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Abstract— This paper aims to put forward the concept that
learning to take safe actions in unknown environments, even
with probability one guarantees, can be achieved without the
need for an unbounded number of exploratory trials, provided
that one is willing to relax its optimality requirements mildly.
We focus on the canonical multi-armed bandit problem and seek
to study the exploration-preservation trade-off intrinsic within
safe learning. More precisely, by defining a handicap metric that
counts the number of unsafe actions, we provide an algorithm
for discarding unsafe machines (or actions), with probability
one, that achieves constant handicap. Our algorithm is rooted
in the classical sequential probability ratio test, redefined here
for continuing tasks. Under standard assumptions on sufficient
exploration, our rule provably detects all unsafe machines in
an (expected) finite number of rounds. The analysis also unveils
a trade-off between the number of rounds needed to secure the
environment and the probability of discarding safe machines.
Our decision rule can wrap around any other algorithm to
optimize a specific auxiliary goal since it provides a safe
environment to search for (approximately) optimal policies.
Simulations corroborate our theoretical findings and further
illustrate the aforementioned trade-offs.

I. INTRODUCTION

Learning to take safe actions in unknown environments
is a general goal that spans across multiple disciplines.
Within control theory safety is intrinsic to robust analysis and
design [1], where controllers, with stability and performance
guarantees, are designed for uncertain systems. It also at the
core of statistical decision theory [2], where the inference and
the decision-making processes are intertwined towards the
common goal of making accurate decisions based on limited
information. Though, historically, these two disciplines have
been deemed as seemingly disconnected, such separation is
rapidly vanishing.

Motivated by the success of machine learning in achieving
super human performance, e.g., in vision [3], [4], speech [5],
[6], and video games [7], [8], there has been recent interest
in developing learning-enabled technology that can imple-
ment highly complex actions for safety-critical autonomous
systems, such as self-driving cars, robots, etc. However,
without proper safety guarantees such systems will rarely
be deployed. There is therefore the need to develop analysis
tools and algorithms that can provide such guarantees during,
and after, training.

A common approach to solve this problem is to search
for actions, policies, or controllers that optimize a cost or
reward subject to safety requirements imposed as constraints.
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Examples include, adding safe constraints for reinforcement
learning algorithms [9]–[13], (robust) stability constraints
to learning algorithms [14]–[16], and solving constrained
multi-armed bandits [17], [18]. When such constraints are
being included during training, algorithms that converge to
optimal policies, which are by definition feasible, guarantee
safety asymptotically. However, such approach can only
provide safety guarantees after training, and fails to provide
guarantees in the exploratory period.

In this paper, we suggest an alternative approach. Instead
of focusing on finding optimal actions subject to, a priori
unknown, safety constrains, we argue that one should tackle
the problem of learning safe actions separately and more
efficiently. To illustrate this point, we study the problem of
finding safe actions within the canonical setting of the multi-
armed bandit problem, in which one is given a set of N
machines/actions with expected reward µn ∈ [0, 1] for n ∈
{1, . . . , N}. By letting safe actions to be those who choose
machines with reward larger than some nominal µ, we define
a handicap metric —akin to regret— that counts the number
of times unsafe actions are chosen.

Leveraging classical results on sequential hypothesis tests
[19], we provide an algorithm for detecting unsafe ma-
chines. Unlike the regret minimization counterpart of this
problem, which requires an unbounded (with logarithmic
growth) number of trials of sub-optimal actions to identify
the machine with highest reward [20], our algorithm discards
all unsafe machines with only a finite number of trials of
unsafe actions. By characterizing such number, we guarantee
that the total handicap remains bounded by a constant.

More precisely, we use a modified version of Wald’s se-
quential probability ratio test (SPRT) [19] for each machine,
with the null hypothesis (H0) being that the machine is safe
and the alternative hypothesis (H1) being that the machine is
unsafe. Intentionally different than the SPRT, which aims to
decide either H0 or H1 and then stop, our goal is to discard
unsafe machines only by deciding on H1. This allows our
algorithm to identify all unsafe machines with probability
one within a finite expected number of trials. Our analysis
also unveils an exploration-preservation trade-off between
the false-positive ratio (safe machines discarded) and the total
handicap experienced (number of trials on unsafe machines).
Notably, our decision rule can further wrap around any
other algorithm to optimize a specific auxiliary goal since
it provides a safe environment to search for (approximately)
optimal policies.

