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Robust Scale-Free Synthesis for Frequency Control
in Power Systems

Richard Pates and Enrique Mallada

Abstract—The AC frequency in electrical power systems is
conventionally regulated by synchronous machines. The gradual
replacement of these machines by asynchronous renewable-
based generation, which provides] little or no frequency control,
increases system uncertainty and risk of instability. This poses
hard limits on the proportion of renewables that can be integrated
into the system. To address this issue, in this paper, we develop
a framework for performing frequency control in power systems
with arbitrary mixes of conventional and renewable generation.
Our approach is based on a robust stability criterion that can
be used to guarantee the stability of a full power system model
based on a set of decentralised tests, one for each component
in the system. It can be applied even when using detailed
heterogeneous component models and can be verified using
several standard frequency response, state-space, and circuit
theoretic analysis tools. By designing decentralised controllers for
individual components to meet these decentralised tests, strong a-
priori robust stability guarantees, that hold independently of the
operating point and remain valid even as components are added
to and removed from the grid, can be given. This allows every
component to contribute to the regulation of system frequency in
a simple and provable manner. Notably, our framework certifies
the stability of several existing (non-passive) power system control
schemes and models, and allows for the study of robustness with
respect to delays.

Index Terms—Power systems, frequency control, robust stabil-
ity, decentralised control synthesis.

I. INTRODUCTION

The composition of the electric grid is in a state of flux [2].
Motivated by the need to reduce carbon emissions, conventional
synchronous generators, with relatively large inertia, are being
replaced with renewable energy sources with little (wind) or
no inertia (solar) at all [3]. In addition, the steady increase of
power electronics on the demand side is gradually diminishing
the load sensitivity to frequency variations [4]. As a result,
rapid frequency fluctuations are becoming a major source of
concern for several grid operators [5], [6]. Besides increasing
the risk of frequency instabilities, this dynamic degradation
also places limits on the total amount of renewable generation
that can be sustained by today’s electric grids. Ireland, for
instance, is already resorting to wind curtailment whenever
wind production exceeds 50% of existing demand in order to
preserve the grid stability.

One approach that has been proposed to mitigate this
degradation is to use inverter-based generation to mimic
synchronous generator behaviour, by implementing so called
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virtual inertia [7]. The rationale is that by mimicking syn-
chronous generator dynamics, virtual inertia will restore the
robust frequency regulation that the system used to enjoy.
However, it is unclear whether this particular choice of control
is the most suitable for the task. Unlike generator dynamics
that set the grid frequency, virtual inertia controllers estimate
the grid frequency and its derivative using noisy and delayed
measurements, which can lead to noise amplification and
instabilities [8], [9]. Furthermore, inverter-based control can
be significantly faster than that available for conventional
generators. Therefore, using inverters to mimic generator
behaviour does not take advantage of their full potential. This
poses a new challenge for the control system engineer: develop
control systems to regulate frequency in power systems that
exploit the capabilities of inverters, and that overcome the issues
introduced by renewable generation, including uncertainty in
supply, measurement delays, network topology changes, and
heterogeneity among components.

To achieve this goal, new methods for controller synthesis
are required. The crux of the issue is that in the power system
context, in order to ensure secure operation, control systems
must be able to guarantee in advance that adequate levels of
robustness are maintained even if its operating point changes,
and as components join and leave the grid. Given their uncertain
nature, increasing the number of renewable sources vastly
increases the number of ways this can happen. It then becomes
very difficult to apply conventional control design methods,
since one cannot determine which model to use, or identify a
tractable set of operating points or network configurations to
consider. This is an issue even for many specialised methods for
large systems, such as those based on small gain or dissipativity
theory [10], [11]. This is because these still typically require
the verification of the feasibility of a Linear Matrix Inequality
(LMI) that scales with the size of the network, and this test
would have to be rechecked for every operating point and
change in network configuration.

In this paper, we argue that the best way to address the
challenge of achieving robustness and scalability is ‘to get the
local design right’. To do so, we look to follow, and further
extend, the philosophy of passivity based design, and find
conditions on the subsystems in the network that guarantee
robust stability independently of how they are interconnected.
These conditions can then be used as a principled basis for
scale-free design that addresses the requirements of the network
setting. In particular, by designing controllers to meet a local
stability requirement, strong a-priori guarantees –that hold even
as the operating point changes, and as components are added
to or removed from the network– can be given.

Our main contribution, presented as Theorem 1 in Sec-
tion III-A, is to derive a decentralised stability criterion that is
tailored to frequency control problems in power systems. As
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Fig. 1. Block diagram of the linearised power system model, where gi (s) =
Fl (Gi (s), ci (s)) as illustrated in fig. 2.

described in Section III-B, the condition allows stability of a
full power system model to be deduced on the basis of a set
tests on the individual components in the network, in a manner
that is independent of operating point and interconnection
configuration. The condition allows for detailed, heterogeneous
components models, and can include the effect of delays. As
shown in Section III-C, the criterion is robust, and can be
verified using several standard frequency response, state-space,
and circuit theory analysis tools. Furthermore, as discussed
in Section III-D, it allows for the synthesis of controllers
using only local models. The design can be conducted using
standard frequency response intuition, as well with off-the-shelf
tools from H∞ optimal control. As explained in Section III-E
standard passivity based design criteria arise as a special case,
and there essentially exist no better criteria that can be used as a
basis for decentralised design with a-priori stability guarantees.
We illustrate the results on several standard power system
models and controller architectures in Section IV.

Notation: H∞ denotes the space of transfer functions
of stable linear, time-invariant systems. This is the Hardy
space of functions that are analytic on the open right half
plane C+ with bounded norm ‖g (s)‖∞ := sups∈C+

|g (s)|.
A0 denotes the subset of H∞ that is continuous on the
extended imaginary axis [12]. R denotes the set of real
rational functions, and RH ∞ := R ∩ H∞. Finally, we
denote the lower Linear Fractional Transformation (LFT) as
Fl (G,C) := G11 +G12C (I −G22C)

−1
G21.

