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Abstract
Neural networks trained via gradient descent with
random initialization and without any regulariza-
tion enjoy good generalization performance in
practice despite being highly overparametrized. A
promising direction to explain this phenomenon
is to study how initialization and overparametriza-
tion affect convergence and implicit bias of train-
ing algorithms. In this paper, we present a novel
analysis of single-hidden-layer linear networks
trained under gradient flow, which connects ini-
tialization, optimization, and overparametrization.
Firstly, we show that the squared loss converges
exponentially to its optimum at a rate that depends
on the level of imbalance of the initialization.
Secondly, we show that proper initialization con-
strains the dynamics of the network parameters to
lie within an invariant set. In turn, minimizing the
loss over this set leads to the min-norm solution.
Finally, we show that large hidden layer width,
together with (properly scaled) random initializa-
tion, ensures proximity to such an invariant set
during training, allowing us to derive a novel non-
asymptotic upper-bound on the distance between
the trained network and the min-norm solution.

1. Introduction
Neural networks have shown excellent empirical per-
formance in many application domains such as vi-
sion (Krizhevsky et al., 2012; Rawat & Wang, 2017),
speech (Hinton et al., 2012; Graves et al., 2013) and video
games (Silver et al., 2016; Vinyals et al., 2017). Among
the many unexplained puzzles behind this success is the
fact that gradient descent with random initialization, and
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without explicit regularization, enjoys good generalization
performance despite being highly overparametrized.

One possible explanation of such phenomenon is the im-
plicit bias or regularization that first order gradient algo-
rithms induce under proper initialization assumptions. For
example, in classification tasks, gradient descent on sepa-
rable data can induce a bias towards the max-margin so-
lution (Soudry et al., 2018; Ji & Telgarsky, 2019; Lyu &
Li, 2019). Similarly, in regression tasks, it has been shown
that (deep) matrix factorization models trained by first order
methods yield solutions with low nuclear norm (Gunasekar
et al., 2017) and low rank (Arora et al., 2019a). Along
the same vein, Saxe et al. (2014); Gidel et al. (2019) have
shown that deep linear networks sequentially learn dominant
singular values of the the input-output correlation matrix.

Another possible explanation is that, in the Neural Tangent
Kernel (NTK) regime, the gradient flow of a randomly ini-
tialized infinitely wide neural network can be well approxi-
mated by the flow of its linearization at initialization (Jacot
et al., 2018; Chizat et al., 2019; Arora et al., 2019c;b). In
this regime, training infinitely wide neural networks mimics
kernel methods. In particular, the NTK flow is constrained
to lie on a manifold, which improves generalization perfor-
mance as discussed in (Arora et al., 2019b).

While the aforementioned analysis is quite insightful, it re-
quires assumptions on the model and the initialization that
are often disconnected. For example, the implicit bias char-
acterized in (Gunasekar et al., 2017; Arora et al., 2019a)
requires vanishing initialization, while the analysis of con-
vergence of gradient algorithms for linear networks requires
balanced (Arora et al., 2018b;a) or spectral (Saxe et al.,
2014; Gidel et al., 2019) initialization. Similarly, the NTK
regime (Jacot et al., 2018; Arora et al., 2019c), requires ran-
dom initialization and infinitely wide networks, making the
non-asymptotic analysis challenging (Arora et al., 2019c).

This paper aims to bridge some of these gaps. We present
a novel analysis of the gradient flow dynamics of over-
parametrized single-hidden layer linear networks, which
provides a common set of conditions on initialization that
lead to convergence and implicit bias. Specifically, we
exploit a certain measure of imbalance at initialization to
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ensure exponential convergence. We further characterize
a complementary condition, based on orthogonality, that
enforces the learning trajectory to be constrained within an
invariant set whose unique global optimum is the min-norm
solution. While our analysis does not require infinite width,
vanishing, spectral, or random initialization, we show that
our exponential convergence and orthogonality conditions
are provably approximately satisfied for wide networks with
properly scaled random initialization, leading to a bound
on the distance to the min-norm solution. Hence, this paper
formally connects initialization, exponential convergence of
the optimization task, overparametrization and implicit bias.

This paper makes the following contributions:

1. In Section 2 we develop our convergence analysis based
on the fact that gradient flow on the squared-l2 loss pre-
serves a certain matrix-valued quantity, akin to constants
of motion in mechanics or conservation laws of physics,
that measures the imbalance of the network weights. We
show that, some level of imbalance, measured by certain
eigenvalues of the imbalance matrix and defined at initial-
ization, is sufficient to guarantee the exponential rate of
convergence of the loss. Our analysis complements prior
work on convergence analysis discussed in Section 1.1.

2. In Section 3.1 we show the existence of a subset of the
parameter space defined by an orthogonality condition,
which is invariant under gradient flow. All trajectories
within this invariant set lead to a unique minimizer (w.r.t.
the end-to-end function), which corresponds to the min-
norm solution. As a result, initializing the network within
this invariant set always yields the min-norm solution
upon convergence.

3. In Section 3.2 we further show that by randomly initial-
izing the network weights using N (0, 1/h2α) (where h
is the hidden layer width and 1/4 < α ≤ 1/2), one can
approximately satisfy both our sufficient imbalance and
orthogonality conditions with high probability. Notably,
initializations outside the invariant set require exponen-
tial convergence to control their deviation from the set.
For linear networks our results also provide a novel non-
asymptotic upper-bound on the operator norm distance
between the trained network and the min-norm solution.

1.1. Other Related Work

Convergence of Linear Networks. Convergence in over-
parametrized linear networks has been studied for both gra-
dient flow (Saxe et al., 2014) and gradient descent (Bartlett
et al., 2018; Arora et al., 2018a;b). Saxe et al. (2014) an-
alyze the trajectory of network parameters under spectral
initialization, while Bartlett et al. (2018) study the case of
identity initialization. Although the fact that the imbalance
is conserved under gradient flow has been exploited in Arora

et al. (2018a;b), the work studies balanced initialization and
exploits the structure conveyed by it to study convergence
of the learning dynamics. The analysis of convergence in
the imbalanced case was recently studied in ? for both spec-
tral and non-spectral initializations. Our analysis improves
upon prior work by considering a wider range of imbal-
ance structures, which include ones that arise under random
initialization.

Wide Neural Networks. There has been a rich line of
research that studies the convergence (Du et al., 2019b;a;
Du & Hu, 2019; Allen-Zhu et al., 2019b) and generaliza-
tion (Allen-Zhu et al., 2019a; Arora et al., 2019b;c; Li &
Liang, 2018; Cao & Gu, 2019; Buchanan et al., 2020) of
wide neural networks with random initialization. The be-
havior of such networks in their infinite width limit can be
characterized by the Neural Tangent Kernel (NTK) (Jacot
et al., 2018). Heuristically, training wide neural networks
can be approximately viewed as kernel regression under
gradient flow/descent (Arora et al., 2019c), hence the con-
vergence and generalization can be understood by studying
the non-asymptotic results regarding the equivalence of fi-
nite width networks to their infinite limit (Du et al., 2019b;a;
Allen-Zhu et al., 2019b; Arora et al., 2019b;c; Buchanan
et al., 2020). More generally, such non-asymptotic results
are related to the “lazy training” (Chizat et al., 2019; Du
et al., 2019a; Allen-Zhu et al., 2019b), where the network
weights do not deviate too much from its initialization dur-
ing training. Our results for wide linear networks presented
in Section 3.2 do not follow the NTK analysis, but provide
an alternative view on the effect of random initialization for
linear networks when the hidden layer is sufficiently wide.

1.2. Notation

For a matrixA, we letAT denote its transpose, tr(A) denote
its trace, λi(A) and σi(A) denote its i-th eigenvalue and i-
th singular value, respectively, in decreasing order (when
adequate). We let [A]ij , [A]i,:, and [A]:,j denote the (i, j)-th
element, the i-th row and the j-th column of A, respectively.
We also let ‖A‖2 and ‖A‖F denote the spectral norm and
the Frobenius norm of A, respectively. For a scalar-valued
or matrix-valued function of time, F (t), we let Ḟ = Ḟ (t) =
d
dtF (t) denote its time derivative. Additionally, we let In
denote the identity matrix of order n and N (µ, σ2) denote
the normal distribution with mean µ and variance σ2.

2. Convergence Analysis for Gradient Flow
on Single-Hidden-Layer Linear Networks

We first study the convergence of gradient flow for single-
hidden-layer linear networks trained with squared l2-loss.
Given n training samples {x(i), y(i)}ni=1, where x(i) ∈ RD,
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y(i) ∈ Rm, we aim to solve the linear regression problem

min
Θ∈RD×m

L =
1

2

n∑
i=1

(y(i) −ΘTx(i))2 . (1)

We do so by training a single-hidden-layer linear network
y = f(x;V,U) = V UTx, V = Rm×h, U ∈ RD×h, where
h is the hidden layer width, with gradient flow, i.e., gradi-
ent descent with “infinitesimal step size”. We consider an
overparametrized model such that h ≥ min{m,D}.