The rest of the paper is organized as follows. We introduce
our problem setup in Section II. For didactic purposes, we
first look at the case where we aim to find machines with
µ = 1 in Section III, construct a sequential test that extends



this case for one machine in Section IV, and generalize the
solution in Section V. Numerical illustrations are provided
in Section VI and we conclude in Section VII.

II. PROBLEM STATEMENT

Consider the setup of a multi-armed bandit problem,
in which at each time instant t = 1, 2, . . . we have the
choice to operate one out of N machines. If machine n ∈
{1, 2, . . . , N} is operated at time t, it returns a binary value
Xn,t which is modelled as a Bernoulli random variable with
parameter µn. This return reveals whether the action led to
a safe result in which case Xn,t = 1, or an unsafe one
if Xn,t = 0. A machine is said to be safe if its operation
leads to a safe result. In this sense we consider two cases,
one in which we only accept flawless machines, i.e., those
with µn = 1, and a relaxed condition in which a machine
is defined to be safe if µn ≥ µ, with µ ∈ (0, 1) being a
prescribed safety requirement (possibly µ ' 1).

Let It ∈ {1, 2, . . . , N} denote the index of the machine
selected at time t, and Xt

.
= XIt,t the corresponding return.

Our goal is to design a selection policy and a decision
rule that uses data Xt, t = 1, 2, . . . to remove all unsafe
machines, while guaranteeing that a prescribed proportion
of the safe machines are kept. If only flawless machines are
accepted then the solution is straightforward: the algorithm
should remove machines as soon as they return their first
Xt = 0. We will analyse this case first in Section III.

For the relaxed condition, we will develop a one-sided
Sequential Probability Ratio Test (SPRT) that removes unsafe
machines with µn ≤ µ almost surely. In order to guarantee
that unsafe machines are removed in finite time, and provide
an explicit bound on the expected number of trials needed,
we need to sacrifice a proportion of the safe machines.
For this purpose we prescribe a slack parameter ε and a
probability α, and show that a proportion 1 − α of those
safe machines with µn ≥ µ + ε are kept as t → ∞. We
will develop this modified version of the SPRT in Section
IV for the case of N = 1, extending it in Section V to the
multi-armed bandit setup.

Along the way, we will introduce three figures of merits
that are instrumental to goal of learning to be safe. One is the
handicap, that complements the idea of regret for operating
unsafe machines, and counts the number of unsafe actions
chosen so far. Closely related to the notion of handicap is the
testing time, that counts the number of times a machine is
tried for safety, and is related to the detection time of unsafe
machines. The third one is the safety ratio, which counts the
proportion of safe machines that are kept at time t.

III. SAFE LEARNING WITH FLAWLESS MACHINES

Consider the multi armed bandit setup described above
with N machines, M of them unsafe or malfunctioning. In
order to simplify notation and without loss of generality, we
assume that the first M machines are unsafe so that µn < 1
for n = 1, . . . ,M , and µn = 1 for n = M + 1, . . . , N .

We are assured that Xn,t = 1 ∀t if the machine is safe,
thus we can discard those machines that return Xn,t = 0.

This is the strategy in Algorithm 1, which selects actions at
random over the set St of machines that remain at time t.

Algorithm 1: Safety Inspector
Initialize S1 = {1, . . . , N}
for t = 1, 2, . . . , do

Pick an arm It ∼ Unif(St)
Observe return Xt = XIt,t

if Xt = 0 then
St ← St−1 \ {It}

end
else
St ← St−1

end
end

The following definitions are introduced for the purpose
of analysing the Safety Inspector Algorithm 1 and its re-
laxed version in Section V. First, even if we recognize
that detecting unsafe machines requires unsafe actions to
be taken, we want to measure if our algorithms pick those
unsafe machines efficiently. For this purpose we present the
notion of handicap, defined as the number of times an unsafe
machine is selected, i.e.,

Handicapt = t−
t∑

τ=1

E
[
1{µIτ ≥ µ}

]
(1)

where µ = 1 in this section, and 1(·) represents the indicator
function which returns one or zero when its argument is true
or false, respectively.

