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Abstract— We introduce a novel framework to approximate
the aggregate frequency dynamics of coherent generators.
By leveraging recent results on dynamics concentration of
tightly connected networks, and frequency weighted balanced
truncation, a hierarchy of reduced-order models is developed.
This hierarchy provides increasing accuracy in the approxima-
tion of the aggregate system response, outperforming existing
aggregation techniques.

I. INTRODUCTION

Assessing the performance of power grid frequency con-
trol requires models which are both accurate and tractable. In
large-scale networks, this goal has been sought for decades
through aggregation based on coherency [1]. Generally
speaking, a group of generators is considered coherent if their
bus frequencies exhibit a similar response when subject to
power disturbances. These generators are often subsequently
modeled by a single effective machine.

Various methods for identifying coherent groups of gen-
erators have been introduced in the past [2]–[6]. The Linear
Simulation Method [7] groups generators whose maximum
difference in time-domain response is within some tolerance.
Similarly, [3] develops a clustering algorithm based on the
pairwise maximum difference in time-domain response. The
Weak Coupling Method [6] quantifies the strength of cou-
pling between two areas to iteratively determine the bound-
aries of coherent generator groups. The Two Time Scale
Method [4], [5] computes the eigen-basis matrix associated
with the electromechanical modes in the linearized network:
generators with similar entries on the basis matrix with
respect to low frequency oscillatory modes are considered
coherent.

Once generators are grouped by coherence, an effec-
tive machine model is typically proposed for each group.
Previous work [8]–[13] suggests that inertial and damping
coefficients for the effective generator should be chosen as
the sum of the corresponding generator parameters. However,
in the presence of turbine control dynamics, the proper
choice of turbine time constants is unclear. Optimization-
based approaches [9], [10] minimize an error function to
choose the time constant of the effective generator. Other
approaches use the average [11], or the weighted harmonic
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mean [12] of time constants of generators in the coherent
group.

Accurate models of the coherent dynamics are applicable
to the modeling of area dynamics [12], optimization of DER
participation [10], and frequency shaping control [14]. More-
over, new modeling demands arise in modern-day networks
where coherent groups may include grid-forming inverters
[15], [16] in addition to classical synchronous generators.

In this paper, we leverage new results [17] on character-
izing coherence in tightly-connected networks to propose a
general framework for aggregation of coherent generators.
For n coherent generators with transfer function gi(s), i =
1, · · · , n, the aggregate coherent dynamics are accurately
approximated by ĝ(s) =

(∑n
i=1 g

−1
i (s)

)−1
. In particular, we

show that ĝ(s) is a natural characterization of the coherent
dynamics in the sense that, as the algebraic connectivity of
the network increases, the response of the coherent group is
asymptotically ĝ(s). Note, however, that in the general case
where turbines have heterogeneous dynamcs, the aggregate
transfer function ĝ(s) will be of an order which scales with
the network size. We thus seek a low-order approximation.

In contrast with the conventional approach [9], [10], [12]
we will not restrict the choice of low order models to the sim-
ple selection of parameters of an effective generator. Rather,
we will resort to frequency weighted balanced truncation
to develop a hierarchy of models of adjustable order and
increasing accuracy. In particular, for an aggregation of n
second order generator models, we find that high accuracy
can often be achieved by reducing the (n+1)-th order system
to a 3rd order one. We note, however, that the aggregation
techniques introduced in this paper apply to any linear model
of generators, including those of higher order.

We further compare two alternatives: providing an aggre-
gate model for a set of turbines, and subsequently closing
the loop, versus performing the reduction directly on the
closed loop ĝ(s). The first is motivated by retaining the
interpretation whereby the aggregate is represented by one or
two equivalent turbines; nonetheless, we show how a similar
interpretation may be available for the second, more accurate
method.

The rest of the paper is organized as follows. In Section
II, we provide the theoretical justification of the coherent
dynamics ĝ(s). In Section III, we propose reduced-order
models for ĝ(s) by frequency weighted balanced truncation.
We then show via numerical illustrations that the proposed
models can achieve accurate approximation (Section IV).
Lastly, we conclude this paper with more discussions on the
implications of our current results. A preliminary one-and-
half page abstract of this work was presented in [18].



