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Linear-Convex Optimal Steady-State Control
Liam S. P. Lawrence Student Member, IEEE, John W. Simpson-Porco, Member, IEEE, and Enrique

Mallada Member, IEEE

Abstract—We consider the problem of designing a feedback
controller for a multivariable linear time-invariant system which
regulates an arbitrary system output to the solution of a con-
strained convex optimization problem despite parametric mod-
elling uncertainty and unknown constant exogenous disturbances;
we term this the linear-convex optimal steady-state control prob-
lem. We introduce the notion of an optimality model, and show
that the existence of an optimality model is sufficient to reduce the
problem to a stabilization problem; several instances of optimality
models are given under various assumptions. This yields a
constructive design framework for optimal steady-state control
that unifies and extends many existing design methods in the
literature. We illustrate our contributions via several numerical
examples, including an application to optimal frequency control
of power networks, where our methodology recovers centralized
and distributed controllers reported in the recent literature.

Index Terms—Reference tracking and disturbance rejection,
output regulation, convex optimization, online optimization

I . I N T R O D U C T I O N

Many engineering systems are required to operate at an
“optimal” steady-state defined by the solution of a constrained
optimization problem that seeks to minimize operational costs
while satisfying equipment constraints. Consider, for example,
the problem of optimizing the production setpoints of gener-
ators in an electric power system while maintaining supply-
demand balance and system stability. The current approach
involves a time-scale separation between the optimization and
control objectives: optimal generation setpoints are computed
offline using demand projections and a model of the network,
then the operating points are dispatched as reference commands
to local controllers at each generation site [1]–[3]. This process
is repeated with a fixed update rate: a new optimizer is
computed, dispatched, and tracked. If the supply and demand
of power changes on a time scale that is slow compared to the
update rate, then this method is adequate.

If the optimizer changes rapidly, however, as is the case for
power networks with a high penetration of renewable energy
sources, the conventional approach is inefficient [4]. Profit
is reduced as a result of operating in a sub-optimal regime
between optimizer updates. In the rapidly-changing optimizer
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case, then, it would be advantageous to eliminate the time-scale
separation by combining the local generator controllers with
an online optimization algorithm, so that the optimal operating
condition could be tracked in real time. This is the direction
of much recent research in power system control [5]–[13].

The same theme of real-time regulation of system variables
to optimal values emerges in diverse areas. Fields of appli-
cation besides the power network control example mentioned
already include network congestion management [14], [15],
chemical processing [16], wind turbine power capture [17], and
temperature regulation in energy-efficient buildings [18]. The
breadth of applications motivates the need for a general theory
and design procedure for controllers that regulate a plant to a
maximally efficient operating point defined by an optimization
problem, even as the optimizer changes over time due to
changing market prices, disturbances to the plant dynamics,
and operating constraints that depend on external variables.
We refer to the problem of designing such a controller as the
optimal steady-state (OSS) control problem.

A number of recent publications have formulated problem
statements and solutions for variants of the OSS control
problem [19]–[26]. Many of the currently-proposed controllers,
however, have limited applicability: some solutions only apply
to systems of a special form [23]; some require asymptotic
stability of the uncontrolled plant [25], [26]; some attempt to
optimize only the steady-state input [21] or output [20], [24],
[27], [28] alone; some apply only to equality-constrained [26]
or unconstrained optimization problems [29]; and in all cases,
the effects of parametric modelling uncertainty are omitted
from consideration.

Broadly speaking, these design methodologies consist of
modifying an off-the-shelf optimization algorithm to accept
system measurements; the algorithm then produces a con-
verging estimate of the optimal steady-state control input,
yielding a feedback controller. This procedure, while modular,
unnecessarily restricts the design space of dynamic controllers.
Moreover, none of the reported approaches adequately consider
(i) the effect of system dynamics on achievable steady-states,
(ii) the dynamic performance of the closed-loop system, and
(iii) the effect of system uncertainty on the optimal steady-
state. Our goal in this paper is to present a holistic analysis
and design framework which emphasizes these issues.

A. Contributions

The main contribution of this paper is a complete con-
structive solution to the linear-convex OSS control problem,
in which the plant is a causal linear time-invariant (LTI)
system with constant parametric uncertainty, the optimization
problem is convex, and the disturbances are constant in time.
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We show that the linear-convex OSS control problem can be
reduced to a stabilization problem via a dynamic filter we
call an optimality model. We present three optimality models,
and discuss associated robustness considerations arising from
parametric uncertainty in the plant model. We provide stabilizer
existence results when the optimization problem is an equality-
constrained quadratic program and discuss several design
strategies for the case of a general convex optimization problem.
Through a series of examples, we show that the OSS control
framework is more general than several frameworks in the
literature on feedback optimization of dynamical systems.

B. Notation

The symbol • in R•×• indicates that the dimension is
unspecified. For a continuously differentiable map f : Rn → R,
∇f : Rn → Rn denotes its gradient. When the arguments of
a function f : Rn × Rm → R are separated by a semicolon,
∇f(x; y) refers to the gradient of f with respect to its first
argument, evaluated at (x, y). The symbol 0 denotes a matrix or
vector of zeros whose dimensions can be inferred from context.
The symbol 1n denotes the n-vector of all ones. For scalars
or column vectors {v1, v2, . . . , vk}, col(v1, v2, . . . , vk) is a
column vector obtained by vertical concatenation of v1, . . . , vk.
For vectors α and β, the notation α ≥ β indicates that every
entry of α is greater than or equal to the corresponding entry
of β. For symmetric matrices A and B, A � B means A−B
is positive definite, while A � B means A − B is positive
semidefinite.

I I . B A C K G R O U N D O N O U T P U T R E G U L AT I O N

We will define the OSS control problem in terms of the
output regulation problem. This section reviews the output
regulation problem for an uncertain nonlinear plant subject to
constant disturbances, and its solution via integral control. We
draw upon [30] and [31, Section 12.3]. Consider a nonlinear
plant

ẋ = f(x, u, w, δ) , x(0) ∈ Rn ,
e = he(x, u, w, δ) ,

ym = hm(x, u, w, δ) ,

(1)

where x ∈ Rn is the state, u ∈ Rm is the control input, and
ym ∈ Rpm is the vector of available measurements. The error
signal e ∈ Rp consists of variables which should be driven to
zero asymptotically using feedback control. The function f is
assumed to be locally Lipschitz in x and continuous in u, w,
and δ, while he and hm are assumed to be continuous.

The vector w ∈ W ⊆ Rnw is a constant exogenous input
which might include disturbances to the plant dynamics or
reference signals, and δ ∈ δ ⊂ Rnδ is a vector representing
parametric uncertainty in the plant model. We will often write
“for every (w, δ)” as a shortened version of “for every w ∈W
and δ ∈ δ.” When δ = {0} the plant model is precisely known,
and we refer to this as the nominal case.

A general nonlinear feedback controller for (1) is given by

ẋc = fc(xc, ym) , xc(0) ∈ Rnc ,

u = hc(xc, ym).
(2)

The function fc is assumed to be locally Lipschitz in xc and
continuous in ym, while hc is assumed to be continuous.

The dynamics of the closed-loop system consist of (1) and
(2). For a given (w, δ), the closed-loop system is said to be
well-posed if there exists a unique and continuous solution
for the state vector (x(t), xc(t)) and control input u(t) for all
t ≥ 0 and for every initial condition (x(0), xc(0)) ∈ Rn×Rnc .
The problem of output regulation is to design the feedback
controller such that the closed-loop system is well-posed, stable,
and such that the error signal e is driven to zero.

Problem 2.1 (Output Regulation): For the plant (1), design,
if possible, a dynamic feedback controller of the form (2) such
that for every (w, δ):

(i) the closed-loop system is well-posed;
(ii) the closed-loop system possesses a globally asymptoti-

cally stable equilibrium point;
(iii) for every initial condition (x(0), xc(0)) of the closed-loop

system, the error signal asymptotically tends to zero, i.e.,
lim
t→∞

e(t) = 0. 4

The output regulation problem has the well-known solution
of integral control when the error e is measurable, i.e., when
e may be computed from ym. The controller takes the form

η̇ = e , (3a)
ẋs = fs(xs, η, ym, e) , (3b)
u = hs(xs, η, ym, e). (3c)

The integrator (3a) ensures the error term e is zero in steady-
state, while the stabilizer (3b)-(3c) is responsible for ensuring
closed-loop stability. If the closed loop-system consisting of the
plant (1) in feedback with the controller (3) is well-posed and
possesses a globally asymptotically stable equilibrium point
for every (w, δ), then (3) solves the output regulation problem
[31, Section 12.3].

We can give necessary and sufficient conditions for the
existence of a stabilizer for a fixed δ ∈ δ when the plant (1)
is linear and time-invariant. Consider applying integral control
to solve the output regulation problem with the plant

ẋ = A(δ)x+B(δ)u+Bw(δ)w , x(0) ∈ Rn ,
e = C(δ)x+D(δ)u+Q(δ)w ,

ym = Cm(δ)x+Dm(δ)u+Qm(δ)w.

(4)

The series connection of the plant (4) and the integrator (3a)
is called the augmented plant, and is given by

ẋ = A(δ)x+B(δ)u+Bw(δ)w ,

η̇ = C(δ)x+D(δ)u+Q(δ)w ,

ya = col(ym, η) .