Remark. We use the word handicap in the sense of a
measure of “a disadvantage that makes achievement unusu-
ally difficult,” as its definition suggests [21]. An algorithm
with unbounded Handicapt takes unsafe actions infinitely
often and is prone to malfunctioning. This marks a stark
contrast with the notion of regret, typically studied in Bandit
settings [22], where unbounded regret is unavoidable [20].

Notice that if machine n is selected at time τ , then µIτ =
µn. Thus, the indicator function will return 1 at time τ only
when a flawless machine is selected. Furthermore, even if
µn is deterministic, Handicapt is still a random variable,
with randomness coming from the selection It. Even if It is
selected in round-robin instead of uniformly as in Algorithm
1, the set St is conditioned on previous instances of Xt,
which are uncertain. In light of this, it is noticeable that
an algorithm with low handicap is one which selects unsafe
machines infrequently. As a second figure of merit we define
the safety ratio ρt as the proportion of safe machines that are
kept after t time slots, i.e.,

ρt =

∑
n∈St 1(µn ≥ µ+ ε)

N −M
(2)

with ε = 0 for Algorithm 1. Together with the notions of
handicap and safety ratio, we are interested in analysing the
time that elapses until an unsafe machine is removed. For



this purpose it is instrumental to define the number of times
that machine n has been tested for safety after t iterations
of Algorithm 1, that is

Tn(t) =

t∑
τ=1

1(Iτ = n) (3)

.
Next, we present a lemma that links the definitions of

Handicapt with Tn(t), and will be useful to bound the
expected handicap for Algorithm 1 and that in Section V.

Lemma 1. E[Handicapt] =
∑M
n=1 E[Tn(t)]

Proof.

E[Handicapt] =

t∑
τ=1

E
[
1{µIτ < µ}

]
=

t∑
τ=1

N∑
n=1

P (Iτ = n)1{µIτ < µ} =

t∑
τ=1

M∑
n=1

P (Iτ = n)

=

M∑
n=1

t∑
τ=1

E
[
1{Iτ = n}

]
=

M∑
n=1

E[Tn(t)]

Using the result in Lemma 1 we can bound the expected
handicap of Algorithm 1 by bounding E[Tn(t)]. This is the
result of the next Theorem.

Theorem 1. The handicap and safety ratio of Algorithm 1
satisfy

E[Handicapt] ≤
M∑
n=1

1

(1− µn)2
(4)

E[ρt] = 1, (5)

and the testing time of unsafe machines is bounded by

E[Tn(t)] ≤ 1

(1− µn)2
(6)

Proof. The result for the safety ratio is straightforward since
the probability of removing a machine with µn = 1 is zero.
The bound for the handicap follows from Lemma 1, together
with the result for the testing time, which is proved next

E[Tn(t)] =

t∑
τ=1

P(Tn(t) = τ)τ ≤
t∑

τ=1

µτ−1n τ (7)

≤
∞∑
τ=1

µτ−1n τ ≤ 1

(1− µn)2
(8)

Remark. The right hand side of (6) in Theorem 1 bounds the
expected number of times that an unsafe machine is tested
before removing it. This highlights one of the main ideas
introduced in this paper: if we only want to detect unsafe
machines instead of estimating the exact value of µn, then
we can do it in finite time. As a consequence, the measure of
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Fig. 1. Schematic of the decision rule for the one-sided SPRT (11).
Sequences {xt}∞t=1 belonging to the cylinder set C(0, 1, 0, 0) coincide
in the first t = 4 entries (x1, x2, x3, x4) = (0, 1, 0, 1), which determine
the likelihood ratios (L1, L2, L3, L4) represented by blue points. Since
they cross the decision threshold A at T = 4, the null hypothesis is
rejected and the machine is declared unsafe. The decision is made at
T = 4, and therefore the multiple possible trajectories of Lt afterwards
are inconsequential and can be disregarded.

handicap defined in (1) remains bounded by a constant. Even
if we deem this result as conceptually relevant, it presents
the drawback that the bounds for the expected handicap and
testing times are given in terms of µn which are unknown.
In order to provide an explicit bound in terms of the design
parameters of the algorithm it is convenient to relax the
condition that defines a safe machine, allowing for machines
with µn ≥ µ lowering the prescribed safety threshold to
µ < 1. By doing so, we will retain the ability of rejecting all
unsafe machines almost surely, while explicitly bounding the
handicap. With this goal in mind, we present our modified
SPRT in the next section.

