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Abstract—With the decrease in system inertia, frequency
security becomes an issue for power systems around the world.
Energy storage systems (ESS), due to their excellent ramping
capabilities, are considered as a natural choice for the improve-
ment of frequency response following major contingencies. In
this manuscript, we propose a new strategy for energy storage –
frequency shaping control – that allows to completely eliminate
the frequency Nadir, one of the main issue in frequency security,
and at the same time tune the rate of change of frequency
(RoCoF) to a desired value. With Nadir eliminated, the frequency
security assessment can be performed via simple algebraic
calculations, as opposed to dynamic simulations for conventional
control strategies. Moreover, our proposed control is also very
efficient in terms of the requirements on storage peak power,
requiring up to 40% less power than conventional virtual inertia
approach for the same performance.

Index Terms—Electric storage, frequency control, frequency
Nadir, rate of change of frequency, low-inertia power systems.

I. INTRODUCTION

The reduction of system inertia, caused by the replacement
of conventional synchronous generation with renewable energy
sources, is one of the biggest challenges for frequency control
in power systems [1]. Lower inertia causes larger frequency
deviations during transients, even if the system has adequate
primary reserves to keep the steady-state frequency deviation
within acceptable limits [2]. The so-called frequency Nadir
– the lowest value of the frequency during transients –
can become unacceptable for low-inertia systems, which in
turn is sometimes regarded as the main reason for limiting
further increase of renewable generation penetration [3], [4].
Fortunately, the recent advancements in power electronics and
electric storage technologies provide the potential to mitigate
this issue through the use of inverter-interfaced storage units
that can provide additional frequency response. With proper
controllers, fast inverter dynamics can ensure the rapid re-
sponse from storage devices.

A straightforward control approach for energy storage sys-
tems (ESS) is to let energy storage units provide simple
proportional power-frequency response similar to conventional
synchronous generators [5]. However, unlike synchronous
generators that produce a delayed response to the control
signal, the response of storage units is almost instantaneous.
This can help arrest the frequency drop during the first few
seconds following a disturbance, while generator turbines are
gradually increasing their power output. Moreover, because of
the absence of delays, smaller droop coefficients (larger gains)
are accessible for energy storage units, which makes them
even more efficient during sudden frequency disturbances [6].
Thus, an impressive 472 MW of storage has been reported
to participate in the frequency response during the recent
blackout in the Great Britain system on August 9, 2019 [7].
A drawback of this droop control strategy is that the storage
units will continue to provide their response as long as the

system frequency is away from its nominal value, which can
lead to rather high requirements on storage capacity.

Another common control approach is the so-called “syn-
thetic inertia” (also referred to as “virtual inertia” (VI)), where
energy storage units imitate the natural inertial response of
synchronous machines, thus compensating for the lack of
physical inertia [8], [9]. Such a control strategy is especially
efficient in reducing the frequency Nadir as well as the initial
RoCoF, following sudden power imbalances. The topic is
widely discussed in literature. We will provide a brief survey of
the most relevant sources, yet a comprehensive review is given
in [10]. There are various approaches for VI implementation:
by wind turbines [11], by electric vehicles [12], by distributed
energy resources [13], and by controlling DC-side capacitors
of grid-connected power converters [8]. In a recent paper [14]
an important question of VI placement is discussed. Finally,
we note that both synthetic inertia (derivative control) and
droop (proportional control) can be combined into a single
control strategy. Sometimes, it is this combined strategy that
is referred to as VI.

It is evident that, in many of the power systems around the
world, storage facilities can become the main tool for exe-
cuting frequency control, especially following contingencies,
where speed or response is of vital importance. While both
synthetic inertia and droop response can be rather effective in
improving the frequency transient performance, energy storage
units have the potential of implementing a much wider class of
control strategies. A high level goal for such strategies would
be to provide certain frequency response while minimizing
the cost of storage units. The later is mostly determined by
the energy and power capacity of storage units required to
execute certain strategy. In the present manuscript, we develop
a novel control strategy – frequency shaping control – that
guarantees frequency transients without Nadir, while at the
same time keeping RoCoF and steady-state frequency devia-
tion within pre-specified limits. We emphasize that eliminating
the frequency Nadir means much more than just improving the
transient frequency response: it allows to completely change
the frequency security assessment procedure by reducing it to
simple algebraic operations, rather than dynamic simulations.