II. AGGREGATE DYNAMICS OF COHERENT GENERATORS

Consider a group of n generators, indexed by i = 1, · · · , n
and dynamically coupled through an AC network. Assuming
the network is in steady-state, Fig.1 shows the block diagram
of the linearized system around its operating point.

Fig. 1. Block Diagram of a Linearized Power Network.

Due to space constraints, we refer to [19] for de-
tails on the linearization procedure. The signals w =
[w1, · · · , wn]T , u = [u1, · · · , un]T , pe = [pe1, · · · , pen]T are
in vector form. For generator i, the transfer function gi(s)
has input (ui − pei ), the net power deviation at its generator
axis, resulting from disturbances ui in mechanical power
minus variations in electrical power pei drawn from the
network, relative to their equilibrium values. The ouptut wi
is the angular frequency deviation relative to equilibrium
frequency.

The network power fluctuations pe are given by a lin-
earized (lossless) DC model pe(s) = 1

sLw(s) of the power
flow equation. Here L is the Laplacian matrix of an undi-
rected weighted graph, with its elements given by Lij =
∂
∂θj

∑n
k=1 |Vi||Vk|bik sin(θi − θk)

∣∣∣
θ=θ0

, where θ0 are angle

deviations at steady state, |Vi| is the voltage magnitude at bus
i and bij is the line susceptance. Without loss of generality,
we assume the steady state angular difference θ0i − θ0j
across each line is smaller than π

2 . Moreover, because L
is a symmetric real Laplacian, its eigenvalues are given by
0 = λ1(L) ≤ λ2(L) ≤ · · · ≤ λn(L). The overall linearized
frequency dynamics of the generators is given by

wi(s) = gi(s)(ui(s)− pei (s)), i = 1, · · · , n , (1a)

pe(s) =
1

s
Lw(s) . (1b)

Generally, a group of generators coupled as in Fig. 1 is
considered coherent if their response in frequency is the
same/similar under a disturbance u of any shape. We are
interested in characterizing the dynamic response of coherent
generators, which we term here the coherent dynamics. With
this aim, we seek conditions on the network (1) under which
the entire set of generators behave coherently. The same
approach can be used on subgroups of generators.

To motivate our results, we start with summing over all
equations in (1a) to get

n∑
i=1

g−1i (s)wi(s) =
n∑
i=1

ui(s)−
n∑
i=1

pei (s) =
n∑
i=1

ui(s) . (2)

Notice that the term
∑n
i=1 p

e
i (s) = 1T Lsw(s) = 0 since

1 = [1, · · · , 1]T is a left eigenvector of λ1(L) = 0.

A pragmatic approach to obtain a model of coherent
behavior is to simply impose the equality wi(s) = ŵ(s)
between the frequency outputs. Solving from (2) we obtain:

ŵ(s) =

(
n∑
i=1

g−1i (s)

)−1 n∑
i=1

ui(s) =: ĝ(s)
n∑
i=1

ui(s); (3)

the group of generators is aggregated into a single effective
machine ĝ(s), responding to the total disturbance.

A. Coherence in Tightly Connected Networks

To properly justify the use of (3) as an accurate descriptor
of the coherent dynamics, we state here a precise result. Our
analysis will highlight the role of the algebraic connectivity
λ2(L) of the network as a direct indicator of how coherent
a group of generators is.

For the network shown in Fig.1, the transfer matrix from
the disturbance u to the frequency deviation w is given by

T (s) = (In + diag{gi(s)}L/s)−1 diag{gi(s)} , (4)

where In is the n× n identity matrix. We establish that the
transfer matrix T (s) converges, as the algebraic connectivity
λ2(L) increases, to one where all entries are given by ĝ(s).