(5)

The augmented plant has state col(x, η), control input u, and
measured output ya. As is well-known, stabilizability and
detectability of (5) are necessary and sufficient for the existence
of a dynamic stabilizer, and hence for solution of the output
regulation problem. The following classic result [30, Theorem
1] can be established by applying the Popov-Belevitch-Hautus
tests for stabilizability and detectability.
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Theorem 2.2 (Stabilizability and Detectability of Aug-
mented Plant): The augmented plant (5) is stabilizable and
detectable for a fixed δ ∈ δ if and only if:

(i) (Cm(δ), A(δ), B(δ)) is stabilizable and detectable;
(ii) the matrix [

A(δ) B(δ)
C(δ) D(δ)

]
has full row rank. 4

I I I . P R O B L E M S TAT E M E N T

In the linear-convex optimal steady-state control problem,
our objective is to design a feedback controller for a linear
time-invariant plant so that a specified output is asymptotically
driven to a cost-minimizing steady-state, determined by the
solution of a convex optimization problem. We can phrase this
problem in the language of output regulation by defining an
appropriate error signal.

The plant under consideration is a linear time-invariant
system with parametric uncertainty in the matrices:

ẋ = A(δ)x+B(δ)u+Bw(δ)w , x(0) ∈ Rn ,
y = C(δ)x+D(δ)u+Q(δ)w ,

ym = hm(x, u, w, δ).

(6)

For reasons that will become clear (see Assumption 4.8),
the measurements ym are permitted to be general nonlinear
functions of state, input, disturbance, and uncertainty. The
vector y ∈ Rp is the optimization output, containing states,
tracking errors, and control inputs that should be driven to
cost-minimizing values in equilibrium. The optimal value of y
is determined by the solution of a convex optimization problem:

y?(w, δ) := argmin
y∈Rp

{f0(y;w) | y ∈ C(w, δ)} . (7)

We will elaborate on the construction of the feasible set C(w, δ)
shortly. We make a number of assumptions regarding the
problem (7).

Assumption 3.1 (Optimization Problem Assumptions):
(i) the optimizer y? exists and is unique for every (w, δ);

(ii) the objective function f0 : Rp ×W → R is differentiable
and convex in y for each w ∈W ;

(iii) the feasible region C(w, δ) is convex and has non-empty
relative interior for every (w, δ).

Our objective in linear-convex OSS control is to drive the
optimization output y of the plant (6) to the solution y?(w, δ)
of the convex optimization problem (7) using a feedback
controller, while also ensuring well-posedness and stability
of the closed-loop system. We can rephrase these goals in the
language of output regulation.

Problem 3.2 (Linear-Convex Optimal Steady-State Con-
trol): The linear-convex optimal steady-state control problem
is the output regulation problem, Problem 2.1, with plant (6)
and error signal e = y − y?(w, δ), i.e., with he(x, u, w, δ) :=
C(δ)x+D(δ)u+Q(δ)w − y?(w, δ). 4

For brevity, we drop the phrase “linear-convex” for the
remainder of this paper, and simply refer to “OSS control.”

Remark 3.3 (Relation to Optimal Control): The OSS
control problem appears similar to a classical optimal tracking
control problem; however, the two are distinct in their assump-
tions and demands. In the latter, one would minimize a dynamic
cost criteria over system trajectories, either on a finite or infinite
time horizon, possibly with terminal costs. The exact solution
to this problem is computationally intensive to compute and
requires a perfect dynamic system model. Moreover, the
resulting feedback policy will require measurement of the state
and of any exogeneous disturbances. The OSS control problem
is less demanding; as a result, its solution requires fewer
assumptions. We ask only for optimal behaviour asymptotically,
not optimal trajectories. As a result, we do not need to assume
the plant state and disturbances are measurable, nor do we
require a perfect dynamic plant model. 4

We now elaborate on the structure of the feasible region
C(w, δ) of the optimization problem (7). A necessary condition
for solvability of the output regulation problem is the existence
of a forced equilibrium point (x̄, ū) ∈ Rn × Rm for which
the error output is zero [31]. We will embed constraints in
the optimization problem to guarantee that such a forced
equilibrium point exists.

Let Y (w, δ) be the set of optimization outputs achievable
from a forced equilibrium:

Y (w, δ) := {ȳ ∈ Rp | there exists an (x̄, ū) such that
0 = A(δ)x̄+B(δ)ū+Bw(δ)w

ȳ = C(δ)x̄+D(δ)ū+Q(δ)w} .
(8)

We rewrite Y (w, δ) in algebraic form so that we may include
membership in Y (w, δ) as a constraint of the optimization
problem in standard equality form. For each (w, δ), the set
Y (w, δ) is an affine subspace of Rp. It may therefore be written
as the sum of a (non-unique) “offset vector” and a unique
subspace, which we denote by sub(Y (w, δ)). In the following
lemma, we construct a matrix G(δ) whose columns span this
unique subspace.

Lemma 3.4 (Construction of G(δ)): Fix a ỹ(w, δ) ∈
Y (w, δ). If N (δ) ∈ R(n+m)×• is a matrix such that

rangeN (δ) = null
[
A(δ) B(δ)

]
,

then the columns of the matrix

G(δ) :=
[
C(δ) D(δ)

]
N (δ) ∈ Rp×• (9)

span the subspace sub(Y (w, δ)). 4
The proof is straightforward and is omitted. Note that when

A(δ) is invertible, one may select

N (δ) :=

[
−A(δ)−1B(δ)

Im

]
which yields G(δ) = −C(δ)A(δ)−1B(δ) + D(δ). This is
precisely the DC gain matrix of the u→ y channel for the plant
(6). One may think of G(δ) in (9) as a generalized DC gain
matrix which one can compute regardless of whether or not
A(δ) is invertible. Compared to [25], [26], we do not require
A(δ) to be Hurwitz.
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With Lemma 3.4, we have that

ȳ ∈ Y (w, δ) ⇐⇒ ȳ = ỹ(w, δ) +G(δ)v (10)

for some vector v ∈ R•. Now let G⊥(δ) ∈ R•×p be any full-
row-rank matrix satisfying nullG⊥(δ) = rangeG(δ). Then
from (10), one finds that

Y (w, δ) = {y ∈ Rp | G⊥(δ)y = b(w, δ)} .

where b(w, δ) := G⊥(δ)ỹ(w, δ). We will see shortly that,
for our controller design, the matrix G⊥(δ) is important and
the vector b(w, δ) is unimportant. We can now write the
optimization problem of (7) explicitly in standard form:

minimize
y∈Rp

f0(y;w) (11a)

subject to G⊥(δ)y = b(w, δ) (11b)
Hy = Lw (11c)
fi(y;w) ≤ 0 , i ∈ {1, . . . , nic}. (11d)

The constraint (11b) is the equilibrium constraint just discussed.
The constraints (11c) represent nec engineering equality con-
straints determined by the matrices H ∈ Rnec×p and L ∈
Rnec×nw . The constraints (11d) are nic engineering inequality
constraints which should be satisfied in the desired steady-state.
To ensure the optimization problem is convex, the functions
fi : Rp×W → R must be convex in y for each w ∈W for all
i ∈ {1, . . . , nic}. The matrices H,L and the functions fi are
part of the design specification, and are therefore not subject
to parametric uncertainty.

Remark 3.5 (Necessity of Equilibrium Constraints): The
steady-state constraints (11b) ensure compatibility between the
plant and the specified optimization problem. Failing to include
these constraints can result in an instance of the OSS control
problem in which y?(w, δ) /∈ Y (w, δ) for some (w, δ), i.e., in
which the optimizer of (11) might be inconsistent with steady-
state operation of the plant (6). If this is the case, Problem 3.2
is insolvable. For an example of what occurs when we fail to
include the equilibrium constraints, see Section V-B. 4

By Assumption 3.1, the feasible region of (11) has non-
empty relative interior for all (w, δ) and thus the Karush-
Kuhn-Tucker (KKT) conditions are necessary and sufficient
for optimality [32, Sections 5.2.3 and 5.5.3]. For each (w, δ),
the optimal solution y? ∈ Rp is characterized as the unique
vector such that y? is feasible for (11) and there exist λ? ∈ Rr,
µ? ∈ Rnec , and ν? ∈ Rnic such that (y?, λ?, µ?, ν?) satisfy

0 = ∇f0(y?;w) +G⊥(δ)Tλ? +HTµ? +

nic∑
i=1

ν?i∇fi(y?;w)

(12a)
0 = ν?i fi(y

?;w) , ν?i ≥ 0 , i ∈ {1, . . . , nic}. (12b)

I V. C O N S T R U C T I V E S O L U T I O N S F O R O P T I M A L
S T E A D Y- S TAT E C O N T R O L

Since the OSS control problem is an output regulation
problem, integral control appears to be a natural solution. The
barrier to this approach is that the error signal of the OSS
control problem, e = y−y?(w, δ), is unmeasurable since (w, δ)

are unknown and the mapping from (w, δ) to the optimizer
y? may be unknown. Integral control requires a measurable
error signal — see (3a). Our design framework uses a dynamic
filter called an optimality model to convert the OSS control
problem to a related output regulation problem with measurable
error. One then solves this output regulation problem using an
integral controller. An optimality model therefore reduces the
OSS control problem to a stabilization problem.

A. Optimality Models

An optimality model is a filter applied to the measured output
of the plant that produces a signal ε that acts as a proxy for the
optimality error e = y − y?(w, δ). To make this idea precise,
consider a filter (ϕ, hε) with state ξ ∈ Rnξ , input ym, output
ε ∈ Rnε , and dynamics

ξ̇ = ϕ(ξ, ym) ,

ε = hε(ξ, ym).
(13)

Definition 4.1 (Optimality Model): The filter (13) is said to
be an optimality model (for the OSS control problem, Problem
3.2) if the following implication holds: if the triple (x̄, ξ̄, ū) ∈
Rn × Rnξ × Rm satisfies

0 = A(δ)x̄+B(δ)ū+Bw(δ)w

0 = ϕ(ξ̄, hm(x̄, ū, w, δ))

0 = hε(ξ̄, hm(x̄, ū, w, δ))

(14)

then the pair (x̄, ū) ∈ Rn × Rm satisfies

y?(w, δ) = C(δ)x̄+D(δ)ū+Q(δ)w. 4

In the OSS control framework, we place the plant and
optimality model in series and attempt to solve the output
regulation problem with ε as the (measurable) error signal.
Doing so with an integral controller converts the OSS control
problem to the problem of stabilizing the augmented plant

ẋ = A(δ)x+B(δ)u+Bw(δ)w , (15a)

ξ̇ = ϕ(ξ, hm(x, u, w, δ)) , (15b)
η̇ = ε := hε(ξ, hm(x, u, w, δ)) (15c)

using a stabilizer

ẋs = fs(xs, η, ξ, ym, ε) , (16a)
u = hs(xs, η, ξ, ym, ε). (16b)

This design framework, depicted in Figure 1, is justified by
the following theorem, a proof of which may be found in the
appendix.