II. PROBLEM DESCRIPTION

In this section we describe the power system model used
in this paper. We model the power system as a set of n buses,
indexed by i ∈ {1, . . . , n}, which are coupled through an
AC network. Assuming operation around an equilibrium, the
linearised dynamics are represented by the block diagram in
Figure 1. The transfer function gi (s) describes the dynamics
of the components connected at the ith bus. The input to
each gi (s) is the net power flow into the bus, relative to its
equilibrium value. This includes the variation PN,i in electrical
power drawn from the network and an external disturbance
Pd,i, which reflects, for example, variations in power drawn
by local loads. The output of each gi (s) is the rate of change
of voltage angle (frequency) at the given bus.

The network power fluctuations PN are given by a linearised
DC model of the power flow equations. More precisely,

PN (s) =
1

s
LB θ̇ (s) (1)

Gi

ci

θ̇i
frequency

zi
measurements

Pc,i
controller

power injection

Pd,i − PN,i
power imbalance

Fig. 2. Generalized plant description of the dynamics at the ith bus. The
transfer function from the power imbalance to frequency is gi = Fl (Gi, ci).

where LB is an undirected weighted Laplacian matrix with
entries given by

LB,ij =
∂

∂θj

n∑
l=1

Vi0Vl0bil sin (θi − θl)
∣∣∣
θ=θ0

. (2)

In the above V0 ∈ Rn and θ0 ∈ Rn denote the voltage
magnitudes and angles at the buses in steady state, and bil ≥ 0
the susceptance of the transmission line connecting buses i and
l (bil = 0 if there is no line).

Finally, to allow for the design of local controllers, we further
open the loop at each gi (s) and define a generalized plant
model Gi (s) for each bus as[

θ̇i (s)
zi (s)

]
=

[
Gi,11 (s) Gi,12 (s)
Gi,21 (s) Gi,22 (s)

][
Pd,i (s)− PN,i (s)

Pc,i (s)

]
. (3)

The entries of Gi (s) capture both the internal dynamics at
the bus, and specify the measurements available for control
system design. The signal zi (s) specifies the measurements
available for implementing the local controller, and Pc,i (s) the
controller’s power injection. These signals are related through

Pc,i (s) = ci (s) zi (s) , (4)

where ci (s) is the transfer function of the controller to be
designed. The transfer functions gi, Gi and ci are related
through the lower LFT according to gi = Fl (Gi, ci) as
illustrated in Figure 2. Note that in general Gi and ci need not
be scalar, though gi always is. Combining eqs. (1), (3) and (4)
leads to the following generic linearised power system model:[

θ̇i (s)
zi (s)

]
= Gi (s)

[
Pd,i (s)− PN,i (s)

Pc,i (s)

]
,

Pc,i (s) = ci (s) zi (s) ,

PN (s) =
1

s
LB θ̇ (s) .

(5)

Although eq. (5) is rather generic and can account for many
bus models, when illustrating our approach we will use models
based on the classical swing equations. That is, we will consider
the bus dynamics described by

miθ̈i + diθ̇i = Pc,i + Pd,i − PN,i,
where mi and di are the generator’s inertia and damping
respectively. This leads to a generalised plant transfer function

Gi (s) =

[
1

mis+di
1

mis+di
Gi,21 (s) Gi,22 (s)

]
,

where the particular transfer functions Gi,21 (s) and Gi,22 (s)
depend on the measured signal zi (s). For example, if an-
gular velocity measurements are available, then Gi,21 (s) =
Gi,22 (s) = 1

mis+di
.

Remark 1: The network model in eq. (5) implicitly makes
the following assumptions which are standard and well-justified
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Fig. 3. Theorem 1 shows that given any h ∈ PR ∩ A0, stability of this
feedback interconnection is guaranteed for all pi ∈ Ph and all L ∈ L.

for frequency control in transmission networks [13]: (i) bus
voltage magnitudes are constant for all i, (ii) transmission lines
are lossless, and (iii) reactive power flows do not affect bus
voltage phase angles and frequencies. See, e.g., [14], [15], [16]
for applications of similar models for frequency control within
the control literature.

III. RESULTS

A. A Scale-Free Stability Criterion

In this section we will present a scale-free stability criterion
for the feedback interconnection

yi (s) = pi (s) (ei (s)− ui (s))

u (s) =
1

s
Ly (s) .

(6)

This interconnection is illustrated in Figure 3. In particular we
will show that given any L in the set

L :=
{
L : L = LT , 0 � L � I

}
,

stability1 of eq. (6) can be guaranteed on the basis of
decentralised tests on each of the transfer functions pi (s).
We will show how to use this to guarantee stability of the
linearised power system model in the next section.

Our criterion is written in terms of Positive Real (PR)
and Extended Strictly Positive Real (ESPR) functions. This
establishes strong connections to many well established areas
of control theory, including:

1) Multiplier methods and absolute stability criteria;
2) H∞ optimal control;
3) The Nyquist stability criterion;
4) Classical circuit theory.

We will highlight these connections throughout the rest of the
paper. We now formally define these function classes.

Definition 1: A (not necessarily proper or rational) transfer
functions g (s) is PR if:

(i) g (s) is analytic in Re (s) > 0;
(ii) g (s) is real for all positive real s;

(iii) Re (g (s)) ≥ 0 for all Re (s) > 0.
If in addition g ∈ A0 and there exists an ε > 0 such that
g (s)− ε is PR, then g (s) is ESPR.

The following theorem, which is inspired by the results for
scalar systems from [17, Theorem 2], shows that provided

1We say the interconnection is stable if[
P (s)
I

] (
I + 1

s
LP (s)

)−1 [ 1
s
L I

]
∈ H∞

2n×2n,

where P (s) = diag (p1 (s) , . . . pn (s)).

L ∈ L and that the elements in the diagonal transfer function
are drawn from a parametrised class

Ph :=

{
p ∈H∞ : p (0) 6= 0, h (s)

(
1 +

p (s)

s

)
∈ ESPR

}
,

then the feedback interconnection in eq. (6) is stable.
Theorem 1: If h ∈ PR ∩A0, then for any p1, . . . , pn ∈ Ph

and any L ∈ L, the feedback interconnection in eq. (6) is
stable.

