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Abstract—A widely embraced approach to mitigate the dy-
namic degradation in low-inertia power systems is to mimic
generation response using grid-connected inverters to restore
the grid’s stiffness. In this paper, we seek to challenge this
approach and advocate for a principled design based on a
systematic analysis of the performance trade-offs of inverter-
based frequency control. With this aim, we perform a qualitative
and quantitative study comparing the effect of conventional
control strategies —droop control (DC) and virtual inertia (VI)-
on several performance metrics induced by £, and L. signal
norms. By extending a recently proposed modal decomposition
method, we capture the effect of step and stochastic power
disturbances, and frequency measurement noise, on the overall
transient and steady-state behavior of the system. Our analysis
unveils several limitations of these solutions, such as the in-
ability of DC to improve dynamic frequency response without
increasing steady-state control effort, or the large frequency
variance that VI introduces in the presence of measurement
noise. We further propose a novel dynam-i-c Droop controller
(iDroop) that overcomes the limitations of DC and VI. More
precisely, we show that iDroop can be tuned to achieve high
noise rejection, fast system-wide synchronization, or frequency
overshoot (Nadir) elimination without affecting the steady-state
control effort share, and propose a tuning recommendation that
strikes a balance among these objectives. Extensive numerical
experimentation shows that the proposed tuning is effective even
when our proportionality assumptions are not valid, and that
the particular tuning used for Nadir elimination strikes a good
trade-off among various performance metrics.

I. INTRODUCTION

The shift from conventional synchronous generation to
renewable converter-based sources has recently led to a no-
ticeable degradation of the power system frequency dynamics
[3]. At the center of this problem is the reduction of the
system-wide inertia that accentuates frequency fluctuations
in response to disturbances [4], [S]. Besides increasing the
risk of frequency instabilities and blackouts [6], this dynamic
degradation also places limits on the total amount of renewable
generation that can be sustained by the grid [7]. Ireland, for
instance, is already resorting to wind curtailment whenever
wind becomes larger than 50% of existing demand in order to
preserve the grid stability [8].

A widely embraced approach to mitigate this problem is to
mimic synchronous generation response using grid-connected
converters [9]. That is, to introduce virtual inertia to restore
the stiffness that the system used to enjoy [10]. Notable works
within this line of research focus on leveraging computational
methods [11]-[13] to efficiently allocate synthetic inertial
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or droop response, or analytical methods that characterize
the sensitivity of different performance metrics to global or
spatial variations of system parameters [14]-[16]. However,
to this day, it is unclear whether this particular choice of
control is the most suitable for the task. On the one hand,
unlike synchronous generators that leverage stored kinetic
energy to modulate electric power injection, converter-based
controllers need to actively change their power injection based
on noisy measurements of frequency or power. On the other
hand, converter-based control can be significantly faster than
conventional generators. Therefore, using converters to mimic
generator behavior does not take advantage of their full
potential. In this paper, we seek to challenge this approach of
mimicking generation response and advocate for a principled
control design perspective.

To achieve this goal, we build on recent efforts by the
control community on quantifying power network dynamic
performance using L5 and L., norms [11], [17], and perform
a systematic study evaluating the effect of different control
strategies, such as droop control (DC) [18] and virtual inertia
(VD [19], on a set of static and dynamic figures of merits that
are practically relevant from the power engineering standpoint.
More precisely, under a mild —yet insightful— proportionality
assumption, we compute closed form solutions and sensi-
tivities of controller parameters on the steady-state control
effort share, frequency Nadir, £o-synchronization cost, and
frequency variance of the response of a power network to step
and stochastic disturbances. Our analysis unveils the inability
of DC and VI to cope with seemingly opposing objectives,
such as synchronization cost reduction without increasing
steady-state effort share (DC), or frequency Nadir reduction
without high frequency variance (VI). Therefore, rather than
clinging to the idea of efficiently allocating synthetic inertia
or droop, we advocate the search of a better solution.

To this end, we propose novel dynam-i-c Droop (iDroop)
control —inspired by classical lead/lag compensation— which
outperforms current control strategies (VI and DC) in an
overall sense. More precisely:

« Unlike DC that sacrifices steady-state effort share to improve
dynamic performance, the added degrees of iDroop allow
to decouple steady-state effort from dynamic performance
improvement.

o Unlike VI that amplifies frequency measurement noise, the
lead/lag property of iDroop makes it less sensitive to noise
and power disturbances, as measured by the Ho norm [20]
of the input-output system defined from measurement noise
and power fluctuations to frequency deviations.

« iDroop can further be tuned to either eliminate the frequency
Nadir, by compensating for the turbine lag, or to eliminate
synchronization cost; a feature shown to be unattainable by
virtual inertia control.

All of above properties are attained through rigorous analy-
sis on explicit expressions for performance metrics that are



achieved under a mild yet insightful proportionality assump-
tion that generalizes prior work [1], [2].

We further validate our analysis through extensive numerical
simulations, performed on a low-inertia system —the Icelandic
Grid— that does not satisfy our parameter assumptions. Our
numerical results also show that iDroop with the Nadir elim-
inated tuning designed based on the proportional parameter
assumption works well even in environments with mixed step
and stochastic disturbances.

The rest of this paper is organized as follows. Section II
describes the power network model and defines performance
metrics. Section III introduces our assumptions and a sys-
tem diagonalization that eases the computations and derives
some generic results that provide a foundation for further
performance analysis. Section IV analyzes both steady-state
and dynamic performance of DC and VI, illustrates their
limitations, and motivates the need for a new control strategy.
Section V describes the proposed iDroop and shows how it
outperforms DC and VI from different perspectives. Section VI
validates our results through detailed simulations. Section VII
concludes the paper.

II. PRELIMINARIES

A. Power System Model

We consider a connected power network composed of n
buses indexed by i € V := {1,...,n} and transmission
lines denoted by unordered pairs {i,j} € &, where £ is a
set of 2-element subsets of V. As illustrated by the block
diagram in Fig. 1, the system dynamics are modeled as
a feedback interconnection of bus dynamics and network
dynamics. The input signals p;, := (pin’i,i €V) € R
and dp, := (dp;,i € V) € R™ represent power injection set
point changes and power fluctuations around the set point,
respectively, and n,, = (n,,;,7 € V) € R™ represents fre-
quency measurement noise. The weighting functions Wp(s)
and W, (s) can be used to adjust the size of these disturbances
in the usual way. The output signal w := (w;,i € V) € R”
represents the bus frequency deviation from its nominal value.
We now discuss the dynamic elements in more detail.

1) Bus Dynamics: The bus dynamics that maps the net
power bus imbalance up = (up;,i€V) € R” to the
vector of frequency deviations w can be described as a
feedback loop that comprises a forward-path G(s) and a
feedback-path C(s), where G(s) := diag (g;(s),i € V) and
C(s) := diag (¢;(s),i € V) are the transfer function matrices
of generators and inverters, respectively.

a) Generator Dynamics: The generator dynamics are
composed of the standard swing equations with a turbine, i.e.,

mw; = —d;w; + qr; + Gy i + Uup (D

where m; > 0 denotes the aggregate generator inertia, d; > 0
the aggregate generator damping, g ; the controllable input
power produced by the grid-connected inverter, and ¢ ; the
change in the mechanical power output of the turbine. The
turbine does not react to the frequency deviation w; until it
exceeds a preset threshold w, > 0, i.e.,

Tilt,i = P, (wz) — Qt,i ()

dy Bus Dynamics
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Fig. 1: Block diagram of power network.

with
*Tt_,il(wi twe) wi < —we
P, (wi) =<0 —we < wi < We
_Tt_,il (Wi —we) Wi > we

where 7; > 0 represents the turbine time constant and 7 ; > 0
the turbine droop coefficient.

Two special cases of our interest are:

Generator Dynamics 1 (Standard swing dynamics). When
|wi(t)| < we, the turbines are not triggered and the generator
dynamics can be described by the transfer function

R 1
gi(s) = st d 3

which is exactly the standard swing dynamics.
Generator Dynamics 2 (Second-order turbine dynamics).

When we = 0, the turbines are constantly triggered and the
generator dynamics can be described by the transfer function

TiS-l-].
T 2 ) o } -1 )
iTis? + (my +dim) s+ d; + Tei

gi(s) =

b) Inverter Dynamics: Since power electronics are sig-
nificantly faster than the electro-mechanical dynamics of gen-
erators, we assume that each inverter measures the local grid
frequency deviation w; and instantaneously updates the output
power g, ;. Different control laws can be used to map w; to
qr,;- We represent such laws using a transfer function & (s).
The two most common ones are:

Inverter Dynamics 1 (Droop Control). This control law can
provide additional droop capabilities and is given by

éi(s) =—r}, (5)

g

where 1. ; > 0 is the droop coefficient.