Theorem 4.2 (Reduction of OSS to Stabilization): Suppose
that (ϕ, hε) is an optimality model. If the stabilizer (fs, hs)
is designed such that the closed-loop system (15)–(16) is
well-posed and possesses a globally asymptotically stable
equilibrium point for every (w, δ), then the controller (15b),
(15c), (16a), (16b) solves the OSS control problem. 4

Solving the OSS control problem therefore amounts to
(i) constructing an optimality model and (ii) designing (if
possible) a stabilizer for the augmented plant. We explore
optimality model and stabilizer designs in Sections IV-B and
IV-C, respectively.
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ẋ = A(δ)x+B(δ)u+Bw(δ)w

ym = hm(x, u, w, δ)

Plant

ξ̇ = ϕ(ξ, ym)

ε = hε(ξ, ym)

Optimality Model

η̇ = ε

Integrator

ẋs = fs(xs, η, ξ, ym, ε)

u = hs(xs, η, ξ, ym, ε)

Stabilizer

w

ym

ε
ξ

η

u

Fig. 1: The OSS control framework. The optimality model produces a
proxy error signal ε for the tracking error y−y?(w, δ), the integrator
enforces ε = 0 in equilibrium, and the stabilizer ensures well-
posedness and stability of the closed-loop system. Feedback from
the stabilizer to the optimality model can also be included, but is
omitted for simplicity.

B. Optimality Model Design

1) The Gradient Condition: According to Definition 4.1, an
optimality model encodes sufficient conditions for optimality
when it is in equilibrium with the plant and its output ε is held
at zero. We can incorporate the KKT conditions — which
are sufficient for optimality under our assumptions — in an
optimality model for this purpose.

Note that the gradient condition (12a) involves the dual
variable λ? associated with the equilibrium constraints. Dual
variables associated with equality constraints are typically
calculated using an integrator on the constraint violation: see
[20, Equation (4a)], or [23, Equation (8f)], for example. Inte-
grating the equilibrium constraint violation G⊥(δ)y − b(w, δ)
is impossible since (w, δ) are unknown. Luckily, doing so is
unnecessary, as the plant already enforces this constraint in
steady-state.

We now describe how to incorporate the gradient condition
(12a) into an optimality model without calculating λ?. In the
nominal case (when δ = {0}) the following constructions may
be directly applied. If we additionally consider uncertainty,
then we must be more careful; we will shortly introduce
robustness conditions to ensure that an optimality model can
be constructed without knowledge of δ.

Let G(δ) be the matrix of Lemma 3.4. Recall that
nullG⊥(δ) = rangeG(δ); by taking the orthogonal com-
plement of both sides, it follows that rangeG⊥(δ)T =
nullG(δ)T. Therefore, the existence of a (y?, λ?, µ?, ν?)
satisfying (12a) is equivalent to the existence of a (y?, µ?, ν?)
satisfying

G(δ)T

(
∇f0(y?;w) +HTµ? +

nic∑
i=1

ν?i∇fi(y;w)

)
= 0.

(17)
The left-hand side of this equation is a natural choice for
inclusion in the proxy error signal ε, since driving ε to zero
will then enforce the gradient KKT condition. The only major
obstruction is the presence of the uncertain parameters δ. The
uncertain parameters do not pose an issue when it is possible
to construct the matrix G(δ) without knowledge of δ. We will
elaborate on this idea shortly.

First however, note that we could also rewrite the gradient
condition in a second, equivalent, manner. Define a matrix T (δ)
such that

rangeT (δ) = null

[
G⊥(δ)
H

]
. (18)

The existence of a (y?, λ?, µ?, ν?) satisfying (12a) is equivalent
to the existence of a (y?, ν?) satisfying

T (δ)T

(
∇f0(y?;w) +

nic∑
i=1

ν?i∇fi(y?;w)

)
= 0. (19)

This procedure can also be generalized by including only some
rows of H in the construction of T (δ), leading to a hybrid
between (17) and (19); the details are omitted. As we did with
(17), we can make the expression on the left-hand side of (19)
one of the components of an optimality model’s error output;
the only remaining barrier is to understand when an appropriate
matrix T (δ) can be constructed without knowledge of δ.

2) Robust Subspaces: We just saw that we can rewrite the
gradient condition (12a) as either (17) or (19), the left-hand
sides of which are suitable for use in the error signal ε of an
optimality model. We now explore conditions under which we
can construct the matrices G(δ) or T (δ) without knowledge
of δ.

Definition 4.3 (Robust Feasible Subspace (RFS)): The
optimization problem (11) is said to satisfy the robust feasible
subspace (RFS) property when there exists a fixed matrix T0
such that

rangeT0 = null

[
G⊥(δ)
H

]
for all δ ∈ δ. (20)

An even stronger property is the following.
Definition 4.4 (Robust Output Subspace (ROS)): Let G(δ)

be the matrix of Lemma 3.4. The uncertain LTI plant (6) is
said to satisfy the robust output subspace (ROS) property when
there exists a fixed matrix G0 such that

rangeG0 = rangeG(δ) for all δ ∈ δ. (21)

Remark 4.5 (Relationship Between ROS and RFS): The
ROS property implies the RFS property, but not conversely
(see Section V-F for an example). Recalling that nullG⊥(δ) =
rangeG(δ) by definition, the existence of a G0 satisfying (21)
implies nullG⊥(δ) = rangeG0 for all δ ∈ δ. Hence, any
matrix T0 with the property rangeT0 = rangeG0 ∩ nullH
will satisfy (20). In the special case when the optimization
problem (11) has no engineering equality constraints, the
matrix T0 of (20) satisfies rangeT0 = rangeG(δ) for all
δ ∈ δ. In this case, the RFS property and the ROS property
are equivalent, and one make take T0 = G0. 4

Remark 4.6 (Nominal Case): In the nominal case (with δ =
{0}) the robust output subspace and robust feasible subspace
properties automatically hold. 4

A sufficient condition for the ROS property is as follows.
Proposition 4.7 (Robust Full Rank =⇒ ROS): The LTI

system (6) satisfies the ROS property with G0 := Ip if

rank

[
A(δ) B(δ)
C(δ) D(δ)

]
= n+ p , for all δ ∈ δ. (22)
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Proof: If (22) holds, then by (8) we have Y (w, δ) = Rp for
all (w, δ). Hence sub(Y (w, δ)) = range Ip = rangeG(δ)
for all δ ∈ δ. �

We emphasize that (22) is only a sufficient condition for
the ROS property, and can hold only when the number of
outputs to be optimized is less than or equal to the number
of control inputs. From Theorem 2.2, we see that the rank
condition (22) is a necessary assumption for solvability of
the linear output regulation problem with error signal e =
C(δ)x+D(δ)u+Q(δ)w; however, the optimality models of
Section IV-B3 will produce error signals that make the rank
condition (22) not necessary for solvability of the OSS control
problem. See Propositions 4.14, 4.15, and 4.16 for details.

3) Optimality Models: We are now ready to construct
optimality models for OSS control. The options available to
us depend on which of the two previously-defined subspace
robustness properties hold. We shall require our measurement
vector to contain some key information about the optimization
problem (11).

Assumption 4.8 (Measurement Assumptions): The mea-
surement vector ym contains, at minimum, the constraint vio-
lations, Hy − Lw and fi(y;w), and the gradients ∇f0(y;w)
and ∇fi(y;w).

Incorporating the inequality constraints and associated dual
variable conditions relies on a function ϕν : Rnic × Rnic →
Rnic that satisfies the following implication:

ϕν(α, β) = 0 =⇒ α ≥ 0 , β ≤ 0 , αTβ = 0. (23)

For example, let max(·,0) take the elementwise maximum
between its first argument and 0. The function ϕν(α, β) :=
max(α+ β,0)− α from [20, Equation (8)] satisfies (23), as
does the function

ϕν(α, β)i =

{
βi if αi > 0

max{0, βi} if αi = 0

which appears in saddle-point dynamics [33]. So that we may
write the inequality constraints in a compact manner, define
f(y;w) := col(f1(y;w), f2(y;w), . . . , fnic

(y;w)).

Proposition 4.9 (Robust Feasible Subspace Optimality
Model (RFS-OM)): Suppose the optimization problem (11)
satisfies the robust feasible subspace property with the matrix
T0, and let ϕν satisfy the implication (23). Then

ν̇ = ϕν(ν, f(y;w))

ε =

[
Hy − Lw

TT
0 (∇f0(y;w) +

∑nic

i=1 νi∇fi(y;w))

]
(24)

is an optimality model for the OSS control problem.

Proof: For each (w, δ), consider the solutions (x̄, ν̄, ū) to:

0 = A(δ)x̄+B(δ)ū+Bw(δ)w (25a)
ȳ = C(δ)x̄+D(δ)ū+Q(δ)w (25b)
0 = ϕν(ν̄, f(ȳ;w)) (25c)
0 = Hȳ − Lw (25d)

0 = TT
0

(
∇f0(ȳ;w) +

∑nic

i=1
ν̄i∇fi(ȳ;w)

)
. (25e)

The equations (25) correspond to the equations (14) in the
definition of an optimality model. We show that (25) imply the
KKT conditions. The first two equations (25a) and (25b) imply
ȳ ∈ Y (w, δ), which is equivalent to the first set of equality con-
straints, (11b). The equation (25d) is the engineering equality
constraint, (11c). The engineering inequality constraints (11d)
and associated dual variable conditions (12b) are implied by
(25c). Finally, because the robust feasible subspace property
holds, (25e) implies the gradient condition (19) for any δ. Since
the KKT conditions are sufficient for optimality, the following
implication holds for all (w, δ): if (x̄, µ̄, ν̄, ū) satisfy (25), then
(x̄, ū) satisfy

y?(w, δ) = C(δ)x̄+D(δ)ū+Q(δ)w.

The filter (24) satisfies the criterion of Definition 4.1, and is
therefore an optimality model. �

The above optimality model may be employed whenever the
RFS property holds. If, furthermore, the stronger ROS property
holds, then we have a second option. The proof of the following
is essentially identical to the proof of Proposition 4.9.

Proposition 4.10 (Robust Output Subspace Optimality
Model (ROS-OM)): Suppose the plant (6) satisfies the robust
output subspace property with the matrix G0. Then

µ̇ = Hy − Lw
ν̇ = ϕν(ν, f(y;w))

ε = GT
0

(
∇f0(y;w) +HTµ+

∑nic

i=1
νi∇fi(y;w)

) (26)

is an optimality model for the OSS control problem. 4
In special circumstances, one can modify the RFS-OM

of Proposition 4.9 to obtain an optimality model with an
error signal of reduced dimension; this reduces the number
of integrators required. A proof of the following may be found
in the appendix.

Proposition 4.11 (Reduced-Error RFS-OM): Suppose the
optimization problem (11) satisfies the robust feasible subspace
property with the matrix T0 ∈ Rp×nec , and let ϕν satisfy the
implication (23). Let G(δ) be the matrix defined in Lemma
3.4. The filter
ν̇ = ϕν(ν, f(y;w))

ε = Hy − Lw + TT
0

(
∇f0(y;w) +

nic∑
i=1

νi∇fi(y;w)

)
(27)

is an optimality model for the linear-convex OSS control prob-
lem if rangeHG(δ) ∩ rangeTT

0 = {0} for all δ ∈ δ. 4
Remark 4.12 (Uncertain Equality Constraints): It is pos-

sible to apply the RFS optimality models even when the
engineering equality constraint matrices are uncertain — that
is, when (11c) reads H(δ)y = L(δ)w — by redefining the
RFS property as the existence of a matrix T0 satisfying

rangeT0 = null

[
G⊥(δ)
H(δ)

]
for all δ ∈ δ . (28)

Under Assumption 4.8 and using a T0 satisfying (28), Propo-
sitions 4.9 and 4.11 still hold with Hy − Lw replaced by
H(δ)y − L(δ)w. 4
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C. Stabilizer Design

In this section we discuss the design of a stabilizer for
the augmented plant (15) when we employ one of the three
optimality models of Section IV-B3.

1) Stabilizer Design for Quadratic Programs: We first
consider the case when the optimization problem (11) is an
equality-constrained convex quadratic program — that is, when
the objective function is quadratic in y and the only constraints
of the problem are affine equality constraints. In this case the
closed-loop system becomes linear and time-invariant, and we
can obtain strong and explicit results. To be precise, suppose
the optimization problem (11) is of the form

minimize
y∈Rp

1
2y

TMy − yTNw

subject to G⊥(δ)y = b(w, δ)

Hy = Lw,

(29)

where M � 0.1

Definition 4.13 (Nonredundant Constraints): The problem
(29) is said to have nonredundant constraints when the matrix[

G⊥(δ)
H

]
(30)

is full row rank. 4
If the matrix (30) is not full row rank, then either the feasible

region is empty or one may eliminate constraints without
changing the geometry of the feasible region [34].

Under mild assumptions on the optimization problem and
plant, we can ensure that the augmented plant arising from
from the RFS-OM, ROS-OM, or reduced-error RFS-OM is
both stabilizable and detectable for a given δ ∈ δ. When these
conditions hold in the nominal case (when δ = {0}), the OSS
control problem is solvable via standard LTI design tools, e.g.,
[35, Section 16.7].

The following propositions mention the measurement matrix
Cm; Assumption 4.8 in the present context implies that we
can take the available measurements ym as a linear function
of (x, u, w), i.e., ym = Cm(δ)x+Dm(δ)u+Qm(δ)w.

The proofs of the following three propositions may be found
in the appendix.

Proposition 4.14 (Stabilizability and Detectability Using
RFS-OM): Consider the augmented plant (15) using the RFS-
OM (24) as the optimality model (ϕ, hε) for the OSS control
problem with optimization problem (29). This augmented plant
is stabilizable and detectable for a given δ ∈ δ if and only if

(i) (Cm(δ), A(δ), B(δ)) is stabilizable and detectable;
(ii) the problem (29) has nonredundant constraints;

(iii) the problem (29) has a unique optimizer;
(iv) T0 is full column rank. 4

Proposition 4.15 (Stabilizability and Detectability Using
ROS-OM): Consider the augmented plant (15) using the ROS-
OM (26) as the optimality model (ϕ, hε) for the OSS control
problem with optimization problem (29). This augmented plant
is stabilizable and detectable for a given δ ∈ δ if and only if

1Any constant term of the form yTc with c ∈ Rp may be included in the
term yTNw by appropriate redefinition of N and w.

(i) (Cm(δ), A(δ), B(δ)) is stabilizable and detectable;
(ii) the problem (29) has nonredundant constraints;

(iii) the problem (29) has a unique optimizer;
(iv) G0 is full column rank. 4

Proposition 4.16 (Stabilizability and Detectability Using
Reduced-Error RFS-OM): Consider the augmented plant (15)
using the reduced-error ROS-OM (27) as the optimality model
(ϕ, hε) for the OSS control problem with optimization problem
(29). This augmented plant is stabilizable and detectable for a
given δ ∈ δ if and only if

(i) (Cm(δ), A(δ), B(δ)) is stabilizable and detectable;
(ii) the problem (29) has a unique optimizer;

(iii) (rangeHG(δ))⊥ ∩ (rangeTT
0 )⊥ = {0}. 4

These results provide explicit conditions which guarantee
solvability of the OSS control problem, at least in the nominal
case. Unfortunately, even if the augmented plant is stabilizable
and detectable for every δ ∈ δ, this does not guarantee the
existence of a fixed stabilizer that stabilizes the closed-loop
system for every δ ∈ δ. The conditions of Propositions
4.14/4.15/4.16 being met for every δ ∈ δ are necessary but not
sufficient for the existence of such a robust stabilizer. If the
structure of the uncertainty set δ is known, one may attempt
robust stabilizer design using the robust control techniques
described in the following section.

2) Stabilizer Design in the General Case: If the optimiza-
tion problem has a non-quadratic convex objective function, or
if inequality constraints are present, or if the uncertainty set
δ is non-trivial, then we can turn to tools from robust control
theory.

Supposing that the inequality constraints (11d) of the op-
timization problem are linear, and that we employ one of
the optimality models of Section IV-B3 with ϕν(α, β) :=
max(α+β,0)−α, the only nonlinearities in the closed-loop
system are the static, slope-restricted nonlinearities max(·, 0)
and ∇f0(·, w). The function max(·, 0) satisfies a [0, 1] slope
restriction, while y 7→ ∇f0(y;w) satisfies a [κ, L] slope restric-
tion if y 7→ f0(y;w) is κ-strongly convex and y 7→ ∇f0(y;w)
is L-Lipschitz continuous. As a result, we can manipulate
the closed-loop system into the standard configuration of the
robust control synthesis problem depicted in Figure 2a (see
[36, Chapter 9] for background). Stabilizer design can then
be accomplished by describing the ∆ block with integral
quadratic constraints (IQCs) and applying standard linear
matrix inequality (LMI) tools. See [37] for a detailed exposition
on IQC analysis.

The robust control framework presents two distinct stabilizer
design options. One can propose a stabilizer structure, such as
a proportional-integral controller, and tune the parameters of
the stabilizer until closed-loop stability can be verified using an
analysis LMI. Alternatively, one can employ a synthesis LMI
to generate a dynamic stabilizer whose order is, in general,
the same as that of the augmented plant. The latter method
often results in a more complex controller structure than the
former, but may be useful when stabilizing gains cannot be
found “by hand.” For an example of each approach, see our
previous work [19].
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G

∆

K

(a)

G ?K

∆

(b)

Fig. 2: A robust control framework for stabilizer design and analysis.
System uncertainty δ and optimality model nonlinearities ∇f0 and
max(·, 0) are extracted into ∆. The LTI system K is the stabilizer,
while all certain LTI dynamics are contained in G. (a) Robust
controller synthesis, where the stabilizer K is designed for stabil-
ity/performance using, for example,H∞/H2 synthesis techniques. (b)
Robust stability/performance analysis, which can be used to assess
the performance of a specified stabilizer design K upon closing the
lower loop between G and K.

Remark 4.17 (Inequality Constraints): While, in principle,
our controller design is capable of enforcing hard inequality
constraints, the ϕν function often complicates the stability
analysis. For example, when ϕν(α, β) = max(α+ β,0)− α,
the lower bound of zero on the [0, 1] slope restriction of
max(·, 0) can lead to inconclusive stability results when using
tools from robust control theory. This difficulty is described in
detail in [38, Section 5.6.3]. In practice it may be more useful
to enforce inequality constraints by including either barrier or
penalty terms in the objective function; see [39, Section 3.1]
and [40, Section VI-B] for examples of this approach. 4

Remark 4.18 (Unique Optimizer Assumption): Assump-
tion 3.1 (i), which requires the optimizer y?(w, δ) of (7) to be
unique, is necessary for the closed-loop system corresponding
to one of the previously-described optimality models to possess
a unique equilibrium point. This assumption is therefore
necessary for one of our controllers to solve Problem 3.2, which
demands a globally asymptotically stable equilibrium point for
the closed-loop dynamics. Relaxing the problem statement to
require only a stable equilibrium set would allow one to drop
the assumption of optimizer uniqueness, but would complicate
the stability analysis. One would have to invoke, for example,
the invariance theorems of LaSalle. See [38, Section 5.6] for
more details. 4

V. I L L U S T R AT I V E E X A M P L E S

In this final section, we illustrate the ideas of the preceding
sections through several example problems. We compare appli-
cation of the OSS control framework and previous frameworks
from the literature to highlight our contributions.

A. Reference Tracking

Consider now an asymptotic reference tracking problem,
in which it is desired that the output of a plant y ∈ Rp
asymptotically approaches a vector of prescribed values r ∈ Rp.
The reference tracking problem can be formulated as a case of

the output regulation problem of Section II by defining the error
signal as e := y−r (the reference signal r is a component of the
exogenous input w). In this section, we show that formulating
the reference tracking problem in the OSS control framework
yields a variety of tracking problems with different steady-state
objectives. Additionally, we show that application of the ROS-
OM to one of these tracking problems recovers and generalizes
the control scheme of [41, Section 4] for reference tracking in
underactuated systems.

Supposing that we wish the optimization output y of the
plant (6) to track the reference signal r, we formulate the
optimization problem (11) as follows:

min
y∈Rp

n(y − r)

subject to G⊥(δ)y = b(w, δ) ,
(31)

where n : Rp → R is a smooth and convex norm. An OSS
controller will guide y to the solution y?(w, δ) of (31). If r
is an achievable equilibrium output of the plant — that is, if
G⊥(δ)r = b(w, δ) — then y?(w, δ) = r, and an OSS controller
will guide y to r exactly. If r is not an achievable equilibrium
output, then it is impossible for y to equal r in steady-state;
however, y?(w, δ) will be the nearest point in the equilibrium
set Y (w, δ) = {y ∈ Rp | G⊥(δ)y = b(w, δ)} to the vector r
as measured by the norm n. An OSS controller will therefore
minimize the discrepancy between y and r to the greatest
extent possible in steady-state.

Formulating the reference tracking problem in the OSS
control framework allows us to specify different “types” of
tracking through our choice of norm. For example:
RMS Tracking With n equal to the `2-norm, we seek to

minimize the root-mean-square error between y and r.
Sparse Tracking With n equal to the `1-norm, we seek to

make the vector y − r as sparse as possible.
MinMax Tracking With n equal to the `∞-norm, we seek to

minimize the maximum entry of y − r.
Using other norms yields other tracking interpretations.

Note that for use in the OSS control framework, we must
replace `1 and `∞ norms with differentiable approximations.
Differentiable approximations include the Moreau envelope
[42, Section 3.1] and the functions in [43], among others.

Consider, for example, the optimization problem (31) with
output y = col(ym, u), reference r = col(rm,0), and norm
n : Rpm × Rm → R defined as

n(y) = n(ym, u) := ‖ym‖2 + θ‖u‖1

for some θ > 0. By seeking to minimize n(ym − rm, u) in
equilibrium, we are attempting to minimize the root-mean-
square error between the measured output ym and the reference
rm using the least number of control inputs possible (we
interpret the 1-norm as penalizing nonzero entries of its
argument). The strength of our desire for u to be sparse
is expressed through the magnitude of the parameter θ. We
simulated the feedback interconnection of a random, stable
LTI plant generated using the rss function in MATLAB with
4 states, 2 control inputs, 1 disturbance input, and 3 measured
outputs and an OSS controller using the ROS-OM and pure
integral feedback with a gain of 10. We made the smoothing
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approximation ‖u‖1 ≈ 1
20

∑2
i=1 log(cosh(20u)). In Figure

3, we compare the behaviour of the closed-loop system for
θ = 0.05 (we want u to be sparse) and θ = 10−9 (we do not
care about sparsity of u).

As a final comment on solving tracking problems using the
OSS control framework, we note that the control strategy of
[41, Section 4] is a special case of the setup described in this
section. Assuming that the plant (6) satisfies the ROS property,
we apply the ROS-OM to yield the augmented plant

ẋ = A(δ)x+B(δ)u+Bw(δ)w

η̇ = ε = GT
0∇n(y − r).

(32)

We set n(·) := 1
2‖ · ‖2, assume that A(δ) is invertible, and take

G0 := −C(δ)A(δ)−1B(δ)+D(δ) to recover the scheme of [41,
Section 4]. Observe that we have generalized the framework
of [41] in three ways: we introduce flexibility in the choice of
norm, remove the assumption of invertibility of A(δ), and do
not require that G0 be the DC gain of the plant.

B. Equilibrium Constraints

Recall the purpose of including the equilibrium constraints
in the optimization problem: by doing so, we guarantee the
existence of a forced equilibrium point (x̄, ū) ∈ Rn × Rm
such that the output ȳ is optimal. If we omit the equilibrium
constraints, we have no assurance that such a forced equilibrium
exists. The following example demonstrates the consequences.

Consider the problem of regulating the stable plant[
ẋ1
ẋ2

]
=

[
−1 0
1 −1

] [
x1
x2

]
+

[
1
−1

]
u+

[
1
1

]
w

y = col(x1, u)

ym = y

(33)

to an equilibrium point such that y equals the optimizer

y? := argmin
y∈R2

(
f0(y) :=

1

2
y21 +

1

2
y22

)
=

[
0
0

]
. (34)

The set of forced equilibria (x̄1, x̄2, ū) yielding the optimal
output is the set of solutions to

−1 0 1
1 −1 −1
1 0 0
0 0 1


x̄1x̄2
ū

 =


−w
−w
0
0

 .
For w 6= 0, these equations fail to have a solution, and this
problem is not solvable as a result.

In the OSS control framework, we always include the
equilibrium constraints and therefore never formulate such
insolvable problems. Compare with previous work, such as [20],
in which one assumes the existence of a forced equilibrium
point yielding the optimal output (see [20, Assumption II.3]).
When this assumption fails, applying their KKT controller may
yield an unstable closed-loop system. The KKT controller
proposed in [20] for the above example is

η̇ = ∇f0(y) , u = Kη.

One attempts to select the gain matrix K to stabilize the closed-
loop system. However, the augmented plant

ẋ1
ẋ2
η̇1
η̇2

 =


−1 0 0 0
1 −1 0 0
1 0 0 0
0 0 0 0



x1
x2
η1
η2

+


0
0
0
1

u
consisting of the plant (33) in series with a bank of integrators
on∇f0(y) is not stabilizable. No dynamic stabilizing controller
exists, let alone a stabilizing integral gain K. Such pathologies
are the result of failing to include the equilibrium constraints
in the optimization problem.

Consider instead applying an OSS controller to the above
example, using the ROS-OM with pure integral feedback:

η̇ = GT
0∇f0(y)

u = −η ,
(35)

with G0 = [ 11 ]. The closed-loop system is stable and the
optimization output tracks the optimizer — see Figure 4a for
simulation results.

C. Robust Feasible Subspace Property

The OSS control framework explicitly accounts for model
uncertainty through the vector of uncertain parameters δ. As
stressed in Section IV-B, additional conditions are generally
required to ensure that robust regulation to an optimal equi-
librium point is possible in the presence of uncertainty; such
considerations are omitted from previous work. To illustrate,
consider the OSS control problem with a perturbed version of
the plant (33)[

ẋ1
ẋ2

]
=

[
−1− δ 0
1 + δ −1

] [
x1
x2

]
+

[
1
−1

]
u+

[
1
1

]
w

y = col(x1, u)

ym = y

(36)

and the OSS optimization problem

y?(w, δ) := argmin
y∈Y (w,δ)

(
f0(y) :=

1

2
y21 +

1

2
y22

)
. (37)

The plant dynamics depend on an uncertain parameter δ ∈
δ := [−0.5, 0.5]. One can show that the matrix G(δ) of Lemma
3.4 is given by G(δ) = col(1, δ). The robust feasible subspace
property therefore fails.2 Our analysis framework allow us to
conclude that this problem cannot be solved exactly.

Suppose, however, that we ignore this fact and attempt to
construct an OSS controller by assuming a nominal value for
the uncertain parameter. This is analogous to the procedure one
would follow to construct the controllers [26, Equation (5)] or
[25, Equation (9)], for instance. We assume δ = 0 and use the
ROS-OM with pure integral feedback to yield the controller
(35). The behaviour of the resulting closed-loop system when
δ = 0.5 is shown in Figure 4b. The plant fails to track the
optimizer.

2The RFS and ROS properties are equivalent in this example since no
engineering equality constraints are present; see Remark 4.5.
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Fig. 3: Simulation plots for the example of Section V-A. The solid curve in the left-hand plot is the root-mean-square error between the
measured output ym and the reference rm as a function of time for θ = 0.05; the solid curves in the right-hand plot are the two control
inputs as a function of time for θ = 0.05. For comparison are the optimal values of the output tracking error and the control inputs for
θ = 10−9 as dashed lines. We observe that by increasing θ, we make a small sacrifice in output tracking performance but save substantially
on control effort — one of our control inputs is almost zero, in fact.

(a) The optimization output as a function of time for the plant
(33) in feedback with the controller (35).

(b) The optimization output as a function of time for the plant
(36) in feedback with the controller (35).

Fig. 4: Simulation plots for the examples of Sections V-B and V-C.

D. No Hurwitz Assumption

One benefit of the OSS control framework over other
formulations in the feedback-based optimization literature is
that we do not assume the dynamics matrix of the plant A
is Hurwitz or even invertible — compare with [26] or [25],
both of which rely on invertibility and stability of A. As a
consequence, one may construct OSS controllers for a wider
variety of plants than previously considered. The dynamics
matrix is allowed to be singular, unstable, or both.

Consider the OSS control problem with the plantẋ1ẋ2
ẋ3

 =

0 1 0
0 0 0
0 0 1

x1x2
x3

+

0 0
1 0
0 1

u+

0
1
0

w
y = x

ym = y

and the OSS optimization problem

y?(w) := argmin
y∈Y (w)

1

2
yTMy,

where M � 0. The eigenvalues of A are {0, 0, 1}, hence A
is neither invertible nor stable. The controllers of [26] or [25]

do not apply to this problem. In contrast, a ROS-OM for this
problem is

ε =

[
1 0 0
0 0 −1

]
︸ ︷︷ ︸

GT
0

My ,

and the corresponding augmented plant (15) is stabilizable
and detectable since the requirements of Proposition 4.15
are satisfied (existence and uniqueness of the optimizer are
guaranteed by positive definiteness of M ). A stabilizer exists,
and therefore a complete OSS controller for this problem exists
also. For example, with M = I3, the OSS controller

η̇1 = x1

η̇2 = −x3
u1 = 18.5x1 + 7.5x2 + 15η1

u2 = 3.5x3 − 1.5η2

yields a closed-loop stable system with the dynamics matrix
having eigenvalues {−1,−1.5,−2,−2.5,−3}.

E. Designing for Improved Performance

A common strategy for controller design in the feedback-
based optimization literature is to employ a standard
continuous-time optimization algorithm to compute a steady-
state control input u? that yields the optimal steady-state
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optimization output y?. Unmeasurable terms in the algorithm
are replaced with measurements of y and the intermediate
values of u are applied as control input while the algorithm
converges. Hence, one obtains a feedback controller by making
a minor modification to an off-the-shelf algorithm. See, for
example, [9], [25], [26].

This suggests an “optimization algorithm” design framework
that stands in contrast to OSS controller design: first, synthe-
size a feedback controller to stabilize the plant and achieve
good tracking performance from the control input u to the
optimization output y; second, interconnect this plant with an
optimization algorithm. While this procedure is a logical design
strategy, the OSS controller architecture can yield improved
performance because of the flexibility available through the
choice of optimality model and stabilizer.

An example will illustrate this fact. Consider the plant (6)
with no parametric uncertainty (δ = {0}) and a Hurwitz
dynamics matrix A. For a fixed control input ū, the steady-
state optimization output ȳ is given by ȳ = Gū+Gww, where
G := −CA−1B+D andGw := −CA−1Bw+Q. Our objective
is to guide the optimization output y to the optimizer of an
equality-constrained problem,

y?(w) := argmin
y∈Rp, u∈Rm

f0(y;w)

subject to y = Gu+Gww

Hy = Lw ,

(38)

where f0(y;w) is convex in y for all w. The first set of
equality constraints in the problem of (38) is equivalent to the
equilibrium constraint (11b) of the generic convex optimization
problem (11).

In the “optimization algorithm” framework for controller
design, we eliminate y from (38), dualize the remaining
constraint, apply a primal-descent-dual-ascent algorithm to
compute u, and then replace instances of Gu+Gww with real-
time measurements of y. This yields the primal-dual controller

λ̇ = Hy − Lw , u̇ = −kiGT(∇f0(y;w) +HTλ) , (39)

as in [26]. The feedback gain ki > 0 determines stability and
performance.

The controller (39) is a special case of the generic OSS
controller. We may rewrite (39) as

λ̇ = Hy − Lw
ε = GT(∇f0(y;w) +HTλ)

η̇ = ε

u = −kiη .
(40)

In (40), the controller (39) has been decomposed into an
optimality model with state λ and output ε, an integrator η,
and a constant-gain stabilizer. Whatever the performance of
the primal-dual controller, the OSS framework may be applied
to design a controller that achieves better performance through
modification of the optimality model, stabilizer, or both. For
instance, one can add a proportional term to the stabilizer,
yielding an OSS controller of the form (40) with modified
input equation u = −kiη − kpε, where kp is the proportional
gain. The additional degree of design freedom allows us to
improve the behaviour of the closed-loop system.

Fig. 5: Simulation plot for the example of Section V-E of the cost
1
2
y(t)TMy(t) for the primal-dual controller and the OSS controller

when w(t) is the unit step function.

The following numerical example illustrates the difference
between the preceding primal-dual controller and OSS con-
troller. Using the OSS control architecture, we can modify
the stability and tracking performance of the plant through
the stabilizer, while this is not the case for the primal-dual
controller (39); hence, for the purpose of making a fair compar-
ison, suppose that we have already designed and implemented
an effective tracking controller so that we may approximate
the plant by its DC gain, i.e. y(t) = Gu(t) + Gww(t).
Assume the optimization problem (38) has objective function
f0(y;w) := 1

2y
TMy and matrices

M :=

0.1 0 0
0 0.2 0
0 0 0.3

 , G :=

1 0
0 1
0 1

 , Gw :=

1
2
3

 ,
H :=

[
1 1 1

]
, L := 0 .

Setting {ki = 1} in the primal-dual controller (39) and {ki =
1, kp = 1} in the OSS controller (40) with u = −kiη − kpε)
yields the behaviour shown in Figure 5 when w(t) is the
unit step function. The primal-dual controller causes the cost
function to oscillate many times before settling to its optimal
value, while the OSS controller smoothly guides the system to
the optimizer.

F. Optimal Frequency Regulation in Power Systems

This final section illustrates the application of our theory
to a power system control problem. Our main objective is to
work through the constructions presented in Section IV, and to
simultaneously illustrate the many sources of design flexibility
within our proposed framework. In particular, we will show
that several centralized and distributed frequency controllers
proposed in the literature are recoverable as special cases of
our framework. The following example also demonstrates that
the robust feasible subspace property may hold even when the
robust output subspace property fails.
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The dynamics of synchronous generators in a connected
AC power network with n buses and nt transmission lines
is modelled in a reduced-network framework by the swing
equations. The vectors of angular frequency (deviations from
nominal) ω ∈ Rn and real power flows p ∈ Rnt along the
transmission lines obey the dynamic equations

M(δ)ω̇ = P ? −D(δ)ω −Ap+ u

ṗ = B(δ)ATω,
(41)

in which M(δ) � 0 is the (diagonal) inertia matrix, D(δ) � 0
is the (diagonal) damping matrix, A ∈ {0, 1,−1}n×nt is the
signed node-edge incidence matrix of the network, B(δ) � 0 is
the diagonal matrix of transmission line susceptances,P ? ∈ Rn
is the vector of uncontrolled power injections (generation
minus demand) at the buses, and u ∈ Rn is the controllable
reserve power produced by the generators. The incidence
matrix satisfies nullAT = span(1n), and strictly for simplicity
we assume that the network is acyclic, in which case nt = n−1
and nullA = {0}. The vector δ lists the diagonal elements
of the inertia, damping, and branch susceptance matrices; the
elements of δ are uncertain positive real numbers. See [44,
Section VII] for a first-principles derivation of this model.

We consider the optimal frequency regulation problem
(OFRP), wherein we minimize the total cost

∑
i Ji(ui) of

reserve power production in the system subject to system
equilibrium and zero steady-state frequency deviations:

minimize
u∈Rn,ω∈Rn

J(u) :=
∑n

i=1
Ji(ui)

subject to G⊥(δ) col(u, ω) = b(w, δ)

Fω = 0.

(42)

We shall compute the matrix G⊥(δ) of the equilibrium con-
straints shortly; the vector b(w, δ) is unimportant for controller
design. The matrix F encodes the steady-state frequency
constraint. We will specify the requirements on F later in
this section.

With state vector x := col(ω, p), the dynamics (41) can be
put into the standard LTI form (6) with matrices

A(δ) :=

[
−M(δ)−1D(δ) −M(δ)−1A
B(δ)AT 0

]
B(δ) :=

[
M(δ)−1

0

]
Bw(δ) :=

[
M(δ)−1

0

]
.

We identify the optimization output as y := col(u, ω). There-
fore

C :=

[
0 0
In 0

]
D :=

[
In
0

]
. (43)

We assume the measured output is given by ym = col(u, Fω).
We first check whether the robust output subspace property

(Definition 4.4) holds by constructing the matrix G(δ) as
outlined in Lemma 3.4. We construct a matrix N (δ) satisfying
rangeN (δ) = null

[
A(δ) B(δ)

]
. One may verify that

choosing

N (δ) :=

 1n 0
0 In

D(δ)1n A

 (44)

yields the required property. Using (44) and (43), we calculate
G(δ) =

[
C D

]
N (δ) to be

G(δ) =

[
D(δ)1n A

1n 0

]
.