Remark 2: The function h (s) in Theorem 1 is typically
referred to as a multiplier. A useful class of multipliers that
we will use in all our examples is given by{

s

s+ T

N∏
k=1

s+ αk
s+ βk

: 0 < β1 < α1 < β2 < . . . < T

}
.

There is an extensive literature supporting the design of
multipliers [17], and (as we will discuss in Section III-C1)
the choice of h (s) has a graphical interpretation. Nonlinear
extensions of Theorem 1 are also possible, using for example
the Popov or Zames-Falb multipliers, though this will not be
pursued here (see [18] for ideas along these lines).

Proof: Let P = diag (p1, . . . , pn). Since P ∈H n×n
∞ , the

interconnection of P and 1
sL is stable if and only if

1
sL
(
I + 1

sPL
)−1 ∈H n×n

∞ .

Since L ∈ L, we can factorize it as L = QXQ∗, where
εI � X � I , Q ∈ Cn×(n−m), m > 0, Q∗Q = I , ε > 0.
Hence

1
sL
(
I + 1

sPL
)−1

= QXQ∗ (sI + PQXQ∗)
−1
,

= QX (sI +Q∗PQX)
−1
Q∗.

Clearly then it is sufficient to show that

(sI +Q∗PQX)
−1 ∈H (n−m)×(n−m)

∞ . (7)

The above can be immediately recognised as an eigenvalue
condition: −s /∈ λ (Q∗P (s)QX) ,∀s ∈ C+. By Theorem
1.7.6 of [19], for any s ∈ C:

λ (Q∗P (s)QX) ⊂ Co (kpi (s) : i ∈ {1, . . . , n} , ε ≤ k ≤ 1) .

Therefore it is sufficient to show that

0 /∈ Co (s+ kpi (s) : i ∈ {1, . . . , n} , ε ≤ k ≤ 1) , (8)

for all s = C+. Observe that since each pi (s) is bounded, this
condition is trivially satisfied for large s. It is therefore enough
to check that this holds for s ∈ C+, |s| < R, for sufficiently
large R. This can be done using the separating hyperplane
theorem, applied pointwise in s. In particular, eq. (8) holds for
any given s if and only if there exists a nonzero α ∈ C and
γ > 0 such that ∀i ∈ {i, . . . , n}:

Re (α (s+ kpi (s))) ≥ γ,∀ ε ≤ k ≤ 1. (9)

We will now use a minor adaptation of the argument in Theorem
2 of [17] to show that such an α is guaranteed to exist. From
the conditions of the theorem and the maximum modulus
principle, for any R ≥ 0, there exists a δ > 0 such that
∀s ∈ C+, |s| ≤ R:

Re (h (s) (1 + pi (s) /s)) ≥ δ.
Since h (s) is PR, for all k∗ ≥ 0, Re (k∗h (s)) ≥ 0, and
therefore

Re (h (s) (1 + pi (s) /s) + k∗h (s)) ≥ δ.
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Fig. 4. Loop transformation used to apply Theorem 1 to the power system
model in eq. (5), where G = diag (g1, . . . , gn) (c.f. Figures 1 and 3).

Dividing through by (1 + k∗) and rearranging shows that under
these conditions

Re
(
h(s)
s

(
s+ (1 + k∗)

−1
pi (s)

))
≥ (1 + k∗)

−1
δ.

Therefore setting α ≡ h (s) /s and γ ≡ εδ shows that eq. (9)
is satisfied for the required values of k and s. Consequently
eq. (7) is satisfied, and the result follows.

B. Applying Theorem 1 to Linearised Power System Models
In this section we will show that a set of decentralised

conditions can be used to guarantee stability of the full
linearised power system model in eq. (5). These guarantees
are valid for every operating point that satisfies the following
mild assumption.

Assumption 1: At equilibrium, the angle difference
|θ0,i − θ0,j | across each transmission line is less than 90◦,
and the voltage magnitude at each bus is at most Vmax,i.
This assumption is essentially without loss of generality, since
thermal and voltage drop limitations for transmission lines
preclude load angles anywhere near 90◦ and equilibrium bus
voltages above 1.05 p.u. [13].

We will now show that given any h ∈ PR ∩A0, the power
system model in eq. (5) is guaranteed to be stable if every bus
model satisfies

γiFl (Gi, ci) ∈ Ph, (10)

where

γi := 2
n∑
j=1

Vmax,iVmax,jbij . (11)

Note that γi is a constant that depends only on the susceptances
of the transmission lines connected to the ith bus and the largest
allowable voltage magnitudes at their endpoints. Therefore this
condition is local, independent of the operating point, and
guarantees stability even as the components are connected and
disconnected from the buses. This makes eq. (10) an ideal
basis for conducting scale-free design.

In order to verify stability of the power system model using
Theorem 1, we need to connect eqs. (5) and (6). As can be
seen from Figures 1 and 2, by closing all the local control
loops the interconnection in eq. (5) simplifies to

θ̇i (s) = Fl (Gi (s), ci (s)) (Pd,i (s)− PN,i (s))

PN (s) =
1

s
LB θ̇ (s) .

(12)

This feedback configuration has the same form as eq. (6)
(compare Figures 1 and 3), however Theorem 1 cannot yet be
applied since LB is not necessarily in L. The following simple
lemma, which is proved in Appendix A, shows that we can
rescale eq. (12) so that it is of the appropriate form.

Lemma 1: Suppose that LB as given by eq. (2) satisfies
Assumption 1, and let Γ = diag (γ1, . . . , γn), where the γi’s
are given by eq. (11). Then given any conformal partitioning
of Γ and LB such that

Γ =

[
Γ1 0
0 Γ2

]
, LB =

[
LB,11 LB,11
LB,21 LB,22

]
,

0 � Γ
− 1

2
1

(
LB,11 − LB,12L−1B,22LB,21

)
Γ
− 1

2
1 � I .