We make several assumptions: 1) T (s) is stable; 2) ĝ(s)
in (3) is stable 3) all gi(s) are minimum phase systems. All
generator network models discussed in this paper (Section II-
B,II-C) satisfy these assumptions. In particular, the stability
of T (s) is guaranteed by passivity of the network [20]. We
state the following result.

Theorem 1: Given the assumptions above, the following
holds for any η0 > 0:

lim
λ2(L)→+∞

sup
η∈[−η0,η0]

∥∥T (jη)− ĝ(jη)11T
∥∥ = 0 ,

where j =
√
−1 and 1 ∈ Rn is the vector of all ones.

The transfer matrix ĝ(s)11T has the property that for an
arbitrary vector disturbance u(s), the response is w(s) =
ĝ(s)11Tu(s) = (ĝ(s)

∑n
i=1 ui(s)) 1; this says the vector of

bus frequencies responds in unison, with all entries equal
to the response ŵ in (3). Theorem 1 states that in the
limit of large connectivity, the true response T (s)u(s) is
approximated by the one in (3) for disturbances in the
frequency band [−η0, η0]. Due to space constraints, we refer
to [21] for the proof.

The limit of high connectivity analyzed in the theorem
is a good assumption for many cases of tightly connected
networks, but one may wonder about the relevance of ĝ(s)
in a less extreme case. We explore this through a numerical
simulation on the Icelandic Power Grid [22], of moderate
connectivty. As shown in Fig.2, the step response has inco-
herent oscillations from individual generators. Nevertheles,
if one looks at the Center of Inertia (CoI) frequency wcoi =
(
∑n
i=1miwi)/(

∑n
i=1mi), a commonly used system-wide

metric, we see it is very closely approximated by the coherent
dynamics ĝ(s). Thus we will proceed with this model of ag-
gregate response. For certain generator models, however, the
complexity of ĝ(s) motivates the need for approximations.



Fig. 2. Step response of the Icelandic grid. Individual responses appear
in light font in the background, with a specific one highlighted in blue. We
also show the CoI frequency response, and step response of the coherent
dynamics ĝ(s). The Iceland network has Algebraic connectivity λ2(L) =
0.0915.

B. Aggregate Dynamics for Different Generator Models

Having characterized how, the coherent dynamics given by
ĝ(s), represent the network’s aggregate behavior, from now
on we will use with no distinction the terms “aggregate” and
“coherent” dynamics. Now we look into the explicit forms
these dynamics take for different generator models.

Case 1: Generators with 1st order model, of two types:
1) For synchronous generators [13], gi(s) = 1

mis+di
,

where mi, di are the inertia and damping of generator i,
respectively. The coherent dynamics are ĝ(s) = 1

m̂s+d̂
,

where m̂ =
∑n
i=1mi and d̂ =

∑n
i=1 di.

2) For droop-controlled inverters [15], gi(s) =
kP,i

τP,is+1 ,
where kP,i and τP,i are the droop coefficient and the filter
time constant of the active power measurement, respectively.
The coherent dynamics are ĝ(s) = k̂P

τ̂P s+1 , where k̂P =(∑n
i=1 k

−1
P,i

)−1
, τ̂P = k̂P (

∑n
i=1 τP,i/kP,i).

Notice that both dynamics are of the same form; by suitable
reparameterization, we may use the “swing” model gi(s) =

1
mis+di

to model both types of generators. In this case no
order reduction is needed: the aggregate model given in Case
1 is consistent with the conventional approach of choosing
inertia m̂ and damping d̂ as the respective sums over all
generators. Theorem 1 explains why such a choice is indeed
appropriate.