The main contributions of the manuscript are as follows:
1) We analyze the performance of traditional VI control and

show its drawbacks, especially in terms of excessive control
effort required from the storage.

2) We propose a new control strategy for storage – frequency
shaping control – that allows to turn the system frequency
dynamics into a first-order one, thus eliminating frequency
Nadir. We show that this strategy requires up to 40% less
storage power capacity compared to conventional VI.

3) We generalize our control strategy for multi-machine and
multiple-area systems with arbitrary governor models and
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show how it can be tuned to satisfy constraints on RoCoF
and steady-state frequency deviation.

II. MODELLING APPROACH AND PROBLEM STATEMENT

A. System Model

We start by considering dynamics of a center of inertia
(COI) of a single-area power system so that the whole system
can be modelled as an equivalent synchronous machine. Such
a representation is proven to be sufficiently accurate for
many practical systems [15]–[17]. The generalization to multi-
machine and multiple-area representation will be described
in Section V. Frequency dynamics of such a system can be
described by the conventional swing equation:

2H

Ω0
Ω̇ = Pm − PL + Pb , (1)

where H is the combined inertia constant of the system (in
second), Ω is the system frequency (in radian per second),
Ω0 := 2πF0 is the nominal frequency (F0 = 50 Hz), Pm is
the total mechanical power supplied to the system (in per unit),
PL is the total load demand (in per unit), and Pb is the total
power supplied by the storage system (in per unit), which also
includes any frequency control actions. In this manuscript, we
will be mostly interested in dynamics of the system (1) subject
to a sudden power imbalance ∆P .

In order to study the frequency dynamics, it is convenient
to consider the deviations of all the variables from their
equilibrium values. Thus, we will denote as ω the per unit
deviation of frequency from its nominal value, i.e.,

ω =
Ω− Ω0

Ω0
. (2)

Likewise, pm, pL, and pb will be used to denote the per unit
variations of mechanical power input, electric power demand,
and storage power output from their respective nominal values.
With such denotations, the frequency dynamics of the system
under study can be described by the following equations:

θ̇ = Ω0ω , (3a)
2Hω̇ = pm − pL − αLω + pb , (3b)

τTṗm =− pm − αgω −KI
θ

Ω0
, (3c)

Ėb = pb , (3d)

where Eb is the energy supplied by storage and θ is an
auxiliary variable used for the secondary frequency control.
The parameters in (3) are defined as follows: τT – turbine
time constant (in second), αL – the load-frequency sensitivity
coefficient (in per unit), αg – the aggregate inverse droop of
generators (in per unit), and KI – the aggregate secondary
frequency control gain of the system (in per unit per second).

The model described by (3) is shown by a block diagram
in Fig. 1. The conventional generator block (with primary and
secondary controls) is shaded in blue. We will denote the
aggregate transfer function of this block (in Laplace domain)
as ĝ(s). For clarity of our derivations, we use a simplified
first-order turbine representation. The generalization to more
complex models will be provided in Section V.
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+
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Fig. 1. Block diagram of an aggregated power system with frequency control
from generators and storage units.

Compared to conventional generators, inverter-interfaced
storage have much faster dynamic response rates (few decades
of milliseconds) that allow for more control flexibility. Thus,
at the timescales of frequency dynamics, we can assume that
storage can provide any shape of power response (within the
installed capacity capability). We denote the storage frequency
response function as ĉ(s), i.e.,

p̂b(s) = ĉ(s)ω̂(s) . (4)

The detailed form of ĉ(s) depends on a chosen control strategy.
For most of the manuscript, we will use the system pa-

rameters corresponding to the Great Britain system [18], [19].
We will use PB = 32 GVA as a base power, and the value of
the maximum power imbalance ∆P = 1.8 GW corresponding
to the loss of two biggest generation units, as specified in
[19]. Under the high renewable penetration scenario, the total
inertia of the system is expected to be around 70 GVA s which
corresponds to H = 2.19 s on the system base. The rest of
the parameters are: τT = 1 s, αg = 15 pu, αL = 1 pu, and
KI = 0.05 pu/s.

B. Performance Assessment of Frequency Control
Since frequency deviation is volatile in a low-inertia power

system, it is necessary to resort to certain measures to ensure
frequency security, especially following major disturbances.
Notably, for storage-based frequency control strategy design,
not only control performance but also economic factors matter.
Therefore, the performance metrics that are of our interest for
comparing different control strategies are twofold: frequency
response metrics and storage economics metrics.