IV. SEQUENTIAL PROBABILITY RATIO TEST

Consider in this section the case of a single machine with
unknown mean µn. We face the problem of deciding whether
the machine is unsafe, i.e., µn ≤ µ < 1. For this purpose,
we set the following Hypothesis test{

H0 : µn ≥ µ+ ε

H1 : µn ≤ µ
(9)

where ε ≤ 1 − µ is a slack parameter. The goal of this
section is to devise a sequential test, which uses data Xt

for t = 1, 2, . . . to detect if the machine is unsafe. We look
for a test that detects such a machine almost surely, and
that guarantees that a machine with µn ≥ µ+ ε is kept with
probability 1−α as t grows unbounded. The three values µ, ε
and α are design parameters. An overly conservative choice,
ε ' 0 α ' 0 pays the price of a longer detection time, as
shown in Lemma 4 later in this section. The construction of
the following test and the analysis of cylinder sets are based
on Wald’s celebrated SPRT [19].

Let fµ(x) and fµ+ε(x) denote the probability mass func-
tions corresponding to the Bernoulli distributions of parame-
ters µ and µ+ ε, respectively. For t ∈ N consider a sampled
trajectory (x1, . . . , xt) and define the likelihood ratio:

Lt =
fµ (x1, x2, . . . , xt)

fµ+ε (x1, x2, . . . , xt)
(10)



At each time we calculate Lt and accept H1 if

Lt ≥ A (11)

where A is a design parameter that will be specified later.
This is, if Lt ≥ A we declare that the machine is unsafe
and stop the test. Otherwise we take an additional obser-
vation pulling the arm one more time to then check the
condition (11) again after updating t → t + 1. Assuming
i.i.d. samples, (11) can be transformed into a condition on
the number of zeros kt in the trajectory (x1, x2, . . . , xt).
Indeed, taking the logarithm of (10), (11) transforms into
ktλ0 − (t− kt)λ1 ≥ logA, with λ0 := log(fµ(0)/fµ+ε(0))
and λ1 := − log(fµ(1)/fµ+ε(1)). Rearranging terms we
arrive to the equivalent condition for (11)

kt ≥
logA+ λ1t

λ0 + L1
(12)

with

λ0 = log((1− µ)/(1− µ− ε)) (13)
λ1 = log((µ+ ε)/µ) (14)

In this new form, it is apparent that our decision rule re-
duces to a sequential binomial test. Different from Algorithm
1, (12) does not discard a machine on the first zero, but has
a probabilistic rule to decide when the number of zeros does
not correspond with the hypothesis of a safe machine.

There are three questions that we would like to answer
in this setting: i) do unsafe machines produce sequences
that escape the threshold A with probability one?, ii) do
safe machines produce sequences that do not escape this
threshold, and if so, with what probability?, and iii) what
is the expected time for the probability ratio of sequences
coming from an unsafe machine to cross the threshold A?
To answer these questions we need some definitions first.

A. Cylinder sets

Consider an infinite sequence {xτ}, τ = 1, 2, . . . and
define C∞ as the space of all such sequences. The set
C(a1, . . . , at) is called a cylinder set of order t, and is
defined as the subset of C∞ which collects sequences with
x1 = a1, . . . , xt = at. A cylinder set will be said to be of
the unsafe type if

Lt =
fµ (a1, . . . , at)

fµ+ε (a1, . . . , at)
≥ A (15)

and if for all τ = 1, · · · , t− 1.

Lτ =
fµ (a1, . . . , aτ )

fµ+ε (a1 . . . , aτ )
< A (16)

The first condition ensures that all infinite sequences {xτ}
with x1 = a1, . . . , xt = at will lead to the acceptance
of hypothesis H1, thus declaring the machine unsafe. This
is depicted in Figure 1, showing a sequence that belongs
to an unsafe cylinder of order t = 4. Notice that by
construction, a machine that produces a sequence belonging
to an unsafe cylinder as in (15) will be declared unsafe at
time t, regardless of the future samples xτ , τ > t. Thus,

we can effectively stop the test for that machine at time t.
The second condition (16) ensures that cylinders of different
orders are disjoint sets, since the probability ratio must
exceed the threshold A for the first time at t an this cannot
be true for two different values of t. The union of all unsafe
cylinder sets (of any order) defines the set of sequences that
lead to deciding H1. Let us name this (disjoint) union as
QU . Let us also define QS as the complement of QU

QS = Q{
U (17)

This definition means that QS is the set of all sequences
for which the likelihood ratio Lt never rises above A.
Because they are complementary, it holds for all µn ∈ [0, 1]

Pµn(QU +QS) = 1 (18)

with Pµn(Q) being the probability measure corresponding
to a Bernoulli distribution of parameter µn.