The aggregation is more complicated when considering
generators with turbine droop control:

Case 2: Synchronous generators given by the swing
model with turbine droop [13]

gi(s) =
1

mis+ di +
r−1
i

τis+1

, (5)

where r−1i and τi are the droop coefficient and turbine time
constant of generator i, respectively. The coherent dynamics
are given by

ĝ(s) =
1

m̂s+ d̂+
∑n
i=1

r−1
i

τis+1

. (6)

When all generators have the same turbine time constant
τi = τ̂ , then ĝ(s) in (6) reduces to the typical effective ma-
chine model of the form (5) with parameters (m̂, d̂, r̂−1, τ̂),

where r̂−1 =
∑n
i=1 r

−1
i , i.e., the aggregation model is still

obtained by choosing parameters as the respective sums of
their individual values. However, if the τi are heterogeneous,
then

∑n
i=1

r−1
i

τis+1 is generally of high-order because the
summands have distinct poles. As a result, the closed-loop
dynamics ĝ(s) is a high-order transfer function and cannot
be accurately represented by a single generator model. The
aggregation of generators thus requires a low-order approx-
imation of ĝ(s).

C. Aggregate Dynamics for Mixture of Generators

We have shown the aggregate dynamics for generators
of three different types. When a mixture of these different
types is present1, we adopt (5) as a general representation
of the three types; in particular, the first order models can
be regarded as (5) with r−1i = 0. Therefore, (6) provides
a general representation of the aggregate dynamics resulting
from a mixture of generators. Again, high-order coherent
dynamics arise when heterogeneous turbines exist.

III. REDUCED ORDER MODEL FOR COHERENT
GENERATORS WITH HETEROGENEOUS TURBINES

As shown in the previous section, the coherent dynamics
ĝ(s) are of high-order if the coherent group has generators
with different turbine time constants. This suggests that
substituting ĝ(s) with an equivalent machine of the same
order as each gi(s) may lead to a substantial approximation
error. In this section we propose instead a hierarchy of
reduced models with increasing order, based on balanced
realization theory [23], such that eventually an accurate
reduced model is obtained as the order of the reduction
increases. An additional avenue of improvement is: instead
of the standard approach [9], [10], [12] of reducing the
aggregate of turbines, to apply the reduction methodology
over the closed-loop coherent dynamics.

We use frequency weighted balanced truncation [24] to
approximate ĝ(s). Frequency weighted balanced truncation
identifies the most significant dynamics with respect to
particular LTI frequency weight by computing the weighted
Hankel singular values, which decay fast in many cases,
allowing us to accurately approximate high-order systems.
Importantly, the reduction procedure favors approximation
accuracy in certain frequency range specified by the weights.
Due to space constraints, we refer to [21] for the detailed
procedure of frequency weighted balanced truncation. Given
a SISO stable proper transfer function G(s), and a stable
frequency weight W (s), the k-th order weighted balanced
truncation returns

G̃k(s) =
bk−1s

k−1 + · · ·+ b1s+ b0
aksk + · · ·+ a1s+ a0

, (7)

which is guaranteed to be stable [24], and such that the
weighted error supη∈R |W (jη)(G(jη) − G̃k(jη))| is upper
bounded, with an upper bound decreasing to zero with

1Generally, when considering a mixture of synchronous generators and
grid-forming inverters, our network model is valid only when synchronous
generators make up a significant portion of the composition.



the order k. For our purposes, W (s) must have a high
gain in the low frequency range, so that the DC gains of
the original and the reduced dynamics are approximately
matched, i.e., G(0) ' G̃(0). Our two proposed model
reduction approaches for high-order ĝ(s) in (6) are both
based on frequency weighted balanced truncation.

A. Model Reduction on Turbine Dynamics

Our first model is based on applying balanced truncation to
the turbine aggregate. Essentially, ĝ(s) in (6) is of high order
because it has high-order turbine dynamics

∑n
i=1

r−1
i

τis+1 ; we
seek to replace it with a reduced-order model. This is akin to
the existing literature [9], [10] which replaces an aggregate
of turbines in parallel by a first order turbine model with
parameters obtained by minimizing certain error functions.

