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Abstract— We develop an optimization-based framework for
joint real-time trajectory planning and feedback control of
feedback-linearizable systems. To achieve this goal, we define
a target trajectory as the optimal solution of a time-varying
optimization problem. In general, however, such trajectory may
not be feasible due to , e.g., nonholonomic constraints. To solve
this problem, we design a control law that generates feasible
trajectories that asymptotically converge to the target trajec-
tory. More precisely, for systems that are (dynamic) full-state
linearizable, the proposed control law implicitly transforms the
nonlinear system into an optimization algorithm of sufficiently
high order. We prove global exponential convergence to the
target trajectory for both the optimization algorithm and the
original system. We illustrate the effectiveness of our proposed
method on multi-target or multi-agent tracking problems with
constraints.

Index Terms— Time-varying optimization, motion planning,
feedback linearization

I. INTRODUCTION

The ability to design and execute safe trajectories for
nonlinear systems constitutes one of the major pillars to-
wards the development of autonomous systems [1]–[9]. Thus,
not surprisingly, motion planning and control has been an
increasingly popular subject of research in both industry
and academia [2]–[11]. In general, this problem is usually
solved in a two stage-approach. The first stage, known as
motion planning, designs trajectories — usually by solving
an optimization problem — that are feasible in that they
account for obstacles and system constraints [5]–[9]. In the
second stage, feedback controllers are designed to track the
designed trajectories and account for system uncertainties
and disturbances [2], [3], [9], [10].

While in general this approach has been quite successful,
it requires the planning problem to be solved quickly enough
to account for time varying environments. Thus, it imposes
limits on the complexity of the optimization problem that im-
plements motion planning. In particular, when implemented
in real-time, motion planning usually amounts to linear [6]
or quadratic optimization problems [11], and rarely involves
more than one agent at a time. In this work, we seek to
alleviate these limitations by combining the planning and
tracking stages.
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More precisely, we seek to develop a time-varying
optimization-based framework for joint real-time trajectory
planning and feedback control of a nonlinear dynamical
system. To achieve this goal, we first define a target trajec-
tory as the optimal solution of a time-varying optimization
problem. Although in principle the target trajectory may not
be feasible, we overcome this problem by designing a control
law that exponentially drives the system towards the target
trajectory. For nonlinear systems that are dynamic full-state
linearizable, we accomplish this by designing a control law
that transforms the nonlinear system into an optimization
algorithm.

Our work broadly aligns with the extensive research re-
cently performed at the intersection of optimization and tradi-
tional control theory [12]–[14], and with recent works trying
to eliminate the time-scale separation usually present be-
tween optimization and control [15]–[17]. In many practical
settings of robot control, especially when designing control
laws for multi-robot system tracking of moving targets [18],
[19], the optimization problems are not stationary (i.e., time-
invariant), as the objective function and/or the constraints
depend explicitly on time. Such time-varying optimization
problems with or without constraints have been studied
in both continuous [20] and discrete time settings [21]
using prediction-correction algorithms. Our work here can be
understood as an extension of these ideas to accommodate
non-trivial system dynamics.

The rest of the paper is organized as follows. Section II
introduces some preliminary definitions, including feedback
linearization, which means a system can be transformed
into a linear system by a state diffeomorphism, its dynamic
feedback extension, and elementary analysis of Hurwitz
linear systems. Then, in Section III, we formally state the
problem and present two motivating example with different
system dynamics (integrator and wheeled mobile robot). The
main contribution of this paper is contained in Section IV,
where we use a prediction-correction algorithm for the time-
varying optimization and feedback linearization to satisfy
the design requirement. We design a control law which (i)
implicitly defines a target trajectory as the optimal solution of
a time-varying optimization problem, and (ii) asymptotically
drives the system to the target trajectory. Finally, we illustrate
the effectiveness of our approach in two examples, one where
a wheeled mobile robot switches from tracking one moving
target to another (Section V-A), and another where multiple
agents must track multiple targets with internal distance
constraints (Section V-B).



Notation: Given an n-tuple (x1, ..., xn), x ∈ Rn is the
associated column vector. The n × n identity matrix is
denoted as In. For a square symmetric matrix A, is positive
(semi-)definite, and write A � 0 (A � 0), if and only if all
the eigenvalues of A are positive (nonnegative). We further
write A � B (A � B) whenever A− B � 0 (A− B � 0).
The Euclidean norm of a vector x is denoted by ‖x‖2, and
the Euclidean norm of a matrix A by ‖A‖2.

