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Abstract— We study the problem of maximizing energy trans-
fer to a load in a DC microgrid while respecting constraints
on bus voltages and currents, and accounting for the impact
of neighboring constant power loads. Both the objective and
dynamics give rise to indefinite quadratic terms, resulting in a
non-convex optimization problem. Through change of variables
and relaxations we develop a closely related second-order cone
program. The problem retains the same feasible set as the
original problem but utilizes a linear approximation of the
non-convex objective. We demonstrate how this can be used
to design approximately optimal charging profiles for periodic
pulsed loads in real time.

I. INTRODUCTION

Pulsed loads are electrical loads that consume large
amounts of energy near instantaneously. Classical exam-
ples of technologies that use pulsed power include particle
accelerators and lasers. More recently, within the marine
and aerospace communities, pulsed power loads are being
installed on ships and aircraft. Examples include electro-
magnetic launch and recovery systems, solid-state radars,
and high-energy lasers. These loads are stressing to the host
power systems which have limited generating capacity and
are not designed to accommodate rapid power variations. To
mitigate this stress, pulsed loads are often supported by an
energy storage device such as a capacitor bank or flywheel
[1].

While energy buffers provide the means for reducing
the transient demand placed on the supplying generators,
it is often desirable to charge these devices as quickly as
possible to allow repetitive use of the pulsed load. Due to
the limited voltage regulation capabilities of the generators,
rapid variations in current draw can easily lead to voltage
sags, which violate operational specifications, and can lead
to equipment damage or loads shutting down. This problem is
exacerbated by neighboring high-bandwidth power electronic
loads which are common in such microgrids and act as
constant power loads. As voltage drops, these loads consume
more current, leading to further voltage sag and possible
instability [2].

Power management algorithms in ship and aircraft mi-
crogrids are typically centralized with full control of the
system configuration and scheduling of loads. As such, it
is possible to coordinate the sources and loads to charge an
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energy storage device. We use the term charging profile to
denote a system trajectory that, through a coordination of
the sources and loads, charges an energy storage device. An
optimal charging profile is one that achieves a given energy
demand E∗ in minimum time while keeping the system state
within operational specifications.

The problem of determining an optimal charging profile
was introduced in [3]. There the authors derived a closed-
form expression for the charging profile that minimizes the
power ramp rate while ensuring a given energy transfer. The
profile is seen to be a paraboloid. While straight forward, the
solution makes no account of system dynamics or constraints
placed on power, voltage, or current. In [4] the authors
apply linear model predictive control (MPC) techniques to
coordinate power supplied to ramped loads in a shipboard
application. Energy and power constraints are addressed but
circuit dynamics (voltage, current) are neglected. Results are
shown using ideal sources (negligible impedance) to prevent
the possibility of voltage sags. In [5], the authors develop a
feedback-linearization control algorithm for smoothly charg-
ing an energy storage device while minimizing frequency
deviations on an AC microgrid. The algorithm is based on a
heuristic trapezoidal power profile consisting of five stages.
The algorithm neglects the dynamics of neighboring loads
and does not ensure constraints on system voltage and current
are respected.

In this work, we develop an optimization-based approach
for determining the maximum amount of energy that can
be transferred to an energy storage device over a finite
time duration. We account for the dynamics of both the
generator and connected constant power loads, ensuring
voltage and current constraints are satisfied. In its original
form, the problem is a quadratically-constrained quadratic
program (QCQP) with an indefinite objective and indefinite
constraints. Through change of variables and relaxations
we develop a closely related second-order cone program.
The problem retains the same feasible set as the original
problem but utilizes a linear approximation of the non-
convex objective. We demonstrate how this can be used to
find the minimum-time charging profile for an energy storage
device that must be periodically operated.