We denote the aggregate turbine dynamics as ĝt(s) :=∑n
i=1

r−1
i

τis+1 . We also denote the (k − 1)-th reduction
model of ĝt(s) by frequency-weighted balanced truncation
as g̃t,k−1(s). Then the k-th order reduction model of ĝ(s) is
given by

g̃tbk (s) =
1

m̂s+ d̂+ g̃t,k−1(s)
, (8)

with, again, m̂ =
∑n
i=1mi, d̂ =

∑n
i=1 di. We highlight two

special instances of relevance for our numerical illustration.
1) 2nd order reduction: When k = 2, the reduced model

g̃t,1(s) can be interpreted as a first order turbine model

g̃t,1(s) =
b0

a1s+ a0
=

b0/a0
(a1/a0)s+ 1

:=
r̃−1

τ̃ s+ 1
,

with parameters (r̃−1, τ̃) chosen by the weighted balanced
truncation method. Then the overall reduced model g̃tb2 (s) is
of second order, which is a single generator model.

Unlike [9], [10], there is a DC gain mismatch between
g̃tb2 (s) and the original ĝ(s) since r̃−1 6= r̂−1 =

∑n
i=1 r

−1
i .

Later in the simulation section, by choosing a proper fre-
quency weight W (s), we effectively make the DC gain mis-
match negligible. However, as we will see in the numerical
section, k = 2 may not suffice to accurately approximate the
coherent dynamics.

2) 3rd order reduction: To obtain a more accurate
reduced-order model, one may consider k = 3 as the next
suitable option. In fact, as we see in the later numerical
simulation, a 2nd order turbine model g̃t,2(s), i.e., k = 3, is
sufficient to give an almost exact approximation of ĝt(s).

We can also interpret g̃t,2(s), by means of partial fraction
expansion, i.e.,

g̃t,2(s) =
b1s+ b0

a2s2 + a1s+ a0
=

r̃−11

τ̃1s+ 1
+

r̃−12

τ̃2s+ 1
,

assuming the poles are real. Then the reduced dynamics
g̃t,2(s) can be viewed as two first order turbines in parallel
with parameters (r̃−11 , τ̃1) and (r̃−12 , τ̃2). In Section IV-A, we
show such interpretation is valid for our numerical example.

B. Model Reduction on Closed-loop Coherent Dynamics

Our second proposal is to apply weighted balanced trunca-
tion directly on ĝ(s), instead of reducing the turbine dynam-
ics (8). Thus, we denote g̃clk (s) as the k-th order reduction
model, via frequency weighted balanced truncation, of the
coherent dynamics ĝ(s). Again, DC gain mismatch can be
made negligible by properly choosing W (s).

As compared to the one in Section III-A, this reduced
model might not be easy to interpret. Nevertheless, the proce-
dure described below often leads to a practical interpretation.

1) 2nd order reduction: When k = 2, we wish to interpret
g̃cl2 (s) in terms of a single generator with a first order turbine
of the form in (5), with parameters (m̃, d̃, r̃−1, τ̃). Given

g̃cl2 (s) =
b1s+ b0

a2s2 + a1s+ a0
:=

N(s)

D(s)
,

obtained by the proposed method, we write the polynomial
division D(s) = Q(s)N(s)+R, where Q(s), R are quotient
and remainder, respectively. This leads to the expression

g̃cl2 (s) =
N(s)

Q(s)N(s) +R
=

1

Q(s) + R
N(s)

.

Here the first order polynomial Q(s) can be matched to
m̃s+ d̃, and R

N(s) to r̃−1

τ̃s+1 . Provided the obtained constants
(m̃, d̃, r̃−1, τ̃) are positive, the interpretation follows.

2) 3rd order reduction: Similarly, when k = 3, the
reduced model is g̃cl3 (s) = N(s)

D(s) , with N(s) of 2nd order
and D(s) of 3rd order. The polynomial division D(s) =
Q(s)N(s) + R(s), still gives a first order quotient Q(s),
which is interpreted as m̃s + d̃; the second order transfer
function R(s)

N(s) can be expressed, by partial fraction expan-
sion, as two first order turbines in parallel, provided the
obtained constants remain positive. We explore this in the
examples studied below.

IV. NUMERICAL SIMULATIONS

We now evaluate the reduction methodologies proposed
in the previous section, and compare their performance with
the solutions proposed in [9], [10]. In our comparison,
we consider 5 generators forming a coherent group2. All
parameters are expressed in a common base of 100 MVA.