1) Frequency Response Metrics: The factors that are rele-
vant to frequency security are:
• Steady-state frequency deviation is the deviation of fre-

quency from the nominal value after all the primary response
is activated, i.e.,

∆ω := lim
t→∞

ω(t) with KI = 0 . (5)

The maximum allowed quasi-steady-state frequency de-
viation for the European and Great Britain systems is
±200 mHz [19], [20].

• Nadir is the maximum frequency drop during a transient
response, i.e.,

|ω|∞ := max
t≥0
|ω(t)| . (6)
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For example, |ω|∞ = 800 mHz for the European system
[21] and |ω|∞ = 500 mHz for the Great Britain system
[18], [19]. For microgrids, the maximum allowed frequency
drop can be specified either by state standards or by some
technical rules specific to the microgrid.

• RoCoF is the maximum rate of change of frequency, which
usually occurs at the initial time instant, i.e.,

|ω̇|∞ := max
t≥0
|ω̇(t)| . (7)

The highest RoCoF value allowed in the European system
is |ω̇|∞ = 0.5 Hz s−1.
2) Storage Economics Metrics: The two factors that signif-

icantly affect the cost of storage units are:
• Energy capacity is the maximum amount of energy supply

from storage during the whole transient duration, i.e.,

Eb,max := max
t≥0

Eb(t) . (8)

The maximum amount of energy supply directly determines
the required storage capacity which, at present, represents
the main contribution to the overall cost of storage systems.

• Maximum power is the maximum amount of power output
from storage during the whole transient duration, i.e.,

pb,max := max
t≥0

pb(t) . (9)

The maximum power output of the storage unit is also
important since lower values of it mean that one can use
inverters with lower installed capacity.

III. CONVENTIONAL CONTROL STRATEGY FOR STORAGE

In this section we briefly analyze the most common tradi-
tional control strategy for storage-based frequency response
– “virtual inertia” (VI). We are mostly interested in its per-
formance from the point of view of improving the Nadir and
RoCoF, and we will assess the amount of power and energy
required from storage to achieve certain performance level in
the system.

The most common VI strategy includes both inertial re-
sponse (IR) and power-frequency response (PFR). It can be
represented by the following effective storage transfer function
ĉvi(s):

ĉvi(s) := −(mvs+ αb) , 1 (10)

where mv is the IR constant and αb is the PFR constant.
We will use the subscript “vi” to refer to this type of control
strategy from storage.

For most of the analysis in the manuscript, when deriving
analytic expressions, we will omit the secondary control
since its purpose is to gradually drive the frequency back to
nominal following a contingency and it does not significantly
influence the transient frequency dynamics. Likewise, the load-
frequency sensitivity coefficient αL will also be set to zero
when deriving control laws – this coefficient is typically of
the order of unity for most power systems and its exact

1An additional low-pass filter is needed to make this transfer function
proper. In all of our numerical models, we will use a low-pass filter with
a cut-off frequency of 5Hz. For simplicity we will omit it in formulas.
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Fig. 2. Frequency deviations under virtual inertia control from storage with
αb = 0 and different values of mv.

values are usually unknown. Setting αL to zero will make our
results slightly conservative. We note though that all dynamic
simulations will be done with secondary control and load-
frequency sensitivity coefficient present.

A. Coupled Nadir Elimination and RoCoF Tuning

Under VI control strategy (10), the frequency deviation ωvi

following a step power imbalance in Laplace domain is given
by

ω̂vi(s) =
−∆P (τTs+ 1)

s [m̃τTs2 + (m̃+ τTαb) s+ αtot]
, (11)

where m̃ := 2H +mv is the compensated system inertia and
αtot := αg +αb is the aggregate inverse droop of the system.