Inverter Dynamics 2 (Virtual Inertia). Besides providing
additional droop capabilities, this control law can compensate
the loss of inertia and is given by

. —1
éi(s) = — (mm-s + Tr,i) , (6)
where m., ; > 0 is the virtual inertia constant.

2) Network Dynamics: The network power fluctuations
Pe = (Dey,i €V) € R™ are given by a linearized model
of the power flow equations [21]:

L
Pe(s) = —>6(s) . @

where p.(s) and @(s) denote the Laplace transforms of pe
and w, respectively. The matrix Lg is an undirected weighted
Laplacian matrix of the network with elements

Lp.ij = 09, Y |Vil[V;|bi; sin(6; — 6,)

= 0=00

Here, 6 := (0;,i € V) € R™ denotes the angle deviation from
its nominal, 6y := (6,7 € V) € R™ are the equilibrium
angles, |V;| is the (constant) voltage magnitude at bus 4, and
b;j is the line {7,j} susceptance.

3) Closed-loop Dynamics: We will investigate the closed-
loop responses of the system in Fig. 1 from the power injection
set point changes pj,, the power fluctuations around the set
point d,, and frequency measurement noise n,, to frequency
deviations w, which can be described compactly by the transfer
function matrix

T(S) = Twp(s) den(s) = [de(s) Twn(s)]] : (8)

Remark 1 (Model Assumptions). The linearized network
model (8) implicitly makes the following assumptions which
are standard and well-justified for frequency control on trans-
mission networks [22]:

e Bus voltage magnitudes |V;|’s are constant; we are not
modeling the dynamics of exciters used for voltage control;
these are assumed to operate at a much faster time-scale.

e Lines {i,j} are lossless.

e Reactive power flows do not affect bus voltage phase angles
and frequencies.

o Without loss of generality, the equilibrium angle difference
(00,; — 00.;) accross each line is less than /2.

For a first principle derivation of the model we refer to [23,
Section VII]. For applications of similar models for frequency
control within the control literature, see, e.g., [24]-[26].

Remark 2 (Internal Stability of (8)). Throughout this paper
we consider feedback interconnections of positive real and
strictly positive real subsystems. Internal stability follows
from classical results [27]. Since the focus of this paper is
on performance, we do not discuss internal stability here
in detail. We refer to the reader to [28], for a thorough
treatment of similar feedback interconnections. From now on
a standing assumption —that can be verified— is that feedback
interconnection described in Fig. 1 is internally stable.

'We use hat to distinguish the Laplace transform from its time domain
counterpart.

B. Performance Metrics

Having considered the model of the power network, we are
now ready to introduce performance metrics used in this paper
to compare different inverter control laws.

1) Steady-state Effort Share: This metric measures the
fraction of the power imbalance addressed by inverters, which
is calculated as the absolute value of the ratio between the in-
verter steady-state input power and the total power imbalance,
ie.,

ES = ’Zin—l G(0wsns| )

Zizl pin,i(0+)

when the system Twp undergoes a step change in power
excitation. Here, ¢;(0) is the dc gain of the inverter and wgs ;
is the steady-state frequency deviation.

2) Power Fluctuations and Measurement Noise: This met-
ric measures how the relative intensity of power fluctuations
and measurement noise affect the frequency deviations, as
quantified by the H, norm of the transfer function 7;,qy:

HdenH%Lz (10)
1 [ . . .
— / tr (den(jw)*den(jw)> dw if Toan is stable,
=2m)_
00 otherwise.2

The quantity ||7},qx|/2, has several standard interpretations in
terms of the input-output behavior of the system 7.4, [20].
In particular, in the stochastic setting, when the disturbance
signals d, ; and n,, ; are independent, zero mean, unit variance,
white noise, then lim;_,o E [w(t)"w(t)] = || Tiwan||3,,- This
means that the sum of the steady-state variances in the output
of T,an in response to these disturbance equals the squared
Ho norm of T,,4q,. Thus the Ho norm gives a precise measure
of how the intensity of power fluctuations and measurement
noise affects the system’s frequency deviations.

3) Synchronization Cost: This metric measures the size of
individual bus deviations from the synchronous response when
the system 7T, is subject to a step change in power excitation
given by pi, = uol;>0 € R", where ug € R™ is a given
vector direction and 1,>¢ is the unit-step function [17]. This is
quantified by the squared £ norm of the vector of deviations
w:i=w—wl, € R ie.,

[k ;:Z/O @i (t)2dt .
=1

Here, & := (>, miw;) / (3.1, m;) is the system frequency
that corresponds to the inertia-weighted average of bus fre-
quency deviations and 1,, € R" is the vector of all ones.

4) Nadir: This metric measures the minimum post-
contingency frequency of a power system, which can be
quantified by the L., norm of the system frequency @, i.e.,

(12)

(1)

I0lloc += max|@(t)]

when the system Twp has as input a step change in power
excitation [17], i.e., pin = uoll¢>¢ € R™. This quantity matters
in that deeper Nadir increases the risk of under-frequency load
shedding and cascading outrages.

24 represents the imaginary unit which satisfies j2 =

represents the frequency variable.

—1 and w



III. RESULTS

In this section we show that under a simplifying assumption,
it is possible to compute all of the performance metrics
introduced in Section II-B analytically as functions of the
system parameters, which pave us a way to formally compare
the conventional control laws DC and VI in Section IV as well
as suggest an improved control law iDroop in Section V. We
remark that the assumptions are only used in the analysis, but
as we show in Section VI the insights and advantages of the
proposed solution are still there when these assumptions do
not hold.

A. Diagonalization

In order to make the analysis tractable, we require the
closed-loop transfer functions to be diagonalizable. This is
ensured by the following assumption, which is a generalization
of [15], [17].

Assumption 1 (Proportionality). There exists a proportion-
ality matrix F := diag (f;,i € V) € RLS" such that
G(s) = Go(s)F!

and  C(s) = éo(s)F

where §,(s) and ¢o(s) are called the representative generator
and the representative inverter, respectively.

Remark 3 (Proportionality parameters). The parameters
fi’s represent the individual machine rating. This definition
is rather arbitrary for our analysis, provided that Assumption
1 is satisfied. Other alternatives could include f; = m; or
fi = my/m where m is, for example, either the average
or maximum generator inertia. The practical relevance of
Assumption 1 is justified, for example, by the empirical values
reported in [29], which show that at least in regards of
order of magnitude, Assumption 1 is a reasonable first-cut
approximation to heterogeneity.

Under Assumption 1, the representative generator of (3) and

(4) are given by )

ms +d

g(,(S) = (13)

d
an Ts+1 3

stg—i—(m—i-dT)s—l—d—i—rt_l ’

go(s) = (14)
respectively, with m; = fim, d; = fid, r; = r/f;, and
Ti = T.

Similarly, the representative inverters of DC (5) and VI (6)
are given by
o(s) = =t (15)

and
éo(8) = — (mvs + rr_l) , (16)
with my; = fymy and r; = 7./ fi.
Using Assumption 1, we can derive a diagonalized version
of (8). First, we rewrite

G(s) = F 2 [go(s) L] F 2 and  C(s) = F2 [eo(s) [ F

N

3We use variables without subscript i to denote parameters of represen-
tative generator and inverter.

as shown in Fig. 2(a), and after a loop transformation obtain
Fig. 2(b). Then, we define the scaled Laplacian matrix

Lp:=F 2[pF™2 (17)

by grouping the terms in the upper block of Fig. 2(b). More-
over, since Ly € R™*"™ is symmetric positive semidefinite, it
is real orthogonally diagonalizable with non-negative eigenval-
ues [30]. Thus, there exists an orthogonal matrix V' € R™*™
with VIV = VVT = [,,, such that

Ly =VAVT (18)

where A := diag (A, k € {1,...,n}) € RL;™ with \; being
the kth eigenvalue of Ly ordered non-decreasingly (0 = \; <
Ae £ < M) ad Vo= (X0, fi) 2R, V]
with V| = [vg vn] composed by the eigenvector vy
associated with \.> Now, applying (17) and (18) to Fig. 2(b)
and rearranging blocks of V and V7 results in Fig. 2(c).
Finally, moving the block of é,(s)I,, ahead of the summing
junction and combining the two parallel paths produces Fig.
3, where the boxed part is fully diagonalized.

Now, by defining the closed-loop with a forward-path
Jo(8)I, and a feedback-path (A/s — é,(s)I,) as

H,(s) = diag (Ep’k(s), Eed{l,... ,n})

where ; - 3o (5) "
" L+ Go(s) (Ak/s = Co(s))
and H,,(s) = é(s)Hp(s), ie.,
A.(s) = diag (ﬁw,k(s), kell,... ,n})
where
heo 1o (8) = Co(8)hpi(s) | (20)

the closed-loop transfer functions from pi,, d,, and n,, to w
become

Toup(s) = F2VH,(s)VTF 7 | (21a)
Toals) = F 2VH,(s)VTF 2 W,(s),  (21b)
Ton(s) = F2VH,(s)VTF2 W, (s) @lc)

respectively.