We would like to obtain the following behavior:

• Under H0, most sequences belong to QS
• Under H1, all sequences belong to QU .

The second claim is guaranteed by the following lemma,
which departs from [19] because there is a nonzero prob-
ability of not stopping the test, and thus requires a special
treatment.

Lemma 2. Let Pµn(Q) and fµn(x) be the probability
measure and mass function corresponding to a Bernoulli
distribution of parameter µn under the alternative hypothesis
H1 (µn ≤ µ) . Then, i.i.d. sequences produced by such a
distribution are correctly classified almost surely, that is

Pµn(QU ) = 1, ∀ µn ≤ µ (19)

Proof. For a given sequence (x1, . . . , xt) define the log-
likelihood ratio as

Λt = logLt = log

t∏
i=1

fµ(xi)

fµ+ε(xi)
=

t∑
i=1

log
fµ(xi)

fµ+ε(xi)
(20)

Dividing by t:

Λt
t

=
1

t

t∑
i=1

log
fµ(xi)

fµ+ε(xi)

Taking the limit as t→∞ the above expression converges
to the expectation of the right hand side under the alternative
hypothesis

Λt
t
→ Ex∼fµn

[
log

fµ(x)

fµ+ε(x)

]
= µn log

µ

µ+ ε
+ (1− µn) log

1− µ
1− µ− ε

= µn

(
log

µ

µ+ ε
− log

1− µ
1− µ− ε

)
+ log

1− µ
1− µ− ε

≥ µ
(

log
µ

µ+ ε
− log

1− µ
1− µ− ε

)
+ log

1− µ
1− µ− ε

= µ log
µ

µ+ ε
+ (1− µ) log

1− µ
1− (µ+ ε)



= DKL(fµ || fµ+ε) > 0 (21)

where DKL stands for the Kullback-Leibler divergence. The
inequality holds because µn ≤ µ by hypothesis, and it
multiplies the expression in brackets, which is negative. From
the inequality in (21) and the Law of Large Numbers, it
follows

lim
t→∞

Λt =∞, a.s.

Therefore there must exist a positive integer t for which
Λt exceeds logA, so that the sequence {xτ} belongs to an
unsafe cylinder of order t and thus {xτ} ∈ QU .

The previous Lemma proved that unsafe machines are de-
tected with probability one. Next we prove that, by designing
the threshold A judiciously, a fraction 1 − α of the safe
machines are kept in the system indefinitely.

Lemma 3. Let A = 1
α and µn ≥ µ+ε. Then, the probability

that a trajectory never rises above A is Pµn(QS) ≥ 1− α.

Proof. First, we prove the claim Pµ+ε(QS) ≥ 1 − α for
the limiting case µn = µ+ ε, and then we generalize it for
µn ≥ µ+ ε. For µn = µ+ ε, the core of the proof relies in
showing that

Lt ≥ A =⇒ Pµ(QU ) ≥ APµ+ε(QU ) (22)

Once we prove (22), we use the fact that Pµ(QU ) = 1
(see (19)), hence

Pµ+ε(QU ) ≤ 1

A
= α⇒ Pµ+ε(QS) ≥ 1− α (23)

as desired.
To prove (22), we start by decomposing QU as the union

across time t of the union of all unsafe cylinders of order t,
that is

QU =

∞⋃
t=1

⋃
(a1,...,at)∈At

C(a1, . . . , at)

where At collects the tuples (a1, . . . , at) that define unsafe
cylinders of order t, i.e., those satisfying (15) and (16). By
construction all the cylinder sets are disjoint, hence

Pµ(QU ) =

∞∑
t=1

∑
(a1,...,at)∈At

Pµ
(
C(a1, . . . , at)

)
=

∞∑
t=1

∑
(a1,...,at)∈At

fµ(a1, . . . , at)

≥
∞∑
t=1

∑
(a1,...,at)∈At

Afµ+ε(a1, . . . , at)

= A

∞∑
t=1

∑
(a1,...,at)∈At

Pµ+ε(C(a1, . . . , at))

= APµ+ε(QU )

where second identity follows from marginalizing over future
trajectories (see Fig. 1), and the inequality holds since At is
defined to satisfy (15).