By final value theorem, the steady-state frequency deviation
is always determined by the aggregate inverse droop of the
system as

∆ωvi = lim
s→0

sω̂vi(s) = −∆P

αtot
. (12)

With our present choice of values of parameters from the
Great Britain system, the generator droop alone allows to
fulfill the requirement on steady-state frequency deviation.
This is easily seen by setting αb = 0 in (12), which yields
ω∞,vi = −187.5 mHz, a value within the range of ±200 mHz.
In contrast to the irrelevance of the steady-state frequency to
the IR constant mv, the Nadir and RoCoF significantly depend
on the choice of mv. As seen in Fig. 2, greater values of mv

will lead to decreases of both Nadir and RoCoF.
From Laplace domain expression (11), analytic expression

for ωvi(t) can be obtained following standard steps. The
resulting expression is, however, rather cumbersome, thus we
do not present it here explicitly. In order to find the frequency
Nadir |ω|∞,vi for arbitrary values of mv and αb, one needs
to find the value of this function ωvi(t) at the time instant
corresponding to its first minimum. This can be done by
following the standard but unwieldy steps, the details of which
can be found in [22, Theorem 4]. Fig. 3 provides a plot of
|ω|∞,vi as a function of mv. It is evident that, for any given
value of αb, the Nadir gets shallower with the increase of the
IR constant mv. Moreover, one can entirely remove Nadir by
tuning mv to be sufficiently large, where the critical value of
mv is determined by the following theorem.2

Theorem 1 (Critical value of virtual inertia for removing
Nadir). For a single-area power system described by (3) and

2In this manuscript, “remove the Nadir” means “remove the frequency
response overshoot”.
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Fig. 3. Effect of the IR constant on Nadir and RoCoF for different chosen val-
ues of αb, where circles denote the points corresponding to mv = mv,min.

(4), the step response under VI control, i.e., ĉ(s) = ĉvi(s), has
no Nadir if

mv ≥ mv,min := τTβ
2 − 2H , (13)

with β :=
√
αg +

√
αtot.

Proof. Nadir occurs only if there exists some non-negative
finite time instant tnadir at which ω̇vi(tnadir) = 0. Therefore,
a condition on mv ensuring ω̇vi(t) = 0 only when t = ∞
suffices to remove Nadir. Applying [22, Theorem 4] to (11),
we find that the VI control parameters (αb,mv) should satisfy
the following relations:{

m̃2 − 2τT (αb + 2αg) m̃+ τ2Tα
2
b ≥ 0

m̃− τTαb ≥ 0
. (14)

The first quadratic inequality in m̃ above holds if m̃ ≥
τT
(√
αg +

√
αtot

)2
or m̃ ≤ τT

(√
αg −

√
αtot

)2
. However,

only the former region satisfies the second condition in (14).
This concludes the proof of the desired result.

If it is recognized that αb is much smaller than αg, an
approximate expression for mv,min in (13) can be obtained:

mv,min = 2τT(2αg + αb)− 2H . (15)

The significance of eliminating the Nadir lies in the fact
that the frequency security of the system can be certified by
performing only simple algebraic calculations so as to avoid
running explicit dynamic simulations. More precisely, given
the expected maximum magnitude of power imbalance ∆P
and the acceptable value for steady-state frequency deviation
∆ωd, one can simply choose:

αb = max

(∣∣∣∣ ∆P

∆ωd

∣∣∣∣− αg, 0

)
and mv = mv,min . (16)

Once both mv and αb are determined, one can calculate
RoCoF as:

|ω̇|∞,vi =
∣∣∣ lim
s→∞

s2ω̂vi(s)
∣∣∣ =

∆P

m̃
, (17)

which is inversely proportional to the compensated system
inertia. Thus, under VI control, there is a coupling between
Nadir elimination and RoCoF tuning. If one adopts the tuning

given in (16), then the RoCoF is fixed to be ∆P/(2H +
mv,min). Yet, the value of mv,min required usually has rather
high values, which leads to a too small RoCoF and thus a very
long settling time, as shown in Fig. 2. If one hopes to adjust the
RoCoF appropriately so as to let the frequency evolves with
a moderate rate, then the Nadir cannot be removed. We also
note that, according to (15), mv,min is very sensitive to turbine
time-constant, and the values shown in Fig. 3 correspond to
a rather modest value of τT = 1 s. For slower governors and
turbines, the requirements on mv,min will be even higher.