The most basic consequence of Lemma 1 is that given any
operating point satisfying Assumption 1,

Γ−
1
2LBΓ−

1
2 ∈ L.

This suggests that in order to rescale eq. (12) so that Theorem 1
can be applied, we should use the loop transform in Figure 4.
This shows that stability of eq. (12) is equivalent to that of

yi (s) = γiFl (Gi (s), ci (s)) (ei (s)− ui (s))

u (s) =
1

s
Γ−

1
2LBΓ−

1
2 y (s) .

In the above the signals y, u, e are re-scaled versions of θ̇, PN
and Pd. Theorem 1 can now be applied by setting

pi (s) ≡ γiFl (Gi (s), ci (s)) andL ≡ Γ−
1
2LBΓ−

1
2 .

This proves that eq. (10) is sufficient for stability of eq. (5)
for every operating point meeting Assumption 1. Therefore
all that remains is to show that these claims hold even as
components are disconnected from the buses. Suppose for now
that we disconnect the components at the (n−m)–nth buses.
These buses are now ‘floating’, and may be eliminated using
Kron reduction in the usual way. If this is done we obtain the
following ‘reduced’ version of eq. (12):

θ̇i (s) = Fl (Gi (s), ci (s)) (Pd,i (s)− PN,i (s))

PN (s) =
1

s

(
LB,11 − LB,12L−1B,22LB,21

)
θ̇ (s) ,

where LB,22 ∈ Rm×m. Lemma 1 shows that exactly the
same loop transform will also re-scale the reduced model so
that Theorem 1 can be applied. Therefore satisfying eq. (10)
also implies stability when these components are removed.
By simply re-indexing the buses, the same argument can be
used to show that eq. (10) also implies stability even as any
combination of components are removed.

Remark 3: Stability as we have defined it implies that if
the external signals (the disturbances Pd) are bounded and
tend to zero, then the internal signals PN , θ̇ will tend to zero.
This does not necessarily mean that the ‘state variables’ θ will
tend to their equilibrium values θ0, since they do not appear
explicitly in the internal signals. However, since

PN = LB (θ − θ0) ,

it is clear that if limt→∞ PN (t) = 0, then limt→∞ θ (t) −
θ0 ∈ Ker (LB). Therefore because LB is a weighted Laplacian
matrix, satisfying eq. (10) ensures that the phases differences
(and hence power flows) across the transmission lines will
return to their equilibrium values.
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C. A Scale-Free Analysis Method
Theorem 1 shows that given a function h ∈ PR ∩ A0,

stability can be guaranteed on a component by component
basis using eq. (10). The true strength of this result is that it
can be used to design controllers based only on local models
with a-priori guarantees that hold independently of operating
point and network configuration. However before considering
synthesis questions, it is first instructive to understand how to
check eq. (10).

Rather than simply checking that eq. (10) holds, instead we
propose to find the largest γ such that γFl (Gi, ci) ∈ Ph. This
is justified by the following lemma, and useful because it will
give our criteria robustness guarantees. It will also provide a
synthesis objective as discussed in Section III-D. The proof is
given in Appendix B.

Lemma 2: Let h ∈ PR and p ∈ Ph. If 0 < γ ≤ 1, then
γp ∈ Ph.

Based on the above, we define the following scale-free
analysis problem.

Problem 1: Given h,Gi, ci
maximize γ

subject to γFl (Gi, ci) ∈ Ph.
♦

Denoting the solution to this problem as γ∗i , it follows from
Lemma 2 that if γi ≤ γ∗i , then γiFl (Gi, ci) ∈ Ph (i.e. eq. (10)
is satisfied), and the difference γ∗i − γi gives a measure of
robustness. We now summarise some techniques for solving
Problem 1. These both illustrate how to solve the problem,
and also give insight into how the function h (s) should be
selected.

Remark 4: Robustness with respect to other standard classes
of uncertainty can also be guaranteed by adding more con-
straints to Problem 1, see for example [20].

1) Frequency response methods: Probably the simplest
way to check that a function is ESPR is to plot its frequency
response. These methods are also the most insightful, since
they give h (s) and eq. (10) a graphical interpretation. The
required result is the following, and is proved in Appendix C.

Lemma 3: Let g ∈ A0. Then g ∈ ESPR if and only if there
exists an ε > 0 such that

Re (g (jω)) ≥ ε, ∀ω ∈ R ∪ {∞} .
This suggests a simple frequency gridding approach for

solving Problem 1. In particular it shows that Problem 1 is
equivalent to
maximize γ

subject to Re
(
h(jω)

(
1 +

γFl (Gi (jω), ci (jω))

jω

))
≥ ε,∀ω.

This optimisation problem is easily tackled with a host of
numerical methods. Perhaps more importantly the frequency
domain characterization shows that the choice of h (s) has a
graphical interpretation. To understand this, observe that for a
fixed ω, finding an ε > 0 such that the constraint in the above
is satisfied is equivalent to checking whether

Re
(
ej∠h(jω) (1 + z)

)
> 0,

where z = γFl (Gi (jω), c (jω))/jω. This corresponds to
checking whether the point z ∈ C lies in a half-plane which
cuts through the point −1, and has slope ∠h (jω). This is

−2 −1 0 1
−2

−1

0

1

∠h (jω)

γiFl (Gi (jω), ci (jω)) /jω

Fig. 5. The black curve shows the Nyquist diagram of γiFl (Gi (s), ci (s)) /s
for a particular transfer function. Equation (10) is equivalent to checking that
each point on this diagram lies in a half-plane that passes through -1 with angle
∠h (jω). The margin by which the Nyquist diagram lies within the half-plane
is also directly related to the measure of robustness. In particular if the dashed
line cuts the real axis at the point −δ, then γ∗i − γi = γi (1/δ − 1).

illustrated in Figure 5. The significance of this observation is
that it shows that graphical frequency domain tools, robustness
measures, and intuition can be used to design both h (s) and the
controllers ci (s). This will be discussed further in Section III-D.
It also connects Theorem 1 to the results from [21], [22].