Now that we have (22), (23) follows immediately, and we

need to prove that Pµn(QS) ≥ Pµ+ε(QS), or equivalently
Pµn(QU ) ≤ Pµ+ε(QU ), when µn ≥ µ + ε. This is
intuitively true, since for a sequence to belong to QU , it
must satisfy (12). But the number of zeros is distributed
kt ∼ Binomial(t, 1−µn), so that the probability of satisfying
(12) becomes lower as µn increases. For a more rigorous
proof, we decompose again

Pµn(QU ) =

∞∑
t=1

∑
(a1,...,at)∈At

fµn(a1, . . . , at) (24)

as we did for Pµ(QU ). We will prove that for any fixed tuple
(a1, . . . , at) ∈ At, fµn(a1, . . . , at) is a decreasing function
of µn. First, we need to prove that the number of zeros kt
in (a1, . . . , at) satisfies 1 − kt/t ≤ µn. But because kt in
(a1, . . . , at) must satisfy (12), and logA, λ0, and λ1 are
strictly positive, then kt ≥ λ1t/(λ0 + λ1) or equivalently
1− kt/t ≤ λ0/(λ0 + λ1). Form the definition of λ0 and λ1
it yields

1− kt
t
≤ λ0
λ0 + λ1

=
log[(1− µ)/(1− µ− ε)]

log[(µ+ ε)(1− µ)/(µ(1− µ− ε))]

≤ (1− µ)/(1− µ− ε)− 1

1− µ(1− µ− ε)/((µ+ ε)(1− µ))
(25)

= (µ+ ε)(1− µ) ≤ µ+ ε ≤ µn (26)

where the first inequality results from the usual bounds of the
logarithm 1− 1/x ≤ log(x) ≤ x− 1. Rearranging 1− kt

t ≤
µn, it results t − kt − tµn ≤ 0. In this case, the derivative
of fµn(a1, . . . , at) takes the form

d

dµn
fµn(a1, . . . , at) =

d

dµn
µt−ktn (1− µn)kt

= µt−kt−1n (1− µn)kt−1(t− kt − tµn) ≤ 0 (27)

Putting (18), (23), (24), and (27) together results in
Pµn(QS) ≥ 1− α for all µn ≥ µ+ ε.

We have answered two of the three questions about our
one-sided SPRT. Once we know that all unsafe machines are
detected with probability one, it remains to characterize the
detection time, which is the purpose of the following lemma.
Henceforth, we will set the decision threshold at A = 1

α .

Lemma 4. Under the alternative hypothesis H1 correspond-
ing to µn ≤ µ, and with A = 1

α , the test (11) is expected to
terminate after T steps, with

E[T ] ≤ 1 +
log
(
1/α

)
DKL(fµ || fµ+ε)

(28)

Proof. Let T be the smallest integer for which the test leads
to the acceptance of H1. Such variable is well defined and
finite as a result of Lemma 2.

Ex∼fµn [ΛT ] = ET

Ex∼fµn
 T∑
i=1

log
fµ(xi)

fµ+ε(xi)

∣∣∣∣∣ T





= ET

TEx∼fµn
[

log
fµ(x)

fµ+ε(x)

]
= E[T ]Ex∼fµn

[
log

fµ(x)

fµ+ε(x)

]
= E[T ]Ln

(29)

with Ln = Ex∼fµn
[
log

fµ(x)
fµ+ε(x)

]
. Furthermore,

Ex∼fµn [ΛT ] = Ex∼fµn

[
ΛT−1 + log

fµ(xT )

fµ+ε(xT )

]
= Ex∼fµn [ΛT−1] + Ln

≤ log(1/α) + Ln (30)

Combining (29) and (30):

E[T ] ≤ 1 +
log
(
1/α

)
Ln

≤ 1 +
log
(
1/α

)
DKL(fµ || fµ+ε)

in virtue of Ln ≤ DKL(fµ || fµ+ε) for µn ≤ µ, as it was
proved in (21).