B. Power and Energy Requirements on Storage

In order to quantify the required amount of power rating of
the storage unit for a given control strategy ĉvi(s), one needs
to find the maximum of pb(t) during the whole transient. The
procedure is rather straightforward, but the explicit expression
for pb(t) in time domain is very cumbersome for arbitrary
values of mv and αb. The top panel of Fig. 4 shows the
maximum storage power as a function of IR constant mv for
different values of PFR constant αb (for power/energy require-
ment figures we use per unit system based on a disturbance
size for simpler comparison). Comparing with the top panel in
Fig. 3, we observe that, for mv less than mv,min, the Nadir and
power rating are quite sensitive to variations in mv, yet, for
mv greater than mv,min, they are practically insusceptible to
changes in mv. This implies that mv = mv,min plays the role
of a saturation point after which an increase in power rating
of storage system does not provide any benefit to a decrease
in Nadir. We note, though, that the actual values of mv,min

correspond to huge additional inertia – about ten times more
than the system natural inertia, and.

It is evident from Fig. 4 that, for the special case of mv =
mv,min, the maximum power pb,max is almost independent of
the PFR constant αb, so we can set it to zero to simplify the
expression for pb(t). Thus, for the case mv = mv,min and
αb = 0, one has the following expression:

pb,vi(t) = ∆P

(
1− H

2τTαg

)(
1 +

t

2τT

)
e
− t

2τT , (18)

for which the maximum value occurs at t = 0 and is equal
to pb,max = ∆P [1−H/(2τTαg)] and is very close to the
disturbance size ∆P for realistic values of parameters.

The storage energy capacity required to execute ĉvi(s) is
predominantly determined by the values of αb and the system
secondary control constant KI (the bottom panel in Fig. 4).
For zero values of αb, the energy capacity required will be
very small (10−3 pu·h or less). Note that, in practice, unless
αb is substantial, the minimum storage energy capacity will
be determined by the C-rate of the batteries used, hence,
the exact value of Eb,max,vi is of little importance. For
values of αb that are not very small, an approximate formula
Eb,max,vi ≈ αb/KI can be used. This suggests that higher
secondary control gains tend to reduce the required storage
energy capacity.

To summarize, VI can be an effective tool to improve
transient frequency performance, however, RoCoF and Nadir
become coupled under this type of control. Modest amounts of
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Fig. 4. Effect of the IR constant on maximum power and energy capacity re-
quirements, where circles denote the points corresponding to mv = mv,min.

IR from storage can somewhat improve the frequency Nadir,
however, complete elimination of Nadir will require massive
amounts of IR, which makes it impractical.

IV. FREQUENCY SHAPING CONTROL

Although VI seems to be a straightforward choice, inverter-
interfaced storage units are potentially capable of executing
a much wider class of control strategies. In this section we
propose a novel control strategy – frequency shaping control
– which is able to decouple the Nadir elimination task from
the RoCoF tuning one. The general idea behind the frequency
shaping control is to effectively turn the system frequency
dynamics into a first-order one, which is dependent on two
control parameters, by employing a special form of storage
response function ĉ(s). Such a first-order response has no
Nadir naturally, while tuning of the two parameters will
provide the ability to adjust both the steady-state frequency
deviation and the RoCoF, independently.

A. Controller Design

For designing the needed frequency shaping control (which
we will denote as ĉfs(s)), let us consider a second-order
transfer function of the following form:3

ĉfs(s) := −A1s
2 +A2s+A3

τTs+ 1
, (19)

where τT is the system turbine time constant from (3c), A1,
A2, and A3 are tunable control parameters. Then, the desired
frequency shaping control is determined by the next theorem.

Theorem 2 (Frequency shaping). The single-area system
from Fig. 1 will respond to a power imbalance −pL as a
first-order system of the form:

ĥ(s) =
1

as+ b
i.e. ω̂(s) = −ĥ(s)p̂L(s) (20)

3As in virtual inertia control, an additional low-pass filter is also needed in
frequency shaping control for the same reason.

with a and b being positive constants, if the corresponding
storage frequency response function ĉ(s) is given by (19) with
the following values of constants:

A1 = τT (a− 2H) , (21a)
A2 = bτT + a− 2H , (21b)
A3 = b− αg . (21c)

In this case, the system frequency will experience no Nadir
and the steady-state frequency deviation ∆ω and the RoCoF
|ω̇|∞ will be determined by the following expressions:

∆ω = −∆P

b
and |ω̇|∞ =

∆P

a
(22)

when p̂L(s) = ∆P/s.