2) State-space methods: If we restrict ourselves to the
space of real rational transfer functions, state-space techniques
can also be employed. The following simple extension of
the Kalman-Yakobovich-Popov (KYP) lemma is the required
result. It shows that if we have a state-space realisation of the
component model and h, we can solve Problem 1 by checking
an LMI. This proof is given in Appendix D.

Lemma 4: Let p, h ∈ R, γ > 0, and suppose that p (s) , h(s)s
have minimal realisations

p (s) =

[
A1 B1

C1 D1

]
,
h (s)

s
=

[
A2 B2

C2 0

]
.

The following are equivalent:
(i) γp ∈ Ph.

(ii) There exists an X � 0 such that[
ATX +XA CT −XB
C −BTX −

(
D +DT

)] ≺ 0,

where

A =

[
A1 B1C2

0 A2

]
, B =

[
0
B2

]
,

and C =
[
γC1 γD1C2 + C2A2

]
, D = C2B2.

Observe in particular that the LMI in Lemma 4 is affine in
γ. This means that we may address Problem 1 by solving an
optimisation problem of the form

maximize γ

subject to
[
ATX +XA CT −XB
C −BTX −

(
D +DT

)] ≺ 0

X � 0,

where A,B,C,D, γ are as in Lemma 4(ii).
3) Circuit theory methods: The PR functions have also

been extensively studied in the context of classical circuit theory.
One consequence of this was the development of algebraic tests
for positive realness that can be applied to simple functions.
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For example, excluding the degenerate case b0 = b1 = b2 = 0,
the function

a2s
2 + a1s+ a0

b2s2 + b1s+ b0
∈ PR

if and only if all the coefficients are non-negative, and(√
a2b0 −

√
a0b2

)2
≤ a1b1. (13)

For this result, historical context, and results for other rational
functions, see [23]. Such tests give a convenient method for
solving Problem 1 when Fl (Gi, ci) is given by a simple
parametrised model. We will illustrate this in Section IV-A.

D. A Scale-Free Design Method
The true strength of Theorem 1 is that it can be used as

a basis for decentralised design with a-priori guarantees that
hold for all operating points and network configurations. In
this section we will discuss both how to design the function
h (s), and the local controllers ci (s).

1) Designing h (s): The objective here is not to design
the perfect h (s), rather to get a sensible starting point for
designing the decentralised controllers. In Section III-C1 we
saw that testing eq. (10) with respect to any given h (s)
is equivalent to checking that the frequency responses of
γiFl (Gi (s), ci (s)) /s lie in a frequency dependent half-plane.
Therefore if we know roughly how these responses will look, by
for example plotting their Nyquist diagrams for some nominal
parameter values, we can use this graphical intuition to design
a suitable function h (s). As illustrated in Section IV-B, this is
extremely easy to do with respect to a fixed half-plane, since a
half-plane can be identified directly from the Nyquist diagrams.
A function that will certify eq. (10) for any set of models
with Nyquist diagrams in this half-plane is then guaranteed to
exist by the following simple extension of the off-axis circle
criterion [24], which is proved in Appendix E.

Lemma 5: Let p1, . . . , pn ∈ A0 and assume that pi (0) > 0.
If there exists a θ ∈ [0, π/2) such that for all i

Re
(
ejθ (1 + pi (jω) /jω)

)
> 0, ∀ω > 0,

then there exists an h ∈ PR ∩A0 such that p1, . . . , pn ∈ Ph.
Even if a fixed half-plane cannot be used, this process can

be used to identify frequency ranges where different slopes
are suitable. An h (s) to match these slopes in the these
frequency ranges can then be obtained using a lead-lag design.
Alternatively other graphical or computational methods for
multiplier design can be used, for example Popov plots. For
further discussions about the design of half-planes from the
perspective of robustness and performance, see [25].

2) Synthesis of Controllers: Consider the synthesis
counterpart to Problem 1.

Problem 2: Given Gi, h,
maximize γ

subject to γFl (Gi, ci) ∈ Ph
ci ∈ Rci

where Rci ⊆ R denotes the set of possible designs for ci. ♦
Solving the above maximizes the robustness margin intro-

duced in Section III-C. In the power system context, simple
controllers are typically desired. In this case the most effective
way to solve Problem 2 is probably to solve the analysis
problem in Problem 1 for a range of controller gains, and

then select those that maximize γ. This will be illustrated for
Automatic Generation Control (AGC) design in Section IV-C.
Alternatively lead-lag design with respect to diagrams such as
Figure 5 offers another simple alternative. Formal synthesis
methods can also be used. In fact, when Rci = R and Gi ∈ R,
Problem 2 can be solved using the H∞ based tools of [26].

Theorem 2 ([26]): Let

M =

 A B1 B2

C1 D11 D12

C2 D21 0

 ,
and assume that (A,B2) is stabilizable and that (C2, A) is
detectable. Then there exists a strictly proper controller c (s)
such that Fl (M, c) ∈ ESPR if and only if there exist matrices
X1, X2, Y1, Y2 such that[

AX1 +B2X2 0
C1X1 +D12X2 −BT1 −D11

]
+ (?)

T ≺ 0,[
Y1A+ Y2C2 Y1B1 + Y2D21 − CT1

0 −D11

]
+ (?)

T ≺ 0,[
−X1 I
I −Y1

]
≺ 0,

where (?)
T denotes the transpose of the matrix on its left.

In [26] they also give an explicit realisation of a controller
that renders Fl (M, c) ∈ ESPR, though due to space limita-
tions we omit this. Theorem 2 allows Problem 2 to be solved
as follows. By computing a minimal realisation Mγ of the
transfer function[

γh(s)
s 0
0 In

]
Gi (s) +

[
h (s) 0

0 0

]
,

and checking the LMIs in Theorem 2, the optimal solution
to Problem 2 can be computed to arbitrary precision using a
bisection over γ. Synthesis with further performance and ro-
bustness guarantees is also possible by adding more constraints
to Problem 2. Again, see [20] for an introduction.

E. Do There Exist Better Scale-Free Design Criteria?
Theorem 1 does not offer the only way to conduct scale-free

design. For example, passivity theory shows that if for all i

γiFl (Gi, ci) ∈ ESPR,

then the power system model is stable2. This condition could
also be used to conduct decentralised design, and gives the
same types of guarantees as eq. (10). In this section we will
both show that this passivity based condition is a special case
of eq. (10), and also that in some sense the criteria from
Theorem 1 are the best possible. The following demonstrates
the first claim, and is proved in Appendix F.

Lemma 6: If p1, . . . , pn ∈ ESPR, then there exists an h ∈
PR ∩A0 such that p1, . . . , pn ∈ Ph.

The converse of Lemma 6 is not true. Indeed the models
considered in Sections IV-B and IV-C are not passive, but do
satisfy eq. (10) for wide ranges of parameter values. In order
to investigate whether there are better decentralised stability
criteria than eq. (10), suppose that for some frequency

Re
(
h (jω)

(
1 +

γ1Fl (G1 (jω), c1 (jω))

jω

))
< 0. (14)

2This is because 1
s
L is passive for all L ∈ L, and the negative feedback

interconnection of a passive and strictly passive system is stable (e.g. [10]).
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That is eq. (10) does not hold for the first bus, but perhaps
only by an ε amount (compare eq. (14) with the conditions
in Section III-C1). The idea is that if a better decentralised
condition existed, it would have to allow for eq. (14) to
hold. The following theorem shows that for a broad class
of functions h (s) (which includes all the multipliers used in
the examples) this is not possible, since if eq. (14) holds then
there exist γ2Fl (G2, c2) , . . . , γnFl (Gn, cn) ∈ Ph and an LB
meeting Assumption 1 such that the power system model is
unstable. This means that we cannot even relax the decentralised
requirement for a single component by an ε amount and still
obtain a-priori stability guarantees in a decentralised manner.

Theorem 3: Let p1 ∈H∞,

h (s) =
s

s+ T
g (s) ∈ PR ∩A0,

where T > 0 and g, g−1 ∈ A0, and assume that eq. (14)
holds for some ω > 0. Then given any n ≥ 2 there exist
p2, . . . , pn ∈ Ph and an L ∈ L such that eq. (6) is unstable.

Proof: The interconnection in eq. (6) is stable only if

M (jω) = (I + Ldiag (p1 (jω) , . . . , pn (jω)) /jω)

is invertible. Now suppose that p2(s)= . . . =pn(s)=p(s), and

L =

[
1/
√

2

−
√

1
2(n−1)1n−1

][
1/
√

2

−
√

1
2(n−1)1n−1

]T
.

Under these conditions L ∈ L and

detM (jω) = 1 + 1
2p1 (jω) /jω + 1

2p (jω) /jω.

Letting x = p1 (jω) /jω, we see that if p (jω) /jω ≡ −
x − 2 then detM (jω) = 0, and therefore M (jω) is not
invertible. Therefore all we need to do is find a p ∈ Ph such that
p (jω) /jω = −x− 2. Equivalently we can find a q ∈ ESPR
such q (jω) = h (jω) (−1− x) and q (∞) = h (∞), and then
set

p (s) = (s+ T ) (q (s)− h (s)) g (s)
−1
.

Provided Re (h (jω) (−1− x)) > 0, such a q can always be
found using well known interpolation results (for example [27,
Lemma 1.14]). Observing that by assumption

Re (h (jω)(−1− x))=−Re
(
h (jω)

(
1 + p1(jω)

jω

))
> 0

completes the proof.

IV. EXAMPLES

The three examples in this section show that our conditions
can be used to: (i) demonstrate stability of existing power
system models; (ii) give delay robustness guarantees for the
swing dynamics with delayed droop control; and (iii) analyse
the robust stability of automatic generation control (AGC) and
design novel AGC controllers.

A. Stability of the Swing Equations

In this example we will show that our criteria can be used to
verify stability of the swing equations when there is no control.
It is or course no great surprise that this model is stable, and
many other tools can be used to prove this. It is nevertheless
reassuring that our conditions can easily cover this case.

−2 −1 0 1
−2

−1

0

1

∠π + 6j

Fig. 6. The curves show the Nyquist diagrams of γiFl (Gi, ci) /s for a range
of parameter values meeting eqs. (15) and (16). By Lemma 7, all these curves
lie within the same half-plane, and the effect of increasing the delay is to
push the curves closer to its boundary.

If we have a swing equation model with no control, then
for all i, ci = 0, and consequently

Fl (Gi, ci) =
1

mis+ di
,

Therefore in this case, eq. (10) simplifies to
γi

mis+ di
∈ Ph.

The following corollary shows that there exists an h such that
the above holds for arbitrarily large γi given any mi ≥ 0
and di > 0. Therefore the swing equation model is stable by
Theorem 1 for any possible parameter values, operating point
and interconnection configuration. The proof uses the tools
from circuit theory discussed in Section III-C3, illustrating their
strength when simple parametrised models are considered.

Corollary 1: Let p1 (s) = γ1/ (m1s+ d1) , . . . , pn (s) =
γn/ (mns+ dn). If for all i

mi ≥ 0, di > 0 and γi > 0,

then there exists an h ∈ PR ∩A0 such that p1, . . . , pn ∈ Ph.
Proof: Let h (s) = s

Ts+1 . It is sufficient to show that for
all i there exists an ε > 0 such that

s

s+ T

(
1 +

γi
s (mis+ di)

)
− ε ∈ PR.

Multiplying out the above shows that it is equivalent to

(1− ε)mis
2 + (di − diε− Tεmi) s+ γi − Tdiε
mis2 + (di + Tmi) s+ Tdi

∈ PR.

We can show that the above holds by applying eq. (13). Note
however that

(√
a2b0 −

√
a0b2

)2 ≤ max {a2b0, a0b2}, and
that if T is sufficiently large and ε sufficiently small, then for
all i

(1− ε)miTdi ≥ mi (γi − Tdiε) .

