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Linear-Convex Optimal Steady-State Control
Liam S. P. Lawrence Student Member, IEEE, John W. Simpson-Porco, Member, IEEE, and Enrique

Mallada Member, IEEE

Abstract—We consider the problem of designing a feedback
controller for a multivariable linear time-invariant system which
regulates an arbitrary system output to the solution of an equality-
constrained convex optimization problem despite unknown con-
stant exogenous disturbances; we term this the linear-convex
optimal steady-state (OSS) control problem. We introduce the
notion of an optimality model, and show that the existence of an
optimality model is sufficient to reduce the OSS control problem
to a stabilization problem. This yields a constructive design
framework for optimal steady-state control that unifies and
extends existing design methods in the literature. We illustrate
the approach via an application to optimal frequency control
of power networks, where our methodology recovers centralized
and distributed controllers reported in the recent literature.

Index Terms—Reference tracking and disturbance rejection,
output regulation, convex optimization, online optimization

I . I N T R O D U C T I O N

Many engineering systems are required to operate at an
“optimal” steady-state defined by the solution of a constrained
optimization problem that seeks to minimize operational costs
while satisfying operational constraints. Consider, for example,
the problem of optimizing the production setpoints of gener-
ators in an electric power system while maintaining supply-
demand balance and system stability. The current approach
involves a time-scale separation between the optimization and
control objectives: optimal generation setpoints are computed
offline using demand projections and a model of the network,
then the operating points are dispatched as reference commands
to local controllers at each generation site [1]. This process is
repeated with a fixed update rate: a new optimizer is computed,
dispatched, and tracked. If the model is precise and the supply
and demand of power change on a time scale that is slow
compared to the update rate, then this method is adequate.

If however the model is poor, and the optimizer changes
rapidly (as is the case for power networks with a high penetra-
tion of renewable energy sources) the conventional approach
can be inefficient [2]; costs are increased as a result of operating
sub-optimally. It would then be advantageous to (i) enhance
robustness by incorporating feedback, and (ii) eliminate the
time-scale separation, by combining the local controllers with
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a feedback-based online optimization algorithm, so that the
optimal operating condition could be tracked in real time; see
[3]–[12].for power system control approaches in this direction.

The same theme of real-time regulation of system variables
to optimal values emerges in diverse areas. Fields of appli-
cation besides the power network control example mentioned
already include network congestion management [13], [14],
chemical processing [15], wind turbine power capture [16], and
temperature regulation in energy-efficient buildings [17]. The
breadth of applications motivates the need for a general theory
and design procedure for controllers that regulate a plant to a
maximally efficient operating point defined by an optimization
problem, even as the optimizer changes over time due to
changing market prices, disturbances to the plant dynamics,
and operating constraints that depend on exogenous variables.
We refer to the problem of designing such a controller as the
optimal steady-state (OSS) control problem.

A number of recent publications have formulated problem
statements and solutions for variants of the OSS control
problem [18]–[25]. Many of the currently-proposed controllers,
however, have limited applicability: some solutions only apply
to systems of a special form [22]; some require asymptotic
stability of the uncontrolled plant [24], [25]; some attempt to
optimize only the steady-state input [20] or output [19], [23],
[26], [27] alone; some apply only to equality-constrained [25]
or unconstrained optimization problems [28].

Broadly speaking, these design methodologies consist of
modifying an off-the-shelf optimization algorithm to accept
system measurements; the algorithm then produces a converg-
ing estimate of the optimal steady-state control input, yielding a
feedback controller. This procedure, while modular, unnecessar-
ily restricts the design space of dynamic controllers. Moreover,
none of the reported approaches adequately considers the
impact of the system model on the achievable optimal operating
points. Our goal in this paper is to present a framework which
widens the design space of optimal steady-state controllers
while fully incorporating the system model into the steady-
state optimization problem.

A. Contributions

We consider the linear-convex OSS control problem, in which
the plant is a finite-dimensional linear time-invariant (LTI) state-
space system, the optimization problem has a convex cost
function and affine equality constraints, and the disturbances
are constant in time. This paper has three contributions. First,
we introduce the notion of an optimality model, a dynamic filter
which reduces the OSS control problem to a stabilization prob-
lem, and provide several explicit constructions of optimality
models. Second, we prove that for any of our optimality models,
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the existence of a stabilizing controller is guaranteed under mild
assumptions when the objective function of the optimization
problem is quadratic. Third and finally, we apply our results
to a problem from power systems control, and show that our
general methodology is flexible enough to recover centralized
and distributed controllers from the recent literature.

B. Notation

The symbol • in R•×• indicates that the dimension is
unspecified. For a class C1 map f : Rn → R, ∇f : Rn → Rn
denotes its gradient. When the arguments of a function f :
Rn ×Rm → R are separated by a semicolon, ∇f(x; y) refers
to the gradient of f with respect to its first argument, evaluated
at (x, y). The symbol 0 denotes a matrix or vector of zeros
whose dimensions can be inferred from context. The symbol
1n denotes the n-vector of all ones. For scalars or column
vectors {v1, v2, . . . , vk}, col(v1, v2, . . . , vk) is a column vector
obtained by vertical concatenation of v1, . . . , vk. For vectors
α and β, the notation α ≥ β indicates that every entry of α
is greater than or equal to the corresponding entry of β. For
symmetric matrices A and B, A � B means A−B is positive
definite, while A � B means A−B is positive semidefinite.