The rest of the paper is organized as follows. Section
II introduces the power system model utilized. Section III
poses the maximum energy transfer problem and develops
an SOCP-based solution. Section IV leverages this result to
find the minimum-time to charge an energy storage device
subject to periodicity constraints. Section V concludes the
paper and discusses future directions.
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Fig. 1. Microgrid Model

II. MODEL DESCRIPTION

We consider a DC source supplying a constant power
load and an energy storage device as shown in Figure 1.
The source model is composed of a bus capacitor C and a
current source ig driven by a proportional-integral voltage
regulator with error integral term e. The regulator tracks the
commanded voltage v̄. This serves as a simple model of a
synchronous generator-rectifier.

The source supplies two loads which are current sinks
driven by appropriate control laws. The first is an energy
storage device with current draw is. The second represents
the aggregate behavior of connected constant power loads
with total power consumption Pc and current draw ic. This is
representative of power electronic loads which have current
regulation bandwidths orders of magnitude faster than the
voltage regulation capabilities of synchronous generators.

The continuous-time dynamics are given by:

C
dv

dt
= (kp(v̄ − v) + kie)− is − ic ,

de

dt
= v̄ − v .

(1)

The generator and constant power load currents are:

ig = (kp(v̄ − v) + kie), ic =
Pc

v
.

Remark. We use this model to simplify the presentation.
However, the results developed herein are easily modified to
accomodate more complicated linear source models and the
presence of linear loads.

III. PROBLEM STATEMENT

Our objective is to maximize the energy transferred to
the energy storage device over a finite time horizon. It is
assumed that both the generator’s commanded voltage and
the energy bank’s current are control signals available to
us. This is realistic for microgrids on ships and aircraft
which typically have centralized control. However, either of
the control signals can be eliminated by appending equality
constraints in the optimization problem (e.g. v̄ = c where c
is some constant).

We assume the dynamics are appropriately discretized
with time step ∆t, yielding the model

xk+1 = Axk + Bv v̄k + Bi(is,k + ic,k) (2)
vkic,k = Pc (3)

where xk =
[
vk ek

]T
. Subscript k denotes the time

index. Note that we leave the constant power load current
as an input with an associated bilinear constraint.

Let Tf the denote the time horizon and N =
Tf

∆t be the
number of steps. Using Euler integration to calculate energy
from power, the maximum energy transfer problem is then
written as:

min −∆t

N−1∑
k=0

vkis,k

s.t. xk+1 = Axk + Bv v̄k + Bi(is,k + ic,k),

vkic,k = Pc,

F

 x
is + ic

v̄

 ≤ g

(4)

All constraints with terms containing subscript k apply to all
time indices k = 0, . . . , N . Here the last inequality is used to
capture any linear constraints on the states and control inputs.
To support our change of variables to come, we assume
current constraints apply to the total load current. It is readily
seen that both the objective and the bilinear power constraint
are indefinite. The resulting optimization problem is a non-
convex QCQP that is NP-hard in general [6].

Remark. Maximizing power transfer over a finite horizon
falls within the category of economic model predictive
control [7]. Economic MPC seeks to maximize general
performance indices in place of traditional tracking prob-
lems. Indefinite objectives frequently arise involving the
product of input controls and output signals [8]. In some
instances, mostly arising from dissipativity properties, the
resulting problem is convex once projected onto the dynamic
constraints [9]. For the problem at hand, if the control is
limited to is and no constant power load is present the system
dynamics are dissipative with respect to input is and output
v (i.e. is,kvk ≥ 0 ∀ is,k ∈ R). By projecting the quadratic
program onto the linear dynamic constraints (often referred
to as condensed MPC), the indefinite quadratic cost function
becomes convex. However, once v̄ is introduced as a second
input, the condensed MPC formulation is no longer convex.
Further, it cannot address the nonlinear constant power load
dynamics.

In the following development, we assume that the bus
voltage v is constrained (via F and g) to be strictly positive
(such that ic is well-defined). Further we assume the energy
storage device and constant power load are only allowed non-
negative power consumption. This represents the common
case of not allowing reverse power flow into the source.
Given the stated positivity assumption on v, this translates
to the constraints ic ≥ 0, is ≥ 0.