Therefore it is sufficient to show that (1− ε)miTdi ≤
(di − diε− Tεmi) (di + Tmi). Multiplying out this expres-
sion yields

d2i −
(
di (di + Tmi) + T 2m2

i

)
ε ≥ 0.

We can always pick ε small enough so that the above holds
for all i, which completes the proof.
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B. Stability of Droop Control Subject to Delay
In this example we will use our criteria to verify stability

of the swing equations when there is droop control subject to
delays. In order to get simpler criteria we will neglect governor
and turbine dynamics (these can easily be included, and will
be in the next example). This model is described by

Gi =
1

mis+ di

[
1 1
1 1

]
, ci = − 1

ri
e−sτi ,

=⇒ Fl (Gi, ci) =
1

mis+ di + 1
ri
e−sτi

.

In the above ri > 0 is the droop constant, and τi ≥ 0 a
measurement delay.

In the following we will show that if for all i

ri ≤
√

2/γimi, (15)

then stability of the power system model is guaranteed by
Theorem 1 for any values of the delays that satisfy

0 ≤ τi < πmiri/4, (16)

and for any non-negative values of the natural damping
constants di (which are typically unknown). This perfectly
illustrates the strength of our approach for conducting design
in the network setting. By using Theorem 1, the task of syn-
thesizing decentralised controllers to guarantee robust stability
to delays in a large uncertain system –a daunting task– has
been simplified to picking a set of constant gains that satisfy a
simple inequality. Such constants always exist, and the resulting
controllers are simple to implement. Furthermore the design
comes with a-priori guarantees about robustness to delays and
levels of natural damping, that hold entirely independently of
operating point and interconnection configuration.

To derive this result we will use the approach outlined in
Section III-D. As suggested there, in order to choose a suitable
h (s), we plot the Nyquist diagrams of Fl (Gi (s), ci (s)) /s
for a range of parameter values. This is shown in Figure 6.
This not only shows that passivity tools cannot be used, even
for arbitrarily small values of the delay, but also that the
Nyquist diagrams lie within the same half-plane for wide
ranges of parameter values. This suggests that we can use
Lemma 5 to verify the decentralised stability requirement in
eq. (10). In fact this requirement can be turned into parameter
dependent inequalities, as shown in Lemma 7 below. For ease
of presentation we only give the result for the special choice of
half-plane that leads to eqs. (15) and (16). For generalizations
of these inequalities and the proof, see Appendix G.

Lemma 7: Let m ≥ 0, r > 0 and γ > 0. If

r ≤
√

2/γm,

then for all 0 ≤ τ < πmr/4, d ≥ 0 and ω > 0,

Re

(
(π + 6j)

(
1 +

γ

jω
(
mjω + d+ 1

r e
−jωτ

))) > 0.

C. Stability of Automatic Generation Control (AGC)
AGC is an extension of droop control. The primary objective

of AGC is to regulate system frequency to the specified nominal
value (50/60 Hz), while maintaining the flow of power between
buses at their scheduled values. A typical controller architecture
is shown in Figure 7 [28]. From the control perspective, the

+ ki
s

+
1

1+sTg,i

Governor

1
1+sTt,i

Turbine

+ 1
mis+di

Generator

-βi - 1
ri

Pd,i−PN,i θ̇i

m d Tg Tt r β k

0.16 0.02 0.08 0.40 3.00 0.33 0.30
0.20 0.02 0.06 0.44 2.73 0.40 0.20
0.12 0.02 0.07 0.30 2.82 0.38 0.40

Fig. 7. Typical AGC controller architecture and parameters [28].
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Fig. 8. Solution to Problem 1 for the AGC model with the first set of
parameters in Figure 7 over a range of values for β1, k1. The nominal design
is marked by the black dot.

synthesis task is to design the parameters βi, ki. It is common
to select βi ≈ 1/ri + di, with ki selected based on simulation
studies to act on the time scale of 1-10 minutes (see e.g. [13,
§11.1.5]), and it has been observed that when ‘large’ βi’s are
chosen, stability issues can arise.

Within our framework, the generalised plant is

Gi (s) =

 1
mis+di

1
(mis+di)(1+sTg,i)(1+sTt,i)

1
mis+di

1
(mis+di)(1+sTg,i)(1+sTt,i)

1 0

,
and the standard AGC controller is

ci (s) =
[
− 1
ri

0
]

+
ki
s

[
−βi 1

]
.

To formally address the design of the AGC controller, we solved
the analysis problem in Problem 1 for a range of values of the
control parameters. For the first set of generator parameters this
is shown in Figure 8. From this figure we see that the nominal
design, which is marked by a cross, is a reasonable choice,
though the robustness margin could be further improved by
reducing βi or increasing ki. We also see that increasing βi
will reduce the optimal γ, justifying the observation that ‘large’
βi’s can cause stability problems.

We can also design AGC controllers by solving the synthesis
problem in Problem 2 using H∞ methods. Given the need for
simple controllers, the value here is more in finding out what
levels of robustness are possible, rather than in the controllers
themselves. To this end we fixed the controller parameters
ri, βi to their values from Figure 7. Selecting the best possible
ki ∈ R gives an optimal solution of around 11. However, by
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replacing the constant ki with a transfer function ki ∈ R, and
solving the synthesis problem using the H∞ method from
Section III-D yields an optimal solution of around 104. This
shows that the use of dynamic control has the potential to
greatly increase the robustness margin. It is interesting to think
how this can be exploited in the design of inverters, where the
use of more complex controllers is a more realistic prospect.