I I . P R O B L E M S TAT E M E N T

In the linear-convex optimal steady-state control problem,
our objective is to design a feedback controller for a linear
time-invariant plant so that a specified output is asymptotically
driven to a cost-minimizing steady-state, determined by the
solution of a convex optimization problem. In contrast to a
standard static optimization problems, we must contend with
closed-loop stability in addition to optimizing a set of decision
variables. The plant is a linear time-invariant system subject
to an unknown constant disturbance w ∈ Rnw

ẋ = Ax+Bu+Bww , x(0) ∈ Rn ,
y = Cx+Du+Qw ,

ym = hm(x, u, w).

(1)

For reasons that will become clear (see Assumption 3.3),
the measurements ym are permitted to be general nonlinear
functions of state, input, and disturbance. The vector y ∈ Rp
is the optimization output, containing states, tracking errors,
and control inputs that should be driven to cost-minimizing
values in equilibrium.

We will explicitly enforce that the optimization of y is
consistent with steady-state operation of the plant. Let Y (w)
be the set of optimization outputs achievable from a forced
equilibrium of (1):

Y (w) := {ȳ ∈ Rp | there exists an (x̄, ū) such that
0 = Ax̄+Bū+Bww

ȳ = Cx̄+Dū+Qw} .
(2)

We rewrite Y (w) in algebraic form so that we may include
membership in Y (w) as a constraint of the optimization
problem in standard equality form. For each w, the set Y (w)
is an affine subspace of Rp. It may therefore be written as the
sum of a (non-unique) “offset vector” and a unique subspace,

which we denote by sub(Y (w)). In the following lemma, we
construct a matrix G whose columns span this unique subspace.

Lemma 2.1 (Construction of G): Fix a ỹ(w) ∈ Y (w). If
N ∈ R(n+m)×• is a matrix such that

rangeN = null
[
A B

]
,

then the columns of the matrix

G :=
[
C D

]
N ∈ Rp×• (3)

span the subspace sub(Y (w)). 4
The proof is straightforward and is omitted. Note that when

A is invertible, one may select

N :=

[
−A−1B
Im

]
which yields G = −CA−1B + D. This is precisely the DC
gain matrix of the u→ y channel for the plant (1). One may
think of G in (3) as a generalization of this, which one can
compute regardless of whether or not A is invertible.

From Lemma 2.1 it follows that

ȳ ∈ Y (w) ⇐⇒ there exists v ∈ R• s.t. ȳ = ỹ(w)+Gv (4)

Now let G⊥ ∈ R•×p be any full-row-rank matrix satisfying
nullG⊥ = rangeG. Then from (4), one finds that

Y (w) = {ȳ ∈ Rp | G⊥ȳ = b(w)} . (5)

where b(w) := G⊥ỹ(w). We will see shortly that, for our
controller design, the matrix G⊥ is important and the vector
b(w) is unimportant.

We can now formulate an optimization problem to determine
the desired optimal point for ȳ as

minimize
ȳ∈Rp

f(ȳ;w) (6a)

subject to G⊥ȳ = b(w) (6b)
Hȳ = Lw. (6c)

The cost f in (6) is our steady-state performance criterion; we
assume f is differentiable and convex in ȳ for each w. The
constraint (6b) is the equilibrium constraint just discussed. The
constraints (6c) represent nec engineering equality constraints
determined by the matrices H ∈ Rnec×p and L ∈ Rnec×nw .
We assume that for every w, the problem (6) has a unique
optimizer ȳ?, and a feasible region with non-empty relative
interior.

A general nonlinear feedback controller for (1) is given by

ẋc = fc(xc, ym) , xc(0) ∈ Rnc ,

u = hc(xc, ym).
(7)

The function fc is assumed to be locally Lipschitz in xc and
continuous in ym, while hc is assumed to be continuous. The
dynamics of the closed-loop system consist of (1) and (7).

Our objective in linear-convex OSS control (for brevity,
we will omit “linear-convex” in the sequel) is to drive the
optimization output y of the plant (1) to the solution ȳ?(w)
of the convex optimization problem (6) using a feedback
controller while ensuring well-posedness and stability of the
closed-loop system. The formal statement is as follows. For
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a given w, the closed-loop system is said to be well-posed
if the control input u is uniquely defined for any choice of
(x, xc) ∈ Rn×Rnc , i.e., the equation u = hc(xc, hm(x, u, w))
is uniquely solvable in u.

Problem 2.2 (OSS Control): For the plant (1), design, if
possible, a dynamic feedback controller of the form (7) such
that for every w:

(i) the closed-loop system is well-posed;
(ii) the closed-loop system possesses a globally asymptoti-

cally stable equilibrium point;
(iii) for every initial condition of the closed-loop system,

lim
t→∞

y(t) = ȳ?(w). 4

Remark 2.3 (Constant Disturbances): We assume through-
out that the unmeasured disturbances w are constant, which
will lead us to incorporate integral action into our controllers;
this is by far the most important case in practice. In reality of
course, disturbances (and hence, the optimal operating point)
will change in a non-stepwise fashion over time, and the
quality of tracking will depend on the rate of variation of the
disturbance and on the closed-loop bandwidth. For example,
if ẇ is bounded, the integral-type controllers we develop will
track the optimal operating point with bounded error (see, e.g.,
[25]). This is acceptable in practice, and we defer more detailed
disturbance models to future studies. 4

Remark 2.4 (Relation to Optimal Control): The OSS
control problem appears similar to an infinite-horizon optimal
tracking control problem; however, the two are distinct in both
their assumptions and demands. In the latter, one minimizes
a cost functional over system trajectories leading to a HJB
equation; determining the optimal feedback policy is com-
putationally expensive and the policy will require state and
disturbance measurements. The OSS control problem is much
less demanding; we ask only for optimal behaviour asymptot-
ically, not optimal trajectories. As a result, we encounter no
computational bottlenecks, and do not need to assume the full
plant state and all disturbances are measurable. 4

Remark 2.5 (Relation to Extremum-Seeking Control):
The OSS control problem is similar to the online optimization
problems considered in the extremum-seeking control literature,
e.g., [29], [30]. Extremum seeking is a model-free optimization
method, which introduces a sinusoidal probing signal into the
system to estimate the static relationship between the control
inputs and the desired performance index. In contrast, OSS
control explicitly incorporates the equilibrium model of the
plant into the optimization problem for this same purpose, and
as such does not require the introduction of a probing signal.