We now introduce a change of variables to eliminate the
bilinear power constraint. Let i = is + ic. Given the non-
negative power consumption constraint on is, the total power
consumed will be at least Pc. The resulting problem is
rewritten as:



min −∆t

N−1∑
k=0

(vkik − Pc)

s.t. xk+1 = Axk + Bv v̄k + Biik,

vkic,k ≥ Pc,

F

xi
v̄

 ≤ g

(5)

Define z =
√
vi, representing the square root of the total

load power. Given our stated assumption, vi is always
non-negative and therefore z is real. For reasons that will
become apparent, we write this equality constraint as two
inequalities.

min −∆t

N−1∑
k=0

(z2
k − Pc)

s.t. xk+1 = Axk + Bv v̄k + Biik,

zk ≥
√
Pc,

vkik ≤ z2
k ≤ vkik,

F

xi
v̄

 ≤ g

(6)

Consider now the following relaxed problem in which we
drop the lower bound on z2

k.

min −∆t

N−1∑
k=0

(z2
k − Pc)

s.t. xk+1 = Axk + Bv v̄k + Biik,

zk ≥
√
Pc,

z2
k ≤ vkik,

F

xi
v̄

 ≤ g

(7)

Lemma 1. Solutions of Problem (7) satisfy z2
k = vkik for

all k = 0, . . . , N .

Proof. We show this by contradiction. Let S∗ =
{v∗, e∗, i∗, v̄∗, z∗} be an optimal solution of Problem (7)
with cost J∗. Assume that for some k, the inequality is strict
(z∗k

2 < v∗ki
∗
k). Let S = {v∗, e∗, i∗, v̄∗, z̃} with z̃2

k = v∗ki
∗
k.

Note that z̃k > z∗k ≥ 0. Thus S is a feasible solution as the
inequality Pc ≤ z̃2 holds and the remaining inequalities do
not involve z̃. The resulting cost is J = J∗ + ∆t(z2

k − z̃2
k)

and therefore J < J∗. This contradicts S∗ being an optimal
solution. Therefore solutions of Problem (7) have z2

k = vkik
for all k.

Lemma 1 allows us to drop the constraint z2
k ≥ vk with-

out introducing spurious solutions. However, the remaining
quadratic inequality is indefinite. Given our stated assump-
tions on positive power flow, we show that this inequality

constraint can be represented by a convex second-order cone
constraint.

Lemma 2. When vk + ik ≥ 0, the power constraint z2
k ≤

vkik can be rewritten as the following second-order cone
constraint: ∥∥∥∥0.5(−vk + ik)

zk

∥∥∥∥
2

≤ 1

2
(vk + ik) (8)

Proof. Let w =
[
zk vk ik

]T
. We first rewrite the

constraint in homogeneous form:

wT

1 0 0
0 0 − 1

2
0 − 1

2 0

w ≤ 0 (9)

The matrix has eigenvalues {− 1
2 ,

1
2 , 1} with associated

unit eigenvectors q1 = 1√
2
[0 −1 −1]T , q2 = 1√

2
[0 −1 1]T ,

q3 = [1 0 0]T .
Then, the inequality (9) is equivalently written as:

1

2
(qT2 w)2 + 1(qT3 w)2 ≤ 1

2
(qT1 w)2. (10)

Note that qT1 w = − 1√
2
(vk +ik) is non-positive for vk +ik ≥

0. Therefore, by accounting for the sign of qT1 w, we can take
the square root on both sides of (10) to obtain [10]:√

1

2
(qT2 w)2 + 1(qT3 w)2 ≤ −

√
1

2
qT1 w . (11)

Finally, substituting the eigenvectors we obtain the stated
second-order cone constraint (8).

Taken together, lemmas 1 and 2 provide convex repre-
sentations of the feasible set for Problem (4). The only
remaining source of non-convexity is the concave objective
J(z) = −∆t

∑N−1
k=0 (z2

k − Pc). We now develop a surrogate
linear objective which approximates the concave objective.
For clarity, we drop Pc from the objective as it is constant.