Note that depending on the specific generator and inverter
dynamics involved, we may add subscripts in the name of a
transfer function without making a further declaration in the
rest of this paper. For example, we may add "T’ if the turbine
is triggered and "DC’ if the inverter operates in DC mode as

in hp,k,T,DC(s)'

B. Generic Results for Performance Metrics

We now derive some important building blocks required
for the performance analysis of the system 7' described in
(21). As described in Section II-B, the sensitivity to power
fluctuations and measurement noise can be evaluated through
the Ho norm of the system 7,4y, while the steady-state effort
share, synchronization cost, and Nadir can all be characterized

4Recall that we assume the power network is connected, which means
that Ly has a single eigenvalue at the origin.

SWe use k and [ to index dynamic modes but i and j to index bus
numbers.
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Fig. 3: Diagonalized block diagram of power network.

by a step response of the system Twp. There are two scenarios
that are of our interest.

Assumption 2 (Proportional weighting scenario).

o The noise weighting functions are given by
Wy(s) = IipF% and W (s) = ko F~2,

where k, > 0 and k,, > 0 are weighting constants.
o lwi(t)| < we, Vi €V and t > 0 such that turbines will not
be triggered.

Assumption 3 (Step input scenario).

e There is a step change as defined in Section II-B on the
power injection set point, i.e., pin = ugl>0, dp = Oy, and
ne = 0, with 0,, € R™ being the vector of all zeros.

o we = 0 such that turbines are constantly triggered.

Remark 4 (Weighting assumption). As a natural counter-
part of Assumption I, we look at the case when the power
fluctuations and measurement noise are weighted directly and
inversely proportional to the square root of the bus ratings,
respectively. In the case of Wy(s), this is equivalent to
assuming that demand fluctuation variances are proportional
to the bus ratings, which is in agreement with the central
limit theorem. For W, (s), this is equivalent to assuming the
frequency measurement noise variances are inversely propor-
tional to the bus ratings, which is in line with the inverse
relationship between jitter variance and power consumption
for an oscillator in phase-locked-loop [31].

1) Steady-state Effort Share: As indicated by (9), the key of
computing the steady-state effort share lies in computing the
steady-state frequency deviation wgs of the system T,,,. When
the system synchronizes, the steady-state frequency deviation
is given by wes = wsynly and wgyy is called the synchronous
frequency. In the absence of a secondary control layer, e.g.,
automatic generation control [32], the system can synchronize
with a nontrivial frequency deviation, i.e., wsyn 7 0.

The following lemma provides a general expression for wgyn
in our setting.

Lemma 1 (Synchronous frequency). Let Assumption 3 hold.
If qv; is determined by a control law ¢é;(s), then the output w
of the system Twp synchronizes to the steady-state frequency
deviation wgs = Weyn 1, with

w _ Z?:1 UQ,4
XL (di 4y - a(0)
Proof. Combining (1) and (7) through the relationship up =

Pin — Pe, We get the (partial) state-space representation of the
system 1., as

(22)

b= w, (23a)
Mo =—Dw— Lgl + q. + g + pin , (23b)

where M = diag(m;,i€V) € RIF", D =
diag (d;,i € V) € R%”, ¢ = (¢,1€V) € R”, and
¢ = (qs,4,7 € V) € R™. In steady-state, (23) yields

LBWsst = _Dwss - LBasso + Qr,ss + Gt,ss + ug, (24)

where (6ss, +wsst, Wss, v ss, Gs.55) denotes the steady-state so-
lution of (23). Equation (24) indicates that Lpwsst is constant
and thus Lpwss = 0,,. It follows that wes = wsyn1y,. Therefore,
(24) becomes

On = - Dwsynln - LBHSS() + Qr,ss + Gt,ss + ug (25)
where ¢rss = (Gi(0)wgyn, 2 €V) € R™ and ¢y
(—r;ilwsyn,i € V) € R™ when w, = 0 by (2). Pre-multiplying

(25) by 17 and using the property that 17 Ly = 0%, we get
the desired result in (22). O

Now, the theorem below provides an explicit expression for
the steady-state effort share.

Theorem 1 (Steady-state effort share). Let Assumption 3
hold. If q,; is determined by a control law ¢;(s), then the



steady-state effort share of the system Twp is given by

> i1 Gi(0)
iy (di 41y = &(0))
Proof. 1t follows directly from Lemma 1 that wgs ; = wsyn and

S U = Weyn 2orq (di +7““ ¢;(0)). Plugging these
two equations to the definition of ES in (9) yields the desired
result. O

ES =

(26)

2) Power Fluctuations and Measurement Noise: We seek
to characterize the effect of power fluctuations and frequency
measurement noise on the frequency variance, i.e., the s
norm of the system 7T,qy,.

We first show that the squared Hz norm of den is a
weighted sum of the squared H, norm of each hy,  and hy, i
in the diagonalized system (21).

Theorem 2 (Frequency variance). Define I := VI F~1V. If
Assumptions 1 and 2 hold, then

Foanllfe, = D T (w2l + 2 ) -
k=1
Proof. Tt follows from (8) and (10) that
A 1 [ PN
ol = 5= [ tr (Tuaie) Tua(io)) do
1 o - .
+ o [m tr (Twn(jw)*Twn(jw)) dw
= || Tuall3e, + 1 TonllFe, -

We now compute ||deHH2 Using (21b) and the fact that
Wy(s) = onz by Assumption 2, we get T,q(s) =
F~3VH b (s)VT. Therefore,

Toa(jw)* Toa(jw) = 62V Hy (jw) VI F 'V Hy (jw)V7T.
Using the cyclic property of the trace, this implies that
tr (Tua(Gw) Tualiw) ) = w2tr (A (jw) TH, (jw))

where T' := VT F~1V . Therefore, it follows that

N 1 R
||de|\§_[2 = —/ /if)tr H

kak/

The result follows from a similar argument on HTwn”H2' O

w)*l"ffp(jw)) dw

hy, gw

Cdw=x Zrkknhp Kl -

Theorem 2 allows us to compute the Ho norm of den by
means of computing the norms of a set of simple scalar transfer
functions. However, for different controllers, the transfer func-
tions hp . and h, ; will change. Since in all the cases these
transfer functions are of fourth-order or lower, the following
lemma will suffice for the purpose of our comparison.

Lemma 2 (> norm of a fourth-order transfer function).
Let
A~ b353+b252 +bls+b0

h =
(5) st 4+ azs3 4+ ag82 + a15 + ag

+ by

be a stable transfer function. If by = 0, then
Cobg + C1bT + G2b3 + G303 + Cu

h 27
Il = DL TR @
where
Co = asas — ay , (1= apas, G2 := apay, (28)
CB = apai1ag — agag , <4 = 72(10((111)11)3 + agbobg) .

o2
H, = OO

Proof. First recall that given any state-space realization of
h(s), the Hs norm can be calculated by solving a particular
Lyapunov equation. More specifically, suppose

" [A|B
hs) = |"C [ D |’

and let X denote the solution to the Lyapunov equation

by

AX + XAT = —BBT. (29)
If h(s) is stable, then
. if D0
a2, =1 ! . 30
1Plf3, {C’XC’T otherwise. (30)

Consider the observable canonical form of h(s) given by

0 0 O —aQp b()
1 0 0 —a;|bh
Zfz(s) = 01 0 —az b2 (31)
0 0 1 —as b3
000 I |ba

Since D = by, it is trivial to see from (30) that if by # 0
then ||hH7_L = oo. Hence, in the rest of the proof, we assume
bs = 0. We will now solve the Lyapunov equation analytically
for the realization (31). X must be symmetric and thus can
be parameterized as

X = [S(}Z‘j] e R4 ,  with Tij = Tjji- (32)
Since it is easy to see that CXCT = x4, the problem
becomes solving for x44. Substituting (31) and (32) into (29)

yields the following equations

200714 = b3 , (33a)

T12 — A2T14 — Q0T34 = — Dby , (33b)

2(z12 — aywe4) = — b7, (33¢)

T23 — A3T24 + T14 — A1T44 = — b1b3 (33d)
2(r3 — agx3y) = — b3, (33e)

2(x34 — azra4) = — b3 . (33f)

Through standard algebra, we can solve for x44 as

_ Cobg + C1b7 + C2b3 + (3b3 + G4

2ag (a1azasz — a? — aga?)

with (o, (1, (2, (3, and (4 defined by (28), which concludes
the proof; the denominator is guaranteed to be nonzero by the
Routh-Hurwitz criterion. O

Remark 5 (H; norm of a transfer function lower than
fourth-order). Although Lemma 2 is stated for a fourth-order
transfer function, it can also be used to find the Ho norm of



third-, second-, and first-order transfer functions by consid-
ering appropriate limits. For example, setting ag = by = €
and considering the limit € — 0, (27) gives the Ho norm of a
generic third-order transfer function. This process shows that
given a stable transfer function h(s), if by = 0 and:

o (third-order transfer function) ag = by = 0, then

12115, =

o (second-order transfer function) ag = by = a1 = by = 0,
then

agb% + alb% + alagbg — 2a1b1b3 )

)

2CL1 (a2a3 — (11)

b2 +6L2b
1513, = ﬁ

o (first-order transfer function) ag = by = a1 = by = ag =
by =0, then

)

. b2
hl3, = =2
Il = o
otherwise ||i1||${2 = o0.