Given a differentiable function f(x, t) of state x ∈ Rn
and time t ∈ R, the gradient with respect to x (resp. t) is
denoted by ∇xf(x, t) (resp. ∇tf(x, t)). The total derivative
of ∇xf(x(t), t) with respect to t is denoted by ∇̇xf(x, t) :=
d
dt∇xf(x, t), and the n-th total derivative with respect to t by
∇(n)
x f(x, t). The partial derivatives of∇xf(x, t) with respect

to x and t are denoted by ∇xxf(x, t) := ∂
∂x∇xf(x, t) ∈

Rn×n and ∇xtf(x, t) := ∂
∂t∇xf(x, t) ∈ Rn , respectively.

The derivative Lfh of a function h : Rn → R along the
vector field f : Rn → Rn and is given by (Lfh)(x) =
∇h(x)T f(x).

II. PRELIMINARIES

A. Feedback Linearization

1) Static Feedback Linearization: We consider a square
control-affine nonlinear system with m inputs u ∈ Rm and
m outputs y ∈ Rm, described in state-space form:

ẋ = f(x) + g(x)u , (1a)
y = h(x) , (1b)

where x ∈ Rn is the state and where f : D → Rn, g :
D → Rn×m, and h : D → Rm are sufficiently smooth on a
domain D ⊂ Rn, with g and h expanded as

g(x) =
[
g1(x), . . . , gm(x)

]
∈ Rn×m ,

h(x) = (h1(x), . . . , hm(x)) ∈ Rm.

Problem 1 (State-Space Exact Linearization). Given a point
x0 ∈ Rn. For the control-affine nonlinear system (1), find
a feedback controller u = α(x) + β(x)v defined on a
neighborhood U of x0, a coordinate transformation z =
Φ(x) also defined on U , and a controllable pair (A,B)
(A ∈ Rn×n, B ∈ Rn×m) such that:

ż=Az+Bv=
∂Φ(x)

∂x

(
f(x)+g(x)(α(x)+β(x)v)

)
. (2)

The key condition on (1) for solvability of the State-Space
Exact Linearization Problem is that the system possess vector
relative degree.

Definition 1 (Vector Relative Degree). The control-
affine system (1) is said to have vector relative degree
{r1, r2, . . . , rm} at a point x0 ∈ Rn if:

(i) LgjL
k
fhi(x) = 0 for all 1 ≤ i ≤ m, for all k < ri−1,

for all 1 ≤ j ≤ m, and for all x in a neighborhood of
x0, and

(ii) the m×m matrix,

R(x)=


Lg1L

r1−1
f h1(x) . . . LgmL

r1−1
f h1(x)

Lg1L
r2−1
f h2(x) . . . LgmL

r2−1
f h2(x)

... . . .
...

Lg1L
rm−1
f hm(x) . . . LgmL

rm−1
f hm(x)

 ,
(3)

is nonsingular at x = x0.

Lemma 1 (Solution of Exact Linearization Problem [22,
Lemma 5.2.1]). Suppose the matrix g(x0) has rank m. Then
the State-Space Exact Linearization Problem is solvable if
and only if there exists a neighborhood of x0 such that the
system (1) has vector relative degree {r1, r2, . . . , rm} at x0
and r1 + r2 + · · ·+ rm = n.

In particular, one may choose
(i) the feedback as

u = −R(x)−1P (x) +R(x)−1v,

where P (x) = col(Lr1f h1(x), . . . , Lrmf hm(x)) ∈ Rm and
R(x) is defined in (3),

(ii) the coordinate transformation as

Φ(x) = col(h1(x), . . . , Lr1−1f (x), . . . , Lrm−1f (x)),

(iii) (A,B) having the Brunovsky Canonical Form

A = diag (A1, . . . , Am) , B = diag (b1, . . . , bm) ,

where Ai ∈ Rri×ri and bi ∈ Rri are

Ai =


0 1 0 . . . 0
0 0 1 . . . 0
. . . . . . .
0 0 0 . . . 1
0 0 0 . . . 0

 , bi =


0
0
...
0
1

 .
2) Dynamic Feedback Linearizaiton: For systems which

do not have vector relative degree, one can sometimes
achieve a vector relative degree by introducing auxiliary state
variables ζ, e.g., for a system that is differentially flat [23],
by using dynamic feedback of the form

u = α(x, ζ) + β(x, ζ)w, (4a)