Proof. Let the desired closed-loop transfer function from −pL
to ω be a first-order one given by (20). Then, using explicit
expression for the generator/turbine transfer function ĝ(s) and
(20), one can directly solve for the desired storage control
strategy as

ĥ(s)− ĝ(s)

ĥ(s)ĝ(s)
= −A1s

2 +A2s+A3

τTs+ 1
=: ĉfs(s) (23)

with A1, A2, and A3 given by (21).
Next, applying initial and final value theorems to (20), we

find that a and b satisfy the following relations:

|ω̇|∞ = ∆P lim
s→∞

s2
ĥ(s)

s
=

∆P

a
, (24a)

∆ω =−∆P lim
s→0

s
ĥ(s)

s
= −∆P

b
, (24b)

which are identical to (22).

Theorem 2 allows one to tune the storage frequency re-
sponse strategy that guarantees Nadir-less response for the
whole system while also providing the pre-set values for
RoCoF and steady-state frequency deviation. However, such a
tuning can lead to sub-optimal use of the storage capabilities
if the system response without storage already provides satis-
factory performance in terms of either RoCoF or steady-state
frequency deviation (or both). Therefore, the actual tuning
will depend on the existing system performance. Suppose
the desired values of the RoCoF and steady-state frequency
deviation are |ω̇|∞d and ∆ωd, respectively. Overall, four cases
are possible:

1) Case 1: System’s response suffices to provide satisfac-
tory performance for both RoCoF and steady-state frequency
deviation. In this case, one needs to use their actual values
instead of the maximum allowed ones for tuning a and b.
Thus, the optimal settings are:

a = 2H and b = αg . (25)

Here, the effect of storage is to eliminate frequency Nadir
while keeping RoCoF and steady-state frequency deviation
unchanged.



6

0 5 10 15 20

-400

-300

-200

-100

0

Fig. 5. Comparison of frequency deviations with Nadir eliminated under
virtual inertia and frequency shaping control to a step power imbalance for
αb = 0.

2) Case 2: System’s response suffices to provide satisfac-
tory performance for RoCoF but not for steady-state frequency
deviation – there is enough inertia but not enough primary
response from generators. Then, a and b should be:

a = 2H and b = − ∆P

∆ωd
. (26)

Note that the above two cases correspond to the so-called
iDroop – a dynamic droop tuning reported by us recently [22]:

ĉ?iDroop(s) =
αg

τTs+ 1
− (αg + αb) . (27)

This type of control is capable of eliminating Nadir and at
the same time improve the steady-state frequency deviation
(if needed), but does not affect the RoCoF.

3) Case 3: System’s response suffices to provide satisfac-
tory steady-state frequency deviation but not RoCoF – there is
enough primary response but not enough inertia. In this case:

a =
∆P

|ω̇|∞d
and b = αg. (28)

4) Case 4: System’s response is insufficient to provide
satisfactory steady-state frequency deviation and RoCoF –
there is lack of both primary response and inertia. In this case:

a =
∆P

|ω̇|∞d
and b = − ∆P

∆ωd
. (29)

For all four cases, the frequency shaping control, as its name
suggests, makes the system frequency response effectively
first-order, thus eliminating Nadir. Moreover, it also ensures
that both RoCoF and steady-state frequency deviation are
within the pre-specified limits |ω̇|∞d and ∆ωd, respectively.
Fig. 5 illustrates the well-shaped frequency response under
two different tunings of frequency shaping control (corre-
sponding to Cases 1 and 3) compared with VI control (with
mv = mv,min) and no storage base scenario.

To explicitly demonstrate the difference between frequency
shaping control and VI, Fig. 6 shows Nadir as a function of
the RoCoF. It is obvious that for VI those two metrics are
coupled, while the frequency shaping control provides us the
freedom to tune RoCoF without sacrificing Nadir elimination.

B. Power and Energy Requirements on Storage

We next quantify the required amount of storage power
to execute the frequency shaping control. Provided that the
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Fig. 6. Nadir as a function of RoCoF under frequency shaping control for
αb = 0 and a within the range of

[
2H, (2H +mv,min)

]
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Fig. 7. Comparison of storage power transient responses with Nadir elim-
inated under virtual inertia and frequency shaping control to a step power
imbalance for αb = 0.

control is given by (19), the storage power output (following
a step power imbalance) in Laplace domain is:

p̂b,fs(s)=−∆P

s
ĥ(s)ĉfs(s)=

∆P
(
A1s

2+A2s+A3

)
s (as+ b) (τTs+ 1)

. (30)

From here, an explicit (and rather cumbersome) expression
for power in time domain can be found. Fig. 7 shows the
storage power output as a function of time for the four control
strategies. Clearly, the proposed frequency shaping control
outperforms the VI control – it requires up to 40% less storage
power. In addition, the duration of the power peak is much
shorter for frequency shaping control, which can allow to
decrease the storage installed power even more.