We rewrite the loss with respect to our parameters V,U as

L(V,U) =
1

2

n∑
i=1

(y(i)−V UTx(i))2 =
1

2
‖Y −XUV T ‖2F ,

(2)
where Y = [y(1), · · · , y(n)]T and X = [x(1), · · · , x(n)]T .

Assuming the input data X has full rank, we consider the
under-determined case D > n ≥ rank(X) for our regres-
sion problem, i.e., there are infinitely many solutions Θ∗

that achieve optimal loss L∗ of (1). We will show that un-
der certain conditions, the trajectory of the loss function
L(t) = L(V (t), U(t)) under gradient flow of (2), i.e.,

V̇ (t) = − ∂L
∂V

(V (t), U(t)) , U̇(t) = − ∂L
∂U

(V (t), U(t)) ,

(3)
converges to L∗ exponentially, and that proper initializa-
tion of U(0), V (0) controls the convergence rate via a time-
invariant matrix-valued term, the imbalance of the network.

2.1. Reparametrization of Gradient Flow

Assuming that D > n ≥ r = rank(X), the singular value
decomposition (SVD) of X can be written as

X = W
[
Σ

1/2
x 0

] [ΦT1
ΦT2

]
, (4)

where W ∈ Rn×r, Φ1 ∈ RD×r, and Φ2 ∈ RD×(D−r).
Since Φ1ΦT1 + Φ2ΦT2 = ID, we have

U = IDU = (Φ1ΦT1 + Φ2ΦT2 )U = Φ1ΦT1 U + Φ2ΦT2 U ,

and hence we can reparametrize U as (U1, U2) using the
bijection U = Φ1U1 + Φ2U2, with inverse (U1, U2) =
(ΦT1 U,Φ

T
2 U).

We write the gradient flow in (3) explicitly as

V̇ (t) =
(
Y −XU(t)V T (t)

)T
XU(t)

= ET (t)Σ1/2
x ΦT1 U(t) , (5a)

U̇(t) = XT
(
Y −XU(t)V T (t)

)
V (t)

= Φ1Σ1/2
x E(t)V (t) , (5b)

where

E = E(V,U1) = WTY − Σ1/2
x U1V

T , (6)

is defined to be the error. Then from (5a)(5b) we obtain the
dynamics in the parameter space (V,U1, U2) as

V̇ (t) = ET (t)Σ1/2
x U1(t) ,

U̇1(t) = Σ1/2
x E(t)V (t) , U̇2(t) = 0 . (7)

Notice that

L(V,U) =
1

2
‖Y −XUV T ‖2F

=
1

2
‖(I −WWT )Y +WE‖2F

=
1

2
‖WE‖2F +

1

2
‖(I −WWT )Y ‖2F

=
1

2
‖E‖2F +

1

2
‖(I −WWT )Y ‖2F , (8)

where the last equality is because W has orthonormal
columns. Here the last term in (8) does not dependson
V,U , and we define it as the residual

L∗ =
1

2
‖(I −WWT )Y ‖2F ,

which is the optimal value of (1). Therefore it suffices to
analyze the convergence of the error E(t) under the dy-
namics of V (t), U1(t) in (7). As we show later in Section
3.2, the exponential convergence of E(t), or equivalently
L(t) − L∗ is crucial for our analysis of the implicit bias,
in the sense that exponential convergence ensures that the
parameters do not deviate much away from the invariant set
of interest, so that good properties from the initialization are
approximately preserved during training.

2.2. Imbalance and Convergence of the Error

We define the imbalance of the single-hidden-layer linear
network under input data X as

Imbalance : Λ = UT1 U1 − V TV ∈ Rh×h . (9)

The imbalance term is time-invariant under gradient flow,
as stated in the following claim.

Claim. Under the continuous dynamics (7), d
dtΛ(t) ≡ 0.

Proof. Under (7), we compute the time derivative of
UT1 (t)U1(t) and V T (t)V (t) as

d

dt
UT1 (t)U1(t) = U̇T1 (t)U1(t) + UT1 (t)U̇1(t)

= V T (t)ET (t)Σ1/2
x U1(t) + UT1 (t)Σ1/2

x E(t)V (t),

d

dt
V T (t)V (t) = V T (t)V̇ (t) + V̇ T (t)V (t)

= V T (t)ET (t)Σ1/2
x U1(t) + UT1 (t)Σ1/2

x E(t)V (t) .
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Hence, d
dtU

T
1 (t)U1(t) and d

dtV
T (t)V (t) are identical, and

so d
dtΛ(t) = d

dt [U
T
1 (t)U1(t)− V T (t)V (t)] ≡ 0.

The rank of the h× h imbalance matrix, rank(Λ) ≤ m+ r,
characterizes how much the row spaces of U1 and V are mis-
aligned. As stated in the following theorem (see Appendix C
for the proof), a mild condition on the imbalance is sufficient
for exponential convergence of the error E(t), or equiva-
lently, L(t) − L∗. The condition measures the amount of
imbalance by the scalar c := [λr(Λ(0)]+ + [λm(−Λ(0)]+,
where [·]+ := max{·, 0}. Since λr(Λ(0)) (or λm(−Λ(0)))
is undefined when h < r (or h < m), we define it as zero.

Theorem 1 (Convergence of linear networks with sufficient
level of imbalance). Let V (t), U1(t), t > 0 be the solution
of (7) starting from some V (0), U1(0). We have that

(L(t)− L∗) ≤ exp (−2λr(Σx)ct) (L(0)− L∗)), ∀t > 0 ,
(10)

where c := [λr(Λ(0)]+ + [λm(−Λ(0)]+. Moreover, if h ≥
m+ r, then c = λr(Λ(0)) + λm(−Λ(0)). Additionally, if
c > 0, (V (t), U1(t)), t > 0 converges to an equilibrium
point (V (∞), U1(∞)) such that E(V (∞), U1(∞)) = 0.

Notice that in the “balanced” case (c = 0) the condition
in (10) is trivial and no convergence guarantee is obtained.
The interesting case is when c > 0, which implies that the
initial weights U(0), V (0) are nonzero and somehow “im-
balanced”. Notably, imbalance arises for example when 1)
U1(0), V (0) are full rank, and their row spaces are suffi-
ciently misaligned. The extreme case is that U1(0)V T (0) =
0, where we have c = λr(U1U

T
1 ) + λm(V V T ) > 0. Later

we show that this orthonality condition is approximately
satisfied for wide networks under random initialization; 2)
The row spaces of U1(0), V (0) are well-aligned, and the
singular values of U(0) are sufficiently larger than those
of V (0) (or vice versa). In these cases, either λr(Λ(0)) or
λm(−Λ(0)) is non-zero.

As mentioned before, the fact that the imbalance is pre-
served under gradient flow has been exploited in Arora et al.
(2018a;b), where imbalance is assumed to be zero (or small),
such that the learning dynamics can be expressed in closed
form with respect to the end-to-end matrix. This analysis,
requires, however, additional assumptions on the initializa-
tion of the end-to-end matrix for exponential convergence.
Similarly, though in a more general setting, Du et al. (2018)
showed that the imbalance is preserved, and proves conver-
gence under a small imbalance assumption. Exponential
rate, however, is not guaranteed. Exploiting imbalance for
guaranteeing convergence was first presented in Saxe et al.
(2014), under a spectral initialization assumption, where the
exact learning trajectory can be computed. The analysis of
convergence in the imbalanced case was recently studied
in ? for both spectral, and non-spectral initializations with
additional requirement that the imbalance matrix has all

eigenvalues being equal. In contrast, Theorem 1, which
complements aforementioned works, shows convergence
result without the spectral nor balanced initialization condi-
tion, and it has less constraints on the imbalance structure.
Lastly, we note that the initialization condition in previous
works (Saxe et al., 2014; Arora et al., 2018a; Du et al.,
2018), either spectral or balanced initialization, is not satis-
fied by randomly initialized weights with a non-vanishing
scale, while our result do provide convergence guarantees
for random initialization.

3. Implicit Bias of Gradient Flow on
Single-Hidden-Layer Linear Network

In this section, we study a particular type of implicit bias of
single-hidden-layer linear networks under gradient flow. As-
suming that D > r = rank(X), the regression problem (1)
has infinitely many solutions Θ∗ that achieve optimal loss.
Among all these solutions, one that is of particular interest
in high-dimensional linear regression is the minimum norm
solution (min-norm solution)

Θ̂ = arg min
Θ∈RD×m

{‖Θ‖F : ‖Y −XΘ‖2F = min
Θ
‖Y −XΘ‖2F }

= XT (XXT )†Y, (11)

which has near-optimal generalization error for suitable data
models (Bartlett et al., 2020; Mei & Montanari, 2019). Here,
we study conditions under which our trained network is
equal or close to the min-norm solution by showing how the
initialization explicitly controls the trajectory of the training
parameters to be exactly (or approximately) confined within
some low-dimensional invariant set. In turn, minimizing the
loss over this set leads to the min-norm solution.