4
Under the assumptions on the optimization problem (6),

the Karush-Kuhn-Tucker (KKT) conditions are necessary and
sufficient for optimality [31, Sections 5.2.3 and 5.5.3]. For
each w, the optimal solution ȳ? ∈ Rp is characterized as the
unique vector such that ȳ? is feasible for (6) and there exist
λ? ∈ Rr, µ? ∈ Rnec such that (ȳ?, λ?, µ?) satisfies the gradient
condition

0 = ∇f(ȳ?;w) +GT
⊥λ

? +HTµ? . (8)

I I I . O S S C O N T R O L L E R D E S I G N F R A M E W O R K

The main difficulty in solving the OSS control problem is
that the optimizer ȳ?(w) is unknown, and thus the optimality
error y − ȳ?(w) cannot be directly computed. In our design
framework, we propose using a dynamic filter called an
optimality model to convert the OSS control problem to a
related output regulation problem. One then solves this output
regulation problem using an integral controller and a stabilizing
controller. An optimality model therefore reduces the OSS
control problem to a stabilization problem. For background
on output regulation and integral controllers, see [32] and [33,
Section 12.3].

A. Optimality Models and Reduction to Stabilization Problem
An optimality model is a filter applied to the measured output

ym of the plant that produces a signal ε which acts as a proxy
for the optimality error y − ȳ?(w). To make this idea precise,
consider a filter (ϕ, hε) with state ξ ∈ Rnξ , input ym, output
ε ∈ Rnε , and dynamics

ξ̇ = ϕ(ξ, ym) , ε = hε(ξ, ym). (9)

Definition 3.1 (Optimality Model): The filter (9) is said to
be an optimality model (for the OSS control problem, Problem
2.2) if the following implication holds: if the triple (x̄, ξ̄, ū) ∈
Rn × Rnξ × Rm satisfies

0 = Ax̄+Bū+Bww

0 = ϕ(ξ̄, hm(x̄, ū, w))

0 = hε(ξ̄, hm(x̄, ū, w))

(10)

then the pair (x̄, ū) ∈ Rn × Rm satisfies

ȳ?(w) = Cx̄+Dū+Qw.

In the OSS control framework, the optimality model is
cascaded with the plant, and we then attempt to solve the
(constant disturbance) output regulation problem with ε as
the (measurable) error signal. This converts the OSS control
problem to stabilization of the augmented plant

ẋ = Ax+Bu+Bww , (11a)

ξ̇ = ϕ(ξ, hm(x, u, w)) , (11b)
η̇ = ε := hε(ξ, hm(x, u, w)) (11c)

using a stabilizer

ẋs = fs(xs, η, ξ, ym, ε) , (12a)
u = hs(xs, η, ξ, ym, ε). (12b)

This design framework (Figure 1) is justified by the following
theorem, a proof of which may be found in the appendix.

Theorem 3.2 (Reduction of OSS to Stabilization): Suppose
that (ϕ, hε) is an optimality model. If the stabilizer (fs, hs)
is designed such that the closed-loop system (11)–(12) is
well-posed and possesses a globally asymptotically stable
equilibrium point for every w, then the controller (11b), (11c),
(12a), (12b) solves the OSS control problem. 4

Solving the OSS control problem therefore amounts to (i)
designing an optimality model and (ii) designing (if possible)
a stabilizer for the augmented plant.
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Optimality
Model

Integral
Ctrl. Stabilizer Plant

ε η u y

w

Fig. 1: Block diagram of OSS control architecture.

B. Optimality Model Design

1) The Gradient Condition: According to Definition 3.1, an
optimality model encodes sufficient conditions for optimality
when it is in equilibrium with the plant and its output ε is held
at zero. We can incorporate the KKT conditions — which
are sufficient for optimality under our assumptions — into an
optimality model for this purpose.

Note that the gradient condition (8) involves the dual variable
λ? associated with the equilibrium constraints. Dual variables
associated with equality constraints are typically calculated
using an integrator on the constraint violation: see [19, Equa-
tion (4a)], or [22, Equation (8f)], for example. Unfortunately
integrating the equilibrium constraint violation G⊥y − b(w)
is impossible, since w is unknown. Luckily, doing so is also
unnecessary, since the constraintG⊥y = b(w) is satisfied at any
forced equilibrium point of the physical plant, by the definition
of G⊥ and b(w); recall (2) and (5). We now describe how to
incorporate the gradient condition (8) into an optimality model
without calculating λ?.

Let G be the matrix of Lemma 2.1. Recall that nullG⊥ =
rangeG; by taking the orthogonal complement of both sides,
it follows that rangeGT

⊥ = nullGT. Rearranging (8) to read
GT
⊥(−λ?) = ∇f(ȳ?;w) + HTµ?, we see that ∇f(ȳ?;w) +

HTµ? ∈ rangeGT
⊥ = nullGT. That is, the existence of a

triple (ȳ?, λ?, µ?) satisfying (8) is equivalent to the existence
of a pair (ȳ?, µ?) satisfying

GT
(
∇f(ȳ?;w) +HTµ?