The energy capacity requirement for the frequency shaping
control is mostly determined by the effective battery droop,
similarly to VI strategy. For Cases 1 and 3 of the previous
subsection, the storage effective droop is zero, so the energy
requirement is very small and, like for VI, capacity will be
mostly determined by the C-rate of batteries used.4 For Cases
2 and 4, the storage is supposed to participate in the steady-
state frequency response and the energy capacity requirement
will be significantly higher. Similarly to VI control, it can be
estimated as Eb,max,fs ≈ αb/KI, where αb ≡ A3 = b− αg –
the storage effective PFR constant.

The intuition behind the effectiveness of the frequency
shaping control is that it is able to take the most advantage
of the system natural frequency response capabilities. While
VI can provide performance increase for both RoCoF and
Nadir, there is no way to decouple them in order to optimize
the control effort. Frequency shaping control, on the contrary,
provides virtual inertia only if it is needed to secure acceptable
RoCoF value, and only with the minimum value needed. Fre-
quency Nadir is then taken care of by a different contribution
– iDroop, that is able to guarantee the effective first-order

4Energy requirements for frequency shaping control will be formally less
than that for virtual inertia, but this is irrelevant in practice due to C-rate
limitations.
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system dynamics. Thus, frequency shaping control leverages
the knowledge of the system inertia, primary response, and
turbine dynamics in order to provide a more optimal response
by making full use of the system’s own control capabilities.

V. GENERALIZATION FOR MULTI-MACHINE AND
MULTIPLE-AREA SYSTEMS

Storage control strategy described by (19) was derived for
a single-machine representation with a simplified model for
generator turbine. Actually, the same methodology can be
applied to derive control strategy for more general cases.
In this section we provide a generalization of the method
for multi-machine and multiple-area systems with arbitrary
models for governors and turbines.

We start from deriving the closed-loop power-frequency
response for a multi-machine single-area system. Let Hi be
the inertia constant of i’s machine (for all the variables we
denote machines by a lower index i) and T̂i(s) be a combined
transfer function of its governor and turbine, i.e., p̂m,i(s) =
−αg,iT̂i(s)ω̂i(s). Note that Ti(0) = 1 for every machine. Now,
the multi-machine closed-loop frequency response to power
imbalance is:

ĝ(s) =
1∑

i(2His+ αg,iT̂i(s))
. (31)

Similarly to how we did before, we state that the additional
storage frequency control strategy should transform the overall
system response to an effective first-order form given by (20)
with the constants a and b determining the system RoCoF and
steady-state frequency deviation respectively. In the case of
multi-machine system, the storage frequency response can be
provided either in aggregated or fully decentralized way. In the
latter case, one can think that each machine is “matched” by
a corresponding storage response function ĉi(s) of individual
storage units in such a way that the overall system dynamics
satisfies (20). Then, the following relation should be satisfied:∑

i

(2His+ αg,iT̂i(s)− ĉi(s)) = as+ b . (32)

Let us now represent the response functions ĉi(s) of individual
storage units in the following way:

ĉi(s) = −(mis− αg,iT̂i(s) + αg,i + αb,i) , (33)

where the first term represents the virtual inertia response that
is responsible for RoCoF, and the other terms represent the
dynamic droop that is responsible for Nadir and steady-state
frequency deviation.

Derivation of required values for mi and αb,i is somewhat
similar to the derivation for a single-machine system. First of
all, if the system’s natural response is sufficient to provide
satisfactory RoCoF and steady-state frequency response, then
all mi and αb,i can be set to zero, so that control strategy for
the storage units becomes:

ĉi(s) = αg,iT̂i(s)− αg,i , (34)

which is a direct generalization of (27). In the case either
RoCoF or steady-state response (or both) need to be improved
by the storage, required storage mi and αb,i can be determined
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Fig. 8. Comparison of frequency deviations under different controllers in a
single-area three-machine system when a step power imbalance is introduced.

from the following relations (we assume minimum required
settings): ∑

i

mi =
∆P

|ω̇|∞d
− 2

∑
i

Hi, (35a)