Remark 6 (Well-definedness by the stability). Note that the
stability of h(s) guarantees that the denominators in all the
above Ho norm expressions are nonzero by the Routh-Hurwitz
stability criterion.

3) Synchronization Cost: The computation of the synchro-
nization cost defined in (11) for the system T, in the absence
of inverter control can be found in [15]. Taking this into
account, we can get corresponding results for the system with
any control law readily.

Lemma 3 (SynchronizatiPn cost). Let Assumptions I and 3
hold. Define g := VfFfiuo and I’ := VfFfle. Then the
synchronization cost of the system 1., is given by

@13 = @ (T o &) o,

where o denotes the Hadamard product and H ¢
RO=DX("=1) i the matrix with entries

I{Ikl = / hll’k(t)hu’l(t) dt, Vk,l e {1, e, — 1}
0

with hy i (s) := ﬁp7k+17T(s)/s and iALpJ%T(s) being a specified
case of the transfer function hy, 1.(s) defined in (19), i.e., when
the turbine is triggered.

Proof. This is a direct extension of [15, Proposition 2]. [

Lemma 3 shows that the computation of the synchronization
cost requires knowing the inner products Hy;. However, the
general expressions of these inner products for an arbitrary
combination of k£ and [ are already too tedious to be useful
in our analysis. Therefore, we will investigate instead bounds
on the synchronization cost in terms of the inner products
Hy, when k = [; which are exactly the Ha norms of transfer
functions hy k(s).

Lemma 4 (Bounds for Hadamard product). Let P € R"*"
be a symmetric matrix with minimum and maximum eigen-
values given by Amin(P) and Apmax(P), respectively. Then
Vz,y € R?,

)\min

P)Y aty <a” (Po (yy")) & < Amax(P)
k=1

n
2,2
E LYk
k=1

Proof. First note that
T (Po(y"))a =t (P (woy) (woy)”)
= (woy)" P" (zoy).
Let w := x oy. Since P is symmetric, by Rayleigh [30]
Amin(P)wTw < 2T (Po (yy7)) ¢ < Anax(P)wTw.

Observing that w”w = >}_, 22y? completes the proof. [J

Lemma 4 implies the following bounds on the synchroniza-
tion cost.

Theorem 3 (Bounds on synchronization cost). Let Assump-

tions I and 3 hold. Then the synchronization cost of the system

Top is bounded by |03 < ||@||3 < ||@]]3, where

n—1~

k= 1“0 kH u k||H2
maX;ey (f?)

Proof. By Lemma 3,

||@||§=/00o al (f o (hu(t)hu(t)T)) iio dt
Za ehai(t)?dt

Z / mm

Z U, k”hu k||7-[2
Z g P kl|3, =

which concludes the proof of the lower bound. The first
inequality follows from Lemma 4 by setting P =TI, = 1o,
and y = hy(t) == (hur(t),k€{l,....,n—1}) € R*!
The second inequality follows from the interlacing theorem
[30, Theorem 4.3.17]. The upper bound can be proved simi-
larly. O

n—1
k= 1U0k|| ukﬂyz

mingey (fi)

and ||&|3:=

[\3[\')

[@ll3:=

mll’l

Zk 1 Up, thu,k”%{Q
maX;ecy (fl)

1’1’1111 )

Remark 7 (Synchronization cost in homogeneous case). In
the system with homogeneous parameters, i.e., F' = fI, for
some f > 0, the identical lower and upper bounds on the
synchronization cost imply that

Z 0,kllP 15, -
k=1

4) Nadir: A deep Nadir poses a threat to the reliable
operation of a power system. Hence one of the goals of inverter
control laws is the reduction of Nadir. We seek to evaluate
the ability of different control laws to eliminate Nadir. To this
end, we provide a necessary and sufficient condition for Nadir
elimination in a second-order system with a zero.

Theorem 4 (Nadir elimination for a second-order system).
Assume K >0, 2 >0, £ > 0, w, > 0. The step response of
a second-order system with transfer function given by
- K
h(s) = _ K(s+2)
82 4 28wy s + w2



has no Nadir if and only if

&> z/wy
£ (2/wn+wn/2) /2 7

where the conditions in braces jointly imply £ > 1.

1<€&<z/w, or { (34)

Proof. Basically, Nadir must occur at some non-negative finite
time instant ¢padir, such that py(t)|¢t=¢,.,.,= 0 and py(tnadir)
iAs a maxium, wherq pu(t) denotes the unit-step response of
h(s), i.e., pu(s) := h(s)/s. We consider three cases based on
the value of damping ratio £ separately:

1) Under damped case (0 < & < 1): The output is

(s)—KZ 1 s+ Ewy
Puls) = (s + &wn)? + w3

~ fwn — w2z71

(s + &wn)? + w3

with wq = wy/1 — &2, which gives the time domain
response

w2 s

K=z Ctw .
pu(t) = ) [1 —e ¢ ntpo sin (wat + d))} ,
where
2
(fwn — wﬁz_l) wq
Mo :\/1+ w—gl and tan¢: W

Clearly, the above response must have oscillations. There-
fore, for the case 0 < ¢ < 1, Nadir always exists.

2) Critically damped case (¢ = 1): The output is

R () Kz |1 1 wn—wﬁz_l
puls) = —5 |- — - ;
u w2 s s+wy <5+wn>2

which gives the time domain response
pult) = T2 {1 — et [t (i — e 1)}
Thus,
pu(t) = Kze ™ [(1—waz ") t+271] .
Letting py(t) = 0 yields
wpe @t [1 + (wn - wngl) t] = g wnl (wn — wﬁzil) ,
which has a non-negative finite solution

2’71

toadir = ——————
nadir wnz_l 1

whenever w,z~! > 1. For any € > 0, it holds that
pu(tnadir - 6) = K ze~@n(tnadir—e) (wnz_l _ 1) >0,
pu(tnadir + 6) = EKZe_w“(t“adir'"‘e) (1 _ wnz—l) <0.

Clearly, Nadir occurs at t,,4;,- Therefore, for the case & =
1, Nadir is eliminated if and only if w,z~! < 1. To put it
more succinctly, we combine the two conditions into

1=¢6<z/wy . (35)

3) Over damped case (¢ > 1): The output is
Loy Kz (1 m 72
Puls) -

T2
wn

with
_ I R d 1 £ —wypz7!
01,2—Wn(5 V& — ) an ﬁ1,2—§$ﬁ\/27_17

which gives the time domain response

Kz _
pu(t) = e (1 —me

n

o1t

— n26*02t) .

Thus,

K=z
—oit —oat
= (o1me™ 7 + oampe™ ")
wn

Pu(t) =

Letting py,(t) = 0 yields oym1e” 91t = —gamee™ 2%, which
has a non-negative finite solution

L -zt (64 VE 1)
N T R

whenever 1 — w21 («f — /€2 — 1) < 0. For any € > 0,
it holds that

tnadir =

K=z
6) >72
o')1’1

pu (tnadir — 6015 (Ulnlefcfltnadir + 0'277267027&“3(1“')

:ealepu(tnadir) =0 5

. Kz _ B _ B ‘
pu(tnadir + 6) <72€ a1€ (0'17718 F1tnadir —|— 027726 Uztnadxr>
w.
n

:e_alspu(tnadir) =0 P I

since o1 > 09 > 0 and one can show o21ny < 0. Clearly,
Nadir occurs at ¢,,4;;- Therefore, for the case £ > 1, Nadir

is eliminated if and only if 1—cw, 27! <§ — /&2 — 1) >0,
ie., /&2 —12> € — z/w,, which holds if and only if

&> z/wy
&> (z/wn +wn/2) /2

Thus we get the conditions

E>1
&> z/wy
&> (z/wn +wn/z) /2

Finally, since Va,b > 0, (a + b)/2 > Vab with equality only
when a = b, it follows that the second condition in (36) can
only hold when £ > 1. Thus we can combine (35) and (36)
to yield (34). O

§E<z/w, or {

1<¢<z/w, or (36)

IV. THE NEED FOR A BETTER SOLUTION

We now apply the results in Section III to illustrate the
performance limitations of the traditional control laws DC
and VI. With this aim, we seek to quantify the frequency
variance (10) under DC and VI through the Hs norm of
Twan,pc and T,,qn vi, as well as the steady-state effort share
(9), synchronization cost (11), and Nadir (12) through the step
response characterizations of T,,, pc and T¢,p, v1.

A. Steady-state Effort Share

Corollary 1 (Synchronous frequency under DC and VI).
Let Assumption 3 hold. When q, ; is defined by the control



law DC (5) or VI (6), the steady-state frequency deviation of
the system T ,, pc or T, v1 synchronizes to the synchronous
frequency, i.e., wss = Weynl, With

> i 1“0Z
Zz 1(d +’rtz +rrz)

Proof. The result follows directly from Lemma 1. O

(37

Wsyn =

Now, the corollary below gives the expression for the
steady-state effort share when inverters are under the control
law DC or VI

Corollary 2 (Steady-state effort share of DC and VI). Ler
Assumption 3 hold. If q,, is under the control law (5) or
(6), then the steady-state effort share of the system TwP,DC or
Twp,VI is given by

1
Z?:l T
iy (di + Tt_,il + rr_,il)

Proof. The result follows directly from Theorem 1 applied to
(5) and (6). O

ES =

(38)

Corollary 2 indicates that DC and VI have the same steady-
state effort share, which increases as 7' increase. However,

T il are parameters that also directly affect the dynamic
performance of the power system, which can be seen clearly

from the dynamic performance analysis.

B. Power Fluctuations and Measurement Noise

Using Theorem 2 and Lemma 2, it is possible to get closed
ff)rm expressions of H, norms for systems 7iqnpc and
Tiodn,vi-
Corollary 3 (Frequency variance under DC and VI). Ler

Assun}ptions 1 and 2 hold. The squared Hs norm of den)DC
and T,an v1 is given by

. - K2+ 2K2
[ Tewan,pcll3, = ZFMPQT’ (392)
k=1
[ Tosdnvill3, = 00, (39b)

respectively, where d := d + rt.

Proof. We study the two cases separately.

We begin with ||den,DC||$.[2~ Applying (13) and (15) to
(19) and (20) shows izp k,pc(s) is a transfer function with
b4—a0—bo—a1:b1—Oag—/\k/mb2—0a3—
d/m bs = 1/m, while hw k,pc(s) is a transfer function with
b4—a0—b0—a1—b1—0a2:)\k/m,b2:0,a3:

d/m,bs = —r ' /m. Thus, by Lemma 2,
. 1 . =2
h 5, =—— and |hy e = .
ew kel = 5 he k. pcllae, = 5 —

Then (39a) follows from Theorem 2.
We now turn to show that ||7,dn,vr ||§_L2 is infinite. Applying
(13) and (16) to (20) yields
~ mv52 + 7t
ho kvi(s) = — L ,
whovi(s) (m 4 my)s? +ds + A

which by Lemma 2 has by = —my/(m+my) # 0 and
thus ||hw k,pcll7, = oo. Then (39b) follows directly from
Theorem 2. O

Corollary 4 (Optimal ;! for ||T,qnpc|2,). Let Assump-
tions 1 and 2 hold. Then

r;l* 7argm1nHden DC”HZ —d+/d? + (kp/kw)? . (40)

>0

Proof. The partial derivative of ||T,an DC 15, with respect to
rolis
n K2ro242dk2 7t —/if,
~3 T & . @D
P 2md

By equating (41) to 0, we can solve the corresponding 7!
as 1y, = —d=£+/d? + (kp/Kw)?. The only positive root is
therefore re* = —d+ \/d? + (kp/kw)?. We now show that
T > 0, Vk € {1,...,n}. Recall that T := VT F~1V. We
know Iy = Z?Zl(v,%’j/fj). Since vy, is an eigenvector, Vk €
{1,...,n}, there must exist at least one j € V such that vy, ; #
0. Since f; > 0, Vi, we have that Ty, > 0, Vk € {1,...,n}.
In addition, since the denominator of (41) is always positive
and the highest order coefficient of the numerator is positive,
whenever 0 < r7! < 7', then 9, 1]/ T,an pell%, < 0, and
if 771 > r1*, then 5,.;1||den,Dc||§.[2 > 0. Therefore, r*

is the minimizer of ||den,DC||§-[2- O

ar,._l ||den,DC ||$-[z

Two main observations can be made from Corollary 3. First,
the control parameter 7! of DC has an direct effect on the
size of the frequency variance in the system, which makes
it impossible to require DC to bear an assigned amount of
steady-state effort share and reduce the frequency variance
at the same time. The other important point is that VI will
induce unbounded frequency variance, which poses a threat to
the operation of the power system. Therefore, neither DC nor
VI is good solution to improve the frequency variance without
sacrificing the steady-state effort share.

C. Synchronization Cost

Theorem 3 implies that the synchronization cost of TuJp DC
and Twp v1 are bounded by a weighted sum of ||hu k DC||7-£2
and ||hu}k’VIHH2, respectively. Hence, in order to see the
limited ability of DC and VI to reduce the synchronization
cost, we need to gain a deeper understanding of [|Ay & pC 132,
and | hy, kvill7,, first.

Theorem 5 (Bounds of ||hu k DCHH2 and Hhu k VI”H ). Let
Assumptions 1 and 3 hold. Then, given r=* > 0, Ym, > 0,

m< [ villz,< [ pcll?,< vk swllZs,

where ||hu,k,SW||3.[2 represents the inner products of the open-
loop system with no additional control from inverters.

Proof. Considering that DC can be viewed as VI with m, =
0 and the open-loop system can be viewed as VI with
my = r7! = 0, we only compute ||huk\/1||7.[ , which
stra1ghtf0rwardly implies the other two. Applying (14) and
(16) to (19) shows hu gvi(s) = hp1k+1,T’V1( s)/s is a transfer

function with by = ag = by = 0,a1 = Agy1/ (1), b1 =



1/ (’IhT) , Q2 = (d—‘r?‘fl +)\k+17—) /(mT),bQ = 1/m,a3 =

(m +dr) / (1), bs = 0. Then it follows from Lemma 2 that
1+ 7(Apga7 + d)

21 [1d (M7 +d+re ) +m(d+ Y]

g vil3,=

Since ||hu ki3, is a function of r ' and m,, in what

follows we denote it by p(r; ", m, ). In order to have an insight
on how ||hy i, v1|3,, changes with 7! and m,,, we take partial
derivatives of p(r; !, m,) with respect to 7 and m., i.e.,

(“)Tr—lp(rr_l,mv)
[Th +7 ()\k+17' + CZ)]Q + >‘k+1TSTt_1
i [rd Mepam +d + i) +m(d+ D]

amvp(rr_17mV)

b

2,.—1

Ty

2[rd (\epar +d+rt) +m(d+r Y]

Clearly, for all 771 > 0, 0, -1p(ry 1 my) < 0, which means
that p(r; "1, m,) is a monotonically decreasing function of r*.
Similarly, for all my > 0, O, p(r; 1, my) < 0, which means
that p(r; 1, m,) is a monotonically decreasing function of m.
Therefore, given r~ L'~ 0, Vm, > 0, it holds that
lim p(r; Y, my) < p(ryt my) < p(ry',0) < p(0,0).
My —>00

Recall that [ svilZ, = p0tim). [hsncld, =
p(ryt,0), and || Ay kswll3, = p(0,0). The result follows. [

Corollary 5 (Comparison of synchronization cost in homo-
geneous case). Denote the synchronization cost of the open-
loop system as ||wsw||3. Then, under Assumptions I and 3,
given 171 > 0, Vm, > 0, we can order the synchronization
cost when F = fI, as:

- (ag,k/)‘k+1)
2f (d—|— rt_l)

Proof. The result follows by combining Remark 7 and Theo-
rem 5. O

< levill3 < ll@pcll} < @swlf3 -

Corollary 6 (Lower bound of synchronization cost under
DC and VI). Under Assumptions 1 and 3, the ordering of
the size of the bounds on the synchronization cost of open-
loop, DC, and VI depends on the parameter values. Thus we
cannot order ||iv1||3 ||&pcll3, and ||Gswl|3 strictly. Instead,
we highlight that, given r_* > 0, the synchronization cost
under DC and VI are bounded below by

n—1 [ ~
k=1 (“%,k/)‘kﬂ)
2maxiey (fi) (d+r¢ ')
Proof. The result follows from Theorems 3 and 5. O

Corollary 5 provides both upper and lower bounds for the
synchronization cost under DC and VI in homogeneous case.
The upper bound verifies that DC and VI do reduce the
synchronization cost by adding damping and inertia while the
lower bound indicates that the reduction of the synchronization
cost through DC and VI is limited by certain value that is
dependent on 1. Corollary 6 implies that in the proportional

case the synchronization cost under DC and VI is also bounded
below by a value that is dependent on r!. The fact that the
lower bound of the synchronization cost under DC and VI
is reduced as r. 1 increases is not satisfactory, since, from
the stead-state effort share point of view, a smaller 7~ Lis
preferred. However, given a small r !, even if the inertia is
very high, i.e., m, — oo, the synchronization cost ||@v1]|3 can

never reach zero, not to mention ||wpc||3.

D. Nadir

Finally, with the help of Theorem 4, we can determine the
conditions that the parameters of DC and VI must satisfy to
eliminate Nadir of the system frequency.

Theorem 6 (Nadir elimination under DC and VI). Under
Assumptions 1 and 3:

o for Twp,Dc, the tuning region that eliminates Nadir through
DC is v such that

rr_l <m (T_l — 2\/7_1rt1/m) —d; (42)

o for Twp,VIr the tuning region that eliminates Nadir through
VI is (rt, my) such that

rot < (m+my) <Tl—2\/r—1rt_1/(m+mv)> —d. (43)

Proof. We start by deriving the Nadir elimination condition
for VI. The system frequency of T, vi is given by [17]

- _ Z?:l UQ,i
wyi(t) = WPmVI(t) ;
i=1Ji

where p, vyi(tf) is the unit-step response of lAzp,LT,VI(s)
Clearly, as long as py vi(t) has no Nadir, neither does wyi(t)
Thus, as shown later, the core is to apply Theorem 4 to
hp1,1,vi(s). Substituting (14) and (16) to (19) yields

. 1
hp11vi(s) =

s+7”1

M 82 4 26wns + w?
=14 d/m

[d+ r[l
where w, := - , = =
m 2\/(d+rt) / ()

Now we are ready to search the Nadir elimination tuning re-
gion by means of Theorem 4. An easy computation shows the
following inequality: 26w, — 7~ = d/m < (d+r; ") /i =
w27. BEquivalently, it holds that ¢ < [1/(wn7T) + wnt] /2,
which indicates that the second set of conditions in (34) cannot
be satisfied. Hence, we turn to the first set of conditions in (34),
which holds if and only ¢ > 1 and £w, < 7~!. Via simple
algebraic computations, this is equivalent to

rd? /i —2d+ 7 M —4r; >0 and d/m< Tl (44)

The first condition in (44) can be viewed as a quadratic
inequality with respect to d, which holds if and only if

-1 -1

Ve —1 Tt 5
d<m |77 =2 or d>m | T

mT

However, only the former region satisfies the second condition
in (44). This concludes the proof of the second statement. The
first statement follows trivially by setting m, = 0. O



Important inferences can be made from Theorem 6. The
fact that a small m tends to make the term on the right
hand side of (42) negative implies that in a low-inertia power
system it is impossible to eliminate Nadir using only DC.
Undoubtedly, the addition of m, makes the tuning region in
(43) more accessible, which indicates that VI can help a low-
inertia power system improve Nadir.

We end this section by summarizing the pros and cons of
each controller.

o Droop control: With only one parameter 7!, DC can
neither reduce frequency variance or synchronization cost
without affecting steady-state effort share. Moreover, for
low-inertia systems, DC cannot eliminate Nadir.

« Virtual inertia: VI can use its additional dynamic param-
eter m, to eliminate system Nadir and relatively improve
synchronization cost. However this comes at the price of
introducing large frequency variance in response to noise,
and cannot be decoupled from increases in the steady-state
effort share.

V. DYNAM-I1-C DROOP CONTROL (IDROOP)

We now show how, by moving away from the broadly
proposed approach of mimicking generators response, one can
overcome the weaknesses presented in the previous section.
With this aim, we introduce an alternative dynam-i-c Droop
(iDroop) controller that uses dynamic feedback to make a
trade-off among the several different objectives described in
Section II-B. The proposed solution is described below.

Inverter Dynamics 3 (Dynamic Droop Control). The dy-
namics of an inverter with iDroop is given by the transfer
function

() V¢5+5ir;i1
Gi(g) = ——— T
v S + 61

where 6; > 0 and v; > 0 are tunable parameters.

; (45)

Similarly to (13) and (14), one can define a representative
iDroop inverter controller as
vs+ or;

Col(s) = s+0

with v; = fv, Tri = T’r/fi, and §; = 4.
In the rest of this section, we expose iDroop to the same
performance analysis done for DC and VI in Section IV.

(46)

A. Steady-state Effort Share

We can show that iDroop is able to preserve the steady-state
behavior given by DC and VI.

Corollary 7 (Synchronous frequency under iDroop). Let
Assumption 3 hold. If q, ; is under the control law (45), then
the steady-state frequency deviation of the system TwP,iDroop
synchronizes to the synchronous frequency given by (37).

Proof. The result follows directly from Lemma 1. O

Corollary 8 (Steady-state effort share of iDroop). Ler As-
sumption 3 hold. If q, ; is under the control law (45), then the
steady-state effort share of the system T, iDroop is given by
(38).

Proof. The result follows directly from Theorem 1 applied to
(45). O

Corollaries 7 and 8 suggest that iDroop achieves the same
synchronous frequency and steady-state effort share as DC and

VI do, which depend on r_}. Note that besides 7.} iDroop

provides us with two more ﬂegrees of freedom by 6; and ;.

B. Power Fluctuations and Measurement Noise

The next theorem quantifies the frequency variance un-
der iDroop through the squared Hz norm of the system
den,iDroop-

Corollary 9 (Frequency variance under iDroop). Ler As-
sumptions I and 2 hold. The squared Ho norm of T,,dan iDroop
is given by

Hj—‘wdn,iDroop||’2;-(2 (47)

_ zn:l—‘kk (K2 + 17262 )mo? + (k2 4 v262) (do + M)
=1

2m [dmd? + (d + v) (d6 + Ar,)]
Proof. The proof is based on the Theorem 2 and Lemma 2.
Applying (13) and (46) to (19) and (20) shows Ay k iDroop (S)
is a transfer function with by = a9y = by = 0,a1 =
()\ké) /m,b1 = 0,a0 = (dé—i—)\k) /m7b2 = §/m7a3 =
(md +d+v)/m,bs =1/m, while hy, i iDroop($) is a trans-
fer function with by = a9 = by = 0,a1 = (A\d) /m, by =
0,as = (d(5+ /\k) /myby = — (7“;16) /myas =
(mdé +d+v)/m,bs = —v/m. Thus, by Lemma 2,
md? + dé + A
2m [dmé? + (d + v) (d6 + A)]
r2mo? + 12 (dS + )
2m [dmé&? + (d + v) (d6 + Ai)]
Then (47) follows from Theorem 2. O]

||ilp,k,iDr00p ll%‘[z

1Bk, iDroop I3z, =

The explicit expression of HTWdIl,iDTOOp”%-Lz given in Corol-
lary 9 is useful to show that iDroop can reduce the fre-
quency variance relative to DC and VI. Given the fact that
||den}\/1||§_L2 is infinite, the question indeed lies in whether
we can find a set of values for parameters ¢ and v that ensure
[ Tewan,ibroopll3, < [ Twan,pcll3,,. Fortunately, we can not
only find such a set but also the optimal setting for (47). The
following three lemmas set the foundation of this important
result which is given as Theorem 7.

Lemma 5 (Limit of Hden,tiOpH%{Q). Let Assumptions I and
2 hold. Ifd — 00, then ||T’u.1dn,iDr00pH’2,V-[2 = ||den,DCH$-[2~

Proof. The limit of (47) as § — oo can be computed as

I 9 i K2 4 r72K2 I 9
. . _ P T w
6h—>nr>10HTde’le°p”H2 - ];71: s omd = ”den,DCHHz ,
where the second equality follows from (39a). O

Lemma 5Ashows that ||7; wdn’iDmopH%{z asymptotically con-
verges to ||den,DC||$.[2 as 0 — oo. The next lemma shows
that this convergence is monotonically from either above or
below depending on the value of the parameter v.



Lemma 6 (v-dependent monotonicity of ||1A“wdn,i]3mop||%_£2
with respect to § ). Let Assumptions 1 and 2 hold. Define

—dﬁiug + (/{% + 7“;2&3)) v+ dr;zni — r;lﬁf)
d+v '

a1(v) =
Then

o ||den,iDroopH§{2 is a monotonically increasing or decreas-
ing function of § > 0 if and only if a1(v) is positive or
negative, respectively.

o I Tan,iDroop |3, is independent of 6 > 0 if and only if
a1 (v) is zero.

Proof. Provided that ||Zf’wdn7iDmop||%£2 is a function of ¢ and v,
in what follows we denote it by II(J, ). To make it clear how
TI(4, v) changes with &, we firstly put it into the equivalent
form of

- a1(V)52
= r
l/) ’; kk |:Oé262 =+ 043(1/)6 + 044(1/7 Ak) + OZ5(V)
with
_dlﬂ%y? + (Hg + r;%qi) v+ dro2e2 — Tflﬁg
011(1/ = |
d+v
(%) :2mCZ, a3() (d+ )d
A d A o 512) + 12kK2
ag(v, Ax) = 2(d +v)A , as(v) = T

We then take the partial derivative of TI(d, ) with respect to
0 as

3(1)82 + 204 (v, \i)0
a252 + asz(V)0 + ayg(v, Ag))?

({951_[ 5 I/ —al Zl“kk{

Since m > 0, d > 0, v > 0, and ;! > 0, oy and az(v)
are positive. Also, given that all the eigenvalues of the scaled
Laplacian matrix Ly are non-negative, cy (v, A ) must be non-
negative. Thus, V6 > 0, (a3(v)6? + 2a4(v, \i)d)/(c2d® +
O@(V)(g + Ck4(l/, )\k))z > 0.

Recall from the proof of Corollary 4 that I'y, > 0
Vk € {1,...,n}. Therefore, ¥§ > 0, sign (95II(6,v)) =
sign (a1 (v)). O

By Lemma 6, for a given v, if a;(v) < 0, then
Hden,iDmOpH%{Q always decreases as ¢ increases. However,
according to Lemma 5, even if 6 — oo, we can only obtain
Hden 1DroopH’H2 = Hden DCH’Hz Slmllaﬂy, if 011( ) =0,
then ||den lDroopHer keeps constant as § increases, which
means whatever ¢ is we will always obtain ||den,1Droop ||7_[2
Hden,DC H%b Therefore, iDroop cannot outperform DC when
a1 (v) < 0. To put it another way, Lemmas 5 and 6 imply that
in order to improve the frequency variance through iDroop,
one needs to set v such that a;(v) > 0 and 0 as small as
practically possible. The following lemma characterizes the
minimizer v* of ||Tiudn,iDroop |, When & = 0.

Lemma 7 (Minimizer v* of ||den,iDroop||%{2 when § = 0).
Let Assumptions 1 and 2 hold. Then

V= argmlnHden 1D1roop||’;.[2 7d+\/ d2 (l%p/l'iw)2 . (49)

6=0,v>0

Proof. Recall from the proof of Lemma 6 that

||den_,iDroopH§_12 =TII(4, v). Then we have

n

Zrkk7

whose derivative with respect to v is given by

kak-

Note that (50) and (41) are in the same form. Thus, v* is
determined in the same way as in the proof of Corollary 4. [

/{—I—I/,‘Q

110, v) = 2m d+ v)

/€2l/2+2dl'€ V—K

m(d + v)?

Ir'o,v) = (50)

We are now ready to prove the next theorem.

Theorem 7 (||den7i]3mop||${2 optimal tuning). Let Assump-
tions 1 and 2 hold. Define v* as in (49). Then

o whenever (kip/ky)? # 2r7td + 172 for any 6 > 0 and v
such that
L, (51

noet) or ve(ry

iDroop outperforms DC in terms of frequency variance, i.e.,

VE[

||den7iDroop||’2Hz < ||den7DC||'2H2 .

Moreover; the global minimum of ||den,iDroop||g.[2 is ob-
tained by setting 6 — 0 and v — v*.

o iIf (,%p/fiw)2 = 2rYd + 172, then for any 6 > 0, by setting
v — v* = r_ ", iDroop matches DC in terms of frequency
variance, i.e.,

r

| Ten iroopli3z, = [ Tioan,nell3, -

Proof. As discussed before, to guarantee ||1A“Mmyi]3roop||%_£2 <
[|Tewan,pc |3, one requires to set v such that ay () > 0. In

this case, ||den}iDmOpH§{2 always increases as d increases, so
choosing ¢ arbitrarily small is optimal for any fixed v.

We now look for the values of v that satisfy the requirement
aq(v) > 0. Since the denominator of o (v) is always positive,
the sign of «;(v) only depends on its numerator. Denote
the numerator of «;(v) as N,, (v). Clearly, N,, (v) is a
univariate quadratic function in v, whose roots are: v; = r, 1
and vy = [(kp/kw)? —ritd] /d. Provided that the highest
order coefficient of N,, () is negative, the graph of N,, (v)
is a parabola that opens downwards. Therefore, if 11 < 1o,
then v € (v1,1») guarantees a;(v) > 0; if v; > ws,
then v € (v2,v1) N (0,00) guarantees «;(v) > 0. Notably,

if 1 = wy, there exists no feasible points of v to make
aq(v) > 0.
The condition v; = 1o happens only if (kp/kw)? =

2r—td+r2, from which it follows that v* = r7 ! = vy = vy,
Then o (v*) = i (r; ) = 0. Therefore, by setting v — v* =
i, we get || Towdn,iproopll3, = | Twdn,ne |3, - This concludes
the proof of the second part.

We now focus on the case where the set S = (v1,v2) U
{(v2,1) N (0,00)} is nonempty. Recall from the proof of
Lemma 6 that ||den,iDmopHy2 = II(4, v). For any fixed v €
S, it holds that a4 () > 0 and thus II(d,v) > II(0,v) for
any 6 > 0. Recall from the proof of Lemma 7 that v* is
the minimizer of II(0,v). Hence, (0,v*) globally minimizes
II(6,v) as long as v* € S. In fact, we will show next that v*
is always within S whenever S # (.



Firstly we consider the case when v; < v, which implies
that (kp/kw)? > 2r7'd + r72. Then we have v* > —d +
Va2 +2rtd+r72 = rol = vy
v* < vy which holds if and only if

(hp/kw)? +d°

(p/kw)? — 1 'd
2+ w)2< — K
(p/ ) - ;

which is equivalent to 1 < \/d? + (kp/k.)2/d. This always
holds since (kp/kw)? > 2r;td + 72 Thus, v; < V% < vs.
Similarly, we can prove that in the case when vy > vy, Vo <
v* < 17 holds and thus v* € (v, 1) N (0, 00). It follows that
(0,v*) is the global minimizer of I1(d, ).

Finally, by Lemma 5, ||den,DCH’2H2 = II(co, v). The condi-
tion (51) actually guarantees v € S and thus 1 (v) > 0. Then,
by Lemma 6, we have Hden,DCH%—[z = II(oc0,v) > II(d, v).
This concludes the proof of the first part. O

We also want to show

+d=

Theorem 7 shows that, to optimally improve the frequency
variance, iDroop needs to first set § arbitrarily close to zero.
Interestingly, this implies that the transfer function ¢, (s) ~ —v
except for ¢,(0) = —r; L. In other words, iDroop uses its first-
order lead/lag property to effectively decouple the dc gain
¢0(0) from the gain at all the other frequencies such that
¢o(jw) & —v. This decouple is particularly easy to understand
in two special regimes: (i) If k, < k,, the system is
dominated by measurement noise and therefore v* ~ 0 < 7!
which makes iDroop a lag compensator. Thus, by using
lag compensation (setting v < 7. ') iDroop can attenuate
frequency noise; (ii) If xk, > kK, the system is dominated
by power fluctuations and therefore v* =~ rkp/ky > 7!
which makes iDroop a lead compensator. Thus, by using lead
compensation (setting v > r;!) iDroop can mitigate power
fluctuations.

C. Synchronization Cost

Theorem 3 implies that the bounds on the synchronization
cost of Twp iDroop are closely related to ||hu b 1DroopHH If
we can find a tuning that forces ||hu,k,1DmOpHH2 to be zero,
then both lower and upper bounds on the synchronization
cost converge to zero. Then, the zero synchronization cost is
achieved naturally. The next theorem addresses this problem.

Theorem 8 (Zero synchronization cost tuning of iDroop).
Let Assumptions 1 and 3 hold. Then a zero synchronization
cost of the system T, iDroops i-€., % = 0, can be
achieved by setting 6 — 0 and v — oc.

Proof. Since the key is to show that ||iLu L 1DmopHH — 0 as
d — 0 and v — oo, we can use Lemma 2. Applying (14) and

(46) to (]9) shows hu k 1Droop( ) - hp,k:+1,T,1Droop )/S isa
transfer function with

Akg10 1)
a0:&7 b():iy
mt mT
S(d+r7t + M1 T) + Mg 0T +1
a1 = ) b1: )
. mT mT
S(m+dr)+d+r7  + M+ v 1
as = y b2:77
mT m
) d
a3:mr+m+ T—‘rl/T, by =0, by =0 .

mT

Considering that ag — 0 and by — 0 as 6 — 0 and v — oo,
we can employ the Hy norm computation formula for the
third-order transfer function in Remark 5. Then

v 1\2, X112

. L ()T 2kt (L

lim ||h &, m(mT) - Vm‘r (m) —

k,iDroo, —
5o0,v—00 T vl 8—0,y—ooRhiL (1 v Nketr)
mT mT m mT

Thus by Theorem 3, M = [@iroop|l3 = 0. which
forces ||@iproop |3 = 0. -

Theorem 8 shows that unlike DC and VI that require
changes on r ! to arbitrarily reduce the synchronization cost,
iDroop can achieve zero synchronization cost without affecting
the steady-state effort share. Naturally, 6 ~ 0 may lead to slow
response and v — oo may hinder robustness. Thus this result
should be appreciated from the viewpoint of the additional
tuning flexibility that iDroop provides.