)
= 0. (13)

The left-hand side of this equation is a natural choice for
inclusion in the proxy error signal ε, since driving ε to zero
will then enforce the gradient KKT condition.

Note however that there are other equivalent ways we could
rewrite the gradient condition. Define a matrix T such that

rangeT = null

[
G⊥
H

]
. (14)

We have nullTT = (rangeT )
⊥, which means

nullTT =

(
null

[
G⊥
H

])⊥
= range

[
GT
⊥ HT

]
.

Rearrange (8) to read GT
⊥(−λ?) + HT(−µ?) = ∇f(ȳ?, w),

and we see that ∇f(ȳ?, w) ∈ range
[
GT
⊥ HT

]
= nullTT.

Therefore, the existence of a triple (ȳ?, λ?, µ?) satisfying (8)
is equivalent to the existence of a ȳ? satisfying

TT∇f(ȳ?;w) = 0. (15)

This procedure can also be generalized by including only some
rows of H in the construction of T , leading to a hybrid between

(13) and (15); the details are omitted. As we did with (13), we
can make the expression on the left-hand side of (15) one of
the components of an optimality model’s error output.

2) Optimality Models: We are now ready to construct
optimality models for OSS control. We shall require our
measurement vector to contain some key information about
the optimization problem (6).

Assumption 3.3 (Measurement Assumptions): The mea-
surement vector ym contains the gradient ∇f(y, w) and the
engineering equilibrium constraint violations, Hy − Lw. 4

The following three propositions present the output subspace,
feasible subspace, and reduced-error feasible subspace opti-
mality models. Proving that these filters are indeed optimality
models is done by examining the closed-loop equilibria and
showing that the resulting equations are equivalent to the KKT
conditions.

Proposition 3.4 (Output Subspace Optimality Model (OS-
OM)): Let G be the matrix of Lemma 2.1. The dynamic filter

µ̇ = Hy − Lw
ε = GT

(
∇f(y;w) +HTµ

) (16)

is an optimality model for the OSS control problem. 4
Proof: The proof is similar to the proof of Proposition 3.5. �

Proposition 3.5 (Feasible Subspace Optimality Model (FS-
OM)): Let T be a matrix satisfying (14). The static filter

ε =

[
Hy − Lw
TT∇f(y;w)

]
(17)

is an optimality model for the OSS control problem. 4
Proof: See the appendix. �

In special circumstances, one can modify the FS-OM above
to obtain an optimality model with an error signal of reduced
dimension; this reduces the number of integrators required.

Proposition 3.6 (Reduced-Error FS-OM (REFS-OM)):
Let G be the matrix of Lemma 2.1 and let T be a matrix
satisfying (14). Then the static filter

ε = Hy − Lw + TT∇f(y;w) (18)

is an optimality model for the OSS control problem if
rangeHG ∩ rangeTT = {0}. 4
Proof: See the appendix. �

C. Quadratic Program OSS Control
We now consider the specific case when the optimiza-

tion problem (6) is an equality-constrained convex quadratic
program (QP). We term this variant of the problem QP-
OSS control. Under this assumption, the closed-loop system
becomes LTI, and we can obtain very explicit results on the
existence of a stabilizer (Figure 1). Suppose the optimization
problem (6) is of the form

minimize
ȳ∈Rp

1
2 ȳ

TM̄ȳ − ȳTNw

subject to G⊥ȳ = b(w)

Hȳ = Lw,

(19)
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where M � 0.1 Assumption 3.3 in the present context implies
that we can take the available measurements ym as a linear
function of (x, u, w), i.e., ym = Cmx+Dmu+Qmw.

Under mild assumptions below, we can ensure that the
augmented plant (11) arising from the FS-OM, OS-OM, or
REFS-OM is both stabilizable and detectable, which in turn
guarantees that a solution of the OSS control problem exists
and can be found using standard LTI design methods.

Theorem 3.7 (Solvability of QP-OSS Control): The QP-
OSS control problem is solvable when

(i) (Cm, A,B) is stabilizable and detectable,
(ii) a unique primal solution to (19) exists, and

(iii) at least one of the following holds:
a) a unique dual solution to (19) exists;
b) rangeHG ∩ rangeTT = {0} and (rangeHG)⊥ ∩

(rangeTT)⊥ = {0}. 4

Proof: When (i), (ii), and (iii)(a) hold, one can show that the
augmented plant arising from the FS-OM or OS-OM may be
made stabilizable and detectable. When (i), (ii), and (iii)(b)
hold, one can show that the augmented plant arising from the
REFS-OM is stabilizable and detectable. See the appendix for
details. �

I V. C A S E S T U D Y: O P T I M A L F R E Q U E N C Y
R E G U L AT I O N I N P O W E R S Y S T E M S

This final section illustrates the application of our theory
to a power system control problem. Our main objective is to
work through the constructions presented in Section III, and to
simultaneously illustrate the many sources of design flexibility
within our proposed framework. In particular, we will show that
centralized and distributed frequency controllers proposed in
the literature are recoverable as special cases of our framework.