3.1. Decomposition of Trained Network

Notice that the end-to-end matrix UV T ∈ RD×m asso-
ciated with the single-hidden-layer linear network can be
decomposed according to the SVD of data matrix X , (4), as

UV T = (Φ1ΦT1 + Φ2ΦT2 )UV T = Φ1U1V
T + Φ2U2V

T ,
(12)

where Φ1,Φ2, U1, U2 are defined in Section 2. The j-th
column of UV T , [UV T ]:,j , is the linear predictor for the
j-th output yj , and is decomposed into two components
within complementary subspaces span(Φ1) and span(Φ2).
Moreover [U1V

T ]:,j is the coordinate of [UV T ]:,j w.r.t. the
orthonormal basis consisting of the columns of Φ1, and
similarly [U2V

T ]:,j is the coordinate w.r.t. basis Φ2. Under
gradient flow (3), the trajectory (U(t)V (t)T , t > 0) is fully
determined by the trajectory (U1(t)V T (t), U2(t)V T (t), t >
0), which is governed by the dynamics (7).

Convergence of Training Parameters. We have derived
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useful results regarding U1(t)V T (t) for t > 0 in Section
2. By Theorem 1, provided sufficient level of imbalance,
U1(t)V T (t) converges to some U1(∞)V T (∞) and the sta-
tionary point satisfies WTY − Σ

1/2
x U1(∞)V T (∞) = 0,

which implies U1(∞)V T (∞) = Σ
−1/2
x WTY . Then it is

easy to check that

Φ1U1(∞)V T (∞) = Φ1Σ−1/2
x WTY

= XT (XXT )†Y = Θ̂ . (13)

For U2(t)V T (t), notice that U̇2(t) = 0 in dynamics (7),
hence U2(t) = U2(0),∀t > 0. Overall, under suffi-
cient level of imbalance, U(t)V T (t) converges to some
U(∞)V T (∞) and

U(∞)V T (∞) = Φ1U1(∞)V T (∞) + Φ2U2(0)V T (∞)

= Θ̂ + Φ2U2(0)V T (∞) . (14)

Constrained Training via Initialization. Based on our
analysis above, initializingU2(0) such thatU2(0)V T (∞) =
0 in the limit, guarantees convergence to the min-norm
solution via (14). However, this is not easily achievable, as
one needs to know a priori V (∞). Instead, we can show
that by choosing a proper initialization, one can constrain
the trajectory of the matrix U(t)V T (t) to lie identically in
the set ΦT2 U2(t)V T (t) ≡ 0 for all t ≥ 0, thus the min-norm
solution is obtained upon convergence, as suggested by the
following proposition.

Proposition 1. Let V (t), U1(t), U2(t), t > 0 be the solu-
tion of (7) starting from some V (0), U1(0), U2(0). Assum-
ing V (t), U1(t), t > 0 converges to some equilibrium point
V (∞), U1(∞) with E(V (∞), U1(∞)) = 0. If the initial-
ization satisfies

V (0)UT2 (0) = 0, U1(0)UT2 (0) = 0 , (15)

then we have
U(∞)V T (∞) = Θ̂ .

Proof. From (7) we have

d

dt

[
V (t)UT2 (0)
U1(t)UT2 (0)

]
=

[
0 ET (t)Σ

1/2
x

Σ
1/2
x E(t) 0

] [
V (t)UT2 (0)
U1(t)UT2 (0)

]
. (16)

Since V (0)UT2 (0) = 0, U1(0)UT2 (0) = 0 is an equilib-
rium point of (16), we have V (t)UT2 (0) = 0,∀t ≥ 0,
hence V (∞)UT2 (0) = 0. From (14) we conclude that
U(∞)V T (∞) = Θ̂.

In the standard linear regression, where Θ(t) follows the
gradient flow on L(Θ) = 1

2‖Y −XΘ‖2F , it is well-known

that if the columns of Θ(0) are initialized in span(Φ1),
namely ΘT (0)Φ2 = 0, then Θ(∞) = Θ̂. Proposition 1
is the extension of such results to the overparameterized
setting. It is worth-noting that initializing the columns of
U(0)V T (0) in span(Φ1), namely V (0)UT2 (0) = 0 is no
longer sufficient for obtaining Θ̂ as the trained network, and
additional condition U1(0)UT2 (0) = 0 is required.

Here the orthogonality constraints (15) define an invariant
subset of the parameter space {V,U : V UT2 = 0, U1U

T
2 =

0} under the gradient flow. Proposition 1 shows that given
an initialization within the invariant set, the trained network
(after convergence) is exactly the min-norm solution, which
is the only minimizer in the invariant set.

While in practice we can make the initialization exactly as
above, such choice is data-dependent and requires the SVD
of the data matrix X . Moreover, we note that while the
zero initialization works for the standard linear regression
case, such initialization V (0) = 0, U(0) = 0 is bad in the
overparametrized case because it is an equilibrium point
of the gradient flow, even though it satisfies the orthogonal
condition V (0)UT2 (0) = 0 and U1(0)UT2 (0) = 0.

In the next section, we show that under (properly scaled)
random initialization and sufficiently large hidden layer
width h, both conditions for convergence and implicit bias
on initialization are probably approximately satisfied, i.e.,
with high probability the level of imbalance is sufficient
for exponential convergence, and the parameters are ini-
tialized close to the invariant set, allowing us to obtain a
non-asymptotic bound between the trained network and the
min-norm solution.

3.2. Wide Single-Hidden-Layer Linear Network

In this section, we show how the previously mentioned
conditions for convergence and implicit bias, i.e., high
imbalance and orthogonality, are approximately satisfied
with high probability under the following initialization
(1/4 ≤ α ≤ 1/2)

[U(0)]ij ∼ N
(

0,
1

h2α

)
, 1 ≤ i ≤ D, 1 ≤ j ≤ h ,

[V (0)]ij ∼ N
(

0,
1

h2α

)
, 1 ≤ i ≤ m, 1 ≤ j ≤ h ,

where all the entries are independent.

Both our parametrization and initialization are, at first sight,
different from the one used in previous works (Jacot et al.,
2018; Du & Hu, 2019; Arora et al., 2019c) on NTK analysis
for wide neural networks. We note that with time-rescaling,
however, we can relate our initialization to the one in Arora
et al. (2019c). Please see Appendix D for a comparison.

Recall in the last section, one can obtain exactly min-norm
solution via proper initialization of the single-hidden-layer
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network. In particular, it requires 1) convergence of the
error E(t) to zero; and 2) the orthogonality conditions
V (0)UT2 (0) = 0 and U1(0)UT2 (0) = 0. Under random
initialization and sufficiently large hidden layer width h,
these two conditions are approximately satisfied. Using
basic random matrix theory, one can show the following
lemma. (See Appendix E for the proof)

Lemma 1. Let 1
4 < α ≤ 1

2 . Given data matrix X . ∀δ ∈
(0, 1), ∀h > h0 = poly

(
m,D, 1

δ

)
, with probability at least

1− δ over random initializations with [U(0)]ij , [V (0)]ij ∼
N (0, h−2α), the following conditions hold:

1. (Sufficient level of imbalance)

λr(Λ(0)) + λm(−Λ(0)) > h1−2α , (17)

2. (Approximate orthogonality)∥∥∥∥[V (0)UT2 (0)
U1(0)UT2 (0)

]∥∥∥∥
F

≤ 2
√
m+ r

√
m+D + 1

2 log 2
δ

h2α− 1
2

,

(18)

∥∥U1(0)V T (0)
∥∥
F
≤ 2
√
m

√
m+D + 1

2 log 2
δ

h2α− 1
2

. (19)

From (18), we know that the parameters are initialized
close to the invariant set of our interest, as measured by
‖V UT2 ‖F +‖U1U

T
2 ‖F . The dynamics (16) quantify at time

t how fast this measure can maximally increase given that
its current value is non-zero. It is clear that the smaller norm
the current error E(t) has, the lower is the rate at which
this measure could increase. This suggests that as long as
the error converges sufficiently fast, ‖V UT2 ‖F + ‖U1U

T
2 ‖F

will not increase too much from its initial value. For our
purpose, as the width h increases, we need at least a constant
rate of exponential convergence of the error (given by (17)),
and an initial error E(0) that is bounded by some constant
(derived from (19)). With these conditions satisfied with
high probability, we have the following Theorem regarding
the implicit bias of wide linear networks. (See Appendix E
for the proof)

Theorem 2 (Implicit bias of wide single-hidden-layer
linear network for regression). Let 1

4 < α ≤ 1
2 .

