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Abstract—Frequency restoration in power systems is conven-
tionally performed by broadcasting a centralized signal to local
controllers. As a result of the energy transition, technological
advances, and the scientific interest in distributed control and
optimization methods, a plethora of distributed frequency control
strategies have been proposed recently that rely on communica-
tion amongst local controllers. In this paper we propose a fully
decentralized leaky integral controller for frequency restoration
that is derived from a classic lag element. We study steady-
state, asymptotic optimality, nominal stability, input-to-state
stability, noise rejection, transient performance, and robustness
properties of this controller in closed loop with a nonlinear
and multivariable power system model. We demonstrate that
the leaky integral controller can strike an acceptable trade-
off between performance and robustness as well as between
asymptotic disturbance rejection and transient convergence rate
by tuning its DC gain and time constant. We compare our findings
to conventional decentralized integral control and distributed-
averaging-based integral control in theory and simulations.

I. INTRODUCTION

The core operation principle of an AC power system is
to balance supply and demand in nearly real time. Any
instantaneous imbalance results in a deviation of the global
system frequency from its nominal value. Thus, a central
control task is to regulate the frequency in an economically
efficient way and despite fluctuating loads, variable generation,
and possibly faults. Frequency control is conventionally per-
formed in a hierarchical architecture: the foundation is made
of the generators’ rotational inertia providing an instantaneous
frequency response, and three control layers – primary (droop),
secondary automatic generation (AGC), and tertiary (economic
dispatch) – operate at different time scales on top of it [2], [3].
Conventionally, droop controllers are installed at synchronous
machines and operate fully decentralized, but they cannot by
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themselves restore the system frequency to its nominal value.
To ensure a correct steady-state frequency and a fair power
sharing among generators, centralized AGC and economic
dispatch schemes are employed on longer time scales.

This conventional operational strategy is currently chal-
lenged by increasing volatility on all time scales (due to
variable renewable generation and increasing penetration of
low-inertia sources) as well as the ever-growing complexity
of power systems integrating distributed generation, demand
response, microgrids, and HVDC systems, among others.
Motivated by these paradigm shifts and recent advances in
distributed control and optimization, an active research area
has emerged developing more flexible distributed schemes to
replace or complement the traditional frequency control layers.

In this article we focus on secondary control. We refer
to [4, Section IV.C] for a survey covering recent approaches
amongst which we highlight semi-centralized broadcast-based
schemes similar to AGC [5]–[7] and distributed schemes
relying consensus-based averaging [1], [8]–[12] or primal dual
methods [13]–[16] that all rely on communication amongst
controllers. However, due to security, robustness, and eco-
nomic concerns it is desirable to regulate the frequency
without relying on communication. A seemingly obvious and
often advocated solution is to complement local proportional
droop control with decentralized integral control [1], [6], [17].
In theory such schemes ensure nominal and global closed-
loop stability at a correct steady-state frequency, though in
practice they suffer from poor robustness to measurement
bias and clock drifts [5], [6], [11], [18]. Furthermore, the
power injections resulting from decentralized integral control
generally do not lead to an efficient allocation of generation
resources. A conventional remedy to overcome performance
and robustness issues of integral controllers is to implement
them as lag elements with finite DC gain [19]. Indeed, such
decentralized lag element approaches have been investigated
by practitioners: [17] provides insights on the closed-loop
steady states and transient dynamics based on numerical
analysis and asymptotic arguments, [20] provides a numerical
certificate for ultimate boundedness, and [21] analyses lead-lag
filters based on a numerical small-signal analysis.

Here we follow the latter approach and propose a fully
decentralized leaky integral controller derived from a standard
lag element. We consider this controller in feedback with
a nonlinear and multivariable multi-machine power system
model and provide a formal analysis of the closed-loop sys-
tem concerning (i) steady-state frequency regulation, power
sharing, and dispatch properties, (ii) the transient dynamics
in terms of nominal exponential stability and input-to-state
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stability with respect to disturbances affecting the dynamics
and controller, and (iii) the dynamic performance as measured
by the H2-norm. All of these properties are characterized
by precisely quantifiable trade-offs – dynamic versus steady-
state performance as well nominal versus robust performance
– that can be set by tuning the DC gain and time constant
of our proposed controller. We (iv) compare our findings
with the corresponding properties of decentralized integral
control, and (v) we illustrate our analytical findings with a
detailed simulation study based on the IEEE 39 power system.
We find that our proposed fully decentralized leaky integral
controller is able to strike an acceptable trade-off between
dynamic and steady-state performance and can compete with
other communication-based distributed controllers.

The remainder of this article is organized as follows. Sec-
tion II lays out the problem setup in power system frequency
control. Section III discusses the pros and cons of decentral-
ized integral control and proposes the leaky integral controller.
Section IV analyzes the steady-state, stability, robustness,
and optimality properties of this leaky integral controller.
Section V illustrates our results in a numerical case study.
Finally, Section VI summarizes and discusses our findings.

Key to the analysis of part of the results in this paper
(Section IV.B) is a strict Lyapunov function. A first attempt
to arrive at one was made in preliminary work [1]. The
current paper is substantially different from [1], as it estab-
lishes several novel and stronger results, it provides additional
context, motivation and possible implications, and it discusses
the trade-offs that arise from the tunable controller parameters.

II. POWER SYSTEM FREQUENCY CONTROL

A. System Model

Consider a lossless, connected, and network-reduced power
system with n generators modeled by swing equations [2]

θ̇ =ω (1a)
Mω̇ =−Dω + P ∗ −∇U(θ) + u , (1b)

where θ ∈ Tn and ω ∈ Rn are the generator rotor angles and
frequencies relative to the utility frequency given by 2π50 Hz
or 2π60 Hz. The diagonal matrices M,D ∈ Rn×n collect the
inertia and damping coefficients Mi, Di > 0, respectively. The
generator primary (droop) control is integrated in the damping
coefficient Di, P ∗ ∈ Rn is vector of net power injections
(local generation minus local load in the reduced model), and
u ∈ Rn is a control input to be designed later. Finally, the
magnetic energy stored in the purely inductive (lossless) power
transmission lines is (up to a constant) given by

U(θ) = −1

2

∑n

i,j=1
BijViVj cos(θi − θj) ,

where Bij ≥ 0 is the susceptance of the line connecting gen-
erators i and j with terminal voltage magnitudes Vi, Vj > 0,
which are assumed to be constant.

Observe that the vector of power injections

(∇U(θ))i =
∑n

j=1
BijViVj sin(θi − θj) (2)

satisfies a zero net power flow balance: 1Tn∇U(θ) = 0, where
1n ∈ Rn is the vector of unit entries. In what follows, we will
also write these quantities in compact notation as

U(θ) = −1TΓ cos(BTθ), ∇U(θ) = BΓ sin(BTθ) ,

where B ∈ Rn×m is the incidence matrix [22] of the power
transmission grid connecting the n generators with m trans-
mission lines, and Γ ∈ Rm×m is the diagonal matrix with its
diagonal entries being all the nonzero ViVjBij’s corresponding
to the susceptance and voltage of the ith transmission line.

We note that all of our subsequent developments can also
be extended to more detailed structure-preserving models
with first-order dynamics (e.g., due to power converters),
algebraic load flow equations, and variable voltages by using
the techniques developed in [1], [9]. In the interest of clarity,
we present our ideas for the concise albeit stylized model (1).

B. Secondary Frequency Control

In what follows, we refer to a solution (θ(t), ω(t)) of (1)
as a synchronous solution if it is of the form θ̇(t) = ω(t) =
ωsync1n, where ωsync is the synchronous frequency.

Lemma 1 (Synchronization frequency). If there is a syn-
chronous solution to the powern system model (1), then the
synchronous frequency is given by

ωsync =

∑n
i=1 P

∗
i +

∑n
i=1 u

∗
i∑n

i=1Di
, (3)

where u∗i denotes the steady-state control action.

Proof. In the synchronized case, (1b) reduces to Dωsync1n +
∇U(θ) = P ∗ + u. After multiplying this equation by 1T

n and
using that 1Tn∇U(θ) = 0, we arrive at the claim (3).

Observe from (3) that ωsync = 0 if and only if all injections
are balanced:

∑n
i=1 P

∗
i + u∗i = 0. In this case, a synchronous

solution coincides with an equilibrium (θ∗, ω∗, u∗) ∈ Tn ×
{0n} ×Rn of (1). Our first objective is frequency regulation,
also referred to as secondary frequency control.

Problem 1 (Frequency restoration). Given an unknown
constant vector P ∗, design a control strategy u = u(ω)
to stabilize the power system model (1) to an equilibrium
(θ∗, ω∗, u∗) ∈ Tn × {0n} × Rn so that

∑n
i=1 P

∗
i + u∗i = 0.