The test case: 5 generators, m̂ = 0.0683(s2/rad), d̂ =
0.0107. The turbine and droop parameters of each generator
are listed in Table I. In all comparisons, a step change of
−0.1 p.u. in disturbance power is used.

TABLE I
DROOP CONTROL PARAMETERS OF GENERATORS IN TEST CASE

Parameter
Index 1 2 3 4 5

droop r−1
i (p.u.) 0.0218 0.0256 0.0236 0.0255 0.0192

time constant τi (s) 9.08 5.26 2.29 7.97 3.24

2More specifically, we assume sufficiently strong network coupling
among these generators such that the frequency responses are coherent.
The numerical simulation will only illustrate the approximation accuracy
with respect to the coherent response rather than individual ones.



Remark 1: In the test case, we only aggregate 5 generators
and report all parameters explicitly in order to give insight
on how the distribution of the time constant τi affects our
approximations. It is worth noting that similar behavior is
observed when reducing coherent groups with a much larger
number of generators. In particular, the accuracy found below
with 3rd order reduced models is also observed in these
higher order problems.

As mentioned in the previous section, one of the draw-
backs of the balanced truncation method is the DC gain mis-
match, which leads to a steady-state error. In our simulation,
the DC gain mismatch is effectively cancelled by picking
proper frequency weights for different reduced models. Due
to space constraints, we refer to [21] for the comparison be-
tween reduced models with and without frequency weights.

A. Effect of Reduction Order k in Accuracy

We now evaluate the effect of the reduction order on the
accuracy. That is, we compare 2nd and 3rd order balanced
truncation on the turbine dynamics, g̃tb2 (s) (BT2-tb), g̃tb3 (s)
(BT3-tb), as well as balanced truncation on the closed-loop
coherent dynamics g̃cl2 (s) (BT2-cl), g̃cl3 (s) (BT3-cl). The
frequency weights are given by Wtb(s) = s+3·10−2

s+10−4 and
Wcl(s) =

s+8·10−2

s+10−4 , respectively.
The step response and step response error with respect to

ĝ(s) are shown in Fig. 3.
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Fig. 3. Comparison of all reduced-order models by balanced truncation

Compared to 2nd order models, 3rd order reduced models
give a very accurate approximation of ĝ(s). While it is
expected that the approximation error goes down with the
order, it is not trivial that a 3rd order model would provide
this level of accuracy for an intrinsically high order system.

Moreover, when we examine the transfer function given
by g̃tb3 (s) (from input u in p.u. to output w in rad/s), we find
an interesting interpretation. That is, the turbine model for
g̃tb3 (s) is given by

g̃t,2(s) =
0.0266s+ 0.0057

s2 + 0.5046s+ 0.0489
=

0.0473

2.68s+ 1
+

0.0684

7.64s+ 1
,

where the latter is obtained by partial fraction expansion and
can be viewed as two turbines (one fast turbine and one slow
turbine) in parallel, and the choices of droop coefficients for
these two turbines reflect the aggregate droop coefficients
of fast turbines (generators 3 and 5) and slow turbines
(generators 1,2, and 4), respectively, in ĝ(s).

B. Reduction on Turbines vs. Closed-loop Dynamics

Another observation from Fig. 3 is that reduction on the
closed-loop is more accurate than reduction on the turbine.
For a more straightforward comparison, we list in Table II
the approximation errors of all 4 models in Fig 3 using
the following metrics: 1) L2-norm of step response error3

e(t) (in rad/s1/2): (
∫ +∞
0
|e(t)|2dt)1/2; 2) L∞-norm of e(t)

(in rad/s): maxt≥0 |e(t)|; 3) H∞-norm difference between
reduced and original models (from input u in p.u. to output
w in rad/s).

TABLE II
APPROXIMATION ERRORS OF REDUCED ORDER MODELS

Model
Metric L2 diff.

(rad/s1/2)
L∞ diff.
(rad/s) H∞ diff.

Guggilam [10] 7.2956 3.8287 10.2748
Germond [9] 3.9594 1.9974 5.1431
BT2-tb 4.3737 2.1454 7.5879
BT2-cl 2.0376 0.9934 2.0381
BT3-tb 0.0967 0.0361 0.1315
BT3-cl 0.0704 0.0249 0.0317

We observe from Table II that for a given reduction order,
balanced truncation on the closed-loop dynamics (g̃cl2 (s),
g̃cl3 (s)) has smaller approximation error than balanced trunca-
tion on turbine dynamics (g̃tb2 (s), g̃tb3 (s)) across all metrics.
Such observation seems to be true in general. For instance,
Fig. 4 shows a similar trend by plotting the same configura-
tion (metrics and models) of Table II for different values of
of the aggregate inertia m̂, while keeping all other parameters
the same.
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Fig. 4. Approximation errors of second order models (left) and third order
models (right) by balanced truncation in different metrics. Approximation
errors of reduced-order models g̃tb2 (s), g̃tb3 (s) are shown in dashed lines;
Approximation errors of reduced-order models g̃cl2 (s), g̃cl3 (s) are shown in
solid lines. The approximation errors are in their respective units.

It can be seen from Fig. 4 that reduction on closed-
loop dynamics improves the approximation in every metric,
uniformly, for a wide range of aggregate inertia m̂ values.
The main reason is that, when applying reduction on the
closed-loop dynamics, the algorithm has the flexibility to
choose the corresponding values of inertia and damping
to be different from the aggregate ones in order to better
approximate the response. More precisely, from the reduced

3For reduced-order models obtained via frequency weighted balanced
truncation, there exists an extremely small but non-zero DC gain mismatch
that makes the L2-norm unbounded. We resolve this issue by simply scaling
our reduced-order models to have exactly the same DC gain as ĝ(s).



model we obtain

g̃cl2 (s) =
4.9733s+ 1

(0.06715s+ 0.01464)(4.9733s+ 1) + 0.1118
,

from which we can get the equivalent swing and turbine
models as:

swing model:
1

0.06715s+ 0.01464
, turbine:

0.1118

4.9733s+ 1
.

The equivalent inertia and damping are m̃ = 0.06715
and d̃ = 0.01464, which are different from the aggregate
values m̂, d̂. Therefore, when compared to reduction on
turbine dynamics, reduction on closed-loop dynamics is less
constrained on the parameter space, thus achieving smaller
approximation errors.

C. Comparison with Existing Methods

Lastly, we compare reduced-order models via balanced
truncation on the closed-loop dynamics, g̃cl2 (s), g̃

cl
3 (s), with

the solutions proposed in [9], [10]. The step responses and
the approximation errors are shown in Fig. 5 and Table. II.
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Fig. 5. Comparison with existing reduced-order models

In the comparison, g̃cl3 (s) outperforms all other reduced-
order models and is the most accurate reduced-order model
of ĝ(s). It is also worth noting that g̃cl2 (s) has the least
approximation error among all 2nd order models. In general,
our results suggest that to improve the accuracy of reduced-
order models of the coherent dynamics of generators ĝ(s),
we should consider: 1) increasing the complexity (order) of
the reduced model; 2) reduction on the closed-loop dynamics
instead of the turbine dynamics.

V. CONCLUSION

This paper concerns tractable models for frequency dy-
namics in a power grid, starting with the characterization
ĝ(s) =

(∑n
i=1 g

−1
i (s)

)−1
for the coherent response, which

is shown to be asymptotically accurate as the coupling
between generators (characterized via λ2(L)) increases. Our
characterization justifies existing aggregation approaches and
also explains the difficulties of aggregating generators with
heterogeneous turbine time constants. We leverage model
reduction tools from control theory to find accurate reduced-
order approximations to ĝ(s). For {gi(s)}ni=1 given by the
2nd order generator models, the numerical study shows that
3rd order models based on frequency weighted balanced
truncation on closed-loop dynamics are sufficient to accu-
rately represent ĝ(s).
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