The subspace rangeG(δ) varies with δ, and therefore there
cannot exist a fixed matrix G0 such that rangeG(δ) =
rangeG0 for all δ. However, it is still possible that the robust
feasible subspace property holds. To check whether this is the
case, we first construct a full-row-rank matrix G⊥(δ) ∈ Rn×2n
satisfying nullG⊥(δ) = rangeG(δ). We find that selecting

G⊥(δ) :=
[
1n1T

n −(1T
nD(δ)1n)In

]
yields the required property. We identify the matrix H of the
engineering equality constraints in (11) for the problem (42) as
H :=

[
0 F

]
. Following Definition 4.3, we now ask whether

there exists a fixed matrix T0 such that

rangeT0 = null

[
1n1T

n −(1T
nD(δ)1n)In

0 F

]
(45)

for all δ. The null space on the right-hand side of (45) is
spanned by vectors of the form col(v,0) where 1T

nv = 0.
Inspired by approaches in multi-agent control, we introduce a
connected, weighted and directed communication graph Gc =
({1, . . . , n}, Ec) between the buses, with associated Laplacian
matrix Lc ∈ Rn×n. We assume the directed graph Gc contains
a globally reachable node.3 Under this assumption, (45) holds
with T0 =

[
LT

c
0

]
. Therefore, the optimization problem satisfies

the robust feasible subspace property.
The Laplacian matrix Lc has a left null space of dimension

one spanned by some nonnegative vector w ∈ Rn. Assuming
that F is selected such that wTF1n 6= 0, the range condition of
Proposition 4.11 is satisfied. Hence, with an appropriate choice
of F , we may apply the reduced-error RFS-OM to obtain the
optimality model

ε = Fω + Lc∇J(u). (46)

Therefore, one option for an OSS controller is

η̇ = Fω + Lc∇J(u) (47a)
u = −K1η1 −K2η2 −K3ω, (47b)

where K1, K2, and K3 are gain matrices that should be
selected for closed-loop stability/performance. If the objective
function J is a positive definite quadratic, one can show that
the augmented plant comprising (41) and (47a) is stabilizable
and detectable using Proposition 4.16. With F := In, K1 =
K2 = 1

k In for k > 0, and K3 = 0, this design reduces to the
distributed-averaging proportional-integral (DAPI) frequency
control scheme; see [6], [46], [47].

We can obtain several other control schemes by instead
applying the RFS-OM as our optimality model. Let F := cT,
where c is a vector of convex combination coefficients satis-
fying ci ≥ 0 and

∑n
i=1 ci = 1. Define L̃c ∈ R(n−1)×n as the

matrix obtained by eliminating the first row from Lc and set

3See [45, Chapter 6] for details.
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T0 :=
[
L̃T

c
0

]
. This choice of T0 satisfies (45). The RFS-OM

yields the optimality model

ε =

[
cTω

L̃c∇J(u)

]
. (48)

By integrating both components of ε and choosing to
use pure integral feedback for the stabilizer, one obtains the
controller

η̇1 = cTω (49a)

η̇2 = L̃c∇J(u) (49b)
u = −K1η1 −K2η2 −K3ω. (49c)

The interpretation of this (novel) controller is that one agent
collects frequency measurements and implements the integral
control (49a), while the other agents average their marginal
costs via (49b). If the objective function J is a positive
definite quadratic, one can show that the augmented plant
comprising (41), (49a), and (49b) is stabilizable and detectable
using Proposition 4.14.

We can also recover the gather-and-broadcast scheme of [8]
from the optimality model (48) as follows. Assume that each
Ji is strictly convex, and retain the integral controller (49a).
Next, using the fact that null L̃c = span(1n), select the input
u to zero the second component of ε:

L̃c∇J(u) = 0 ⇐⇒ ∃α ∈ R s.t. ∇J(u) = α1n
⇐⇒ ∃α ∈ R s.t. u = (∇J)−1(α1n).

Selecting α = η leads to the hierarchical gather-and-broadcast
controller

η̇ =
∑n

i=1
ciωi, ui(t) = (∇Ji)−1(η(t)). (50)

In summary, several recent frequency control schemes, and
the novel scheme (49), can be recovered as special cases
of our general control framework. The full potential of our
methodology for the design of improved power system control
will be an area for future study.

V I . C O N C L U S I O N S

We have studied in detail the linear-convex OSS control
problem, wherein we design a controller to guide an LTI
system to the solution of an optimization problem despite
unknown, constant exogenous disturbances and parametric
uncertainty in the plant model. We introduced the idea of
an optimality model, the existence of which allows us to
reduce the OSS control problem to a stabilization problem, and
discussed methodologies for the design of optimality models
and stabilizers. We then demonstrated the increased generality
of the OSS control framework by comparing it to existing
frameworks in the literature.

Future work will present the analogous discrete-time and
sampled-data OSS control problems, along with a more de-
tailed study of applications in power system control. A large
number of open problems and directions, including but not
limited to: OSS control for nonlinear systems subject to
time-varying disturbances, flexibility of the framework for
distributed/decentralized control, formulations and solutions

of hierarchical, competitive, and approximate OSS control
problems, and the application of the OSS control framework
to the design of new optimization algorithms.
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A P P E N D I X

Proof of Theorem 4.2: By assumption, the closed-loop system
(15) and (16) is well-posed and possesses a globally asymptot-
ically stable equilibrium point for each (w, δ); hence, the first
two requirements of the OSS control problem are satisfied. It
remains to show that limt→∞ y(t) = y?(w, δ) for each (w, δ)
and every initial condition.

Because the closed-loop system possesses a globally asymp-
totically stable equilibrium point for each (w, δ), there exists
a unique solution (x̄, ξ̄, η̄, x̄s) to the steady-state equations

0 = A(δ)x̄+B(δ)ū+Bw(δ)w

ȳm = hm(x̄, ū, w, δ)

0 = ϕ(ξ̄, ȳm)

0 = hε(ξ̄, ȳm)

0 = fs(x̄s, η̄, ξ̄, ȳm,0)

ū = hs(x̄s, η̄, ξ̄, ȳm,0)

for each (w, δ). Since (ϕ, hε) is an optimality model, the pair
(x̄, ū) satisfies y?(w, δ) = C(δ)x̄+D(δ)ū+Q(δ)w. Because
this equilibrium point attracts all trajectories of the closed-loop
system and y(t) is continuous since the system is well-posed,
it must be the case that limt→∞ y(t) = y?(w, δ) for every
(w, δ) and every initial condition. Therefore, the controller
(15b), (15c), (16a), (16b) solves the OSS control problem. �

Proof of Proposition 4.11: For each (w, δ), consider the
solutions (x̄, ν̄, ū) to

0 = A(δ)x̄+B(δ)ū+Bw(δ)w (51a)
ȳ = C(δ)x̄+D(δ)ū+Q(δ)w (51b)
0 = ϕν(ν̄, f(y;w)) (51c)

0 = Hȳ − Lw + TT
0

(
∇f0(ȳ;w) +

nic∑
i=1

ν̄i∇fi(ȳ;w)

)
.

(51d)

The equations (51) correspond to the equations (14) in the
definition of an optimality model. By assumption, the feasible
region of the optimization problem (11) is non-empty: hence,
there exists a y(w, δ) such that

G⊥(δ)y(w, δ) = b(w, δ), Hy(w, δ) = Lw.

Equations (51a) and (51b) imply that G⊥(δ)ȳ = b(w, δ).
Hence, there exists a v such that ȳ = y(w, δ)+G(δ)v. Equation
(51d) and the fact that Hy(w, δ) = Lw then imply

0 = HG(δ)v + TT
0

(
∇f0(ȳ;w) +

nic∑
i=1

ν̄i∇fi(ȳ;w)

)
. (52)

Since
rangeHG(δ) ∩ rangeTT

0 = {0} (53)

for all δ ∈ δ, (52) and (53) imply

0 = HG(δ)v

0 = TT
0

(
∇f0(ȳ;w) +

∑nic

i=1
ν̄i∇fi(ȳ;w)

)
for every (w, δ). Since Hȳ − Lw = HG(δ)v,

0 = Hȳ − Lw

0 = TT
0

(
∇f0(ȳ;w) +

∑nic

i=1
ν̄i∇fi(ȳ;w)

)

http://motion.me.ucsb.edu/book-lns
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for every (w, δ). The remainder of the proof proceeds like the
proof of Proposition 4.9. �

Proof of Proposition 4.14: We evaluate stabilizability and
detectability of the augmented system via Theorem 2.2. We
will make use of the following lemma.

Lemma A.1 (Unique Solution): Suppose the optimization
problem

minimize
y∈Rp

1
2y

TMy − yTNw

subject to G⊥(δ)y = b(w, δ)

Hy = Lw

(54)

with M � 0 is feasible and satisfies the robust feasible
subspace property. Let T0 ∈ Rp×• be any matrix satisfying
rangeT0 = null

[
G⊥(δ)
H

]
. Then (54) has a unique optimizer

if and only if vTMv > 0 for all non-zero v ∈ rangeT0.

Proof: Fix a member ỹ(w, δ) of the feasible set of (54). Since
rangeT0 = null

[
G⊥(δ)
H

]
, we can rewrite the optimization

problem (54) as

minimize
y∈Rp, v∈rangeT0

1
2y

TMy − yTNw

subject to y = ỹ(w, δ) + v ,
(55)

where v ∈ rangeT0 is a new decision variable which is in
one-to-one correspondence with y. Eliminating y we obtain
the equivalent problem

minimize
v∈rangeT0

1
2v

TMv + vT(Mỹ(w, δ)−Nw)

+ ỹ(w, δ)T (Mỹ(w, δ)−Nw) .
(56)

The unconstrained QP (56) has a unique optimizer v? if and
only if M � 0 on rangeT0 and the result follows. �

We move on to the main proof. Condition (i) of Proposition
4.14 is exactly condition (i) of Theorem 2.2. We show the
remaining conditions of Proposition 4.14 are equivalent to
condition (ii) of Theorem 2.2. Fix a δ ∈ δ and define the
matrices N (δ), G(δ), and G⊥(δ) as done in Section III. The
augmented plant using the RFS-OM is

ẋ = A(δ)x+B(δ)u+Bw(δ)w

η̇ =

[
HC(δ)

TT
0 MC(δ)

]
x+

[
HD(δ)

TT
0 MD(δ)

]
u−

[
L

TT
0 N

]
w.