Let z∗ be the optimal solution to (7). Consider a Taylor
expansion of the cost function with z̃ = z − z∗:

J(z̃) = −∆t

N−1∑
k=0

z∗k
2 + 2z∗k z̃k + h.o.t.

Assume there is a maximum power Pmax that can be trans-
ferred in the microgrid.1 If we maximized energy transfer
over an infinite horizon, the system would be operated at
Pmax for almost all time indices (z∗k

2 = Pmax). Neglecting
higher order terms, the linear objective function would be:

J(z̃) = −∆t

∞∑
k=0

Pmax + 2
√
Pmaxz̃k

Minimizing this objective simply involves maximizing the
sum of z̃ as all terms are weighted equally. This motivates

1This may be directly imposed or be an indirect consequence of con-
straints placed on voltage and current.



us to replace our original objective with this linear objec-
tive. Our final problem formulation is a second-order cone
program and therefore convex:

min −
N−1∑
k=0

zk

s.t. xk+1 = Axk + Bv v̄k + Biik,

zk ≥
√
Pc,∥∥∥∥0.5(−vk + ik)
zk

∥∥∥∥
2

≤ 0.5(vk + ik),

F

xi
v̄

 ≤ g

(12)

Theorem 1. Under the constraints v > 0, is ≥ 0, Pc ≥
0, Problem (4) is feasible if and only if Problem (12) is
feasible. Further, solutions to Problem (12) provide sub-
optimal solutions to Problem (4).

Proof. The feasibility proof follows immediately from Lem-
mas 1 and 2 which showed that, despite enlarging the feasible
set, optimal solutions still satisfied the constraints of Problem
(4). Sub-optimality follows from the use of a surrogate
objective in place of the original objective.

IV. MINIMUM-TIME CHARGING OF PERIODIC LOADS

Problem (12) provides a convex method for obtaining
sub-optimal solutions to the original non-convex problem
(4) when the bus voltage and load current are constrained
to be strictly positive and non-negative respectively. The
linear inequality constraint pair (F, g) affords us flexibility
to impose additional constraints on the problem. In the
following we demonstrate how this can be used to design
charging profiles for loads that are repetitively exercised.

Consider a periodic pulsed load that requires a minimum
stored energy E∗ prior to use. Our objective is to find the
minimum time required to charge this load with the con-
straint that the system starts and ends at the same operating
point (v0 = vN , i0 = iN ). This periodic constraint allows
the resulting charge profile to be repeatedly executed. In
addition to the energy storage device, a constant power load
(Pc = 300kW ) is connected. We impose minimum and
maximum constraints on the voltages and currents along with
constraints on their rate of change. These boundaries can
be used to indirectly impose limits on the rate at which
power is varied. Finally we impose a voltage-dependent
upper limit on the maximum total current. This approximates
a maximum power limit of 500kW . The dynamics are given
by (1) discretized with a time step ∆t = 0.05s using a
zero-order hold. Table I lists the parameters. The controller
tuning achieves a voltage regulation bandwidth of 8 Hz,
representative of a synchronous generator-rectifier in a DC
microgrid.

min −
N−1∑
k=0

zk

s.t. xk+1 = Axk + Bv v̄k + Biik,

zk ≥
√

Pc,∥∥∥∥0.5(−vk + ik)
zk

∥∥∥∥
2

≤ 0.5(vk + ik),

v0 = vN = vnom, v̄0 = v̄N = vnom,

e0 =
Pc

v0ki
, i0 = iN =

Pc

v0
,

vmin ≤ vk ≤ vmax, vmin ≤ v̄k ≤ vmax,

imin ≤ ik ≤ imax, ik ≤ s1(vk − s2) + imax,

−∆vmax ≤ (∆t)−1(vk+1 − vk) ≤ ∆vmax,

−∆vmax ≤ (∆t)−1(v̄k+1 − v̄k) ≤ ