniformly from S×A and then a transition
(sτ , aτ , s

′
τ , dτ ) is sampled according to the MDP, and the

algorithm decides whether to accept such a sample depending
on the value of B(sτ , aτ ). When we restrict ourselves to the
trajectory of samples that are accepted, i.e.

{(sτ , aτ , s′τ , dτ ) : B(τ)(sτ , aτ ) 6= −∞, τ = 0, 1, · · · } ,

this trajectory is also a sampled trajectory of original Al-
gorithm 5. More importantly, for such a trajectory, the
probability it appears in original Algorithm 5 is the same
as the probability it appears as the accepted trajectory in
Algorithm 7. With that, we define

Tr := min{τ : B(τ) = B∗} , (54)
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Algorithm 7: Barrier Learner Algorithm Reformu-
lated

Data: Constrained Markov Decision Process M
Initialize B(0)(s, a) = 0,∀(s, a) ∈ S×A
for τ = 0, 1, · · · do

Draw (sτ , aτ ) ∼ Unif(S×A)
Sample transition (sτ , aτ , s

′
τ , dτ ) according to

P (S1 = s′τ , D1 = dτ |S0 = sτ , A0 = aτ )
if B(τ)(sτ , aτ ) 6= −∞ then

B(τ+1) ←
barrier update(B(τ), sτ , aτ , s

′
τ , dτ)

else
B(τ+1) ← B(τ)

end
end

i.e. the earliest time when Algorithm 7 detects all unsafe
state-action pairs, then we have

E[T ] = E

[
Tr∑
τ=1

1{B(τ)(sτ , aτ ) 6= −∞}

]
, (55)

where T is the earliest time when Algorithm 5 detects all un-
safe state-action pairs, as defined in Theorem 7. Expectations
are taken with respect to the respective sampling processes of
Algorithm 5 and 7, which are different. With (55), it suffices
to analyze the expected detection time of Algorithm 7.

2) Construction of modified algorithm: As discussed in
Section III-C, an (s, a) pair is unsafe if either it causes
damage immediately or it transitions to an unsafe state with
non-zero probability. If only the latter happens for such an
unsafe (s, a), then to be able to declare it unsafe, one must
have already declared one of its succeeding states unsafe. To
make such intuition precise, we recursively define disjoint
subsets Sl, l = 1, 2, · · · of the state space S as follow,

S1 := {s ∈ S : Pπ (D1 = 1|S0 = s) > 0,∀π} ,

Sl :=

{
S ′l , S ′l 6= ∅
S \

⋃
k<l Sk, S ′l = ∅

, (56)

where

S ′l =

{
s ∈ S \

⋃
k<l

Sk : Pπ

(
S1 ∈

⋃
k<l

Sk|S0 = s

)
> 0,∀π

}
(57)

It is clear that given any finite MDP, L := max{l > 0 :
Sl+1 6= ∅} is finite and we define L to be the lag of the MDP.
Following the definition (56), {Sl, l = 1, · · · , L, L + 1} is
a partition of S. Any state s0 ∈

⋃L
l=1 Sl is unsafe because

under any policy π, with non-zero probability it happens that
starting from s0, the MDP eventually reaches a state in S1
then causes damage. Furthermore, any state s0 ∈ SL+1 :=
S \
⋃L
l=1 Sl is safe since S ′L+1 = ∅ implies that there exists

a0 ∈ A such that P (S1 ∈
⋃
k<L+1 Sk|S0 = s0, A0 = a0) =

0, i.e. taking action a0 keeps the MDP away from the unsafe
states in

⋃L
l=1 Sl. However, we note that a safe state can

have unsafe actions and they can be detected by the Barrier
Learner Algorithm.

More importantly, the unsafe state sets Sl, l = 1, 2, · · · , L
satisfies that if all states in

⋃
k<l Sk has been declared unsafe,

any state-action pair in {(s, a) : s ∈ Sl, a ∈ A}, when sam-
pled, can be declared unsafe with non-zero probability. Base
on this property, we construct an modified barrier learning
algorithm using the prior information on Sl, l = 1, 2, · · · , L.
The modified algorithm is described in Algorithm 8.

Algorithm 8: Modified Barrier Learner Algorithm
with Prior Information on Sl, l = 1, 2, · · · , L, L+ 1

Data: Constrained Markov Decision Process M,
Sl, l = 1, 2, · · · , L, L+ 1 defined for M

Initialize B̂(0)(s, a) = 0,∀(s, a) ∈ S×A
Initialize l = 1
for τ = 0, 1, · · · do

Draw (sτ , aτ ) ∼ Unif(S×A)
Sample transition (sτ , aτ , s

′
τ , dτ ) according to

P (S1 = s′τ , D1 = dτ |S0 = sτ , A0 = aτ )
if B̂(τ)(sτ , aτ ) 6= −∞ and sτ ∈ Sl then

B̂(τ+1) ←
barrier update(B̂(τ), sτ , aτ , s

′
τ , dτ)

else
B̂(τ+1) ← B̂(τ)

end
if B̂τ+1(s, a) = −∞,∀s ∈ Sl, a ∈ A then

l← l + 1
end

end

The modified algorithm is similar to Algorithm 7 but it
learns Sl, l = 1, 2, · · · , L in order: At the beginning (l = 1),
it only declares (s, a) pairs associated with S1 unsafe until
all states in S1 are declared unsafe, after which l increases
to 2. Now the algorithm only declares (s, a) pairs associated
with S2 unsafe. Finally after all states in

⋃L
l=1 Sl are declared

unsafe (l = L + 1), the algorithm starts to learn the unsafe
transitions for safe states in SL+1. Similarly, we define

T̂r := min{τ : B̂(τ) = B∗} , (58)

i.e. the earliest time when Algorithm 8 detects all unsafe
state-action pairs.

Since the modified algorithm is more restrictive on declar-
ing unsafe state-action pair, the expected detection time of
the modified algorithm is no less than that of Algorithm 7,
as stated in the following claim.

Claim 1. Given an MDP, let Tr and T̂r be the earliest times
when Algorithm 7 and Algorithm 8, detect all unsafe state-
action pairs in this MDP, respectively, as defined in (54) and
(58). Then

E

[
Tr∑
τ=1

1{B(τ)(sτ , aτ ) 6= −∞}

]

≤ E

 T̂r∑
τ=1

1{B̂(τ)(sτ , aτ ) 6= −∞}

 ,
where the expectation is taken with respect to the sampling
of {(sτ , aτ , s′τ , dτ ), τ = 0, 1, · · · }.
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Proof. Condition on a fixed sample trajectory T :=
{(sτ , aτ , s′τ , dτ )}∞τ=0 , the functions B(τ) and B̂(τ) are de-
terministic. We have

B(τ)(s, a)|T ≤ B̂(τ)(s, a)|T ,∀τ≥0,∀(s, a)∈S×A , (59)

proved by induction: we have

B(0)(s, a)|T ≤ B̂(0)(s, a)|T ,∀(s, a) ∈ S×A ,

at initialization. Suppose that (59) holds at time τ = t. If
(st, at, s

′
t, dt) is accepted by both algorithms, or rejected by

both algorithms, we have

B(t+1)(s, a)|T ≤ B̂(t+1)(s, a)|T ,∀(s, a) ∈ S×A . (60)

If (st, at, s
′
t, dt) is rejected by Algorithm 7 and accepted

by Algorithm 8, then we have

B(t)(st, at) = −∞, B̂(t)(st, at) = 0 .

(60) still holds, since only B̂(t+1)(st, at) is updated to either
0 or −∞. If (st, at, s

′
t, dt) is accepted by Algorithm 7 and

rejected by Algorithm 8, then we have

B(t)(st, at) = B̂(t)(st, at) = 0 .

(60) still holds, since only B(t+1)(st, at) is updated to
either 0 or −∞. Now from (59), we immediately know that
condition on the fixed sample trajectory T ,

1{B(sτ , aτ ) 6= −∞} ≤ 1{B̂(sτ , aτ ) 6= −∞},∀τ = 0, 1, · · ·

Notice that Tr (T̂r) is the minimum t such that B(t) (B̂(t))
becomes exactly the same as B∗. Then Tr|T ≤ T̂r|T .
Therefore one have, by law of total expectation,

E

[
Tr∑
τ=0

1{B(sτ , aτ ) 6= −∞}

]

= E

[
E

[
Tr∑
τ=0

1{B(sτ , aτ ) 6= −∞}

∣∣∣∣∣ T
]]

≤ E

E
 T̂r∑
τ=0

1{B̂(sτ , aτ ) 6= −∞}

∣∣∣∣∣∣ T


= E

 T̂r∑
τ=0

1{B̂(sτ , aτ ) 6= −∞}



3) Expected detection time of modified algorithm: Lastly,
we prove the following Theorem regarding the expected
detection time of the modified algorithm.

Theorem 8. Given an MDP with Sl, l = 1, 2, · · · , L, L+ 1
defined as in (56). Assume that exists µ > 0 such that the
transition probability P (S1 = s′|S0 = s,A0 = a), is either
zero or lower bounded by µ, for all s, s′ ∈ S, a ∈ A. Let T̂r
be earliest time when Algorithm 8 detects all unsafe state-
action pairs as defined in (58), then we have

E

 T̂r∑
τ=1

1{B̂(τ)(sτ , aτ ) 6= −∞}

 ≤ |S||A|
µ

L+1∑
l=1

|Sl||A|∑
k=1

1

k

 .

Proof. Let T̂l, l = 1, · · · , L+1 denote the earliest time when
all unsafe state-action pairs associated with Sl are detected
by Algorithm 8, and we let T̂0 = 0. Then clearly

T̂l−1 < T̂l, l = 1, · · · , L+ 1 , T̂L+1 = T̂r ,

and ∆l :=
∑T̂l−1
t=T̂l−1

1{B̂(t)(st, at) 6= −∞} is the number

of accepted samples by Algorithm 8 between T̂l−1 and T̂l.
Notice that we can view the barrier learning pro-

cess between T̂l−1 and T̂l as detecting unsafe ma-
chines in the safe multi-arm bandits problem discussed
in Section II: At time T̂l−1, there are in total Kl :=∣∣∣{(s, a) : s ∈

⋃L+1
k=l Sk, a ∈ A

}∣∣∣ machines, and the number
of unsafe machines is

Ml := |{(s, a) : s ∈ Sl, a ∈ A, B∗(s, a) = −∞}| .

We have Kl ≤ |S||A| , Ml ≤ |Sl||A| . Furthermore,
condition on such an unsafe machine is pulled, i.e. an unsafe
(s, a) in Sl is accepted by Algorithm 8, the probability of
declaring it unsafe is at least µ. Because the (s, a) pair either
transitions to some s ∈

⋃l−1
k=1 Sk that has been declared

unsafe or directly incurs damage with non-zero probability,
and that probability is lower bounded by µ according to our
assumption.

The acceptance of sample (sτ , aτ , s
′
τ , dτ ) is equivalent to

pulling a uniformly randomly drawn arm out of arms that
have not been declared unsafe. Theorem 2 suggests that the
expected number of such ”pulling” is upper bounded as

E[∆l] ≤
Kl

µ

(
Ml∑
k=1

1

k

)
≤ |S||A|

µ

|Sl||A|∑
k=1

1

k

 .

Finally, we have

E

 T̂r∑
t=0

1{B̂(t)(st, at) 6= −∞}


= E

[
L+1∑
l=1

∆l

]
≤ |S||A|

µ

L+1∑
l=1

|Sl||A|∑
k=1

1

k

 .

Now we are ready to prove Theorem 7.

Proof of Theorem 7. Given any MDP, we have |Sl| ≤
|S|,∀l = 0, 1, · · · , L+ 1, then we have

E[T ] ≤E

 T̂r∑
τ=1

1{B̂(τ)(sτ , aτ ) 6= −∞}


≤ |S||A|

µ

L+1∑
l=1

|Sl||A|∑
k=1

1

k

 ≤ |S||A|(L+ 1)

µ

|S||A|∑
k=1

1

k

 ,

where the first equality is from (55) and Claim 1.
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