Therefore, we examine whether the matrix

RRFS :=

[
In 0

0
[

H
TT
0M

] ] [A(δ) B(δ)
C(δ) D(δ)

]
(57)

is full row rank. Let col(α, β, γ) ∈ nullRT
RFS, so that[

α
HTβ +MT0γ

]T [
A(δ) B(δ)
C(δ) D(δ)

]
= 0. (58)

Multiplying on the right by N (δ) and recalling that
rangeN (δ) = null

[
A(δ) B(δ)

]
and also that G(δ) =[

C(δ) D(δ)
]
N (δ), we find

(HTβ +MT0γ)TG(δ) = 0. (59)

Hence, HTβ + MT0γ ∈ (rangeG(δ))⊥. Because
(rangeG(δ))⊥ = rangeG⊥(δ)T by the definition of G⊥(δ),
the above is equivalent to the existence of a vector v such that

HTβ +MT0γ = G⊥(δ)Tv. (60)

Recall that rangeT0 = (nullG⊥(δ)) ∩ (nullH), so
G⊥(δ)T0 = 0 and HT0 = 0. Multiplying (60) on the left
by γTTT

0 we find

γTTT
0 MT0γ = 0. (61)

For the sufficient direction, we show that if conditions
(ii),(iii),(iv) hold, then col(α, β, γ) = 0, i.e., the left null space
of the matrix (57) is empty, and therefore the matrix is full row
rank. From conditions (iii) and (iv), it follows by Lemma A.1
that the matrix TT

0 MT0 is positive definite and hence γ = 0.
Equation (60) then implies that[

v −β
]T [G⊥(δ)

H

]
= 0. (62)

By condition (ii) the constraints of the problem (29) are
nonredundant, and hence (62) implies that v = 0 and β = 0.
Equation (58) then implies that

αT
[
A(δ) B(δ)

]
= 0.

Since (A(δ), B(δ)) is stabilizable, the left null space of[
A(δ) B(δ)

]
is empty. Therefore α = 0 and we conclude

that RRFS has full row rank.
For the necessary direction, we show that if any one

of the conditions (ii),(iii),(iv) fail, then we can construct
col(α, β, γ) 6= 0 satisfying (58). Suppose (ii) fails, so there
exists a nonzero solution to (62). It cannot be the case that
β = 0, for then v would be zero since G⊥(δ) is full row rank
by construction. As a result, if we set γ := 0, (59) implies that
there exists a β̄ 6= 0 such that β̄THG(δ) = 0. We observe

β̄THG(δ) =
[
β̄THC(δ) β̄THD(δ)

]
N (δ) = 0. (63)

Since rangeN (δ) = null
[
A(δ) B(δ)

]
, the preceding im-

plies that[
C(δ)THTβ̄
D(δ)THTβ̄

]
∈
(
null

[
A(δ) B(δ)

])⊥
= range

[
A(δ)T

B(δ)T

]
.

As a result, a solution ᾱ exists to[
C(δ)THTβ̄
D(δ)THTβ̄

]
=

[
A(δ)T

B(δ)T

]
ᾱ.

Let ᾱ satisfy the above. Then col(α, β, γ) := col(−ᾱ, β̄,0)
satisfies (58). Next, if (iii) fails, then there exists a γ̄ 6= 0
such that γ̄TTT

0 MT0γ̄ = 0 by Lemma A.1. Moreover, this
γ̄ satisfies MT0γ̄ = 0. To see this, note that since M is
positive semidefinite, M has a positive semidefinite square
root P satisfying M = PTP [48]. Hence

γ̄TTT
0 MT0γ̄ = γ̄TTT

0 P
TPT0γ̄ = ‖PT0γ̄‖2 ,

from which we can infer that MT0γ̄ = PT(PT0γ̄) = 0. It
follows that the vector col(α, β, γ) := col(0,0, γ̄) satisfies
(58). Finally, if (iv) fails, then there exists a γ̄ 6= 0 such that
T0γ̄ = 0. It follows that the vector col(α, β, γ) := col(0,0, γ̄)
satisfies (58). �
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Proof of Proposition 4.15: We evaluate stabilizability and
detectability of the augmented system via Theorem 2.2. Condi-
tion (i) of Proposition 4.15 is exactly condition (i) of Theorem
2.2. We show the remaining conditions of Proposition 4.15 are
equivalent to condition (ii) of Theorem 2.2.

Fix a δ ∈ δ. Define the matrices N (δ), G(δ), and G⊥(δ)
as done in Section III. Let T0 be a full column rank matrix
satisfying (20).

The augmented plant using the ROS-OM is

ẋ = A(δ)x+ 0µ+B(δ)u+Bw(δ)w

µ̇ = HC(δ)x+ 0µ+HD(δ)u− Lw
η̇ = GT

0MC(δ)x+GT
0H

Tµ+GT
0MD(δ)u−GT

0Nw.

Therefore, we examine whether the matrix A(δ) 0 B(δ)
HC(δ) 0 HD(δ)

GT
0MC(δ) GT

0H
T GT

0MD(δ)

 (64)

is full row rank. Let col(α, β, γ) be a member of the left null
space of (64), so thatαβ

γ

T  A(δ) 0 B(δ)
HC(δ) 0 HD(δ)

GT
0MC(δ) GT

0H
T GT

0MD(δ)

 = 0. (65)

One may rewrite the above equivalently as[
α

HTβ +MG0γ

]T [
A(δ) B(δ)
C(δ) D(δ)

]
= 0 (66a)

HG0γ = 0. (66b)

Multiplying (66a) on the right by N (δ) and recalling that
rangeN (δ) = null

[
A(δ) B(δ)

]
and also that G(δ) =[

C(δ) D(δ)
]
N (δ), we find

(HTβ +MG0γ)TG(δ) = 0.

Hence, HTβ + MT0γ ∈ (rangeG(δ))⊥. Recalling that
rangeG0 = rangeG(δ), the vector pair (β, γ) satisfies the
above if and only if (β, γ) satisfies

(HTβ +MG0γ)TG0 = 0.

We multiply on the left and right by γ and make use of (66b)
to find

γTGT
0MG0γ = 0. (67)

By (66b) we have that G0γ ∈ nullH . By definition, G0γ ∈
nullG⊥(δ) also. Since rangeT0 = (nullG⊥(δ))∩(nullH),
there exists a vector v such that G0γ = T0v. Using (67), this
v satisfies

vTTT
0 MT0v = 0.

The remainder of the proof proceeds like the proof of Propo-
sition 4.14 following equation (61). �

Proof of Proposition 4.16: To begin we proceed as in the proof
of Proposition 4.14. The augmented plant using the reduced-
error RFS-OM is
ẋ = A(δ)x+B(δ)u+Bw(δ)w

η̇ = (HC(δ) + TT
0 MC(δ))x+ (HD(δ) + TT

0 MD(δ))u

− (Lw + TT
0 N)w.

Therefore, we examine whether the matrix

Rre :=

[
I 0
0 H + TT

0 M

] [
A(δ) B(δ)
C(δ) D(δ)

]
(68)

is full row rank. Let col(α, β) ∈ nullRT
re, which is equivalent

to the equations[
αT

βT(H + TT
0 M)

] [
A(δ) B(δ)
C(δ) D(δ)

]
= 0 (69)

Multiplying on the right by N (δ) and recalling that
rangeN (δ) = null

[
A(δ) B(δ)

]
and also that G(δ) =[

C(δ) D(δ)
]
N (δ), we find

βT(H + TT
0 M)G(δ) = 0. (70)

Hence, HTβ + MT0β ∈ (rangeG(δ))⊥. Because
(rangeG(δ))⊥ = rangeG⊥(δ)T by the definition of G⊥(δ),
(70) is equivalent to the existence of a vector v such that

HTβ +MT0β = G⊥(δ)Tv. (71)

Recall that rangeT0 = (nullG⊥(δ)) ∩ (nullH), so
G⊥(δ)T0 = 0 and HT0 = 0. Multiplying (71) on the left
by βTTT

0 , we find that βTTT
0 MT0β = 0.

For the sufficient direction, we show that if conditions
(ii),(iii) hold then col(α, β) = 0, i.e., the left null space
of the matrix (68) is empty, and therefore the matrix is
full row rank. By Lemma A.1, condition (ii) implies M is
positive definite on rangeT0, so it follows from the above
that T0β = 0, or equivalently that β ∈ (rangeTT

0 )⊥. It
follows then from (70) that βTHG(δ) = 0, implying that
β ∈ (rangeHG(δ))⊥ also. From condition (iii) we have
(rangeHG(δ))⊥∩(rangeTT

0 )⊥ = {0}, so we conclude that
β = 0. Equation (69) then reads αT

[
A(δ) B(δ)

]
= 0, from

which we conclude α = 0 since (A(δ), B(δ)) is stabilizable.
For the necessary direction, we show that if any one of

the conditions (ii),(iii) fails, then we can construct a vector
col(α, β) 6= 0 satisfying (69). Suppose (ii) fails, so that by
Lemma A.1, there exists a β̄ 6= 0 such that β̄TTT

0 MT0β̄ = 0
but T0β̄ 6= 0. Equation (70) implies that a solution ᾱ exists to[

C(δ)T(HTβ̄ +MT0β̄)
D(δ)T(HTβ̄ +MT0β̄)

]
=

[
A(δ)T

B(δ)T

]
ᾱ

using the same reasoning as in the proof of Proposition 4.14
following (63). With such an ᾱ, col(α, β) := col(−ᾱ, β̄)
satisfies (69).

Now suppose (iii) fails. Then there exists a β̄ 6= 0 such
that T0β̄ = 0 and β̄THG(δ) = 0. The same reasoning as the
proof of Proposition 4.14 following (63) shows that a solution
ᾱ exists to [

C(δ)THTβ̄
D(δ)THTβ̄

]
=

[
A(δ)T

B(δ)T

]
ᾱ.

With such an ᾱ, col(α, β) := col(−ᾱ, β̄) satisfies (69). �
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