The dynamics of synchronous generators in a connected
AC power network with n buses and nt transmission lines
is modelled in a reduced-network framework by the swing
equations. The vectors of angular frequency (deviations from
nominal) ω ∈ Rn and real power flows p ∈ Rnt along the
transmission lines obey the dynamic equations

Mω̇ = P ? −Dω −Ap+ u

ṗ = BATω,
(20)

in which M � 0 is the (diagonal) inertia matrix, D � 0 is the
(diagonal) damping matrix, A ∈ {0, 1,−1}n×nt is the signed
node-edge incidence matrix of the network, B � 0 is the
diagonal matrix of transmission line susceptances, P ? ∈ Rn
is the vector of uncontrolled power injections (generation
minus demand) at the buses, and u ∈ Rn is the controllable
reserve power produced by the generators. The incidence
matrix satisfies nullAT = span(1n), and strictly for simplicity
we assume that the network is acyclic, in which case nt = n−1
and nullA = {0}. We refer to [35, Section VII] for a
first-principles derivation of this model, and remark that our

1Any constant term of the form ȳTc with c ∈ Rp may be included in the
term ȳTNw by appropriate redefinition of N and w.

calculations to follow extend without issue to more complex
models which include turbine-governor dynamics.

We consider the optimal frequency regulation problem
(OFRP), wherein we minimize the total cost

∑
i Ji(ūi) of

steady-state reserve power production in the system subject to
system equilibrium and zero steady-state frequency deviations:

minimize
ū∈Rn,ω̄∈Rn

J(ū) :=
∑n

i=1
Ji(ūi)

subject to G⊥ col(ū, ω̄) = b(w)

Fω̄ = 0.

(21)

We shall compute the matrix G⊥ of the equilibrium constraints
shortly; the vector b(w) is unimportant for controller design.
The matrix F encodes the steady-state frequency constraint.
We will specify the requirements on F later in this section.

With state vector x := col(ω, p), the dynamics (20) can be
put into the standard LTI form (1) with matrices

A :=

[
−M−1D −M−1A
BAT 0

]
, B = Bw :=

[
M−1

0

]
.

We select the optimization output as y := col(u, ω), so that

C :=

[
0 0
In 0

]
D :=

[
In
0

]
, (22)

and we take the measured output as ym = col(u, Fω).
We will demonstrate the use of the feasible subspace and

reduced-error feasible subspace optimality models of Proposi-
tions 3.5 and 3.6. We begin by constructing the matrix G of
Lemma 2.1 and a matrix T satisfying (14). We first construct
a matrix N satisfying rangeN = null

[
A B

]
. One may

verify that choosing

N :=

 1n 0
0 In

D1n A

 (23)

yields the required property. Using (23) and (22), we calculate
G =

[
C D

]
N to be

G =

[
D1n A
1n 0

]
.

Next, we construct a full-row-rank matrix G⊥ ∈ Rn×2n

satisfying nullG⊥ = rangeG. We find that selecting

G⊥ :=
[
1n1T

n −(1T
nD1n)In

]
yields the required property. We identify the matrix H of the
engineering equality constraints in (6) for the problem (21) as
H :=

[
0 F

]
. Following (14), we select a matrix T satisfying

rangeT = null

[
1n1T

n −(1T
nD1n)In

0 F

]
. (24)

The null space on the right-hand side of (24) is spanned
by vectors of the form col(v,0) where 1T

nv = 0. Inspired
by approaches in multi-agent control, we introduce a con-
nected, weighted and directed communication graph Gc =
({1, . . . , n}, Ec) between the buses, with associated Laplacian
matrix Lc ∈ Rn×n. We assume the directed graph Gc contains
a globally reachable node.2 Under this assumption, we have

2See [36, Chapter 6] for details.
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that rank(Lc) = n − 1 with null(Lc) spanned by 1n. It
follows that (24) holds with T =

[
LT

c
0

]
.

It further holds that Lc has a left null space of dimension
one spanned by a nonnegative and non-zero vector w ∈ Rn.
Assuming that F is selected such that wTF1n 6= 0, the range
condition of Proposition 3.6 is satisfied, and we may apply the
REFS-OM (18) to obtain the optimality model

ε = Fω + Lc∇J(u). (25)

Therefore, one option for an OSS controller is

η̇ = Fω + Lc∇J(u) (26a)
u = −Kpω −Kiη, (26b)

where Kp,Ki are gain matrices that should be selected for
closed-loop stability/performance. With F := In, Kp = 0
and Ki = 1

k In for k > 0, this design reduces to the
distributed-averaging proportional-integral (DAPI) frequency
control scheme; see [5], [37], [38].

We can obtain several other control schemes by instead ap-
plying the FS-OM as our optimality model. Let F := cT, where
c is a vector of convex combination coefficients satisfying
ci ≥ 0 and

∑n
i=1 ci = 1. Define L̃c ∈ R(n−1)×n as the

matrix obtained by eliminating the first row from Lc and set
T :=

[
L̃T

c
0

]
. This choice of T also satisfies (24). The FS-OM

(17) yields the optimality model

ε =

[
cTω

L̃c∇J(u)

]
. (27)

It follows that one option for an OSS controller is

η̇1 = cTω (28a)

η̇2 = L̃c∇J(u) (28b)
u = −Kpω −K1η1 −K2η2. (28c)

where again Kp,K1,K2 are gain matrices. The interpretation
of this (novel) controller is that one agent collects frequency
measurements and implements the integral control (28a), while
the other agents average their marginal costs via (28b).

If the objective function J is a positive definite quadratic,
one can use Theorem 3.7 to show that a solution to the present
OSS control problem is guaranteed to exist. Specifically, for
F := In, one uses Theorem 3.7 with condition (iii)b, and for
F := cT, one uses Theorem 3.7 with condition (iii)a. Moreover,
the augmented plant defined by the use of either (26a) or (28a)-
(28b) can be shown to be stabilizable and detectable using the
proof of Theorem 3.7.