D. Nadir

Finally, we show that with § and v tuned appropriately,
iDroop enables the system frequency of T, iproop tO €volve
as a first-order response to step power disturbances, which
effectively makes Nadir disappear. The following theorem
summarizes this idea.

Theorem 9 (Nadir elimination with iDroop). Let Assump-
tions 1 and 3 hold. By setting § = rVand v =17t 1,
Nadir (12) of T.,p.,iDroop disappears.

Proof. The system frequency of TwP’iDroop is given by [17]

n
Z Uo,
ﬁpu ,iDroop
Z’L 1 fl
where py iDroop (t) is the unit-step response of hp,17T7iDroop(s).
If weset 6 =7 'and v =11+ r[l, then (46) becomes
-1

OF (53)

(*_JiDroop (t)

. Ty -1 -1
o(s) = — . 54
Cols) = g = (e ) (54)
Applying (14) and (54) to (19) yields
. 1
h iDroo = N )
p,1,T,iD P(S) ms+d+ 7“;1

whose unit-step response py iproop(t) is a first-order evolu-
tion. Thus, (53) indicates that Nadir of the system frequency
disappears. O

VI. NUMERICAL ILLUSTRATIONS

In this section, we present simultation results that compare
iDroop with DC and VI. The simulations are performed on
the Icelandic Power Network taken from the Power Systems
Test Case Archive [33]. The dynamic model is built upon the
Kron reduced system [34] where only the 35 generator buses
are retained. Even though our previous analysis requires the
proportionality assumption (Assumption 1), in the simulations,
for every bus ¢, the generator inertia coefficient, the turbine
time constant, and the turbine droop coefficient are directly
obtained from the dataset, i.e., m; = ma,4, Ti = T4, and
Tei = Trai-® In addition, turbine governor deadbands are
taken into account such that turbines are only responsive to
frequency deviations exceeding 40.036 Hz. Given that the
values of generator damping coefficients are not provided by



Parameters Symbol Value
generator inertia m 0.0111s*rad ™!
generator damping d 0.0014srad ™!
turbine time const. T 4.59s
. 374.49rad s~ for SW,
turbine droop Tt 1
748.97rads™ " o.w.
inverter droop Ty 748.97rads™*

TABLE I: Parameters of Representative Generator and Inverter

the dataset, we set d; = f;d with d being the representative
generator damping coefficient and
m;

fzﬂ:*

m

being the proportionality parameters, where m is the repre-
sentative generator inertia defined as the mean of m;’s, i.e.,

n
1
m = — E m;.
n -
=1

We refer to this system without inverter control to ’SW’ in the
simulations.

We then add an inverter to each bus ¢, whose control law is
either one of DC, VI, and iDroop. The design of controller
parameters will be based on the representative generator
parameters. Hence, besides m and d, we define

n n
T = 1 ZTM and 7y = 727;1:1 f; .
n i=1 Zi:l rt,d,i
Note that to keep the synchronous frequency unchanged, once
inverters are added, we halve the inverse turbine droop r, }
and assign the representative inverter droop coefficient e a
value such that the inverse inverter droop r,_ &= fir~! should
exactly compensate this decreased r; 1in the absence of tur-
bine governor deadbands. The values of all the representative
parameters mentioned above are given in Table I.

A. Comparison in Step Input Scenario

Fig. 4 shows how different controllers perform when the
system suffers from a step drop of —0.3 p.u. in power
injection at bus number 2 at time ¢t = 1s. As for the
representative inverter, we turn § = 7! = 0.218s™! and
v=r"'+r; " =0.004srad™! in iDroop such that Nadir of
the system frequency disappears as suggested by Theorem 9
and we tune m, = 0.022s?rad~! in VI such that the system
frequency is critically damped.” The inverter parameters on
each bus i are defined as follows: §; := 0, v; := f;v, and
My = f My .

The results are shown in Fig. 4. One observation is that
all three controllers lead to the same synchronous frequency
as predicted by Corollaries 1 and 7. Another observation is
that although both of VI and iDroop succeed in eliminating
Nadir of the system frequency —which is better than what DC

SThroughout this section, we use the subscript d, i to denote the original
parameters of the ith generator bus from the dataset.

SFor illustrative purpose only, we reassign a part of the droop Tt,d,; 'S ON
turbines in the dataset to let there be a deeper Nadir in the system frequency.

"In the rest of this section, we keep tuning m, = 0.022 sZrad—1.
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Fig. 4: Comparison between controllers when a —0.3 p.u. step
change in power injection is introduced to bus number 2.

does— the system synchronizes with much faster rate and lower
cost under iDroop than VI. Interestingly, the synchronization
cost under VI is even slightly higher than that under DC,
which indicates that the benefit of eliminating Nadir through
increasing m, in VI is significantly diluted by the obvious
sluggishness introduced to the synchronization process in
the meanwhile. Finally, we highlight the huge control effort
required by VI when compared with DC and iDroop.

B. Comparison in Noise Scenario

Fig. 5 shows how different controllers perform when the
system encounters power fluctuations and measurement noise.
Since in reality power fluctuations are larger than measurement
noise, we focus on the case dominated by power fluctuations,
where r, = 10~% and £, = 107°. As required by Theorem 7,
we tune J to be a small value 0.1s~! and v to be the optimal
value v* which is 9.9986 srad ! here.
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Fig. 5: Comparison between controllers when power fluctua-
tions and measurement noise are introduced with , = 1074
and K, = 107°.

Observe from Fig. 5(a) that setting & small enough and
v = v* ensures that iDroop has a better performance than DC
in terms of frequency variance, as expected by Theorem 7.
Note that, since by Corollary 3, VI performs badly, we do not
evaluate VI in the presence of stochastic disturbances.

C. Tuning for Combined Noise and Step Disturbances

Although our current study does not contemplate jointly
step and stochastic disturbances, we illustrate here that the
Nadir eliminated tuning of Theorem 9 for iDroop can perform
quite well in more realistic scenarios with combined step and
stochastic disturbances.

In Fig. 6, we show how different controllers perform when
the system is subject to a step drop of —0.3p.u. in power
injection at bus number 2 at time { = 1s as well as power
fluctuations and measurement noise. Again, we consider the
case with k, = 107* and k,, = 107°. Here we employ the
same inverter parameters setting as in the step input scenario.
More precisely, we tune inverter parameters in iDroop on each
bus i as follows: &; := 8, v; = fiv, where § = 77! =
0.218s ' and v = 7' + 7, " = 0.004srad .

Some observations are in order. First, even though the
result is not given here, there is no surprise that the system
under VI performs badly due to its inability to reject noise.
Second, the performance of the system under DC and iDroop
is similar to the one in the step input scenario except additional
noise. Last but not least, a bonus of the Nadir eliminated
tuning is that iDroop outperforms DC in frequency variance
as well. This can be understood through Theorem 7. Provided
that K, > k,, we know from the definition in Lemma 7
that v* ~ k,/k,. Thus, for realistic values of system pa-
rameters, v* > r! always holds. It follows directly that
v=r-t4r ' € (r7!,v*]. By Theorem 7, iDroop performs
better than DC in terms of frequency variance. Further, the
preceding simulation results suggest that the Nadir eliminated
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Fig. 6: Comparison between controllers when a —0.3 p.u. step
change in power injection is introduced to bus number 2 and
power fluctuations and measurement noise are introduced with
Kp = 10~* and k., = 107°.

tuning of iDroop designed based on the proportional parameter
assumption works relatively well even when parameters are
non-proportional.

VII. CONCLUSIONS

This paper studies the effect of grid-connected inverter-
based control on the power system performance. When it
comes to the existing two common control strategies, we show
that DC cannot decouple the dynamic performance improve-
ment from the steady-state effort share and VI can introduce
unbounded frequency variance. Therefore, we propose a new
control strategy named iDroop, which is able to enhance the
dynamic performance and preserve the steady-state effort share
at the same time. We show that iDroop can be tuned to achieve
strong noise rejection, zero synchronization cost, and fre-
quency Nadir elimination when the system parameters satisfy
the proportionality assumption. We illustrate numerically that
the Nadir eliminated tuning designed based on the proportional
parameters assumption strikes a good trade-off among various
performance metrics even if parameters are non-proportional.
Our work illustrates the superiority of principled control
design when compared with naive approaches such as virtual
inertia.
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