ζ̇ = γ(x, ζ) + δ(x, ζ)w. (4b)

Consider then the composite system formed by (1) and (4)[
ẋ

ζ̇

]
= f̃(x, ζ) + G̃(x, ζ)w, (5a)

y = h(x), (5b)

where

f̃(x, ζ) =

[
f(x) + g(x)α(x, ζ)

γ(x, ζ)

]
, G̃(x, ζ) =

[
g(x)β(x, ζ)
δ(x, ζ)

]
.

If the nonlinear system (5) now has vector relative degree,
then the results of Lemma 1 can be applied, and the dynamic
feedback has the following form:

w = −R−1(x, ζ)P (x, ζ) +R−1(x, ζ)v, (6)



where P (x, ζ) = col(Lr1
f̃
h1(x), . . . , Lrm

f̃
hm(x)) ∈ Rm and

R(x, ζ) is defined in (3). Further details on this approach,
known as dynamic extension, can be found in [22] and [24].

B. Convergence Rate of Hurwitz Matrix

A square matrix H is called Hurwitz if

µ(H) := max
λ∈spec(H)

<[λ] < 0 ,

where spec(H) := {λi} denotes the set of eigenvalues of
H . If H is Hurwitz, then limt→+∞ eHt = 0.

Theorem 2 (Exponential Convergence of Hurwitz Matri-
ces [25, Theorem 8.1]). If H is Hurwitz, then there exist
constants c, λ > 0 such that

‖eHt‖2 ≤ ce−λt, for all t ≥ 0,

where −λ := maxλ∈spec(H) <[λ] + ε, for some ε > 0 that
are small enough.

When H is diagonalizable, i.e., when all Jordan blocks
of H have size equal to 1, one can choose −λ =
maxλ∈spec(H) <[λ].

III. PROBLEM STATEMENT

As mentioned before, our goal is to develop an
optimization-based framework for joint real-time trajectory
planning and feedback control of nonlinear systems. To
achieve this goal we develop a two-stage design approach
where we (i) implicitly define the desired trajectory as the
optimal solution of a time-varying optimization problem, and
(ii) design a control law that seeks to converge asymptotically
to the optimal solution of the optimization problem.

Formally, we consider a nonlinear system with state x ∈
Rn, input u ∈ Rm and output y ∈ Rm as described in (1). Let
t ≥ 0 be a continuous time index, and f0 : Rm×R+ → R be
a time-varying function of the output y; i.e., f0(y, t). Using
f0(y, t) we implicitly define our target trajectory:

y∗(t) = arg min
y∈Rm

f0(y, t). (7)

The goal is to generate a control input u(t) such that ‖y(t)−
y∗(t)‖2 → 0 as t→∞ for all initial conditions; i.e., global
asymptotic convergence. The following assumption will be
used throughout this paper.

Assumption 1 (Objective Function). The objective function
f0(y, t) is infinitely differentiable (C∞) with respect to
both y and t, and is uniformly strongly convex in y; i.e.,
∇yyf0(y(t), t) � mfIm for some mf > 0.

The remainder of this section provides two examples that
help motivate both our goals and our solution approach.

A. Example #1: Integrator

We aim to design a control law for an integrator

ẋ = u,

y = x,
(8)

such that y converges asymptotically to the optimal solution
of time-varying optimization problem

y∗(t) = arg min
y
f0(y, t). (9)

Since the initial condition y(0) may be different from y∗(0),
y∗(t) is not a feasible trajectory. Thus, we need to find a
control law to converge to it asymptotically.

The main idea is to find a control law that transforms (8)
into the following optimization dynamics

∇̇yf0(y, t) = −P∇yf0(y, t), P � 0, (10)

where the gradient ∇yf0(y, t) is driven to zero exponentially
fast. Thus, since by convexity (see Assumption 1), the opti-
mal trajectory y∗(t) is characterized by ∇yf0(y∗(t), t) = 0,
the controlled y asymptotically reaches y∗(t).

To achieve this transformation, we first characterize the
required evolution of y for (10) to hold, and then find the
control properly controls y.

Using the chain rule to differentiate the gradient term with
respect to time yields

∇̇yf0(y, t) = ∇yyf0(y, t)ẏ +∇ytf0(y, t). (11)

Then, by combining (10) and (11), we find that ẏ is implicitly
defined by

ẏimp = −∇−1yy f0(y, t)[P∇yf0(y, t) +∇ytf0(y, t)]. (12)

Finally, since by (8), u = ẏ, equation (12) leads to the
control:

u = −∇−1yy f0(y, t)[P∇yf0(y, t) +∇ytf0(y, t)]. (13)

The control law (13) implicitly transforms (8) into (10).
Further, it has a nice optimization-based interpretation con-
sisting of two terms [20], [21]:
1) a prediction term −∇−1yy f0(y, t)∇ytf0(y, t), which tracks

the change of the optimal solution; i.e., target trajectory,
2) and a correction term −∇−1yy f0(y, t)P∇yf0(y, t), which

acts as a proportional controller that cancels the optimal-
ity error and drives the system toward the optimum.

Unfortunately, the solution approach shown in this example
critically relies on the integrator structure in (8) that allows
to arbitrarily control ẏ by choosing u. However, for a general
nonlinear system, satisfying (10) may not be possible. This
is shown in the next example.

B. Example #2: Wheeled Mobile Robot

We now show how to extend the approach described above
for a more involved example where we aim to drive a
nonholonomic wheeled mobile robot (WMR) [24], [26]:

ẋ1 = cos(x3)u1 (14a)
ẋ2 = sin(x3)u1 (14b)
ẋ3 = u2 (14c)
y = (x1, x2), (14d)



such that y converges asymptotically to the optimal solution
of time-varying optimization problem

y∗(t) = arg min
y
f0(y, t). (15)

If we once again want (14) to match the dynamics (10), we
need (12) to hold. However, it follows from (14) that

ẏ =

[
cos(x3)u1
sin(x3)u1

]
. (16)

It is easy to see that one cannot control every direction of
ẏ and therefore we cannot derive a control law that ensures
(12).

This motivates the search for an alternative to (10) that
has the equivalent effect of driving y towards y∗(t). Instead,
we seek to transform (14) into[
∇̇yf0(y, t)

∇̈yf0(y, t)

]
=

[
0 Im

−kpIm −kdIm

] [
∇yf0(y, t)

∇̇yf0(y, t)

]
, (17)

where kp, kd > 0, and col(∇yf0(y, t), ∇̇yf0(y, t)) can
be interpreted as the optimality error of y, and its time
derivative. Since the matrix in (17) is Hurwitz, Theorem 2
guarantees its exponential convergence.

To find the control law that transforms (14) into (17),
we can follow (11) and differentiate the gradient term with
respect to time twice:

∇̈yf0(y, t) =∇yyf0(y, t)ÿ + ∇̇yyf0(y, t)ẏ(t)

+ ∇̇ytf0(y, t). (18)

Now combining once again (17) and the second row of
(18) leads to the following implicit condition for acceleration
the ÿ:

ÿimp = −∇−1yy f0(y, t)
[
∇̇yyf0(y, t)ẏ + ∇̇ytf0(y, t)

+kp∇yf0(y, t) + kd∇̇yf0(y, t)
]

(19)

Finally, by differentiating (16) with respect to time we notice
that the matrix on the right-hand side of

ÿ =

[
cos(x3) − sin(x3)u1
sin(x3) cos(x3)u1

] [
u̇1
u2

]
. (20)

is invertible for every nonzero u1 and thus, can can use
(u̇1, u2) to control ÿ to follow (19), leading to the control
law: [

u̇1
u2

]
=

[
cos(x3) − sin(x3)u1
sin(x3) cos(x3)u1

]−1
ÿimp. (21)

As long as u1 6= 0, the control law is well-defined by
introducing u1 as an auxiliary state.

We finalize this section showing a particular case of (19)
that is familiar for most control audience. If the task is simply
tracking a moving target, we can define the following time-
varying problem:

y∗(t) = arg min
y

1
2‖y − yd(t)‖22, (22)

where yd(t) represents the target trajectory. And according
to (19), the implicitly defined trajectory takes the form:

ÿimp = ÿd(t)− kp(y − yd(t))− kd(ẏ − ẏd(t)). (23)

Thus, in this case equation (23) can be interpreted as a
common Proportional-Derivative (PD) controller.

IV. IMPLICIT TRAJECTORY PLANNING FOR FEEDBACK
LINEARIZABLE SYSTEMS

The above motivating example shows how to extend the
algorithm from a first-order system (an integrator) to a
second-order system (a unicycle). We will require some
technical assumptions to carry this procedure over to a more
general setting.

A. Uniform Vector Relative Degree

We assume now that the system under consideration has
a uniform vector relative degree, which will in general need
to be achieved via dynamic extension.

Assumption 2 (Uniform Vector Relative Degree). The mul-
tivariable nonlinear system (5) has vector relative degree
r1 = · · · = rm = k via dynamic extension (4) and
m× k = n.

The following is immediate from Lemma 1.

Theorem 3 (Brunovsky Canonical Form For Uniform Rel-
ative Degree System). Suppose that both, assumptions 1
and 2 hold, and there exists a dynamic compensate state
ζ satisfying (4). Then the feedback function (6) and a state
diffeomorphism z = Φ(x, ζ) will transform the composite
system (5) into ż = Az + Bv, with (A,B) in Brunovsky
Canonical Form.

Based on Theorem 3, it is straightforward that for a
multivariable nonlinear system that has vector relative degree
r1 = · · · = rm = k (possibly via dynamic extension) and
m × k = n, we can implicitly design the trajectory for
y by considering col(∇yf0(y, t), . . . ,∇(k−1)

y f0(y, t)) as the
new optimality error state, where the goal is to construct the
following dynamical system: ∇̇yf0(y, t)

...
∇(k)
y f0(y, t)

 = H

 ∇yf0(y, t)
...

∇(k−1)
y f0(y, t)

 , (24)

where

H =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
. . .

...
a0 a1 a2 . . . ak−1

⊗ Im (25)

is Hurwitz.

Lemma 4 (Gradient Time Differentiation). Differentiating
the gradient ∇yf0(y, t) with respect to time k−times yields:

∇(k)
y f0(y, t) =

k−1∑
m=0

(
k − 1

m

)
∇(m)
yy f0(y, t)y(k−m)

+∇(k−1)
yt f0(y, t).

(26)

Proof: See Appendix subsection VIII-A.



Combining (24) and (26), we can implicitly design the
trajectory for y by:

y
(k)
imp = ∇−1yy f0(y, t)[

k−1∑
i=0

ai∇(i)
y f0(y, t)

−
k−1∑
m=1

(
k − 1

m

)
∇(m)
yy f0(y, t)y(k−m) −∇(k−1)

yt f0(y, t)].

(27)

Now, we formally provide our solution for systems with
uniform relative degree.

Theorem 5 (Control Law for Uniform Vector Relative
Degree Systems). Consider the multivariable system defined
as (1) and the time-varying optimization problem defined as
(7). If both assumptions 1 and 2 are satisfied, then the system
will globally exponentially converge to the optimal solution
of (7), by using the control law:

u = α(x, ζ) + β(x, ζ)R(x, ζ)−1[y
(k)
imp − P (x, ζ)], (28)

where y
(k)
imp is given in (27) and the dynamic feedback

function defined in (6). More specifically, the following
inequalities hold:

‖y(t)− y∗(t)‖2 ≤ Ce−αt, (29)

0 ≤ f0(y(t), t)− f0(y∗(t), t) ≤ mfC
2e−2αt, (30)

0 ≤ C =

(
c2

m2
f

∑k−1

j=0
‖∇(j)

y f0(y(0), 0)‖22)

) 1
2

<∞,

for some constant c > 0, −α = max{<(λi)+ ε, i ∈ [1...n]},
for some ε > 0 small enough.

Proof: See Appendix subsection VIII-B.

Theorem 5 makes a strong assumption on the structure of
the nonlinear system, which is that the system must have
equal vector degree {r1 = · · · = rm}. In the next section
we relax this assumption.

B. Non-Uniform Vector Relative Degree

We now consider the less restrictive assumption.

Assumption 3 (Non-Uniform Vector Relative Degree). We
assume the multivariable nonlinear system (5) has vector
relative degree {r1, . . . , rm} via dynamic extension (4) and
r1 + r2 + · · ·+ rm = n.

As a result of Assumption 3, now the order with respect
to differentiation of each channel of the output is different
and we can not directly design the trajectory as what we did
in (27). However, we can always introduce k − ri auxiliary
states for each channel yi (i.e., further construct the dynamic
extension of (2) to a system with uniform vector relative
degree) , where k = max{r1, r2, . . . , rm} and define the
new input si accordingly. For example, for channel yi, we
introduce the following states ξi1 = vi, ξ

i
2 = ξ̇i1, . . . , ξ̇

i
k−ri =

si.

Theorem 6 (Brunovsky Canonical Form For Unequal Rel-
ative Degree System). Suppose that both Assumption 1 and
Assumption 3 hold, and the dynamic compensate state ζ
satisfying (4). We can introduce k − ri auxiliary states
ξij , j ∈ {1, . . . , k − ri} , where k = max{r1, r2, . . . , rm},
for each output channel yi. More specifically, the auxiliary
states ξ should satisfy the following dynamic:

v = α̃(ξ) + β̃(ξ)s, (31a)

ξ̇ = γ̃(ξ) + δ̃(ξ)s. (31b)

Then the feedback function (6), the auxiliary states dy-
namic of ξ (31), and a state diffeomorphism z = Φ(x, ζ, ξ)
will transform the composite system (5) into

ż = Az +Bs,

with A,B in Brunovsky Canonical Form.
Proof: It immediately follows from Theorem 3 by intro-

ducing auxiliary state ξ and new input s ∈ Rm.

Theorem 7 (Control Law for General Vector Relative Degree
System). Consider the multivariable system defined as (1)
and the time-varying optimization problem defined as (7).
Suppose that both Assumption 1 and Assumption 3 are
satisfied, then the system will globally exponentially converge
to the optimal solution of (7), by using the control law:

u=α(x, ζ)+β(x, ζ)R−1(x, ζ)[α̃(ξ)+β̃(ξ)y
(k)
imp−P (x, ζ)],

(32)

where y
(k)
imp be the solution of (27), the dynamic feedback

function defined in (6) and the auxiliary states ξ satisfy (31).
More specifically, the following inequalities hold:

‖y(t)− y∗(t)‖2 ≤ Ce−αt, (33)

0 ≤ f0(y(t), t)− f0(y∗(t), t) ≤ mfC
2e−2αt, (34)

0 ≤ C =

(
c2

m2
f

∑k−1

j=0
‖∇(j)

y f0(y(0), 0)‖22)

) 1
2

<∞,

for some constant c > 0, −α = max<(λi) + ε, i ∈ [1...n],
for some ε > 0 small enough.

Proof: See Appendix subsection VIII-C.

V. NUMERICAL EXAMPLES

In this section, we illustrate how to leverage the time-
varying optimization algorithm to solve the following robot
tracking problems.

A. Robot Switching Target

Consider a wheeled mobile robot (14) charged with the
task of tracking two moving targets sequentially. In the
first time interval [t0, ts], the agent is required to track the
first target and in the second time interval [ts, tf ] gradually
switched to track the second target. The equivalent time-
varying optimization problem takes the following form:

min
y
S(t)‖y − yd1(t)‖22 + (1− S(t))‖y − yd2(t)‖22, (35)



where y(t) is the robot position satisfying (14), yd1(t), yd2(t)
represents the position of moving targets at time t respec-
tively.

The smooth switch function S(t) takes the form:

S(t) =


1, t ≤ ts,

e
−1

tf−t

e
−1

tf−t +e
−1

t−ts

, ts < t < tf ,

0, t ≥ tf .

(36)

The target trajectories are designed via time parametric
representation, where we use differential flatness in this tra-
jectory generation problem [27]. Specifically, we parametrize
the components of the flat output φ1 = y = [x1, x2], φ2 = ẏ,
by

φi(t) =

n−1∑
j=0

Aijλj(t), (37)

where the λj(t) = tj are the standard polynomial basis
functions and the degree of the polynomial is set to be n = 4.
Thus, the trajectory generation problem reduces from finding
a function to finding a set of parameters.

Fig. 1: Trajectory of the optimal solution y∗(t) (in red), the
robot (in blue) and the targets (in black). The robot converge
to the optimal solution, which is to track the first target from
[0s, 5s] and gradually switch to track the second target in
[5s, 15s].

The resulting trajectories we proposed are illustrated in
Figure 1, where the optimal solution y∗(t) is in red, and the
robot trajectory is in blue. It can be observed that the robot
successfully tracks the first target from up to time ts = 5s,
gradually switching to the second target until tf = 15s, and
track the second target until simulation stops. Particularly, the
random picked starting position and ending position for two
targets are [−5,−5] and [5,−3] and the agent is positioned
randomly near the starting position, which is [−5, 4]. We
set t0 = 0s and the total simulation time is 20s. For this
implementation, the differential equation (14) is solved based
on an explicit Runge-Kutta (4, 5) formula, the Dormand-
Prince pair.

B. Multi-robot Navigation

In this numerical example, two agents are required to track
two moving targets respectively, but the maximum distance
between two agents is limited (e.g., due to communication or
formation constraints). We assume y1(t), y2(t) representing
the current position of the robot, whose dynamic are unicy-
cles satisfying (14). We consider the following time-varying
optimization problem for this task:

min
y1,y2
‖y1 − yd1(t)‖22 + ‖y2 − yd2(t)‖2

+H(‖y1 − y2‖2), (38)

where yd1(t), yd2(t) represents the current position of the
moving target. H(x) = α tan(xπ2d )2 is a smooth penalty
function, where the parameter d determines the maximum
distance allowed for the two agents and α determines the
flatness of penalty gain.

Fig. 2: Trajectories of two targets yd1(t), yd2(t) (thin) and two
agents y1, y2 (thick) with the arrows indicating their initial
velocity. Agents succeed inracking targets while satisfying
distance limitation between them.

The trajectories for the targets were also in time parametric
representation, following the same computing procedure as in
the previous section. Particularly, the random picked starting
position and ending position for two targets are [−5,−3] and
[−2,−3] respectively. The maximum allowed distance is set
to be d = 2, and the gain is α = 1e − 8. As to the agents,
they are positioned randomly near the starting position while
satisfying the distance limitation between them, which are
[−4.5,−3.5] and [−3.5,−3.5]. For this implementation, the
differential equation (14) is solved using the same procedure
as in Section V-A. The resulting trajectories are illustrated
in Figure 2, where both robots start from arbitrary position
succeed in tracking the moving target and keep the maximum
distance within limits simultaneously.

VI. CONCLUSION

In this paper we develop an optimization-based framework
for joint real-time trajectory planning and feedback control



of feedback-linearizable systems. We implicitly define a
target trajectory as the optimal solution of a time-varying
optimization problem, which is strongly convex and smooth.
For systems that are (dynamic) full-state linearizable, the
proposed control law transforms the nonlinear system into
an optimization algorithm of sufficiently high order. Under
reasonable assumptions, our method globally asymptotically
converges to the time-varying optimal solution of the original
problem. Further work include: (i) adding equality and
inequality time-varying constraints in the framework and
(ii) considering more general nonlinear system that are not
feedback linearizable.
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VIII. APPENDIX

A. Proof of Lemma 4

We prove by mathematical induction. First we consider
when k = 1 and 2.

∇̇yf0(y, t) =
∂∇yf0(y, t)

∂y
ẏ +

∂∇yf0(y, t)

∂t

= ∇yyf0(y, t)ẏ +∇ytf0(y, t)

∇̈yf0(y, t) =
d

dt
(∇yyf0(y, t)ẏ +∇ytf0(y, t))

= ∇yyf0(y, t)ÿ + ∇̇yyf0(y, t)ẏ + ∇̇ytf0(y, t)

We want to show that for every k ≥ k0, k0 ≥ 2, if the
statement holds for k, then it holds for k + 1.