As a final example, we can recover the “gather-and-broadcast”
scheme of [7] from the optimality model (27) as follows.
Assume that each Ji is strictly convex, and retain the integral
controller (28a). Next, using the fact that null L̃c = span(1n),
select the input u to zero the second component of ε:

L̃c∇J(u) = 0 ⇐⇒ ∇J(u) = α1n for all α ∈ R
⇐⇒ u = (∇J)−1(α1n), for all α ∈ R.

Selecting α = η leads to the gather-and-broadcast controller

η̇ =
∑n

i=1
ciωi, ui = (∇Ji)−1(η). (29)

In summary, several recent frequency control schemes, and
the novel scheme (28), can be recovered as special cases
of our general control framework. The full potential of our
methodology for the design of improved power system control
will be an area for future study.

V. C O N C L U S I O N S

We have studied in detail the linear-convex OSS control
problem, wherein we design a controller to guide an LTI
system to the solution of an optimization problem despite
unknown, constant exogenous disturbances. We introduced the
idea of an optimality model, the existence of which allows us to
reduce the OSS control problem to a stabilization problem, and
presented several candidate filters which under weak conditions
are indeed optimality models. The flexibility of the OSS control
framework was illustrated through a case study in power system
control, showing that its application recovers several existing
schemes in the literature.

Future work will present the analogous discrete-time and
sampled-data OSS control problems, along with a more de-
tailed study of applications in power system control. A large
number of open problems and directions exist, including but
not limited to: OSS control for nonlinear systems subject
to time-varying disturbances, flexibility of the framework for
distributed/decentralized control, formulations and solutions
of hierarchical, competitive, and approximate OSS control
problems, and the application of the OSS control framework
to the design of new optimization algorithms.
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A P P E N D I X

Proof of Theorem 3.2: By assumption, the closed-loop system
(11)–(12) is well-posed and possesses a globally asymptotically
stable equilibrium point for each w; hence, the first two
requirements of Problem 2.2 are satisfied. It remains to show
that limt→∞ y(t) = y?(w) for each w and every initial
condition. Since the closed-loop system possesses a globally
asymptotically stable equilibrium point for each w, there exists
a unique solution (x̄, ξ̄, η̄, x̄s) to the steady-state equations

0 = Ax̄+Bū+Bww

ȳm = hm(x̄, ū, w)

0 = ϕ(ξ̄, ȳm)

0 = hε(ξ̄, ȳm)

0 = fs(x̄s, η̄, ξ̄, ȳm,0)

ū = hs(x̄s, η̄, ξ̄, ȳm,0)

for each w. Since (ϕ, hε) is an optimality model, the pair (x̄, ū)
satisfies ȳ?(w) = Cx̄ + Dū + Qw. Because this equilibrium
point attracts all trajectories of the closed-loop system and y(t)
is continuous, it must be the case that limt→∞ y(t) = y?(w)
for every w and every initial condition. Therefore, the controller
(11b), (11c), (12a), (12b) solves the OSS control problem. �

Proof of Proposition 3.5: For each w, consider the solutions
(x̄, ū) to:

0 = Ax̄+Bū+Bww (30a)
ȳ = Cx̄+Dū+Qw (30b)
0 = Hȳ − Lw (30c)

0 = TT∇f0(ȳ;w). (30d)

The equations (30) correspond to the equations (10) in the
definition of an optimality model. We show that (30) imply
the KKT conditions. The first two equations (30a) and (30b)
imply ȳ ∈ Y (w), which is equivalent to the first set of equality
constraints, (6b). The equation (30c) is the engineering equality
constraint, (6c). Finally, because the feasible subspace property
holds, (30d) implies the gradient condition (15). Since the
KKT conditions are sufficient for optimality, the following
implication holds for all w: if (x̄, µ̄, ū) satisfy (30), then (x̄, ū)
satisfy

ȳ?(w) = Cx̄+Dū+Qw.

The filter (17) satisfies the criterion of Definition 3.1, and is
therefore an optimality model. �

Proof of Proposition 3.6: For each w, consider the solutions
(x̄, ū) to

0 = Ax̄+Bū+Bww (31a)
ȳ = Cx̄+Dū+Qw (31b)

0 = Hȳ − Lw + TT∇f0(ȳ;w). (31c)

The equations (31) correspond to the equations (10) in the
definition of an optimality model. By assumption, the feasible

http://motion.me.ucsb.edu/book-lns
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region of the optimization problem (6) is non-empty: hence,
there exists a y(w) such that

G⊥y(w) = b(w) (32a)
Hy(w) = Lw. (32b)

Equations (31a) and (31b) imply that G⊥ȳ = b(w). Equation
(32a) and the fact that nullG⊥ = rangeG imply there exists
a v such that ȳ = y(w) +Gv. Substituting this expression for
ȳ into (31c) and making use of (32b), we see that

0 = HGv + TT∇f0(ȳ;w) . (33)

Since
rangeHG ∩ rangeTT = {0} , (34)

(33) and (34) imply

0 = HGv

0 = TT∇f0(ȳ;w)

for every w. Since Hȳ − Lw = HGv,

0 = Hȳ − Lw
0 = TT∇f0(ȳ;w)

for every w. The remainder of the proof proceeds like the proof
of Proposition 3.5. �

Proof of Theorem 3.7: We will apply the classic result
[32, Theorem 1], which provides necessary and sufficient
conditions for stabilizability and detectability of the augmented
plant (11). We examine the application of [32, Theorem 1]
to the augmented plant corresponding to each of the three
optimality models — the FS-OM, the OS-OM, and the REFS-
OM — in sequence. First note that condition (i) is exactly
conditions (a) and (b) of [32, Theorem 1]; condition (e)
of [32, Theorem 1] is automatically satisfied here. We will
show that conditions (c) and (d) of [32, Theorem 1] are
equivalent to conditions (ii) and (iii)a in the case of the FS-OM
and the OS-OM. In the case of the REFS-OM, the property
rangeHG ∩ rangeTT = {0} of condition (iii)b is required
for the filter (18) to be an optimality model by Proposition 3.6;
we will show that condition (ii) and the second property of
(iii)b, (rangeHG)⊥ ∩ (rangeTT)⊥ = {0}, are equivalent
to conditions (c) and (d) of [32, Theorem 1]. We first require
the following lemmas.

Lemma A.1 (Unique Primal Solution): Suppose the opti-
mization problem (19) is feasible, and let T ∈ Rp×• be any
matrix satisfying rangeT = null

[
G⊥
H

]
. Then (19) has a

unique optimizer if and only if vTMv > 0 on rangeT .

Proof: Fix a member ỹ(w) of the feasible set of (19). Since
rangeT = null

[
G⊥
H

]
, we can rewrite the optimization

problem (19) as minimizeȳ∈Rp, v∈rangeT
1
2 ȳ

TMȳ − ȳTNw
subject to the constraint ȳ = ỹ(w) + v. Eliminating ȳ
and writing v = T ′r, where T ′ is a full-column-rank
matrix satisfying rangeT ′ = rangeT and r ∈ R• is
a new decision variable, we obtain the equivalent prob-
lem minimizer∈R•

1
2r

TT ′TMT ′r + rTT ′T(Mỹ(w) − Nw) +
ỹ(w)T (Mỹ(w)−Nw). This unconstrained QP has a unique

optimizer r? if and only if T ′MT ′ � 0, which is equivalent
to M being positive definite on rangeT . �

Lemma A.2 (Unique Dual Solution): Suppose the opti-
mization problem (19) has a unique primal solution ȳ?. The
corresponding dual solution is unique if and only if the matrix[
G⊥
H

]
is full row rank.

Proof: Let ȳ? denote the unique primal solution of (19). Under
our assumptions, the pair (λ?, µ?) is a dual solution if and only
if (λ?, µ?) satisfies the gradient KKT condition (8), which in
the present context is given by 0 = Mȳ? − Nw + GT

⊥λ
? +

HTµ? . The assumption of a primal solution implies that at
least one dual solution (λ?, µ?) to the preceding exists; this
solution is unique if and only if

[
GT
⊥ HT

]
is full column

rank. �

We move on to the main proof; we will show that when
using the FS-OM (17), the OSS control problem is solvable
if and only if the stated conditions (i),(ii),(iii)a hold; a similar
argument can be made for the OS-OM. A modified version
of the same argument can be made for the REFS-OM when
(i),(ii),(iii)b hold. Condition (i) is exactly conditions (a) and
(b) of [32, Theorem 1]; condition (e) of [32, Theorem 1] is
automatically satisfied here. We show conditions (ii) and (iii)a
are equivalent to conditions (c) and (d) of [32, Theorem 1].
Define the matrices N , G, and G⊥ as done in Section II, and
without loss of generality, assume T in (14) is selected to have
full column rank. The augmented plant using the FS-OM is

ẋ = Ax+Bu+Bww

η̇ =

[
HC

TTMC

]
x+

[
HD

TTMD

]
u−

[
L

TTN

]
w.

Following [32, Equation (13)], we check whether

RFS :=

[
In 0
0

[
H

TTM

] ] [A B
C D

]
(35)

has full row rank. Let col(α, β, γ) ∈ nullRT
FS, so that[

α
HTβ +MTγ

]T [
A B
C D

]
= 0. (36)

Multiplying on the right by N and recalling that rangeN =
null

[
A B

]
and also that G =

[
C D

]
N , we find

(HTβ +MTγ)TG = 0. (37)

Hence, HTβ+MTγ ∈ (rangeG)⊥. Because (rangeG)⊥ =
rangeGT

⊥ by the definition of G⊥, the above is equivalent to
the existence of a vector v such that

HTβ +MTγ = GT
⊥v. (38)

Recall that rangeT = (nullG⊥) ∩ (nullH), so G⊥T = 0
and HT = 0. Multiplying (38) on the left by γTTT we find

γTTTMTγ = 0. (39)

For the sufficient direction, we show that if conditions (ii) and
(iii)a hold, then col(α, β, γ) = 0. From condition (ii), it follows
by Lemma A.1 that the matrix TTMT is positive definite and
hence from (39) that γ = 0. Equation (38) then implies that[

v −β
]T [G⊥

H

]
= 0. (40)
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By condition (iii)a and Lemma A.2, the coefficient matrix (40)
in has full row rank, and hence (40) implies that v = 0 and
β = 0. Equation (36) then implies that αT

[
A B

]
= 0.

Since (A,B) is stabilizable, the left null space of
[
A B

]
is empty. Therefore α = 0, we conclude that RFS has full
row rank, and thus by [32, Theorem 1] the augmented plant
is stabilizable/detectable; it follows by Theorem 3.2 that the
OSS control problem is solvable.

For the necessary direction, we show that if either of condi-
tions (ii) or (iii)a fails, then we can construct col(α, β, γ) 6= 0
satisfying (36), which in turn will violate the transmission
zero condition in [32, Theorem 1] and show the augmented
plant is not stabilizable. Suppose (iii)a fails. Then by Lemma
A.2 there exists a nonzero solution to (40). It cannot be the
case that β = 0, for then v would be zero since G⊥ is full
row rank by construction. As a result, if we set γ := 0, (37)
implies that there exists a β̄ 6= 0 such that β̄THG = 0.
We observe β̄THG =

[
β̄THC β̄THD

]
N = 0. Since

rangeN = null
[
A B

]
, the preceding implies that[

CTHTβ̄
DTHTβ̄

]
∈
(
null

[
A B

])⊥
= range

[
AT

BT

]
. (41)

As a result, a solution ᾱ exists to
[
CTHTβ̄

DTHTβ̄

]
=
[
AT

BT

]
ᾱ. Let

ᾱ satisfy the preceding. Then col(α, β, γ) := col(−ᾱ, β̄,0)
satisfies (36). Now suppose instead condition (ii) fails. Then
by Lemma A.1 there exists a γ̄ 6= 0 such that γ̄TTTMTγ̄ =
0, which by positive semidefiniteness of TTMT implies that
TTMTγ̄ = 0, and hence that MTγ̄ = 0. It follows that the
vector col(α, β, γ) := col(0,0, γ̄) satisfies (36).

We now show that when using the OS-OM (16), conditions
(ii) and (iii)a are equivalent to conditions (c) and (d) of [32,
Theorem 1].

The augmented plant when using the OS-OM is

ẋ = Ax+ 0µ+Bu+Bww

µ̇ = HCx+ 0µ+HDu− Lw
η̇ = GTMCx+GTHTµ+GTMDu−GTNw.

Therefore, we examine whether the matrix

ROS :=

 A 0 B
HC 0 HD

GTMC GTHT GTMD

 (42)

is full row rank. Let col(α, β, γ) ∈ nullRT
OS, which is

equivalent toαβ
γ

T  A 0 B
HC 0 HD

GTMC GTHT GTMD

 = 0. (43)

One may rewrite the above equivalently as[
α

HTβ +MGγ

]T [
A B
C D

]
= 0 (44a)

HGγ = 0. (44b)

Multiplying (44a) on the right by N and recalling that
rangeN = null

[
A B

]
and also that G =

[
C D

]
N , we

find
(HTβ +MGγ)TG = 0.

Expanding the above yields

γTGTMG+ βTHG = 0 .

We multiply on the right by γ and make use of (44b) to find

γTGTMGγ = 0. (45)

By (44b) we have that Gγ ∈ nullH . By definition, Gγ ∈
nullG⊥ also. Since rangeT = (nullG⊥)∩ (nullH), there
exists a vector v such that Gγ = Tv. Using (45), this v satisfies

vTTTMTv = 0.

The remainder of the proof proceeds like the proof in the case
of the FS-OM following equation (39).

Finally, we show that when using the REFS-OM (18),
condition (ii) and the second property of condition (iii)b,
(rangeHG)⊥ ∩ (rangeTT)⊥ = {0}, are equivalent to
conditions (c) and (d) of [32, Theorem 1].

The augmented plant using the REFS-OM is

ẋ = Ax+Bu+Bww

η̇ = (HC + TTMC)x+ (HD + TTMD)u

− (Lw + TTN)w.

Therefore, we examine whether the matrix

RRE :=

[
I 0
0 H + TTM

] [
A B
C D

]
(46)

is full row rank. Let col(α, β) ∈ nullRT
RE, which is equivalent

to the equations[
αT

βT(H + TTM)

] [
A B
C D

]
= 0 (47)

Multiplying on the right by N and recalling that rangeN =
null

[
A B

]
and also that G =

[
C D

]
N , we find

βT(H + TTM)G = 0. (48)

Hence, HTβ+MTβ ∈ (rangeG)⊥. Because (rangeG)⊥ =
rangeGT

⊥ by the definition of G⊥, (48) is equivalent to the
existence of a vector v such that

HTβ +MTβ = GT
⊥v. (49)

Recall that rangeT = (nullG⊥) ∩ (nullH), so G⊥T = 0
and HT = 0. Multiplying (49) on the left by βTTT, we find
that βTTTMTβ = 0.

For the sufficient direction, we show that if conditions
(ii),(iii)b hold then col(α, β) = 0. By Lemma A.1, condi-
tion (ii) implies M is positive definite on rangeT , so it
follows from the above that Tβ = 0, or equivalently that
β ∈ (rangeTT)⊥. It follows then from (48) that βTHG = 0,
implying that β ∈ (rangeHG)⊥ also. From condition (iii)b
we have (rangeHG)⊥ ∩ (rangeTT)⊥ = {0}, so we con-
clude that β = 0. Equation (47) then reads αT

[
A B

]
= 0,

from which we conclude α = 0 since (A,B) is stabilizable.
For the necessary direction, we show that if any one of

the conditions (ii),(iii)b fails, then we can construct a vector
col(α, β) 6= 0 satisfying (47). Suppose (ii) fails, so that by
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Lemma A.1, there exists a β̄ 6= 0 such that β̄TTTMTβ̄ = 0
but T β̄ 6= 0. Equation (48) implies that a solution ᾱ exists to[

CT(HTβ̄ +MTβ̄)
DT(HTβ̄ +MTβ̄)

]
=

[
AT

BT

]
ᾱ

using the same reasoning as in the proof in the case of the FS-
OM starting at (41). With such an ᾱ, col(α, β) := col(−ᾱ, β̄)
satisfies (47).

Now suppose (iii)b fails. Then there exists a β̄ 6= 0 such
that T β̄ = 0 and β̄THG = 0. The same reasoning as the
proof in the case of the FS-OM starting at (41) shows that a
solution ᾱ exists to[

CTHTβ̄
DTHTβ̄

]
=

[
AT

BT

]
ᾱ.

With such an ᾱ, col(α, β) := col(−ᾱ, β̄) satisfies (47). �
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