Observe that there are manifold choices of u∗ to achieve this
task. Thus, a further objective is the most economic allocation
of steady-state control inputs u∗ given by a solution to the
following optimal dispatch problem:

minimizeu∈Rn

∑n

i=1
aiu

2
i (4a)

subject to
∑n

i=1
P ∗i +

∑n

i=1
ui = 0 . (4b)

The term aiu
2
i with ai > 0 is the quadratic generation cost

for generator i. Observe that the unique minimizer u? of this
linearly-constrained quadratic program (4) guarantees identical
marginal costs at optimality [8], [10]:

aiu
?
i = aju

?
j ∀i, j ∈ {1, . . . , n} . (5)



We remark that a special case of the identical marginal cost
criterion (5) is fair proportional power sharing [23] when the
coefficients ai are chosen inversely to a reference power P̄i >
0 (normally the power rating) for every generator i:

u?i /P̄i = u?j/P̄j ∀i, j ∈ {1, . . . , n} . (6)

The optimal dispatch problem (4) also captures the core
objective of the so-called economic dispatch problem [24], and
it is also known as the base point and participation factors
method [24, Ch. 3.8].

Problem 2 (Optimal frequency restoration). Given an un-
known constant vector P ∗, design a control strategy u = u(ω)
to stabilize the power system model (1) to an equilibrium
(θ∗, ω∗, u∗) ∈ Tn×{0n}×Rn where u∗ minimizes the optimal
dispatch problem (4).

Aside from steady-state optimal frequency regulation, we
will also pursue certain robustness and transient performance
characteristics of the closed loop that we specify later.

III. FULLY DECENTRALIZED FREQUENCY CONTROL

The frequency regulation Problems 1 and 2 have seen many
centralized and distributed control approaches. Since P ∗ is
generally unknown, all approaches explicitly or implicitly rely
on integral control of the frequency error. In the following we
focus on fully decentralized integral control approaches mak-
ing use only of local frequency measurements: ui = ui(ωi).

A. Decentralized Pure Integral Control
One possible control action is decentralized pure integral

control of the locally measured frequency, that is,

u =− p (7a)
T ṗ =ω , (7b)

where p ∈ Rn is an auxiliary local control variable, and
T ∈ Rn×n is a diagonal matrix of positive time constants
Ti > 0. The closed-loop system (1),(7) enjoys many favorable
properties, such as solving the frequency regulation Problem 1
with global convergence guarantees regardless of the system
or controller initial conditions or the unknown vector P ∗.

Theorem 2 (Convergence under decentralized pure integral
control). The closed-loop system (1),(7) has a nonempty set
X ∗ ⊆ Tn × {0n} × Rn of equilibria, and all trajectories
(θ(t), ω(t), p(t)) globally converge to X ∗ as t→ +∞.

Proof. This proof is based on an idea initially proposed in [1]
while we make some arguments and derivations more rigorous
here. First note that (7) can be explicitly integrated as

u = −T−1(θ − θ0)− p0 = −T−1(θ − θ′0) , (8)

where we used θ′0 = θ0−Tp0 as a shorthand. In what follows,
we study only the state (θ(t), ω(t)) without p(t) since p(t) is
a function of θ(t) and initial conditions as defined in (8).

Next consider the LaSalle function

V(θ, ω) =
1

2
ωTMω + U(θ)− θTP ∗

+
1

2
(θ − θ′0)TT−1(θ − θ′0) (9)

The derivative of V along any trajectory of (1), (7) is

V̇(θ, ω) = −ωTDω . (10)

Note that for any initial condition (θ0, ω0) ∈ Tn × Rn the
sublevel set Ω := {(θ, ω) | V(θ, ω) ≤ V(θ0, ω0)} is compact.
Indeed Ω is closed due to continuity of V and bounded since
V is radially unbounded due to quadratic terms in ω and θ.
The set Ω is also forward invariant since V̇ ≤ 0 by (10).

In order to proceed, define the zero-dissipation set

E =
{

(θ, ω) | V̇(θ, ω) = 0
}

= {(θ, ω) | ω = 0n} (11)

and EΩ := E ∩ Ω. By LaSalle’s theorem [25, Theorem 4.4],
as t → +∞, (θ(t), ω(t)) converges to a nonempty, compact,
invariant set LΩ which is a subset of EΩ. In the following, we
show that any point (θ′, ω′) ∈ LΩ is an equilibrium of (1),(7).
Due to the invariance of LΩ, the trajectory (θ(t), ω(t)) starting
from (θ′, ω′) stays identically in LΩ and thus in EΩ. Therefore,
by (11) we have ω(t) ≡ 0 and hence ω̇(t) ≡ 0. Thus, every
point on this trajectory, in particular the starting point (θ′, ω′),
is an equilibrium of (1),(7). This completes the proof.

The astonishing global convergence merit of decentralized
integral control comes at a cost though. First, note that the
steady-state injections from decentralized integral control (7),

u∗ = −T−1 (θ∗ − θ0)− p0,

depend on initial conditions and the unknown values of P ∗.
Thus, in general u∗ does not meet the optimality criterion
(5). Second and more importantly, internal instability due to
decentralized integrators is a known phenomenon in control
systems [26], [27]. In our particular scenario, as shown in
[11, Theorem 1] and [5, Proposition 1], the decentralized
integral controller (7) is not robust to arbitrarily small biased
measurement errors that may arise, e.g., due to clock drifts
[18]. More precisely the closed-loop system consisting of (1)
and the integral controller subject to measurement bias η ∈ Rn

u =− p (12a)
T ṗ =ω + η , (12b)

does not admit any synchronous solution unless η ∈ span(1n),
that is, all biases ηi, for all i ∈ {1, . . . , n}, are perfectly iden-
tical [5, Proposition 1]. Thus, while theoretically favorable,
the decentralized integral controller (7) is not practical.

B. Decentralized Lag and Leaky Integral Control

In standard frequency-domain control design [19] a stable
and finite DC-gain implementation of a proportional-integral
(PI) controller is given by a lag element parameterized as

α
Ts+ 1

αTs+ 1
= 1︸︷︷︸

proportional control

+
α− 1

αTs+ 1︸ ︷︷ ︸
leaky integral control

,

where T > 0 and α � 1. The lag element consists of a
proportional channel as well as a first-order lag often referred



to as a leaky integrator. In our context, a state-space realization
of a decentralized lag element for frequency control is

u =− ω − (α− 1)p

αT ṗ =ω − p ,

where T is a diagonal matrix of time constants, and α� 1 is
scalar. In what follows we disregard the proportional channel
(that would add further droop) and focus on the leaky integra-
tor to remedy the shortcomings of pure integral control (7).

Consider the leaky integral controller

u =− p (13a)
T ṗ =ω −K p , (13b)

where K,T ∈ Rn×n are diagonal matrices of positive control
gains Ki, Ti > 0. The transfer function of the leaky integral
controller (13) at a node i (from ωi to −ui) given by

Ki(s) =
1

Tis+Ki
=

K−1
i

(Ti/Ki) · s+ 1
, (14)

i.e., the leaky integrator is a first-order lag with DC gain K−1
i

and bandwidth Ki/Ti. It is instructive to consider the limiting
values for the gains:

1) For Ti ↘ 0, leaky integral control (13) reduces to
proportional (droop) control with gain K−1

i ;
2) for Ki ↘ 0, we recover the pure integral control (7);
3) and for Ki ↗ ∞ or Ti ↗ ∞, we obtain an open-loop

system without control action.
Thus, from loop-shaping perspective for open-loop stable
SISO systems, we expect good steady-state frequency regu-
lation for a large DC gain K−1

i , and a large (respectively,
small) cutoff frequency Ki/Ti likely results in good nominal
transient performance (respectively, good noise rejection). We
will confirm these intuitions in the next section, where we
analyze the leaky integrator (13) in closed loop with the
nonlinear and multivariable power system (1) and highlight
its merits and trade-offs as function of the gains K and T .

IV. PROPERTIES OF THE LEAKY INTEGRAL CONTROLLER

The power system model (1) controlled by the leaky inte-
grator (13) gives rise to the closed-loop system

θ̇ =ω (15a)
Mω̇ =−Dω + P ∗ −∇U(θ)− p (15b)
T ṗ =ω −K p . (15c)

We make the following standing assumption on this system.

Assumption 1 (Existence of a synchronous solution). As-
sume that the closed-loop (15) admits a synchronous solution
(θ∗, ω∗, p∗) of the form

θ̇∗ =ω∗ (16a)
0n =−Dω∗ + P ∗ −∇U(θ∗)− p∗ (16b)
0n =ω∗ −K p∗ . (16c)

where ω∗ = ωsync1n for some ωsync ∈ R. �

By eliminating the variable p∗ from (16), we arrive at

P ∗ − (D +K−1)ωsync1n = ∇U(θ∗) . (17)

Equations (17) take the form of lossless active power flow
equations [2] with injections P ∗− (D+K−1)ωsync1n. Thus,
Assumption 1 is equivalent assuming feasibility of the power
flow (17) which is always true for sufficiently small ‖P ∗‖.

Under this assumption, we now show various properties of
the closed-loop system (15) under leaky integral control (13).

A. Steady-State Analysis

We begin our analysis by studying the steady-state charac-
teristics. At steady state, the control input u∗ takes the value

u∗ = −p∗ = −K−1ω∗ = −K−1ωsync1n , (18)

that is, it has a finite DC gain K−1 similar to a primary droop
control. The following result is analogous to Lemma 1.

Lemma 3 (Steady-state frequency). Consider the closed-
loop system (15) and its equilibria (16). The explicit synchro-
nization frequency is given by

ωsync =

∑n
i=1 P

∗
i∑n

i=1Di +K−1
i

(19)

Unsurprisingly, the leaky integral controller (13) does gen-
erally not regulate the synchronous frequency ωsync to zero
unless

∑
i P
∗
i = 0. However, it can achieve approximate

frequency regulation within a pre-specified tolerance band.

Corollary 4 (Banded frequency restoration). Consider the
closed-loop system (15). The synchronous frequency ωsync
takes value in a band around zero that can be made arbitrarily
small by choosing the gains Ki > 0 sufficiently small. In
particular, for any ε > 0, if∑n

i=1
K−1
i ≥

|
∑n
i=1 P

∗
i |

ε
−
∑n

i=1
Di , (20)

then |ωsync| ≤ ε.

While regulating the frequencies to a narrow band is suf-
ficient in practical applications, the closed-loop performance
may suffer since the control input (13) may become ineffective
due to a small bandwidth Ki/Ti. Similar observations have
also been made in [17], [20]. We will repeatedly encounter
this trade-off for the decentralized leaky integral controller
(13) between choosing a small gain K (for desirable steady-
state properties) and large gain (for transient performance).

The closed-loop steady-state injections are given by (18),
and we conclude that the leaky integral controller achieves
proportional power sharing by tuning its gains appropriately:

Corollary 5 (Steady-state power sharing). Consider the
closed-loop system (15). The steady-state injections u∗ of
the leaky integral controller achieve fair proportional power
sharing as follows:

Kiu
∗
i = Kju

∗
j ∀i, j ∈ {1, . . . , n} . (21)

Hence, arbitrary power sharing ratios as in (6) can be pre-
scribed by choosing the control gains as Ki ∼ 1/P̄i. Similarly,
we have the following result on steady-state optimality:



Corollary 6 (Steady-state optimality). Consider the closed-
loop system (15). The steady-state injections u∗ of the leaky
integral controller minimize the optimal dispatch problem

minimizeu∈Rn

∑n

i=1
Kiu

2
i (22a)

subject to

n∑
i=1

P ∗i +

n∑
i=1

(1 +DiKi)ui = 0 . (22b)

Proof. Observe from (21) that the steady-state injections (18)
meet the identical marginal cost requirement (5) with ai = Ki.
Additionally, the steady-state equations (16b), (16c), and (18)
can be merged to the expression

0n = DK u∗ + P ∗ −∇U(θ∗) + u∗ .

By multiplying this equation from the left by 1T
n, we arrive at

the condition (22b). Hence, the injections u∗ are also feasible
for (22) and thus optimal for the program (22).

The steady-state injections of the leaky integrator are opti-
mal for the modified dispatch problem (22) with appropriately
chosen cost functions. By (22b), the leaky integrator does not
achieve perfect power balancing

∑n
i=1 P

∗
i + u∗i = 0 and un-

derestimates the net load, but it can satisfy the power balance
(4b) arbitrarily well for K chosen sufficiently small. Note that
in practice the control gain K cannot be chosen arbitrarily
small to avoid ineffective control and the shortcomings of
the decentralized integrator (7) (lack of robustness and power
sharing). The following sections will make these ideas precise
from stability, robustness, and optimality perspectives.

B. Stability Analysis

For ease of analysis, in this subsection we introduce a
change of coordinates for the voltage phase angle θ. Let
δ = θ − 1

n1n1
T
nθ = Πθ be the center-of-inertia coordinates

(see e.g., [28], [9]), where Π = I − 1
n1n1

T
n. In these

coordinates, the open-loop system (1) becomes

δ̇ = Πω (23a)
Mω̇ = −Dω + P ∗ −∇U(δ) + u, (23b)

where by an abuse of notation we use the same symbol U for
the potential function expressed in terms of δ,

U(δ) = −1TΓ cos(BTδ), ∇U(δ) = BΓ sin(BTδ).

Note that BTΠ = BT since BT1n = 0n [22]. The synchronous
solution (θ∗, ω∗, p∗)1 defined in (16) is mapped into the point
(δ∗, ω∗, p∗), with δ∗ = Πθ∗, satisfying

δ̇∗ = 0n (24a)
0n = −Dω∗ + P ∗ −∇U(δ∗)− p∗ (24b)
0n = ω∗ −K p∗. (24c)

The existence of (δ∗, ω∗, p∗) is guaranteed by Assumption 1.
Additionally, we make the following standard assumption
constraining steady-state angle differences.

1Of course, care must be taken when interpreting the results in this section
since the steady-state itself depends on the controller gain K (see Section
IV-A). Here we are merely interested in the stability relative to the equilibrium.

Assumption 2 (Security constraint). The synchronous solu-
tion (24) is such that BTδ∗ ∈ Θ := (−π2 + ρ, π2 − ρ)m for a
constant scalar ρ ∈

(
0, π

2

)
.

Remark 1. Compared with the conventional security con-
straint assumption [8], we introduce an extra margin ρ on
the constraint to be able to explicitly quantify the decay of the
Lyapunov function we use in proofs of Theorems 7 and 8. �

By using Lyapunov techniques following [12], it is possible
to show that the leaky integral controller (13) guarantees
exponential stability of the synchronous solution (24).

Theorem 7 (Exponential stability under leaky integral
control). Consider the closed-loop system (23), (13). Let As-
sumptions 1 and 2 hold. The equilibrium (δ∗, ω∗, p∗) is locally
exponentially stable. In particular, given the incremental state

x = x(δ, ω, p) = col(δ − δ∗, ω − ω∗, p− p∗), (25)

the solutions x(t) = col(δ(t)− δ∗, ω(t)−ω∗, p(t)− p∗), with
(δ(t), ω(t), p(t)) a solution to (23), (13) that start sufficiently
close to the origin satisfy for all t ≥ 0,

‖x(t)‖2 ≤ λe−αt‖x0‖2, (26)

where λ and α are positive constants. In particular, when
multiplying the gains K and T by the positive scalars κ and τ
respectively, α is monotonically non-decreasing as a function
of the gain κ and non-increasing as a function of τ .

Proof. Consider the incremental Lyapunov function from [12]
including a cross-term between potential and kinetic energy:

V (x) =
1

2
(ω − ω∗)TM(ω − ω∗)

+ U(δ)− U(δ∗)−∇U(δ∗)T(δ − δ∗)

+
1

2
(p− p∗)TT (p− p∗)

+ ε(∇U(δ)−∇U(δ∗))TMω , (27)

where ε ∈ R is a small positive parameter.
First, we will show that this is indeed a valid Lyapunov

function, by proving positivity outside of the origin and strict
negativity of its time derivative along the solutions of (23).

For sufficiently small values of ε and if Assumption 2 holds,
V (x) satisfies

β1‖x‖2 ≤ V (x) ≤ β2‖x‖2 (28)

for some β1, β2 > 0 and for all x with BTδ ∈ Θ, by Lemma 14
in Appendix A. The derivative of V (x) can be expressed as

V̇ (x) = −χTH(δ)χ,

where χ(δ, ω, p) := col(∇U(δ)−∇U(δ∗), ω − ω∗, p− p∗),

H(δ) =

 εI 1
2εD − 1

2εI
1
2εD D − εE(δ) 0n×n
− 1

2εI 0n×n K

 , (29)

and we defined the shorthand E(δ) = symm(M∇2U(δ)) with
symm(A) = 1

2 (A+AT).



We claim that for all δ, H(δ) > 0. To see this, apply
Lemma 12 from Appendix A to obtain H(δ) ≥ H ′(δ) with

H ′(δ) :=

 ε
2I 0n×n 0n×n

0n×n D − ε(E(δ) +D2) 0n×n
0n×n 0n×n K − εI

 .
Given that D and K are positive definite matrices, one can
select ε to be positive yet sufficiently small so that H ′(δ) > 0.

To show exponential decline of the Lyapunov function
V (x), which is necessary for proving (26), we must find some
positive constant α such that V̇ (x) ≤ −αV (x).

We claim that a positive constant β3, dependent on ρ from
Assumption 2, exists such that ‖χ‖2 ≥ β3‖x‖2. To see this,
we note that from Lemma 13 in Appendix A that a constant
β′3 exists so that

‖∇U(δ)−∇U(δ̄)‖2 ≤ β′3‖δ − δ∗‖2. (30)

The claim then follows with β3 = min(1, β′3
−1

).
In order to proceed, we set β4 := minBTδ∈Θ λmin(H(δ)).

Then, it follows using (28) that, as far as BTδ ∈ Θ,

V̇ (x) ≤ −β4‖χ‖2 ≤ −β3β4‖x‖2 ≤ −
β3β4

β2
V =: −αV (x) .

For this inequality to lead to the claimed exponential stability,
we must guarantee that the solutions do not leave Θ. To do
so, we study the sublevel sets of V (x) and find one that is
contained in Θ. Recall that the sublevel sets of V (x) are
invariant and thus solutions x(t) are bounded for all t ≥ 0
in sublevel sets {x : V (x) ≤ V (x0)} for which BTδ ∈ Θ.
Hence, we require the initial conditions x0 of solutions x(t)
to be within a suitable sublevel set {x : V (x) ≤ V (x0)}
where BTδ ∈ Θ. We now construct such a sublevel set. Let

c := β1
ξ2

λmax(BBT)
(31)

and ξ > 0 a parameter with the property that any δ satisfying
‖BTδ − BTδ∗‖ ≤ ξ also satisfies BTδ ∈ Θ. The parameter ξ
exists because BTδ∗ ∈ Θ and Θ is an open set. Accordingly,
define the sublevel set Ωc := {x : V (x) ≤ c}, with c defined
above, and note that any point in Ωc satisfies BTδ ∈ Θ. As
a matter of fact V (x) ≤ c implies ‖x‖2 ≤ ξ2

λmax(BBT) and

therefore ‖δ − δ∗‖2 ≤ ξ2

λmax(BBT) . This in turn implies that
‖BT(δ − δ∗)‖2 ≤ ξ2, and hence BTδ ∈ Θ by the choice of ξ.

We conclude that any solution issuing from the sublevel set
Ωc will remain inside of it. Hence along these solutions the
inequality V̇ (x) ≤ −αV (x) holds for all time.

By the comparison lemma [25, Lemma B.2], this inequality
yields V (x(t)) ≤ e−αtV (x(0)), which we combine again with
(28) to arrive at (26) with λ = β2/β1.

Finally, we address the effect of K and T on α by
introducing the scalar factors κ and τ multiplying K and
T , and by studying the effect of manipulations of κ and τ
on the exponential decline of V (x) and therefore of x(t).
Note that α is a monotonically increasing function of β4 =
minBTδ∈Θ λmin(H(δ)). Recall that for any vector z,

λmin(H(δ))‖z‖2 ≤ zTH(δ)z,

with equality if z is the eigenvector corresponding to
λmin(H(δ)). Let emin denote the normalized eigenvector cor-
responding to λmin(H(δ)). Then, for any vector z satisfying
‖z‖ = 1, λmin(H(δ)) = eT

minH(δ)emin ≤ zTH(δ)z. Hence,

β4 = min
BTδ∈Θ

λmin(H(δ)) = minBTδ∈Θ , z:‖z‖=1 z
TH(δ)z,

where the last equality holds by noting that emin is one of the
vectors z at which the minimum is attained.

Now suppose we multiply K by a factor κ > 1. Let H ′(δ) =
H(δ) + block diag(0,0, (κ− 1)K). The new value of β4 is

β′4 = min
BTδ∈Θ , z:‖z‖=1

(
zTH(δ)z +

∑n

i=1
(κ− 1)Kiz

2
2n+i

)
︸ ︷︷ ︸

=zTH′(δ)z

.

The argument of the minimization is not smaller
than zTH(δ)z for any z. It follows that β′4 ≥
minBTδ∈Θ , z:‖z‖=1 z

TH(δ)z = β4. Similarly, if 0 < κ < 1,
then β′4 ≤ minBTδ∈Θ , z:‖z‖=1 z

TH(δ)z = β4. Hence, β4

is a monotonically non-decreasing function of the gain κ.
Likewise, α is a monotonically decreasing function of β2,
which itself is a non-decreasing function of τ .

Theorem 7 is in line with the loop-shaping insight that the
bandwidth Ki/Ti determines nominal performance: the decay
rate α is monotonically non-decreasing in Ki/Ti.

C. Robustness Analysis

We now depart from nominal performance and focus on
robustness. Recall a key disadvantage of pure integral control:
it is not robust to biased measurement errors of the form (12).
We now show that leaky integral control (13) is robust to such
measurement errors. In what follows, instead of (13), consider
leaky integral control subjected to measurement errors

u = −p (32a)
T ṗ = ω −K p+ η , (32b)

where the measurement noise η = η(t) ∈ Rn is assumed to be
an∞-norm bounded disturbance. In this case, the bias-induced
instability (reported in Section III-A) does not occur.

Let us first offer a qualitative steady-state analysis. For a
constant vector η, the equilibrium equation (16c) becomes

0n = ω∗ −K p∗ + η.

so that the closed loop (1), (32) will admit synchronous
equilibria. Indeed, the governing equations (17) determining
the synchronous frequency ωsync change to

(D +K−1)ωsync1 = P ∗ −∇U(θ∗)−K−1η .

Observe that the noise terms η now takes the same role as the
constant injections P ∗, and their effect can be made arbitrarily
small by increasing K. We now make this qualitative steady-
state reasoning more precise and derive a robustness criterion
by means of the same Lyapunov approach used to prove
Theorem 7. We take the measurement error η as disturbance
input and quantify its effect on the convergence behavior along
the lines of input-to-state stability. First, we define the specific
robust stability criterion that we will use, adapted from [29].



Definition 1 (Input-to-state-stability with restrictions). A
system ẋ = f(x, η) is said to be input-to-state stable (ISS)
with restriction X on x(0) = x0 and restriction η ∈ R>0 on
η(·) if there exist a class KL-function β and a class K∞-
function γ such that

‖x(t)‖ ≤ β(‖x0‖, t) + γ(‖η(·)‖∞)

for all t ∈ R≥0, x0 ∈ X , and inputs η(·) ∈ Ln∞ satisfying

‖η(·)‖∞ := ess sup
t∈R≥0

‖η(t)‖ ≤ η.

Theorem 8 (ISS under biased leaky integral control).
Consider system (23) in closed-loop with the biased leaky
integral controller (32). Let Assumptions 1 and 2 hold. Given
a diagonal matrix K > 0, there exist a positive constant η and
a set X such that the closed-loop system is ISS from the noise
η to the state x = col(δ− δ∗, ω−ω∗, p−p∗) with restrictions
X on x0 and η on η(·), where (δ∗, ω∗, p∗) is the equilibrium
of the nominal system, i.e., with η = 0. In particular, the
solutions x(t) = col(δ(t) − δ∗, ω(t) − ω∗, p(t) − p∗), with
(δ(t), ω(t), p(t)) a solution to (23), (32) for which x(0) ∈ X
and ‖η(·)‖∞ ≤ η satisfy for all t ∈ R≥0,

‖x(t)‖2 ≤ λe−α̂t‖x(0)‖2 + γ‖η(·)‖2∞, (33)

where α̂, λ and γ are positive constants. Furthermore, when
multiplying the gains K and T by the positive scalars κ and τ
respectively, then γ is monotonically decreasing (respectively,
non-increasing) as a function of κ (respectively, τ ), and α̂
is monotonically non-decreasing as a function of κ and non-
increasing as a function of τ .

Proof. We start by extending the Lyapunov arguments from
the proof of Theorem 7 to take the noise η(t) into account,
obtaining again an upper bound of V̇ (x) in terms of V (x).

From the proof of Theorem 7 recall the Lyapunov function
derivative V̇ (x) = −χTH(δ)χ − (p − p∗)Tη. Since for any
positive parameter µ,

−(p− p∗)Tη ≤ µ‖p− p∗‖2 +
1

µ
‖η‖2 ,

one further obtains

V̇ (x) ≤ −χT

H(δ)−

0 0 0
0 0 0
0 0 µI


︸ ︷︷ ︸

=Ĥ(δ)

χ+
1

µ
‖η‖2 .

Following the reasoning in the proof of Theorem 7, we note
that Ĥ(δ) ≥ Ĥ ′(δ), where

Ĥ ′(δ) :=

 ε
2I 0n×n 0n×n

0n×n D − ε(E(δ) +D2) 0n×n
0n×n 0n×n K − εI − µI

 .
It follows that for sufficiently small values of ε and µ, Ĥ(δ) ≥
Ĥ ′(δ) > 0. To continue, let β̂4 := minBTδ∈Θ λmin(Ĥ(δ)). As
a result, we find that for a positive constant α̂ = β3β̂4

β2
,

V̇ (x) ≤ −α̂V (x) +
1

µ
‖η‖2 (34)

for all x such that BTδ ∈ Θ.
We now again make sure that no solutions can leave the set

Θ. To make this possible, it is necessary to impose a restriction
on the magnitude of the noise, η̄, and the set of possible initial
states, X . In the remainder of the proof, we fix η̄ such that

η̄ = α̂cµ.

with c defined as in (31) in the proof of Theorem 7.
Define the sublevel set Ωc, again as in the proof of Theorem

7. We now claim that the solutions of the closed-loop system
cannot leave Ωc. In fact, on the boundary ∂Ωc of the sublevel
set Ωc, the right-hand side of (34) equals −α̂c+ 1

µ‖η‖
2, which

is a non-positive constant by the choice of η̄. Hence a solution
leaving Ωc would contradict the property that V̇ (x) ≤ 0 for
all x ∈ ∂Ωc. We conclude that all solutions must satisfy (34)
for all t ∈ R≥0. Hence, we choose X = Ωc.

Having validated (34), we now derive the exponential bound
(33). By the Comparison Lemma, the use of convolution
integral and bounding ‖η(t)‖2 by ‖η(·)‖2∞, we arrive at

V (x(t)) ≤ e−α̂tV (x0) +
1

α̂µ
‖η(·)‖2∞.

We combine this inequality with (28) and (30) to arrive at (33)
with λ = β2/β1 and γ = (α̂β1µ)−1.

Finally, we address the effect of K and T on α̂ and γ by
introducing the scalar factors κ and τ multiplying K and T .

As κ increases, there is no need to increase ε, while it is
possible to increase µ. Analogously to the reasoning in the
proof of Theorem 7, increasing the value of κ for constant ε
and increasing µ can not lower the value of β̂4 and α̂, and
decreases the value of γ. If one decreases κ, but multiplies µ
by the same factor so as to keep β̂4 constant, µ will also
decrease. This guarantees α̂ remains constant in this case,
preserving its status as a non-decreasing function of κ. On
the other hand, a decrease in µ results in an increase in γ,
retaining its status as a decreasing function of κ. Therefore, α̂
is non-decreasing as a function of κ and γ is decreasing.

As in Theorem 7, τ affects only β1 and β2, and the same
result holds: α̂ is a monotonically non-increasing function of
τ . Analogously, γ is monotonically non-increasing in τ .

Theorem 8 shows that larger gains K (and T ) reduce
(respectively, do not amplify) the effect of the noise η on
the state x. This further emphasizes the trade-off between
frequency banding and controller performance already touched
on in Section IV-A. We further extend and formalize this trade-
off in Subsection V-D by means of a H2 performance analysis.

Remark 2 (Exponential ISS with restrictions). The KL–
function from the ISS inequality (33) is an exponential func-
tion, so the stability property is in fact exponential ISS with
restrictions. The need to include restrictions X on the initial
conditions and η̄ on the noise is due to the requirement of
maintaining the state response within the safety region Θ. �

D. H2 Performance Analysis

All findings thus far show that the closed-loop performance
crucially depends on the choice of Ki and Ti. Small gains Ki



are advantageous for steady-state properties, large gains Ki

and Ti are advantageous for noise rejection, and the nominal
performance does not deteriorate when increasing Ki/Ti. To
further understand this trade-off we now study the transient
performance in the presence of stochastic disturbances by
means of the H2 norm. The use of the H2 norm for evaluating
power network performance was first introduced in [30]. This
versatile framework allows to characterize various network
properties such as resistive power losses [30], voltage devi-
ations [31], the role of inertia [32], phase coherence [33], in
the presence of stochastic disturbances, as well as network-
wide frequency transients induced by step changes [34], [35].

Here we investigate in a stochastic setting the effect of
the gains K and T on the steady-state frequency variance in
the presence of power disturbances and noisy frequency mea-
surements modeled as white noise inputs. More precisely, we
compute the H2 norm of the system (15) with output ω(t) and
inputs in (15b) and (15c). With this aim, we first linearize (15)
around a steady state (θ∗, ω∗, p∗).2 Using ∇2U(θ∗) = LB ,
where LB is a weighted Laplacian matrix [22], and redefining
(θ, ω, p) as deviation from steady state, the closed-loop model
(15) becomes

θ̇ =ω ,

Mω̇ =−Dω − LBθ − p ,
T ṗ =ω −Kp .

We use Sζζ to denote the disturbances on the net power
injection and Sηη to model the noise incurred in the frequency
measurement required to implement the controller (13). Then,
by defining the system output as y = ω, we get the LTI system θ̇ω̇
ṗ

 =

 0 I 0
−M−1LB −M−1D −M−1

0 T−1 −T−1K


︸ ︷︷ ︸

=A

θω
p

 (35)

+

 0 0
M−1Sζ 0

0 T−1Sη


︸ ︷︷ ︸

=B

[
ζ
η

]
, y =

[
0 I 0

]︸ ︷︷ ︸
=C

θω
p

 .

The signals ζ ∈ Rn and η ∈ Rn represent white noise with unit
variance, i.e., E[ζ(t)Tζ(τ)] = δ(t− τ)In and E[η(t)Tη(τ)] =
δ(t − τ)In, and Sζ = diag{σζ,i, i ∈ {1, . . . , n}}, Sη =
diag{ση,i, i ∈ {1, . . . , n}}.

We are interested in understanding the effects of Ki and
Ti on the system performance. To this aim, we will compute
the H2 norm of (35) and compare it with that of the pure
integrator, as well as the open loop system. From (14) we see
that for Ki ↘ 0 (respectively, for Ki ↗∞) for i ∈ {1, . . . , n}
we recover the closed-loop system controlled by pure integral
control (7) (respectively, the open-loop system). Thus, in what
follows, we denote the LTI system (35) by Gleaky, for K =
0n×n by Gintegrator, and for Ki ↗∞ by Gopen-loop.

2Of course, care must be taken when interpreting the results in this section
since the steady-state itself depends on the controller gain K (see Section
IV-A), but here we are merely interested in the transient performance.

The squared H2 norm of the LTI system (35) is given by

‖G‖2H2
= lim
t→∞

E[yT(t)y(t)]. (36)

Via the observability Gramian X , ‖G‖2H2
can be computed as

‖G‖2H2
= tr(BTXB) (37)

where X solves the Lyapunov equation

ATX +XA = −CTC. (38)

Although a closed form solution of (37) is generally hard to
calculate, it is possible to provide a qualitative analysis by
assuming homogeneous parameters as in the following result.

Theorem 9 (H2 norm of leaky integrator). Consider the
LTI power system model Gleaky in (35). Assume homogeneous
parameters, i.e., Mi = m, Di = d, Ti = τ , Ki = k, σζ,i = σζ ,
and ση,i = ση , ∀i ∈ {1, . . . , n}. Then the squared H2 norm
of Gleaky is given by

‖Gleaky‖2H2
(39)

=
nσ2

ζ

2md
+

n∑
i=1

−k
d
σ2
ζ + σ2

η

2d
[
mk2 +

(m
d

+ dτ
)
k + τ + λiτ2

] .
In particular, setting k = 0 in (39) gives

‖Gintegrator‖2H2
=
nσ2

ζ

2md
+

n∑
i=1

σ2
η

2d (τ + λiτ2)
, (40)

where Gintegrator denotes the linearized power system model
controlled by the pure integral controller (7).

Proof. Consider the orthonormal change of input, state, and
output variables θ = Uθ′, ω = Uω′, p = Up′, y = Uy′, ζ =
Uζ ′, and η = Uη′, where U is the orthonormal transformation
that diagonalizes LB : UTLBU = diag{λ1, . . . , λn} with λi
being the ith eigenvalue of LB in increasing order (λ1 =
0 < λ2 ≤ · · · ≤ λn). The H2 norm is invariant under this
transformation and (35) decouples into n subsystems: θ̇′iω̇′i
ṗ′i

 =


0 1 0

−λi
m

− d

m
− 1

m

0
1

τ
−k
τ


︸ ︷︷ ︸

=Ai

θ′iω′i
p′i

+


0 0
σζ
m

0

0
ση
τ


︸ ︷︷ ︸

=Bi

[
ηp,i

′

ηω,i
′

]
,

y′i =
[
0 1 0

]︸ ︷︷ ︸
=Ci

θ′iω′i
p′i

 . (41)

Then based on (37) and (38), ‖Gleaky‖2H2
can be calculated

by computing the norm of the n subsystems (41) (see, e.g.,
[30], [32], [36]–[38]). The key step is to solve n Lyapunov
equations

AT
iQ+QAi = −CT

i Ci , (42)

where Q must be symmetric and can thus be parameterized as

Q =

q11 q12 q13

q12 q22 q23

q13 q23 q33

 . (43)



Whenever λi 6= 0 (42) has a unique solution Q. For λ1 = 0
the system (41) has a zero pole which could render infinite
H2 norm and non-unique solutions to (42). We will later see
that this mode is unobservable and thus the H2 norm is finite.

We now focus on the case λi 6= 0. Direct calculations show

q11 =
λi
d

(
−km
τ2

q33 +
1

2

)
− λi

τ
q33 , (44a)

q12 = 0 , (44b)
q13 = λiq33 , (44c)

q22 =
m

d

(
−km
τ2

q33 +
1

2

)
, (44d)

q23 = −km
τ
q33 , (44e)

where all solutions are parameterized in

q33 =
1

2d

[
m

τ2
k2 +

(
m

dτ2
+
d

τ

)
k +

1

τ
+ λi

] . (45)

Therefore, we obtain

‖Gleaky,i‖2H2
= tr(BT

i QBi) =
(σζ
m

)2

q22 +
σ2
η

τ2
q33 . (46)

By substituting (44d) and (45) into (46), we arrive at

‖Gleaky,i‖2H2
=

k

τ2

(
−
σ2
ζ

d
+
σ2
η

k

)

2d

[
m

τ2
k2 +

(
m

dτ2
+
d

τ

)
k +

1

τ
+ λi

] +
σ2
ζ

2md
. (47)

We now consider the case λi = 0, i.e., i = 1. Since λ1 = 0,
neither ω̇′1, nor ṗ′1, nor y′1 depend on θ′1 in (41). Thus, θ′i is
not observable, and we can simplify the system (41) to

[
ω̇′i
ṗ′i

]
=

− d

m
− 1

m
1

τ
−k
τ


︸ ︷︷ ︸

=Ai

[
ω′i
p′i

]
+

σζm 0

0
ση
τ


︸ ︷︷ ︸

=Bi

[
ηp,i

′

ηω,i
′

]
,

y′i =
[
1 0

]︸ ︷︷ ︸
Ci

[
ω′i
p′i

]
.

Again, we solve the Lyapunov equation (42), but here Q = QT

is a 2-by-2 matrix. A similar calculation as before yields that
‖Gleaky,1‖2H2

is also given by (47) with λ1 = 0. Therefore,
‖Gleaky‖2H2

=
∑n
i=1 ‖Gleaky,i‖2H2

, which is equal to (39).
Finally, note from (7) and (13) that the leaky integrator

reduces to an integrator when K = 0n×n. It follows that
‖Gintegrator‖2H2

can be obtained by setting k = 0 in (39).

Theorem 9 provides an explicit expression for the closed-
loop H2 performance under leaky integral control (13) as well
as under pure integral control (7). Observe from (37), (39), and
(40) that power disturbances and measurement noise have an
independent additive effect on the H2 norm. Thus, either of
the two effects can be obtained by setting ση = 0 or σζ = 0.

The following corollary, whose proof is in Appendix B1,
shows the supremacy of leaky integral control over pure
integral control for any positive gain k. Further, in the presence
of only measurement noise, increasing k or τ always improves
‖Gleaky‖2H2

which is consistent with the ISS insights obtained
from Theorem 8.

Corollary 10 (Monotonicity of the H2 norm). Under the
assumptions of Theorem 9, for any k > 0 the closed-loop H2

norm under leaky integral control is strictly smaller than under
pure integral control: ‖Gleaky‖2H2

< ‖Gintegrator‖2H2
. Moreover,

in absence of power disturbances, σζ = 0, ‖Gleaky‖2H2
is a

strictly decreasing function of k ≥ 0 and τ ≥ 0.

Remark 3 (Optimal H2 performance at open loop). Ob-
serve from (39) that in the absence of power disturbances
(σζ = 0) and in the presence of measurement noise (ση 6= 0),
the optimal gains are k ↗ ∞ or τ ↗ ∞ which from (14)
reduces to the open-loop case. This insight is consistent with
the noise rejection bounds (33) in Theorem 8. Of course, the
steady-state characteristics in Section IV-A all demand a suffi-
ciently small value of k, and power disturbances will typically
be present as well. Nevertheless, these considerations pose the
question of whether leaky integral control can ever improve
the open-loop performance ‖Gopen-loop‖2H2

:= nσ2
ζ/(2md)

obtained for k, τ ↗ ∞. We explicitly address this question
below. �

The next corollary, whose proof is in Appendix B2, will
use the characterization of the effect of τ on the performance
as a mechanism to derive an optimal choice for both k and τ
that can not only ensures improvement of the leaky integrator
performance ‖Gleaky‖H2 with respect to the pure integrator
performance ‖Gintegrator‖H2 but also with respect to the open-
loop performance ‖Gopen-loop‖H2

.

Corollary 11 (H2 optimal tuning). Under the assumption of
Theorem 9 and for any τ > 0, and k such that

k

d
>

(
ση
σζ

)2

, (48)

the closed-loop performance under the leaky integral control
outperforms the open-loop system performance, i.e.,

‖Gleaky‖2H2
< ‖Gopen-loop‖2H2

.

Moreover, the global minimum of the H2 norm under leaky
integral control is obtained by setting τ → τ∗ = 0 and k to

k∗ = d

(
ση
σζ

)2
(

1 +

√
1 +

(σζ
d

)2
)
. (49)

Remark 4 (Necessity of condition (48)). We highlight that
condition (48) is in fact necessary for improving performance
beyond ‖Gopen-loop‖H2

. When (48) is violated, ∂
∂τ ‖Gleaky‖2H2

<
0; see Appendix B2. In this case, if (48) does not hold, it is
easy to see from (39) that ‖Gleaky‖H2 ↘ ‖Gopen-loop‖H2 as
τ ↗∞, which implies ‖Gleaky‖H2 > ‖Gopen-loop‖H2 . �

Corollary 11 suggests that the optimal controller tuning
requires τ∗ = 0 which reduces the leaky integrator to a
proportional droop controller with gain 1/k∗. However, setting



Fig. 1. The 39-bus New England system used in simulations.

τ to small values reduces the response time Ti/Ki = τ/k of
the leaky integrator, which in an actual implementation will
be limited by the actuator’s response time (not modeled here).
We point out, however, that Corollary 11 also shows that the
leaky integrator provides performance improvements for any
τ > 0, and thus this limitation will only affect the extent to
which the H2 performance is improved.

The optimal value k∗ in (49) also unveils interesting trade-
offs between performance and robustness. More precisely, in
the high power disturbance regime σζ ↗∞, the optimal gain
is k∗ ↘ 0. The latter choice of course weakens the robustness
properties described in Section IV-B. On the other hand, in the
presence of large measurement errors ση ↗∞, one losses the
ability to properly regulate the frequency as k∗ ↗∞, i.e., the
open-loop case.

Remark 5 (Joint banded frequency restoration and optimal
H2 performance). This last discussion also unveils a critical
trade-off of leaky integral control: it may be infeasible to
jointly satisfy (20) and (48) when the measurement noise ση
is large. For a specified level ε of frequency restoration, the
parameter k that satisfies (20), or equivalently

k ≤
(
|
∑
i P
∗
i |

nε
− d
)−1

,

may not satify (48) and thus leads to worse performance than
open loop. Of course, one can still take τ large to mitigate this
degradation, as in Remark 3. However, this comes at the cost
of lower convergence rate: large τ leads to slow feedback. We
refer to Section VI for further discussion of these tradeoffs.�

V. CASE STUDY: IEEE 39 NEW ENGLAND SYSTEM

In this section we perform a case study with the 39-bus New
England system, see Figure 1, which is modeled as in (1)-(2)
with parameters Mi (for the 10 generator buses), Vi, and Bij
taken from [39]. The inertia coefficients Mi are set to zero for
the 29 (load) buses without generators. Note that Mi’s in our
simulations are heterogeneous, which relaxes our simplifying
assumption in Section IV-D that Mi’s are homogeneous and
allows for testing the proposed scheme under a more realistic
setting. For every generator bus i, the damping coefficient

Di is chosen as 20 per unit (pu) so that a 0.05pu (3Hz)
change in frequency will cause a 1pu (1000MW) change in
the generator output power. For every load bus i, Di is chosen
as 1/200 of that of a generator. Note that the generator turbine-
governor dynamics are ignored in the model (1)-(2) leading to
a simulated frequency response that is faster than in practice,
but the fundamental dynamics of the system are retained for
a proof-of-concept illustration of the proposed controller. For
all simulations below, a 300MW step increase in active-power
load occurs at each of buses 15, 23, 39 at time t = 5s.

A. Comparison between controllers without noise

We implement each of the following controllers across the
10 generators to stabilize the system after the increase in load:

1) distributed-averaging based integral control (DAI):

u =− p (50a)

T ṗ =A−1ω − LAp . (50b)

Here L = LT is the Laplacian matrix of a communication
graph among the controllers, which we choose as a ring
graph with uniform weights 0.1. The matrix A is diagonal
with entries Aii = ai being the cost coefficients in (4a)
chosen as 1.0 for generators G3, G5, G6, G9, G10 and 2.0
for all others. We choose the time constant Ti = 0.05s
for every generator i. The DAI control (50) is known
to achieve stable and optimal frequency regulation as in
Problem 2; see [1], [8]–[12]. Even DAI control is based
on a reliable and fast communication environment, we
include it here as a baseline for comparison purposes.

2) decentralized pure integral control (7) with time constant
Ti = 0.05s for every generator i.

3) decentralized leaky integral control (13) with time con-
stant Ti = 0.05s for every generator i. The gain Ki equals
0.005 for generators G3, G5, G6, G9, G10 and 0.01 for
the others. The Ki’s are proportional to ai’s in DAI (50)
so that the dispatch objectives (4a) and (22a) are identical.

Figure 2 (dashed plots) shows the frequency at G1 (all
other generators display similar frequency trends), and Figure
3 shows the active-power outputs of all generators, under the
different controllers above and without noisy measurements.
First, note that all closed-loop systems reach stable steady-
states; see Theorems 2 and 8. Second, observe from Figure 2
that both pure integral and DAI control can perfectly restore
the frequencies to the nominal value, whereas leaky integral
control leads to a steady-state frequency error as predicted
in Lemma 3. Third, as observed from Figure 3, both DAI
and leaky integral control achieve the desired asymptotic
power sharing (2:1 ratio between G3, G5, G6, G9, G10
and other generators) as predicted in Corollary 5. However,
leaky integral control solves the dispatch problem (22) thereby
underestimating the net load compared to DAI which solves
(4); see Corollary 6. We conclude that fully decentralized leaky
integral controller can achieve a performance similar to the
communication-based DAI controller – though at the cost of
steady-state offsets in both frequency and power adjustment.
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Fig. 2. Frequency at generator G1 under different control methods.
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Fig. 3. Changes in active-power outputs of all the generators without noise.
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Fig. 4. Changes in active-power outputs of all the generators, under a frequency measurement noise bounded by η = 0.01Hz.