Let (V (t), U(t), t > 0) be a trajectory of the contin-
uous dynamics (7). Then, ∃C > 0, such that ∀δ ∈
(0, 1),∀h > h

1/(4α−1)
0 with h0 = poly

(
m,D, 1

δ ,
λ1(Σx)
λ3
r(Σx)

)
,

with probability 1 − δ over random initializations with
[U(0)]ij , [V (0)]ij ∼ N (0, h−2α), we have

‖U(∞)V T (∞)− Θ̂‖2

≤ 2C1/h1−2α√
m+ r

√
m+D + 1

2 log 2
δ

h2α− 1
2

.

(20)

Here C = exp

(
1 +

λ
1/2
1 (Σx)
λr(Σx) ‖Y ‖F

)
, which depends on

the data X,Y .

Previous works (Arora et al., 2019c) show non-asymptotic
results on bounding the difference of predictions between
the trained network and the kernel predictor of the NTK
over a finite number of testing point (non-global result) us-
ing more general network structure and activation functions.
We work on a simpler model, we are able to study it with-
out going through non-asymptotic NTK analysis, which is
considerably more complicated than ours. We believe this
theorem is a clear illustration of how overparametrization, in
particular, in the hidden layer width, together with random
initialization affects the convergence and implicit bias.

Notably, although our initialization is related to the NTK
analysis (Jacot et al., 2018; Arora et al., 2019c) and the
kernel regime (Chizat et al., 2019), we significantly simplify
the non-asymptotic analysis with the exact charaterization of
an invariant set tied to the regularized solution. Specifically,
our analysis does not rely on approximating the training flow
to one in the infinite width limit, or one from the linearized
network at initialization. Instead, we have the exact char-
acterization of the properties required to reach min-norm
solution and show how such properties are approximately
preserved during training.

4. Experimental Simulations
In this section, we provide numerical verification for The-
orem 1 and 2, the full description of the experiments is
presented in Appendix A.

Convergence via Imbalanced Initialization: We train the
linear network using gradient descent with a fixed small step
size on the averaged loss L(U, V ) = ‖Y −XUV ‖2F /n. We
use the initialization U(0) = σUU0, V (0) = σV V0 for
some randomly sampled U0, V0 with i.i.d. standard normal
entries, and scalars σU , σV . Under this setting, we can
change the relative scales of σU , σV but keep their product
fixed, so that we obtain initializations with different level
of imbalance c while keeping the initial end-to-end matrix
U(0)V T (0) fixed. To eliminate the effect of ill-conditioned
Σx on the convergence, we have Σx = Ir in this experiment.

For comparison, we also consider the balanced initialization
that corresponds to the same end-to-end matrix. For a given
Θ(0) = U(0)V T (0), we choose an arbitrary Q ∈ Rh×m

with QTQ = Im, then a balanced initialization is given by

Ubalanced(0) = Θ(0)
[
ΘT (0)Φ1ΦT1 Θ(0)

]−1/4
QT ,

Vbalanced(0) =
[
ΘT (0)Φ1ΦT1 Θ(0)

]1/4
Q .

Such initialization ensures the imbalanced is the zero matrix
while keeping the end-to-end matrix as Θ(0). We note here
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Figure 1. Implicit bias of wide single-hidden-layer linear network under random initialization. The line is plotting the average over 5 runs
for each h, and the error bar shows the standard deviation. The gradient descent stops at iteration tf .

the choice of Q does not affect the error trajectory E(t),
hence the loss L(t).

From Fig.2, we see that given fixed step size, the conver-
gence rate is improved as we increase the level of the imbal-
ance at initialization and the balanced initialization is the
slowest among all cases. Notably, in case 3, our bound is
almost tight. For case 2, our bound is tight in characteriz-
ing the asymptotic rate of convergence. Our analysis does
not provide convergence guarantee for the balanced case,
while Arora et al. (2018a;b) have shown linear convergence
for certain cases with zero imbalance at initialization. This
suggests the need of a unified convergence analysis, that is
applicable for both balanced and imbalanced initialization,
to obtain tighter convergence guarantees. This is subject of
current research.

Note that the goal of this experiment is to verify the im-
proved convergence rate achieved by gradient flow initial-
ized with a high level of imbalance. To this end, we approx-
imate the continuous dynamics using gradient descent with
a fixed small step size. However, this does not imply that
one can always accelerate gradient descent by increasing the
level of imbalance at initialization. This is because the step
size for gradient descent is sometimes chosen to be close to
the largest possible for convergence, but it is unknown how
the level of imbalance affects such choice.

Implicit Bias of Wide Linear Networks: For the case of
wide linear networks with random initialization considered
in Section 3.2, when we set α = 1/2, Theorem 2 suggests
that ‖U(∞)V T (∞)− Θ̂‖F ∼ O(h−1/2)1. We verify it by
training linear networks with varying hidden layer width.
We randomly initialize the network as in Section 3.2 and

1In Theorem 2, we provide the bound for spectral norm, but
the proof essentially derives the same bound for Frobenius norm.
Please refer to Appendix E for details.

Figure 2. Convergence of single-hidden-layer linear networks un-
der different level of imbalance c. The dashed line represents the
bound provided by Theorem 1.

train it using gradient descent with a fixed small step size.
The algorithm stops when the loss is below some fixed
tolerance. We only vary the width h (from 500 to 10000)
for different experiments and repeat 5 runs for each h.

Fig.1 clearly shows that the distance between the trained
network and the min-norm solution, ‖U(tf )V T (tf )− Θ̂‖F ,
decreases as the width h increases and the middle plot ver-
ifies the asymptotic rate O(h−1/2). Besides, we also plot
the initial distance in span(Φ2) between the network and
the min-norm solution as

‖U2(0)V T (0)‖F = ‖Φ2ΦT2 (U(0)V T (0)− Θ̂)‖F .

A small ‖U2V
T ‖F is the exact property we want for a so-

lution to be close to the min-norm solution. We see that
the large width together with random initialization guaran-
tees ‖U2(0)V (0)‖F ∼ O(h−1/2), and more importantly,
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since the initialization does not exactly fall into the invari-
ant set defined by (15), ‖U2V ‖F will deviate from its ini-
tial value. However, the deviation is well-controlled by
the fast convergence of the error, i.e. as shown in the plot,
‖U2(tf )V T (tf )‖F ' ‖U(tf )V T (tf )− Θ̂‖F ∼ O(h−1/2).

5. Conclusion
In this paper, we study the explicit role of initialization
on controlling the convergence and implicit bias of single-
hidden-layer linear networks trained under gradient flow.
We first show that initialization with sufficient level of imbal-
ance leads to the exponential convergence of the squared er-
ror loss. We then show that proper initialization enforces the
trajectory of network parameters to be exactly (or approxi-
mately) constrained in a low-dimensional invariant set, over
which minimizing the loss yields the min-norm solution.
Combining those results, we obtain a novel non-asymptotic
bound regarding the implicit bias on wide linear networks
under random initialization towards the min-norm solution.
Our analysis, although on a simpler overparametrized model,
connects overparametrization, initialization, and optimiza-
tion. We think it is promising for future research to translate
some of the concepts such as the imbalance, and the con-
strained learning concept to multi-layer linear networks, and
eventually to neural networks with nonlinear activations.
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J., Schrittwieser, J., et al. Starcraft ii: A new challenge for
reinforcement learning. arXiv preprint arXiv:1708.04782,
2017.



On the Explicit Role of Initialization on the Convergence and Implicit Bias of Overparametrized Linear Networks

A. Numerical Verification
The scale of the linear regression problem we consider in the numerical section is D = 400, n = 100, and m = 1.

A.1. Convergence of single-hidden-layer linear network via imbalanced initialization

Generating training data The synthetic training data is generated as following:

1) For data matrix X , first we generate X0 ∈ Rn×D with all the entries sampled from N (0, 1), and take its SVD X0 =
WΣ1/2Φ1. Then we let X = WΦ1, hence we have all the singular values of X being 1. Here r = rank(X) = n = 100.

2) For Y , we first sample Θ ∼ N (0, D−1ID), and ε ∼ N (0, 0.012In), then we let Y = XΘ + ε.

Initialization and Training We set the hidden layer width h = 500. We initialize U(0), V (0) with

U(0) = σUU0, V (0) = σV V0, [U0]ij , [V0]ij
i.i.d.∼ N (0, 1) .

and we consider three cases of such initialization: 1) σU = 0.1, σV = 0.1; 2) σU = 0.5, σV = 0.02; 3) σU = 0.05, σV =
0.2. Such setting ensures the initial end-to-end function are identical for all cases but with different levels of imbalance. For
these three cases, we run gradient descent on the averaged loss L̃ = 1

n‖Y −XUV
T ‖2F with step size2 η = 5e− 4.

For comparison, we also consider the balanced initialization that corresponds to the same end-to-end matrix. For a given
Θ(0) = U(0)V T (0), we choose an arbitrary Q ∈ Rh×m with QTQ = Im, then a balanced initialization is given by

Ubalanced(0) = Θ(0)
[
ΘT (0)Φ1ΦT1 Θ(0)

]−1/4
QT , Vbalanced(0) =

[
ΘT (0)Φ1ΦT1 Θ(0)

]1/4
Q .

Such initialization ensures the imbalanced is the zero matrix while keeping the end-to-end matrix as Θ(0). We note here the
choice of Q does not affect the error trajectory E(t), hence the loss L(t).

Figure 3. Convergence of gradient descent with different initial level of imbalance, c := λr(Λ(0)) + λm(−Λ(0)).

From Fig.3, we see that given fixed step size, the convergence rate is improved as we increase the level of the imbalance at
initialization and the balanced initialization is the slowest among all cases. Notably, in case 3, our bound is almost tight. For
case 2, our bound is tight in characterizing the asymptotic rate of convergence. Our analysis does not provide convergence
guarantee for the balanced case, while Arora et al. (2018a;b) have shown linear convergence for certain cases with zero
imbalance at initialization. This suggests the need of a unified convergence analysis, that is applicable for both balanced and
imbalanced initialization, to obtain tighter convergence guarantees. This is subject of current research.

A.2. Implicit regularization on wide single-hidden-layer linear network

Generating training data The synthetic training data is generated as following:

2To compute the bound from Theorem 1, the step size is scaled by n/2 to account for that the gradient descent uses rescaled loss
function.
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1) For data matrix X , first we generate X ∈ Rn×D with all the entries sampled from N (0, D−1);

2) For Y , we first sample Θ ∼ N (0, D−1ID), and ε ∼ N (0, 0.012In), then we let Y = XΘ + ε.

Initialization and Training We initialize U(0), V (0) with [U(0)]ij ∼ N (0, h−1), [V (0)]ij ∼ N (0, h−1) and run gradient
descent on the averaged loss L̃ = 1

n‖Y −XUV
T ‖2F with step size η = 5e− 3. The training stops when the loss is below

1e− 8. We run the algorithm for various h from 500 to 10000, and we repeat 5 runs for each h.

Figure 4. Implicit bias of wide single-hidden-layer linear network under random initialization. The line is plotting the average over 5 runs
for each h, and the error bar shows the standard deviation. The gradient descent stops at iteration tf .

Fig.4 clearly shows that the distance between the trained network and the min-norm solution, ‖U(tf )V T (tf ) − Θ̂‖F ,
decreases as the width h increases and the middle plot verifies the asymptotic rate O(h−1/2).

B. Useful Lemmas
Before proving Theorem 1 and 2, we state several Lemmas that will be used later in the proofs.

The first Lemma is the Grönwall’s inequality (Grönwall, 1919) in the differential form.
Lemma B.1 (Grönwall’s inequality). Let u(t), β(t) : [0,+∞)→ R be continuous, and u(t) differentiable on (0,+∞). If

d

dt
u(t) ≤ β(t)u(t), ∀t > 0 ,

then

u(t) ≤ u(0) exp

(∫ t

0

β(τ)dτ

)
, ∀t > 0 .

The next Lemma is known as Weyl’s Inequality for singular values.
Lemma B.2 (Weyl’s inequality for singular values). Let A,B ∈ Rn×m, let q = min{n,m}, then

σi+j−1(ABT ) ≤ σi(A)σj(B
T ) ,

for any i, j satisfying 1 ≤ i, j ≤ q and i+ j − 1 ≤ q.

The proof can be found in Horn & Johnson (1994, Theorem 3.3.16). Using Weyl’s inequality, we state and prove a lemma
that is used for proving Lemma 1 and Theorem 2.
Lemma B.3. Let A ∈ Rk×n, B ∈ Rn×m. Suppose n ≤ m, then

σi(A)σn(B) ≤ σi(AB) ,

for 1 ≤ i ≤ min{k, n}.

Proof. We start with the case where k = n. When σn(BT ) = 0, the result is trivial. When σn(BT ) 6= 0, we have BB† = I ,
where B† is the Moore–Penrose inverse of B. By Lemma B.2, it follows that

σi(A) ≤ σi(AB)σ1(B†), ∀1 ≤ i ≤ n .
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Since σ1(B†) = σ−1
n (B), we get the desired inequality.

When k > n, we have ∀1 ≤ i ≤ n,

σi(A) = σi
([
A 0k×(k−n)

])
≤ σi (AB)σ1(

[
B† 0m×(k−n)

]
)

= σi(AB)σ1(B†) ,

which still leads to the desired result.

When k < n, consider replacing A with
[

A
0(n−k)×n

]
, we have ∀1 ≤ i ≤ k,

σi(A)σn(B) = σi

([
A

0(n−k)×n

])
σn(B)

≤ σi

([
AB

0(n−k)×m

])
= σi(AB) .

We also state a trace inequality widely using for solving control problems

Lemma B.4. Suppose for A,B ∈ Rn×n, A is symmetric and B is positive semidefinite, then

λn(A) tr(B) ≤ tr(AB) ≤ λ1(A) tr(B) .

The proof can be found in Sheng-De Wang et al. (1986, Lemma 1).

C. Convergence Analysis of Gradient Flow and Proof of Theorem 1
We begin with restating the Theorem.

Theorem 1 (Convergence of linear networks with sufficient rank of imbalance,restated). Let V (t), U1(t), t > 0 be the
trajectory of continuous dynamics (7) starting from some V (0), U1(0), we have

(L(t)− L∗) ≤ exp (−2λr(Σx)ct) (L(0)− L∗)), ∀t > 0 , (21)

where c := [λr(Λ(0)]+ + [λm(−Λ(0)]+. When h ≥ m+ r, c = λr(Λ(0)) + λm(−Λ(0)).

Additionally, if c > 0, V (t), U1(t), t > 0 converges to some equilibrium point (V (∞), U1(∞)) such that
E(V (∞), U1(∞)) = 0.

Proof. For readability we simply write V (t), U1(t), E(t) as V,U1, E for most of the proof.

The proof has three parts:

Lower bound on the convergence rate: Under (7), the time derivative of error is given by

Ė = −Σ1/2
x U1U

T
1 Σ1/2

x E − ΣxEV V
T .

Consider the time derivative of ‖E‖2F ,

d

dt
‖E‖2F =

d

dt
tr(ETE) = −2 tr

(
ETΣ1/2

x U1U
T
1 Σ1/2

x E + ETΣxEV V
T
)
. (22)
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Use the trace inequality in Lemma B.4 to get the lower bound the trace of two matrices respectively as

tr
(
ETΣ1/2

x U1U
T
1 Σ1/2

x E
)

= tr
(

Σ1/2
x EETΣ1/2

x U1U
T
1

)
≥ λr(U1U

T
1 ) tr

(
Σ1/2
x EETΣ1/2

x

)
= λr(U1U

T
1 ) tr

(
ΣxEE

T
)

≥ λr(U1U
T
1 )λr(Σx) tr(EET )

= λr(U1U
T
1 )λr(Σx)‖E‖2F , (23)

and

tr
(
ETΣxEV V

T
)
≥ λm(V V T ) tr

(
ETΣxE

)
= λm(V V T ) tr

(
ΣxEE

T
)

≥ λm(V V T )λr(Σx) tr(EET )

= λm(V V T )λr(Σx)‖E‖2F . (24)

Combine (22) with (23)(24), we have

d

dt
‖E‖2F ≤ −2λr(Σx)

(
λr(U1U

T
1 ) + λm(V V T )

)
‖E‖2F (25)

Here, the term λr(U1U
T
1 ) + λm(V V T ) is still time-variant. We use the imbalance to lowerbound its value.

Lower bound on λr(U1U
T
1 ) + λm(V V T ) by the imbalance: Recall that Λ(0) = U1(0)TU1(0) − V (0)TV (0). When

λr(Λ(0)) exists (h ≥ r) and λr(Λ(0)) ≥ 0, by the minimax property of symmetric matrix (Horn & Johnson, 2012, Theorem
4.2.6), we have

λr(U1U
T
1 ) = λr(U

T
1 U1)

= max
dim(S)=r

min
06=x∈S

xTUT1 U1x

xTx

= max
dim(S)=r

min
06=x∈S

(
xTΛ(0)x

xTx
+
xTV TV x

xTx

)
≥ max

dim(S)=r
min

06=x∈S

xTΛ(0)x

xTx

= λr(Λ) = λr(Λ(0)) ,

where the inequality is from the fact that V TV is positive semi-definite, and the last equality is because the imbalance is
time-invariant. Otherwise we have the trivial bound λr(U1U

T
1 ) ≥ 0.

Similarly when λm(−Λ(0)) exists (h ≥ m) and λm(−Λ(0)) ≥ 0, we have

λm(V V T ) = λm(V TV ) ≥ λm(−Λ(0)) .

Otherwise λm(V V T ) ≥ 0. Overall we have

λr(U1U
T
1 ) + λm(V V T ) ≥ [λr(Λ(0))]+ + [λm(−Λ(0))]+ .

Finally we have

d

dt
‖E‖2F ≤ −2λr(Σx)

(
λr(U1U

T
1 ) + λm(V V T )

)
‖E‖2F

≤ −2λr(Σx) ([λr(Λ(0))]+ + [λm(−Λ(0))]+) ‖E‖2F
= −2λr(Σx)c‖E‖2F .
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The result follows by applying Grönwall’s inequality, Lemma B.1, which leads to

‖E(t)‖2F ≤ exp (−2λr(Σx)ct) ‖E(0)‖2F , ∀t > 0 . (26)

Then from the fact that L(t)− L∗ = 1
2‖E(t)‖2F , we have

(L(t)− L∗) ≤ exp (−2λr(Σx)ct) (L(0)− L∗), ∀t > 0 .

Moreover, when h ≥ m+ r, we can obtain

λr(Λ(0)) = max
dim(S)=r

min
06=x∈S

xTΛ(0)x

xTx

(dim(ker(V (0))) ≥ h−m ≥ r) ≥ max
S⊆ker(V (0))

dim(S)=r

min
06=x∈S

xTΛ(0)x

xTx

= max
S⊂ker(V (0))

dim(S)=r

min
06=x∈S

xTUT1 (0)U1(0)x

xTx
≥ 0 .

Similarly, we have

λm(−Λ(0)) ≥ max
S⊆ker(U1(0))

dim(S)=m

min
06=x∈S

xTV T (0)V (0)x

xTx
≥ 0 .

Then in this case c = [λr(Λ(0))]+ + [λm(−Λ(0))]+ = λr(Λ(0)) + λm(−Λ(0)).

Convergence to some equilibrium point: Regarding the last statement, since c > 0, for the gradient system (7), the pa-
rameters (U1(t), V (t)) converge either to an equilibrium point which minimizes the potential ‖E(t)‖2F or to infinity (Hirsch
et al., 1974).

Consider the following dynamics

d

dt

[
V (t)
U1(t)

]
=

[
0 ET (t)Σ

1/2
x

Σ
1/2
x E(t) 0

]
︸ ︷︷ ︸

:=AZ(t)

[
V (t)
U1(t)

]
︸ ︷︷ ︸

:=Z(t)

, (27)

which is a time-variant linear system. Notice that by Horn & Johnson (2012, Theorem 7.3.3), we have ‖AZ(t)‖2 =

‖Σ1/2
x E(t)‖2.

From (27), we have

d

dt
‖Z(t)‖2F = 2 tr

(
ZT (t)AZ(t)Z(t)

)
= 2 tr

(
Z(t)ZT (t)AZ(t)

)
≤ 2‖AZ(t)‖2 tr

(
Z(t)ZT (t)

)
= 2‖Σ1/2

x E(t)‖2‖Z(t)‖2F
≤ 2λ

1/2
1 (Σx)‖E(t)‖2‖Z(t)‖2F

≤ 2λ
1/2
1 (Σx)‖E(t)‖F ‖Z(t)‖2F .

By Grönwall’s inequality, Lemma B.1, we have

‖Z(t)‖2F ≤ exp

(∫ t

0

2λ
1/2
1 (Σx)‖E(τ)‖F dτ

)
‖Z(0)‖2F .
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Finally, from (26), we have ‖E(t)‖F ≤ exp (−λn(Σx)ct) ‖E(0)‖F , ∀t > 0, which leads to

exp

(∫ t

0

2λ
1/2
1 (Σx)‖E(τ)‖F dτ

)
≤ exp

(
2λ

1/2
1 (Σx)‖E(0)‖F

(∫ t

0

exp (−λn(Σx)cτ) dτ

))
≤ exp

(
2λ

1/2
1 (Σx)‖E(0)‖F

(∫ ∞
0

exp (−λn(Σx)cτ) dτ

))
= exp

(
2λ

1/2
1 (Σx)

cλn(Σx)
‖E(0)‖F

)
.

Therefore we have

‖Z(t)‖2F ≤ exp

(
2λ

1/2
1 (Σx)

cλn(Σx)
‖E(0)‖F

)
‖Z(0)‖2F ,

which implies that the trajectory V (t), U1(t), t > 0 is bounded, i.e. it can not converge to infinity, then it has to converges to
some equilibrium point (V (∞), U1(∞)) such that E(V (∞), U1(∞)) = 0.

D. Comparison with the NTK Initialization for wide single-hidden-layer linear networks
In Section 3.2, we analyzed implicit bias of wide single-hidden-layer linear networks under properly scaled random
initialization. Our initialization for network weights U, V is different from the typical setting in previous works (Jacot et al.,
2018; Du & Hu, 2019; Arora et al., 2019c). In this section, we show that under our setting, the gradient flow is related to the
NTK flow by 1) reparametrization and rescaling in time ; 2) proper scaling of the network output. The use of output scaling
is also used in Arora et al. (2019c).

In this paper we work with a single-hidden-layer linear network defined as f : RD → Rm, f(x;V,U) = V UTx, which is
parametrized by U, V . Then we analyze the gradient flow on the loss function L(V,U) = 1

2

∥∥Y −XUV T∥∥2

F
, given the

data and output matrix X,Y . Lastly, in Section 4.2, we initialize U(0), V (0) such that all the entries are randomly drawn
from N

(
0, h−2α

)
(1/4 < α ≤ 1/2), where h is the hidden layer width.

Now we define Ũ := hαU, Ṽ := hαV , then the loss function can be written as

L(V,U) = L̃(Ṽ , Ũ) =
1

2

∥∥∥∥Y − 1

h2α
XŨṼ T

∥∥∥∥2

F

=
1

2

∥∥∥∥Y − √
m

h2α− 1
2

1√
mh

XŨṼ T
∥∥∥∥2

F

=
1

2

n∑
i=1

∥∥∥∥y(i) −
√
m

h2α− 1
2

1√
mh

Ṽ ŨTx(i)

∥∥∥∥2

2

:=

n∑
i=1

∥∥∥∥y(i) −
√
m

h2α− 1
2

f̃(x; Ṽ , Ũ)

∥∥∥∥2

2

Notice that f̃(x; Ṽ , Ũ) = 1√
mh
Ṽ ŨTx is the typical network discussed in previous works (Jacot et al., 2018; Du & Hu, 2019;

Arora et al., 2019c). When all the entries of U(0), V (0) are initialized randomly as N
(
0, h−2α

)
, the entries of Ũ(0), Ṽ (0)

are random samples from N (0, 1), which is the typical choice of initialization for NTK analysis.

However, the difference is that f̃(x; Ṽ , Ũ) is scaled by
√
m

h2α− 1
2

. In previous work showing non-asymptotic bound between
wide neural networks and its infinite width limit (Arora et al., 2019c, Theorem 3.2), the wide neural network is scaled by a
small constant κ such that the prediction by the trained network is within ε-distance to the one by the kernel predictor of its
NTK. Moreover, Arora et al. (2019c) suggests 1

κ should scale as poly( 1
ε ), i.e., to make sure the trained network is arbitrarily

close to the kernel predictor, κ should be vanishingly small. In our setting, the random initialization implicitly enforces such
a vanishing scaling

√
m

h2α− 1
2

, as the width of network increases.

Lastly, we show that the gradient flow on L(V,U) only differs from the flow on L̃(Ṽ , Ũ) by the time scale.
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Suppose U, V 3 follows the gradient flow on L(V,U), we have

− 1

hα
∂

∂U
L(V,U) = − 1

hα
XT (Y −XUV T )V

= − 1

h2α
XT

(
Y − 1

h2α
XŨṼ T

)
Ṽ = − ∂

∂Ũ
L̃(Ṽ , Ũ) , (28)

and

− 1

hα
∂

∂V
L(V,U) = − 1

hα
(Y −XUV T )TXU

= − 1

h2α

(
Y − 1

h2α
XŨṼ T

)T
XŨ = − ∂

∂Ṽ
L̃(Ṽ , Ũ) . (29)

Consider the gradient flow on L(V,U) w.r.t. time t, from (28), we have

d

dt
U(t) = − ∂

∂U
L(V (t), U(t))

⇔ 1

hα
d

dt
Ũ(t) = − ∂

∂U
L(V (t), U(t))

⇔ 1

hα
d

dt
Ũ(t) = −hα ∂

∂Ũ
L̃(Ṽ (t), Ũ(t))

⇔ d

dt
Ũ(t) = −h2α ∂

∂Ũ
L̃(Ṽ (t), Ũ(t)) , (30)

Similarly from (29) we have

d

dt
V (t) = − ∂

∂V
L(V (t), U(t))⇔ d

dt
Ṽ (t) = −h2α ∂

∂Ṽ
L̃(Ṽ (t), Ũ(t)) . (31)

From (30) and (31) we know that the gradient flow on L(V,U) w.r.t. time t essentially runs the gradient flow on L̃(Ṽ , Ũ)
with an scaled-up rate by h2α.

E. Proof of Lemma 1 and Theorem 2
To prove Lemma 1 and Theorem 2, we use a basic result in random matrix theory
Lemma E.1. Given m,n ∈ N with m ≤ n. Let A be an n × m random matrix with i.i.d. standard normal entries
Aij ∼ N (0, 1). For δ > 0, with probability at least 1− 2 exp(−δ2), we have

√
n− (

√
m+ δ) ≤ σm(A) ≤ σ1(A) ≤

√
n+ (

√
m+ δ) .

The proof can be found in Davidson & Szarek (2001, Theorem 2.13)

Now we are ready to prove Lemma 1.
Lemma 1 (restated). Let 1

4 < α ≤ 1
2 . Given data matrix X . ∀δ ∈ (0, 1), ∀h > h0 = poly

(
m,D, 1

δ

)
, with probability at

least 1− δ over random initializations with [U(0)]ij , [V (0)]ij ∼ N (0, h−2α), we have all the following hold.

1. (Sufficient level of imbalance)
λr(Λ(0)) + λm(−Λ(0)) > h1−2α ,

2. (Approximate orthogonality) ∥∥∥∥[V (0)UT2 (0)
U1(0)UT2 (0)

]∥∥∥∥
F

≤ 2
√
m+ r

√
m+D + 1

2 log 2
δ

h2α− 1
2

,

∥∥U1(0)V T (0)
∥∥
F
≤ 2
√
m

√
m+D + 1

2 log 2
δ

h2α− 1
2

.

3We write U(t), V (t) as U, V for simplicity. Same for Ũ(t), Ṽ (t).
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Proof of Lemma 1. For readability we simply write U(0), U1(0), U2(0), V (0),Λ(0) as U,U1, U2, V,Λ.

Consider the matrix
[
V T UT

]
which is h× (m+D). Apply Lemma E.1 to matrix A = hα

[
V T UT

]
, with probability

at least 1− δ, we have

σm+D(hα
[
V T UT

]
) ≥
√
h−

(√
m+ d+ δ

)
,

which leads to

σm+D(
[
V T UT

]
) ≥ h 1

2−α −
√
m+D + 1

2 log 2
δ

hα
. (32)

Regarding the first inequality, we write the imbalance as

UT1 U1 − V TV =
[
V T UT1

] [−V
U1

]
=
[
V T UT

] [−Im 0
0 Φ1ΦT1

] [
V
U

]
.

For h >
(√
m+D + 1

2 log 2
δ

)2
, assume event (32) happens, then

σm+D

([
V T UT

])
≥ h 1

2−α −
√
m+D + 1

2 log 2
δ

hα
> 0 ,

hence we have

σr+m(Λ) = σr+m(UT1 U1 − V TV )

= σr+m

([
V T UT

] [−Im 0
0 Φ1ΦT1

] [
V
U

])
(Lemma B.3) ≥ σr+m

([
V T UT

] [−Im 0
0 Φ1ΦT1

])
σm+D

([
V
U

])
= σr+m

([
−Im 0

0 Φ1ΦT1

] [
V
U

])
σm+D

([
V
U

])
(Lemma B.3) ≥ σr+m

([
−Im 0

0 Φ1ΦT1

])
σ2
m+D

([
V
U

])
= σr+m

([
−Im 0

0 Φ1ΦT1

])
σ2
m+D

([
V T UT

])
= σ2

m+D

([
V T UT

])
,

where the last equality is due to the fact that
[
−Im 0

0 Φ1ΦT1

]
has exactly r +m non-zero singular value and all of them are

1.

We further assume h > 16
(√
m+D + 1

2 log 2
δ

)2
, conditioned on event (32), with probability 1 we have

σr+m(Λ) ≥ σ2
m+D

([
V T UT

])
≥

(
h

1
2−α −

√
m+D + 1

2 log 2
δ

hα

)2

= h1−2α − 2

√
m+D + 1

2 log 2
δ

h2α− 1
2

+

(√
m+D + 1

2 log 2
δ

hα

)2

> h1−2α − 2

√
m+D + 1

2 log 2
δ

h2α− 1
2

≥ 1

2
h1−2α . (33)
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Lastly, due to the minimax property of symmetric matrix (Horn & Johnson, 2012, Theorem 4.2.6), we have

λr+1(Λ) = min
dim(S)=h−r

max
06=x∈S

xTΛx

xTx

(dim(ker(U1)) ≥ h− r) ≤ min
S⊆ker(U1)

dim(S)=h−r

max
06=x∈S

xTΛx

xTx

= min
S⊂ker(U1)
dim(S)=r

max
06=x∈S

xT (−V TV )x

xTx
≤ 0 .

Similarly, we have

λm+1(−Λ) ≤ min
S⊆ker(V )

dim(S)=h−m

max
06=x∈S

xT (−UT1 U1)x

xTx
≤ 0 .

This shows that the imbalance Λ has at most r positive eigenvalues and m negative ones, which implies

min{λr(Λ), λm(−Λ)} = σr+m(Λ) .

Here we also use the fact that Λ is symmetric and λr(Λ) ≥ 0, λm(−Λ) ≥ 0 from Theorem 1. Now by (33), we immediately
obtain that conditioned on event (32), with probability 1, the following holds,

λr(Λ) + λm(−Λ) ≥ 2σr+m(Λ) ≥ h1−2α .

Regarding the second and third inequality, using the fact that ‖A‖F ≤
√

min{n,m}‖A‖2, A ∈ Rn×m, we have

1√
m

∥∥U1V
T
∥∥
F
≤
∥∥U1V

T
∥∥

2

=

∥∥∥∥[0 ΦT1
] [V
U

] [
V T UT

] [Im
0

]∥∥∥∥
2

=

∥∥∥∥[0 ΦT1
]([V

U

] [
V T UT

]
− ηIm+D

)[
Im
0

]∥∥∥∥
2

≤
∥∥∥∥[VU

] [
V T UT

]
− ηIm+D

∥∥∥∥
2

, for any η ∈ R ,

where the second equality is due to the fact that
[
0 ΦT1

] [Im
0

]
= 0. And

1√
m+ r

∥∥∥∥[V UT2U1U
T
2

]∥∥∥∥
F

≤
∥∥∥∥[V UT2U1U

T
2

]∥∥∥∥
2

=

∥∥∥∥[Im 0
0 ΦT1

] [
V
U

] [
V T UT

] [ 0
Φ2

]∥∥∥∥
2

=

∥∥∥∥[Im 0
0 ΦT1

]([
V
U

] [
V T UT

]
− ηIm+D

)[
0

Φ2

]∥∥∥∥
2

≤
∥∥∥∥[VU

] [
V T UT

]
− ηIm+D

∥∥∥∥
2

, for any η ∈ R ,

where the second equality is due to the fact that
[
Im 0
0 ΦT1

] [
0

Φ2

]
= 0. Notice that

∥∥∥∥[VU
] [
V T UT

]
− ηIm+D

∥∥∥∥
2

= max
i
σ2
i (
[
V T UT

]
)− η .
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Again we let h >
(√
m+D + 1

2 log 2
δ

)2
. When event (32) happens, all σ2

i (
[
V T UT

]
) are within the interval[(

h
1
2−α −

√
m+D+ 1

2 log 2
δ

hα

)2

,
(
h

1
2−α −

√
m+D+ 1

2 log 2
δ

hα

)2
]

. Since the choice of η is arbitrary, we pick

η = h1−2α +

(√
m+D + 1

2 log 2
δ

hα

)2

, (34)

which is the mid-point of this interval, then we have

max
i
σ2
i (
[
V T UT

]
)− η

≤ max


(
h

1
2−α −

√
m+D + 1

2 log 2
δ

hα

)2

− η,

(
h

1
2−α +

√
m+D + 1

2 log 2
δ

hα

)2

− η

 dotted

(η is the mid-point)

≤

(
h

1
2−α −

√
m+D + 1

2 log 2
δ

hα

)2

− h1−2α −

(√
m+D + 1

2 log 2
δ

hα

)2

= 2

√
m+D + 1

2 log 2
δ

h2α− 1
2

Therefore, when h >
(√
m+D + 1

2 log 2
δ

)2
, conditioned on event (32), with probability 1, we have

∥∥U1V
T
∥∥
F
≤
√
m

∥∥∥∥[VU
] [
V T UT

]
− ηIm+D

∥∥∥∥
2

≤ 2
√
m

√
m+D + 1

2 log 2
δ

h2α− 1
2

,

and

∥∥∥∥[V UT2U1U
T
2

]∥∥∥∥
F

≤
√
m+ r

∥∥∥∥[VU
] [
V T UT

]
− ηIm+D

∥∥∥∥
2

≤ 2
√
m+ r

√
m+D + 1

2 log 2
δ

h2α− 1
2

, (35)

where we choose η as in (34).

When h > h0 = 16
(√
m+D + 1

2 log 2
δ

)2
and conditioned on event (32), events (33) and (35) happen with probability 1,

hence the probability that both (33) and (35) happen is at least the probability of event (32), which is at least 1− δ.

With Lemma 1, we can prove Theorem 2.

Theorem 2 (Implicit bias of wide single-hidden-layer linear network for regression, restated). Let 1
4 < α ≤ 1

2 . Let
(V (t), U(t), t > 0) be a trajectory of continuous dynamics (7). Then, ∃C > 0, such that ∀δ ∈ (0, 1),∀h > h

1/(4α−1)
0 with

h0 = poly
(
m,D, 1

δ ,
λ1(Σx)
λ3
r(Σx)

)
, with probability 1 − δ over random initializations with [U(0)]ij , [V (0)]ij ∼ N (0, h−2α),

we have

‖U(∞)V T (∞)− Θ̂‖2 ≤ 2C1/h1−2α√
m+ r

√
m+D + 1

2 log 2
δ

h2α− 1
2

, (36)

where C depends on the data X,Y .

Proof of Theorem 2. For the continuous dynamics (7) and Theorem 1, the stationary point U(∞), V (∞) satisfy

U1(∞)V T (∞) = ΦT1 Θ̂, U2(∞) = U2(0) ,

provided that level of imbalance c is non-zero, which is guaranteed with high probability by Lemma 1. Hence we have

‖U(∞)V T (∞)− Θ̂‖2 = ‖Φ1U1(∞)V T (∞) + Φ2U2(∞)V T (∞)− Θ̂‖2
= ‖Φ1ΦT1 Θ̂ + Φ2U2(∞)V T (∞)− Θ̂‖2
= ‖Φ2U2(∞)V T (∞)‖F
= ‖Φ2U2(0)V T (∞)‖F = ‖U2(0)V T (∞)‖2 ≤ ‖U2(0)V T (∞)‖F .
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Consider the following dynamics

d

dt

[
V (t)UT2 (0)
U1(t)UT2 (0)

]
=

[
0 ET (t)Σ

1/2
x

Σ
1/2
x E(t) 0

]
︸ ︷︷ ︸

:=AZ(t)

[
V (t)UT2 (0)
U1(t)UT2 (0)

]
︸ ︷︷ ︸

:=Z(t)

, (37)

which is a time-variant linear system, and in particular, by Horn & Johnson (2012, Theorem 7.3.3), we have ‖AZ(t)‖2 =

‖Σ1/2
x E(t)‖2. Notice that here the Z(t) is different from the one in the proof for Theorem 1.

From (37), we have

d

dt
‖Z(t)‖2F = 2 tr

(
ZT (t)AZ(t)Z(t)

)
= 2 tr

(
Z(t)ZT (t)AZ(t)

)
≤ 2‖AZ(t)‖2 tr

(
Z(t)ZT (t)

)
= 2‖Σ1/2

x E(t)‖2‖Z(t)‖2F
≤ 2λ

1/2
1 (Σx)‖E(t)‖2‖Z(t)‖2F ≤ 2λ

1/2
1 (Σx)‖E(t)‖F ‖Z(t)‖2F .

By Grönwall’s inequality, Lemma B.1, we have

‖Z(t)‖2F ≤ exp

(∫ t

0

2λ
1/2
1 (Σx)‖E(τ)‖F dτ

)
‖Z(0)‖2F

⇒ ‖Z(t)‖F ≤ exp

(∫ t

0

λ
1/2
1 (Σx)‖E(τ)‖F dτ

)
‖Z(0)‖F (38)

Using Lemma 1, for h > h′0 := 16
(√
m+D + 1

2 log 2
δ

)2
, with probability at least 1− δ we have all the following.

λr(Λ(0)) + λm(−Λ(0)) > h1−2α . (39)∥∥U1(0)V T (0)
∥∥ ≤ 2

√
m

√
m+D + 1

2 log 2
δ

h2α− 1
2

, (40)

‖Z(0)‖F =

∥∥∥∥[V (0)UT2 (0)
U1(0)UT2 (0)

]∥∥∥∥
F

≤ 2
√
m+ r

√
m+D + 1

2 log 2
δ

h2α− 1
2

(41)

From Theorem 1, we have
‖E(t)‖2F ≤ exp (−2λr(Σx)ct) ‖E(0)‖2F ,

where c = λr(Λ(0)) + λm(−Λ(0)), then by (39), we have

‖E(t)‖2F ≤ exp
(
−2h1−2αλr(Σx)t

)
‖E(0)‖2F

⇒ ‖E(t)‖F ≤ exp
(
−h1−2αλr(Σx)t

)
‖E(0)‖F .

Finally, from (38), we have

‖Z(t)‖F ≤ exp

(∫ t

0

λ
1/2
1 (Σx)‖E(τ)‖F dτ

)
‖Z(0)‖F

≤ exp

(
λ

1/2
1 (Σx)‖E(0)‖F

(∫ t

0

exp
(
−h1−2αλr(Σx)τ

)
dτ

))
‖Z(0)‖F

≤ exp

(
λ

1/2
1 (Σx)‖E(0)‖F

(∫ ∞
0

exp
(
−h1−2αλr(Σx)τ

)
dτ

))
‖Z(0)‖F

= exp

(
λ

1/2
1 (Σx)

h1−2αλr(Σx)
‖E(0)‖F

)
‖Z(0)‖F . (42)
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The initial error depends on the initialization but can be upper bounded as

‖E(0)‖F = ‖WTY − Σ−1/2
x U1(0)V T (0)‖F

≤ ‖WTY ‖F + ‖Σ−1/2
x U1(0)V T (0)‖F

≤ ‖Y ‖F + λ−1/2
r (Σx)‖U1(0)V T (0)‖F

then we can write (42) as

‖Z(t)‖F ≤ exp

(
λ

1/2
1 (Σx)

h1−2αλr(Σx)
‖Y ‖F

)
exp

(
λ

1/2
1 (Σx)

h1−2αλ
3/2
r (Σx)

‖U1(0)V T (0)‖F

)
‖Z(0)‖F

=

[
exp

(
λ

1/2
1 (Σx)

λr(Σx)
‖Y ‖F

)
exp

(
λ

1/2
1 (Σx)

λ
3/2
r (Σx)

‖U1(0)V T (0)‖F

)]1/h1−2α

‖Z(0)‖F . (43)

For the second exponential, we let h0 := max
{
h′0, 4

λ1(Σx)
λ3
r(Σx)m

(√
m+D + 1

2 log 2
δ

)2}
, then ∀h > h

1/(4α−1)
0 , by (40) we

have

exp

(
λ

1/2
1 (Σx)

λ
3/2
r (Σx)

‖U1(0)V T (0)‖F

)
≤ exp

(
2
λ

1/2
1 (Σx)

λ
3/2
r (Σx)

√
m

√
m+D + 1

2 log 2
δ

h2α− 1
2

)
≤ e . (44)

Notice that h > h
1/(4α−1)
0 also ensures h > h

1/(4α−1)
0 ≥ h0 ≥ h′0, hence the width condition for (39)(41)(40) to hold is

satisfied.

Finally by (41)(44), we write (43) as

‖Z(t)‖F ≤

[
exp

(
1 +

λ
1/2
1 (Σx)

λr(Σx)
‖Y ‖F

)]1/h1−2α

‖Z(0)‖F

≤

[
exp

(
1 +

λ
1/2
1 (Σx)

λr(Σx)
‖Y ‖F

)]1/h1−2α

︸ ︷︷ ︸
:=C1/h1−2α

2
√
m+ r

√
m+D + 1

2 log 2
δ

h2α− 1
2

= 2C1/h1−2α√
m+ r

√
m+D + 1

2 log 2
δ

h2α− 1
2

.

Therefore for some C > 0 that depends on the data (X,Y ), given any 0 < δ < 1, when h > h
1/(4α−1)
0 as defined above,

with at least probability 1− δ, we have

‖U(∞)V T (∞)− Θ̂‖2 ≤ ‖U2(0)V T (∞)‖F
≤ sup

t>0
‖U2(0)V T (t)‖F

≤ sup
t>0
‖Z(t)‖F ≤ 2C1/h1−2α√

m+ r

√
m+D + 1

2 log 2
δ

h2α− 1
2

.