∇(k)
y f0(y, t) =

k−1∑
m=0

(
k − 1

m

)
∇(m)
yy f0(y, t)y(k−m)

+∇(k−1)
yt f0(y, t) (39)

Using the binomial theorem we obtain:

∇(k+1)
y f0(y, t) =

d

dt
(
k−1∑
m=0

(
k − 1

m

)
∇(m)
yy f0(y, t)y(k−m))

+
d

dt
(∇(k−1)

yt f0(y, t))

=

k∑
m=0

(
k

m

)
∇(m)
yy f0(y, t)y(k+1−m)

+∇(k)
yt f0(y, t), (40)

which completes the proof.

B. Proof of Theorem 5

By uniformly strong convexity of f0(y, t) in y, the Hessian
inverse ∇−1yy f0(y, t) is defined for all t ≥ 0. Because the
vector relative degree of the nonlinear system is r1 = · · · =
rm = k, which means y(k) has a linear relationship with new
input v. According to Lemma 4, we have (26). Furthermore,

as a result of Theorem 3, feedback function of the form (28)
results in y(k) = y

(k)
imp, where y(k)imp is the solution of (27).

Now, we are able to construct the desired dynamical
system (24), where H is the designed Hurwitz matrix, and
the solution of this ODE is: ∇yf0(y, t)

...
∇(k−1)
y f0(y, t)

 = eHt

 ∇yf0(y(0), 0)
...

∇(k−1)
y f0(y(0), 0)

 (41)

where y(0) ∈ Rm is the initial point. By taking the Euclidean
norms of both sides and applying Theorem 2 we obtain

k−1∑
j=0

‖∇(j)
y f0(y, t)‖22 ≤ c2e−2αt(

k−1∑
j=0

‖∇(j)
y f0(y(0), 0)‖22)

(42)

for some constant c > 0, −α = max<(λi) + ε, i ∈ [1...n],
for some ε > 0 small enough.

Next, we use the mean-value theorem to expand
∇yf0(y, t) with respect to y as follows, where η(t) is a
convex combination of y(t) and y∗(t). Additionally using
the fact that ∇yf0(y∗(t), t) = 0 for all t ≥ 0, we obtain:

y(t)− y∗(t) = ∇−1yy f0(η(t), t)∇yf0(y(t), t). (43)

It follows from Assumption 1, that ‖∇−1yy f0(y, t)‖2 ≤ m−1f .
Taking norm from both side together with equation (42) we
have:

‖y(t)− y∗(t)‖2 ≤ Ce−αt,

0 ≤ C =

(
c2

m2
f

∑k−1

j=0
‖∇(j)

y f0(y(0), 0)‖22)

) 1
2

<∞. (44)

On the other hand, convexity of f0(y(t), t) implies that for
each t ≥ 0

0 ≤ f0(y(t), t)− f0(y∗(t), t)

≤ ∇yf0(y(t), t)T (y(t)− y∗(t)) (45)

By applying Cauchy-Swhartz inequality on the right hand
side we obtain;

0 ≤ f0(y(t), t)− f0(y∗(t), t) ≤ mfC
2e−2αt (46)

which completes the proof.

C. Proof of Theorem 7

According to Theorem 6, feedback function of the form
(32) results in col(y

(k)
1 , . . . , y

(k)
m ) = y

(k)
imp, where y(k)imp is the

solution of (27). Rest of the proof follows VIII-B.
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[21] A. Simonetto and E. DallÁnese, “Prediction-correction algorithms for
time-varying constrained optimization,” IEEE Transactions on Signal
Processing, vol. 65, no. 20, pp. 5481–5494, 2017.

[22] A. Isidori, Nonlinear control systems. Springer Science & Business
Media, 2013.

[23] R. M. Murray, M. Rathinam, and W. Sluis, “Differential flatness
of mechanical control systems: A catalog of prototype systems,” in
ASME international mechanical engineering congress and exposition.
Citeseer, 1995.

[24] S. Sastry, Nonlinear systems: analysis, stability, and control. Springer
Science & Business Media, 2013, vol. 10.

[25] J. P. Hespanha, Linear systems theory. Princeton university press,
2018.

[26] G. Oriolo, A. De Luca, and M. Vendittelli, “Wmr control via dynamic
feedback linearization: design, implementation, and experimental val-
idation,” IEEE Transactions on control systems technology, vol. 10,
no. 6, pp. 835–852, 2002.

[27] P. Martin, R. M. Murray, and P. Rouchon, “Flat systems, equivalence
and trajectory generation,” 2003.