B. Comparison between controllers with noise

Next, a noise term ηi(t) is added to the frequency measure-
ments ω in (50b), (7b), and (13b) for DAI, pure integral, and
leaky integral control, respectively. The noise ηi(t) is sampled
from a uniform distribution on [0, ηi], with ηi selected such
that the ratios of ηi between generators are 1 : 2 : 3 : · · · : 10
and ‖[η1, η2, . . . ]‖ = η = 0.01Hz. The meaning of η here is
consistent with that in Definition 1 and Theorem 8. At each
generator i, the noise has non-zero mean ηi/2 (inducing a
constant measurement bias) and variance σ2

η,i = η2
i /12.

Figure 2 (solid plots) shows the frequency at generator G1,
and Figure 4 shows the changes in active-power outputs of all
the generators under such a measurement noise. Observe from
Figures 2(b)–2(c) and Figures 4(b)–4(c) that leaky integral
control is more robust to measurement noise than pure integral
control. Figures 4(a) and 4(c) show that the DAI control is even
more robust than the leaky integral control in terms of genera-
tor power outputs, which is not surprising since the averaging
process between neighboring DAI controllers can effectively
mitigate the effect of noise – thanks to communication.

C. Impacts of leaky integral control parameters

Next we investigate the impacts of inverse DC gains Ki and
time constants Ti on the performance of leaky integral control.

First, we fix the integral time constant Ti = τ = 0.05s for
every generator i, and tune the gains Ki = k for generators
G3, G5, G6, G9, G10; Ki = 2k for other generators to
ensure the same asymptotic power sharing as above. The
following metrics of controller performance are calculated for
the frequency at generator G1: (i) the steady-state frequency
error without noise; (ii) the convergence time without noise,
which is defined as the time when frequency error enters and
stays within [0.95, 1.05] times its steady state; and (iii) the
frequency root-mean-square-error (RMSE) from its nominal
steady state, calculated over 60–80 seconds (the average
RMSE over 100 random realizations is taken). The RMSE
results from measurement noise ηi(t) generated every second
at every generator i from a uniform distribution on [−ηi, ηi],
where the meaning of ηi is the same as in Section V-B;
ηi(t) has zero mean so that the performance in mitigating
steady-state bias and noise-induced variance can be observed
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Fig. 5. Steady-state error (upper), convergence time (middle), and RMSE
(lower) of frequency at generator G1, as functions of the gain k for leaky
integral control. The time constants are Ti = τ = 0.05s for all generators.

separately. Figure 5 shows these metrics as functions of k. It
can be observed that the steady-state error increases with k, as
predicted by Lemma 3; convergence is faster as k increases,
in agreement with Theorem 7; and robustness to measurement
noise is improved as k increases, as predicted by Theorem 8
and Corollary 10.

Next, we tune the integral time constants Ti = τ for all
generators and fix k = 0.005, i.e., Ki = 0.005 for G3,
G5, G6, G9, G10 and Ki = 0.01 for other generators, for a
balance between steady-state and transient performance. Since
the steady state is independent from τ , only the convergence
time (measured for the case without noise) and RMSE (taken
as the average of 100 runs with different realizations of noise)
of frequency at generator G1 are shown in Figure 6. It can be
observed that convergence is faster as τ decreases, which is
in line with Theorem 7. Robustness to measurement noise is
improved as τ increases, which is in line with Theorem 8 and
predicted by Corollary 10.

Finally, we discuss performance degradation if the response
time of leaky integral controller is smaller than the actuation
response time. The generator turbine-governor dynamics can
be modeled as first or second-order transfer functions, with
dominant time constants in the range of [0.25 s, 2.5 s] for
hydraulic turbines and [4 s, 7 s] for steam turbines [40, Chapter
9]. The analogous time constant for our controller corresponds
to the parameter ratio Ti/Ki. For the simulations in Figures 2–
4 this ratio was chosen as 10 s for generators G3, G5, G6, G9,
G10 and of 5 s for others. Thus, they are compatible with
actuation through steam and hydraulic turbines. If this was
not the case, the controllers have to be slowed down and their
performance can be inferred through Figures 5 and 6. Finally,
we stress that the proven robustness guarantees, i.e., input-
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Fig. 6. Convergence time (upper) and RMSE (lower) of frequency at generator
G1, as functions of the time constant Ti = τ for leaky integral control. The
gains Ki are 0.005 for G3, G5, G6, G9, G10 and 0.01 for other generators.

to-state-stability of the nonlinear model, will not be at stake,
provided that the initial conditions and the maximum noise
magnitude are those characterized in the proof of Theorem 8.

D. Tuning Recommendations

Our results quantifying the effects of the gains K and T
on the system behavior lead to a number of insights about
tuning the gains in a practical setting. Specifically, a possible
approach is as follows. First, the ratios between the values
K−1
i can be determined using Corollary 5 and knowledge

about the generator operation cost. Second, a lower bound
on the sum of these values

∑n
i=1K

−1
i can be obtained from

Corollary 4 according to the required steady-state perfor-
mance. Since by Theorem 7 larger gains Ki are beneficial
to faster convergence, it is preferable to set the values of
K−1
i equal to the lower bound from Corollary 4. Note that

in Corollary 4, the value of ε is normally specified in the
grid code and is thus assumed to be known. The grid code
also specifies a worst case power imbalance

∑n
i=1 Pi

∗ that
frequency controllers have to counter-act before the system
is re-dispatched. Specifically in our simulations, we assumed
an admissible frequency deviation ε = 0.3Hz = 0.005pu, a
worst-case power imbalance

∑n
i=1 Pi

∗ = 1800MW = 18pu
(approximately the simultaneous loss of the two largest gen-
erators), and

∑n
i=1Di = 2100pu based on practical generator

droop settings and load damping values. As a result of Corol-
lary 4, we obtained

∑n
i=1K

−1
i = 1500pu, which together with

Corollary 5 leads to our choice of Ki = 0.005 for generators
G3, G5, G6, G9, G10 and 0.01 for the others. Third, with
the inverse gains K−1

i fixed, the time constants Ti can be
determined to strike a desired trade-off between frequency
convergence rate and noise rejection. We outline two possible
approaches below based on Theorem 8 or simulation data.

One possible approach to determine Ti is foreshadowed by
the proof of Theorem 8. The maximum noise magnitude η̄ (for
which input-to-state stability can be established in Theorem 8)
is linear in β1/β2, which are both defined as functions of T in
the proof of Lemma 14. From their definitions, one learns that
η̄ is a convex function of each of the values of T . By requiring



that the value of η̄ exceeds the sensor noise estimate, one can
then finds bounds on the values of Ti. Within these bounds one
should select the lowest values of Ti, as this is both beneficial
for a faster convergence rate α̂ and a smaller deviation due to
the disturbance γη̄2, as seen in the proof of Theorem 8.

If the system under investigation makes the above con-
siderations for T infeasible, an alternative tuning approach
for T relies on simulation data. For example, consider the
simplified case presented in Figure 6, where there is a single
time constant τ = Ti for all the generators i to be tuned.
By means of regression methods, one can approximate the
relationships between the frequency convergence time Tconv,
the frequency RMSE fRMSE, and the gain τ via the functions

Tconv(τ) = aτ + b

fRMSE(τ) = ce−ατ + d

where a > 0, b ∈ R, c > 0, d ∈ R, α > 0 are constants. The
time constant τ can then be chosen according to the criterion

min
τ≥0

γ Tconv(τ) + fRMSE(τ)

where γ > 0 is a trade-off parameter selected according to the
relative importance of convergence time and noise robustness.
The unique optimal solution to this trade-off criterion is

τ∗ = max

{
1

α
log

(
αc

γa

)
, 0

}
.

VI. SUMMARY AND DISCUSSION

In the following, we summarize our findings and the various
trade-offs that need to be taken into account for the tuning of
the proposed leaky integral controller (13).

From the discussion following the Laplace-domain repre-
sentation (14), the gains Ki and Ti of the leaky integral con-
troller (13) can be understood as interpolation parameters for
which the leaky integral controller reduces to a pure integrator
(Ki ↘ 0) with gain Ti, a proportional (droop) controller
(Ti ↘ 0) with gain K−1

i , or no control action (Ki, Ti ↗∞).
Within these extreme parameterizations, we found the fol-
lowing trade-offs: The steady-state analysis in Section IV-A
showed that proportional power sharing and banded frequency
regulation is achieved for any choice of gains Ki > 0:
their sum gives a desired steady-state frequency performance
(see Corollary 4), and their ratios give rise to the desired
proportional power sharing (see Corollary (5)). However, a
vanishingly small gain Ki is required for asymptotically exact
frequency regulation (see Corollary 6), i.e., the case of integral
control. Otherwise, the net load is always underestimated. With
regards to stability, we inferred global stability for vanishing
Ki ↘ 0 (see Theorem 2) but also an absence of robustness
to measurement errors as in (12). On the other hand, for
positive gains Ki > 0 we obtained nominal local exponential
stability (see Theorem 7) with exponential rate as a function
of Ki/Ti and robustness (in the form of exponential ISS with
restrictions) to bounded measurement errors (see Theorem 8)
with increasing (respectively, non-decreasing) robustness mar-
gins to measurement noise as Ki (or Ti) become larger.
From a H2-performance perspective, we could qualitatively

(under homogeneous parameter assumptions) confirm these
results for the linearized system. In particular, we showed
that measurement disturbances are increasingly suppressed for
larger gains Ki and Ti (see Corollary 10), but for sufficiently
large power disturbances a particular choice of gains Ki

together with sufficiently small time constants Ti optimizes
the transient performance (see Corollary 11), i.e., the case of
droop control.