∑
i

αb,i = − ∆P

∆ωd
−
∑
i

αg,i . (35b)

Here, |ω̇|∞d and ∆ωd are the maximum allowed values of
RoCoF and steady-state frequency deviation respectively (the
latter will also correspond to frequency “Nadir” for first-order
response). From the mathematical point of view, as long as
(35) are satisfied, the assignment of individual values mi and
αb,i can be done arbitrarily. From the practical point of view,
contribution according to generator installed power might
make sense. Another way, which could be more reasonable,
is to set certain minimum requirements for generator inertia
and droop gain, and then storage units are tuned to provide
some additional mi and/or αb,i only for those generators that
do not meet the threshold with their conventional capabilities.

Another important practical aspect is the tuning of storage
units to provide the response T̂i(s) that matches the corre-
sponding governor-turbine dynamics. It is possible to tune the
storage using the fully detailed governor model. However, even
a simple second-order reduced model obtained from T̂i(s)
by balanced truncation procedure provides remarkably good
performance. Fig. 8 shows frequency dynamics of a three-
machine equivalent system. Two of the machines are equipped
with steam turbines modelled using IEEEG1 governor model
(which is a good representation for real-life systems [23]), and
one of the machines is equipped with hydro turbine. Two of
the machines are supposed to have sufficient inertia, while
the third one needs to implement additional virtual inertia
from the storage unit. The storage frequency controls for
all three machines are designed using truncated second-order
governor models. Obviously, the frequency response of the
whole system under frequency shaping control is very close
to the desired first-order one, which has no Nadir and satisfies
the constraints on RoCoF and steady-state frequency deviation.

Finally, we provide the generalization of the method to
multiple-area systems. We note that in this case it is impossible
to get the ideal first-order response from every area, i.e., it is
impossible to eliminate frequency Nadir strictly. However, it
is possible to significantly limit both RoCoF and Nadir for
each area. We also note that in many cases even when the
system is considered to be multiple-area from the point of
view of secondary control (i.e., consisting of a number of
Balancing Authorities), its transient frequency dynamics can
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still be described with a good accuracy using a single-area
approximation. In other words, the frequency dynamics of
every machine in the system is rather close to the dynamics of
its COI, which allows one to still use relations (33) and (35)
to tune the storage response. In the case of true multiple-area
system (i.e., when there are long interconnection lines present),
the following simple generalizations should be made.

Each area α provides its maximum instantaneous power
imbalance ∆Pα, then the IR constants mα

i are tuned according
to (35a) separately for each area (i.e., as if the areas are iso-
lated). Likewise, the maximum allowed steady-state frequency
deviation ∆ωαd for each area α will serve as a conservative
lower boundary for the frequency Nadir in the corresponding
area, so that the minimum values for PFR constants ααb,i can be
set for each area by (35b). Finally, applying (35b) again for the
whole system, with ∆P in the right-hand side being the largest
among all the ∆Pα for individual areas, we get the maximum
value of the system steady-state frequency deviation. Then,
additional tuning of the PFR constants can be made, if the
steady-state frequency deviation needs to be further improved.
Fig. 9 provides an illustration of our control performance for
a two-area system. It shows the frequencies in both areas
and the frequency of COI, following a contingency in area
2. Horizontal dashed lines show the steady-state frequency
deviations for separate areas – we see that frequencies in both
areas are always well above these lines.

VI. CONCLUSION

We have presented a new type of frequency control strategy
for energy storage units, which allows to completely eliminate
frequency Nadir by making the system dynamics effectively
first-order. Our control method significantly outperforms the
conventional VI strategy, requiring up to 40% less peak power
from storage, while also significantly reducing the duration of
the peak-power response. The effectiveness of our strategy is
based on its ability to utilize the system frequency response
capability effectively withdrawing the storage response as the
generator turbine increases its power output.

Nadir-less dynamics can allow to completely revise the
security assessment procedures, which can now be done using
simple algebraic calculations, rather than dynamic simula-
tions. Moreover, we envision that the “shaping” of generators’
power-frequency response by storage units can provide bene-
fits beyond the frequency control itself. Among the straight-
forward applications include mitigation of turbine effort for
frequency control, and small-signal and transient stability
enhancements. Another direction is the development of control
loops for power electronics in order to provide device-level
execution of the proposed frequency shaping control.
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