The result in Lemma 4 evidences the need of some slack
ε between the limiting distributions of both hypotheses.
By accommodating this gap we are able to separate the
limiting distributions fµ(x) from fµ+ε(x) so that the distance
DKL(fµ || fµ+ε) is positive and we can guarantee a finite
expected detection time. Notice that we could use Ln for
the bound on the detection time, as given in the proof of
Lemma 4, which indeed gives a tighter bound, meaning
faster detection. However, it requires the knowledge of the
underlying probability µn which is unknown. Using the DKL

instead is preferred, because it yields a bound that depends
on our design parameters µ, ε and α only. This result also
allows us to have some intuitive interpretation regarding the
choice of these design parameters.

With lemmas 2– 4 at hand, we return to our original setup.

V. LEARNING TO BE SAFE

Next we generalize Algorithm 1 for the case in which
the safety requirement µ = 1 is relaxed. The following
algorithm results from extending the one-sided SPRT just
described to the scenario with multiple machines. Identical to
the previous Section, we prescribe a safety threshold µ < 1
that renders machines with µn < µ as unsafe. Then, we
define an error probability α, a slack parameter ε, and the
Bernoulli probability mass functions fµ+ε(x) and fµ(x) with
means µ+ ε and µ respectively. These are all the definitions
needed to run our second Safety Inspector algorithm.

Building on lemmas 1–4 we state our main result.

Theorem 2. The handicap and safety ratio of the Relaxed
Safety Inspector (Algorithm 2) satisfy

E[Handicapt] ≤M

(
1 +

log
(
1/α

)
DKL(fµ || fµ+ε)

)
(31)

Algorithm 2: Relaxed Safety Inspector
Initialize S1 = {1, . . . , N}, Λn = 0, n = 1, . . . , N
for t = 1, 2 . . . do

Pick an arm It ∼ Unif(St)
Observe return Xt = XIt,t

Update ΛIt+ = log
fµ(Xt)
fµ+ε(Xt)

if ΛIt ≥ log(1/α) then
St ← St−1 \ {It}

end
end

E[ρt] ≤ 1− α (32)

and the testing time of unsafe machines is bounded by

E[Tn(t)] ≤ 1 +
log
(
1/α

)
DKL(fµ || fµ+ε)

(33)

Proof. The third inequality was proved in Lemma 4. Notice
that Tn(t) is defined as the number of trials for machine
n, regardless of the time spent on other machines, so that
we can treat it as the result of separate SPRTs, and thus use
Lemma 4. The first inequality follows from (33) and Lemma
1. The second one results from Lemma 3.

Theorem 2 certifies that the Relaxed Safety Inspector
(Algorithm 2) inherits the finite detection time from the
SPRT, ensuring that all unsafe machines are removed in finite
time, providing a universal bound (33) in terms of the design
parameters α, µ and ε. As a consequence, the total handicap
of the system also remains bounded by a finite constant (31).
Together with the certainty of rejecting all unsafe machines,
our algorithm ensures that a proportion 1 − α of the safe
machines with slack ε is kept in the system indefinitely
according to (32).

VI. NUMERICAL EXAMPLES

Let us first illustrate the behavior of Algorithm 2 and how
it proceeds to discard unsafe arms. To that end, consider
a simple setup of N = 3 arms, all with same parameter
µn = 0.8. Our safety requirements are set to µ = 0.9,
ε = 0.02 and the error probability to α = 0.05. With this
parameters in mind, all machines should be deemed unsafe
in finite time. Our discarding rule involves checking when
Λt ≥ logA. Since we are dealing with Bernoulli random
variables, this rule can be equivalently cast as a decision
based on the number of failed outcomes of each arm (12).
These reciprocal ideas are depicted on the test in Figure 2.

A. Experiment 1: Transient behavior

We consider a setup of N = 1000 arms, and set a
safety guarantee µ = 0.9 and a gap ε = 0.05. The
true parameter of each arm is sampled from a uniform
distribution U (0.8, 1). We run sixteen instances of the Safety
Inspector described in Algorithm 2 on this test-bed, and
then average the results obtained. We define the normalized
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Fig. 2. Sequential probability ratio test for µ = 0.9, ε = 0.02, α = 0.05
and three identical unsafe machines of parameter µn = 0.8. Above: log-
likelihood function Λt as a function of the number of pulls of each machine.
Below: failed outcomes for each machine as a function of the number of
pulls. The test terminates when the sequence surpasses either rejection line
(in blue). All three unsafe machines are discarded in finite time.