Our findings, especially the last one, pose the question
whether the leaky integral controller (13) actually improves
upon proportional (droop) control (the case Ti = 0) with suf-
ficiently large droop gain K−1

i . The answers to this question
can be found in practical advantages: (i) leaky integral control
obviously low-pass filters measurement noise; (ii) has a finite
bandwidth thus resulting in a less aggressive control action
more suitable for slowly-ramping generators; and (iii) is not
susceptible to wind-up (indeed, a proportional-integral control
action with anti-windup reduces to a lag element [19]). (iv)
Other benefits that we did not touch upon in our analysis are
related to classical loop shaping; e.g., the frequency for the
phase shift can be specified for leaky integral control (13) to
give a desired phase margin (and thus also practically relevant
delay margin) where needed for robustness or overshoot.

In summary, our lag-element-inspired leaky integral control
is fully decentralized, stabilizing, and can be tuned to achieve
robust noise rejection, satisfactory steady-state regulation, and
a desirable transient performance with exponential conver-
gence. We showed that these objectives are not always aligned,
and trade-offs have to be found. Our tuning recommendations
are summarized in Section V-D. From a practical perspective,
we recommend to tune the leaky integral controller towards
robust steady-state regulation and to address transient perfor-
mance with related lead-element-inspired controllers [38].

We believe that the aforementioned extension of the leaky
integrator with lead compensators is a fruitful direction for
future research. Another relevant direction is a rigorous anal-
ysis of decentralized integrators with dead-zones that are often
used by practitioners (in power systems and beyond) as alter-
natives to finite-DC-gain implementations, such as the leaky
integrator. Finally, all the presented results can and should be
extended to more detailed higher-order power system models.
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APPENDIX

A. Technical lemmas

We recall several technical lemmas used in the main text.

Lemma 12 (Matrix cross-terms). [12, Lemma 15] Given
any four matrices A, B, C and D of appropriate dimensions,

M :=

[
A BTC
CTB D

]
≥
[
A−BTB 0

0 D − CTC

]
=: M ′.

Lemma 13 (Bounding the potential function). [12,
Lemma 5] Consider the Bregman distance Vδ := U(δ) −



U(δ̄) − ∇U(δ̄)T(δ − δ∗). The following properties hold for
all δ, δ̄ that satisfy BTδ,BTδ̄ ∈ Θ:

1) There exist positive scalars α1 and α2 such that

α1‖δ − δ∗‖ ≤ ‖∇U(δ)−∇U(δ∗)‖ ≤ α2‖δ − δ∗‖.

2) There exist positive scalars α3 and α4 such that

α3‖δ − δ∗‖2 ≤ Vδ ≤ α4‖δ − δ∗‖2.

Lemma 14 (Positivity of V ). Suppose that Assumption 2
holds and BTδ ∈ Θ. The Lyapunov function V in (27) satisfies

β1‖x‖2 ≤ V (x) ≤ β2‖x‖2

for some positive constants β1 and β2, with x given in (25),
provided that ε is sufficiently small.

Proof. This proof follows the same line of arguments as the
proof of [12, Lemma 8], but accounts for our slightly different
Lyapunov function. We will bound V (x) in (27) term-by-term.
The quadratic terms in ω−ω∗ and p−p∗ are easily bounded in
terms of the eigenvalues of the matrices M and T , respectively.
The term in δ and δ∗ is addressed in the second statement of
Lemma 13. These three terms lead to the early bound

min(λmin(M), λmin(T ), α3)‖x‖2 ≤ V (x)|ε=0

≤ max(λmax(M), λmax(T ), α4)‖x‖2.

The cross-term ε(∇U(δ)−∇U(δ∗))TMω can be written as(
∇U(δ)−∇U(δ∗)

ω

)T [
0 ε

2M
ε
2M 0

](
∇U(δ)−∇U(δ∗)

ω

)
.

This allows us to apply Lemma 12, which yields

− ‖∇U(δ)−∇U(δ∗)‖2 − λmax(M)2‖ω‖2

≤ (∇U(δ)−∇U(δ∗))TMω

≤ ‖∇U(δ)−∇U(δ∗)‖2 + λmax(M)2‖ω‖2.

By applying the first statement of Lemma 13, we can bound
the entire Lyapunov function using

β1 = min(λmin(M)− ελmax(M)2, λmin(T ), α3 − εα2
2)

β2 = max(λmax(M) + ελmax(M)2, λmax(T ), α4 + εα2
2).

Finally, we select ε sufficiently small so that β1 > 0.

B. Proof of Corollaries

We provide here the proof of corollaries 10 and 11.
1) Proof of Corollary 10 :

Proof. For a given value of τ , consider the function

f(k) = nα6 +
∑n

i=1

−α1k + α2

α3k2 + α4k + α5(λi)
(51)

where α1 = σ2
ζ/d, α2 = σ2

η , α3 = 2dm, α4 =
2d (m/d+ dτ), α5(λi) = 2d(τ + λiτ

2), and α6 = σ2
ζ/2md

are all positive parameters. The function f(k) interpolates
between ‖Gleaky‖2H2

= f(k) and ‖Gintegrator‖2H2
= f(0).

We prove that if either power disturbances σζ or measure-
ment noise ση equal zero, then ‖Gleaky‖2H2

< ‖Gintegrator‖2H2

holds for all k > 0. In presence of only measurement noise,
i.e., when σζ = 0 the function f(k) reduces to

fη(k) =
∑n

i=1

α2

α3k2 + α4k + α5(λi)
(52)

whose derivative with respect to k is

f ′η(k) =−
∑n

i=1

α2(2α3k + α4)

(α3k2 + α4k + α5(λi))2
. (53)

Clearly, for all k > 0, f ′η(k) < 0. An analogous reasoning
holds when analyzing ‖Gleaky‖2H2

as a function of τ , which
shows the second claimed statement. Further, f ′η(k) < 0 also
implies that ‖Gleaky‖2H2

= fη(k) < fη(0) = ‖Gintegrator‖2H2

If only power disturbances are applied, i.e., when ση = 0
in (39) and (40), then f(k) reduces to

fζ(k) = nα6 −
∑n

i=1

α1k

α3k2 + α4k + α5(λi)
(54)

Clearly, for all k > 0, ‖Gleaky‖2H2
= fζ(k) < fζ(0) =

‖Gintegrator‖2H2
. Therefore, since ‖Gleaky‖2H2

= f(k) = fζ(k)+
fη(k), it follows for all k > 0 that ‖Gleaky‖2H2

= fη(k) +
fζ(k) < fη(0) + fζ(0) = ‖Gintegrator‖2H2

.

2) Proof of Corollary 11 :

Proof. First notice that for σ2
η − σ2

ζk/d > 0 the first term of
(39) is always positive and thus ‖Gleaky‖H2

> ‖Gopen loop‖H2

for all τ . As a result, one can only improve the performance
beyond open loop when σ2

η − σ2
ζk/d < 0, which is equivalent

to (48). The derivative of (39) with respect to τ equals

∂

∂τ
‖Gleaky‖2H2

=

n∑
i=1

−(σ2
η −

k

d
σ2
ζ )2d(2τλi + 1)(

2d
[
mk2+

(m
d

+dτ
)
k+τ+λiτ2

])2 .

Therefore ∂
∂τ ‖Gleaky‖2H2

> 0 whenever (48) holds. It follows
that the minimal norm in the limit when τ = 0.

We now compute the derivative of fζ(k) as

f ′ζ(k) =

n∑
i=1

α1(α3k
2 − α5(λi))

(α3k2 + α4k + α5(λi))2
. (55)

Notice that τ = 0 implies α5(λi) = τ(1 + λiτ) = 0 so that

f ′ζ(k)
∣∣
τ=0

=

n∑
i=1

α1(α3k
2)

(α3k2 + α4k)2
,

Thus, when considering fη and fζ for τ = 0, we get

f ′(k)
∣∣
τ=0

= f ′η(k)
∣∣
τ=0

+ f ′ζ(k)
∣∣
τ=0

= n
α1α3k

2 − 2α2α3k − α2α4

(α3k2 + α4k)2
.

By setting f ′(k)
∣∣
τ=0

= 0, the optimal k value is obtained as
the unique positive root of the second-order polynomial

p(k)=α1α3k
2−2α2α3k−α2α4 =2m

(
σ2
ζk

2 − 2dσ2
ηk − σ2

η

)
,

which is given explicitly by (49).
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