V. CONCLUSIONS

A decentralised analysis and design framework for frequency
control in power systems has been presented. Our framework
allows for the design of decentralised controllers using only
local models, and provides strong a-priori robust stability
guarantees that hold independently of operating point, even
as components are added to and removed from the grid.
Furthermore our conditions can be applied even when the
network consists of complex heterogeneous components, and
can be checked using standard frequency response, state-space,
and circuit theoretic tools. We illustrate the suitability of
the framework for power systems by: (i) showing that the
robustness of existing schemes can be analysed and further
improved using the newly developed tools; and (ii) providing
novel delay robustness criteria for the classical swing equations.
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APPENDIX

A. Proof of Lemma 1
Proof: Assumption 1 implies that 0 � LB , from which

standard arguments (using e.g. Gershgorin discs) show that

0 �
[
Γ1 0
0 Γ2

]− 1
2
[
LB,11 LB,11
LB,21 LB,22

] [
Γ1 0
0 Γ2

]− 1
2

� I.

The result then follows immediately from [29, Theorem 5].

B. Proof of Lemma 2
Proof: Since p ∈ Ph, there exists an ε such that

h (s)
(
1 + p

s

)
− ε ∈ PR. Therefore

1− γ
γ

h (s) + h (s)

(
1 +

p (s)

s

)
− ε ∈ PR.

This implies that h (s)
(

1 + γ p(s)s

)
− γε ∈ PR. Consequently

γp (s) ∈ Ph for all 0 < γ ≤ 1 as required.
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C. Proof of Lemma 3

Proof: Denote φ (s) = 1−s
1+s , and let z = φ (s) and G (z) =

g
(
φ−1 (z)

)
. Since φ maps the open right half plane to the

open unit circle,

sup
Re(s)>0

Re (g (s)) = sup
|z|<1

Re (G (z)) .

Since g (s) ∈ A0, G (z) is analytic in the open unit circle, and
continuous on the unit circle [12]. Therefore by the maximum
modulus principle

sup
|z|<1

Re (G (z)) = max
t∈[0,2π]

Re
(
G
(
ejt
))

= max
ω∈R∪{∞}

Re (g (s)) .

The result is now immediate from Definition 1.

D. Proof of Lemma 4

Proof: By [26, Lemma 2.3], if

G (s) =

[
A B
C D

]
,

then the condition G ∈ ESPR is equivalent to the existence
of an X � 0 such that[

ATX +XA CT −XB
C −BTX −

(
D +DT

)] ≺ 0.

Therefore we need only show that

h (s)

(
1 +

γp (s)

s

)
=

[
A B
C D

]
,

where A,B,C,D are given as in (ii). Applying standard
formulae for multiplying state-space realisations shows that
h (s) γp (s) /s and sh (s) have realisations A1 B1C2 0

0 A2 B2

γC1 γD1C2 0

 and
[

A2 B2

C2A2 C2B2

]
respectively, from which the result immediately follows.

E. Proof of Lemma 5

Proof: Let gi = (s/ (s+ T )) (1 + pi (s) /s). It is easily
shown that gi ∈ A0, and that for T sufficiently large there
exists an ε > 0 such that for all i and ω ≥ 0

Re
(
−jej(θ+1/T )gi (jω)

)
≥ ε.

Therefore by [24, Theorem 2] there exists an ‘RC’ multiplier
hRC such that hRCgi ∈ ESPR. Consequently if h (s) =
hRC (s) s/ (s+ T ), then p1, . . . , pn ∈ Ph as required.

F. Proof of Lemma 6

Proof: Since pi ∈ ESPR there exists an ε > 0 and a
γ > 0 such that for all i and ω ∈ R ∪ {∞},

Re (pi (jω)) ≥ ε, |Im (pi (jω))| ≤ γ.

Let h (s) = s/ (s+ T ). By Lemma 3, pi ∈ Ph if and only if
there exists and δ > 0 such that

Re (jω/ (jω + T ) (1 + pi (jω) /jω)) ≥ δ.

−1

− 6
π

√
1 + 36

π2

Fig. 9. Sketch of the geometric argument used in the proof of Lemma 7.
The critical curve (that just touches the circle) is found by setting d = 0,
and finding t to match the slopes of the circle and the curve at their point of
intersection. The effect of increasing d and decreasing t is to shift the curve
away from the circle, as shown in grey.

This is equivalent to
TRe (pi (jω)) + ω (ω + Im (pi (jω)))

ω2 + T 2
≥ δ ⇐=

Tε+ ω (ω − sign (ω) γ)

ω2 + T 2
≥ δ.

By picking T sufficiently large there will always exist a δ > 0
such that the above is satisfied, which completes the proof.

G. Proof of Lemma 7
Proof: First note that by putting k = 1/mγr2, ω̃ = mrω

and t = τ/mr, we obtain the following canonical form:
1

jω
(
mjω + d+ 1

r e
−jωτ

) =
1/k

jω̃ (jω̃ + d/mrk + e−tjω̃)
.

From the conditions of the theorem k ≥ 1
2 , and therefore it is

sufficient to show that

Re
(

(π + 6j)

(
1

2
+

1

jω̃ (jω̃ + d/mrk + e−tjω̃)

))
> 0.

Given z 6= 0 it is simple to show that

Re ((π + 6j) (1/2 + 1/z)) > 0 ⇐⇒
(Re (z) + 1)

2
+ (Im (z) + 6/π)

2
>
√

1 + 36/π2.

Therefore if the curve jω̃
(
jω̃ + d/mrk + e−tjω̃

)
lies strictly

outside a circle with centre −1−6j/π and radius
√

1 + 36/π2,
then the theorem holds. A lengthy but routine geometric
argument then shows that this is the case for all d ≥ 0 and
ω̃ > 0 if and only if t < π/4, from which the result follows.
This is illustrated in Figure 9.

The following generalization allows for arbitrary half-planes
(Lemma 7 corresponds to the case α = π/4). Reducing α
allows for stronger delay robustness guarantees at the expense
of requiring larger droop constants r.

Lemma 8: Let m ≥ 0, r > 0, γ > 0 and π/2 > α > 0. If

r ≤

√
π (π − 2α)

4α2mγ
,

then for all 0 ≤ τ < αmr, d ≥ 0 and ω > 0,

Re

((
π+

2j (π − α)

α

)(
1+

γ

jω
(
mjω + d+ 1

r e
−jωτ

)))>0.