handicap as the average handicap over all the available arms:
NHandicapt = 1

N Handicapt. Figures 3 and 4 show the
evolution of the normalized handicap and safety ratio for
different tolerance levels α, along with the bounds obtained
in Theorem 2. Notice that both the handicap and safety ratio
remain constant after some time, which indicates that all
unsafe machines have been identified, and that no more safe
machines are discarded along the way. The final handicap
obtained is essentially the number of pulls over all unsafe
arms. This is depicted more closely in Figure 5, which
presents a histogram of the testing time on unsafe machines,
for the setup explained above and for fixed α = 0.1. Most
machines yield a testing time that is strictly lower than
the bound in (8). It is important to remark that this bound
is on the expected time, and therefore a small number of
machines actually need to be tested for longer. Nevertheless,
the empirical mean represented by a dashed green line in
Fig. 5 lies below the red line that represents the bound.
This bound, as well as those in Figs. 3 and 4, is loose
because the machines parameters µn were drawn uniformly
from U (0.8, 1), but becomes tight if selected as the limiting
parameters of the hypothesis test µn ∈ {µ, µ+ ε}.

B. Experiment 2: Steady state behavior

Repeating the same setup as in Experiment 1, now we per-
form multiple runs for varying ε. Let us define NHandicap∞
as the maximal normalized handicap obtained —that is,
the normalized handicap when all unsafe machines are dis-
carded. Figure 6 illustrates the dependence of NHandicap∞
for varying ε and α. Larger values of α and ε attain lower
handicap, which essentially means that unsafe arms are
detected faster. This, however, comes at a price —faster

Fig. 3. Evolution of the Normalized Handicap through training for µ = 0.9,
ε = 0.05 and machines with parameter drawn from U(0.8, 1). Each solid
line corresponds to the handicap obtained with a different error tolerance
α, and the dashed lines are the (normalized) bounds on the Handicap (see
(31)). All unsafe machines are eventually discarded after sufficient training,
and therefore the handicap remains constant.

Fig. 4. Evolution of the safety ratio ρt through training for µ = 0.9,
ε = 0.05 and machines with parameter drawn from U(0.8, 1), for different
tolerance levels α. Each solid line is accompanied by its corresponding
bound (see (32)).

detection necessarily implies discarding safe machines along
the way. Figure 7 shows the other side of the coin: the final
value of the safety ratio ρt after all unsafe machines have
been discarded, which we dub ρ∞. As ε and α grow, ρ∞
diminishes. The conjunction of these two Figures exemplify
the preservation-exploration trade-off inherent to our Algo-
rithm.

VII. CONCLUSIONS

In this paper we are interested in providing a safety
environment for learning. To that end, we advance the idea
that detecting if an action is safe is much simpler than trying
to estimate its value function, and can be done in finite
time. In this direction, we define a measure of handicap
that complements the notion of regret by accounting for
the aggregate number of unsafe actions explored. We
focus on the multi-armed bandit problem, with the goal
of detecting the malfunctioning machines and keeping the
handicap bounded. For this purpose, we introduced the
Relaxed Safety Inspector (Algorithm 2), which we developed
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Fig. 5. Histogram of the testing time needed to discard unsafe machines,
for µ = 0.9, ε = 0.05, α = 0.1 and machines’ parameters drawn from
U(0.8, 1). In dashed red: bound on the testing time from Theorem 2. Since
this bound is on the expected testing time, some machines need to be tested
for longer. In dashed green: Empirical mean testing time, which is strictly
lower than the bound described.
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Fig. 6. Normalized final Handicap for µ = 0.9 as a function of ε, for
varying tolerance level α. As is to be expected, larger values of α and ε
achieve lower handicap (which implies faster detection).

as sequential probability ratio test for parallel hypotheses. We
proved in Theorem 2 that this algorithm has the property
of removing all unsafe machines in finite time, providing a
universal bound (33) in terms of the the design parameters
α, µ and ε. As a consequence of this, the handicap remains
bounded by a finite constant as time goes to infinity. The
price to pay for being able to detect all malfunctioning
machines in finite time is to accommodate a slack on the
machines that are considered safe, and losing a proportion
of them. Interestingly, these are design parameters that can
be tightened if we are willing to wait longer for detection.
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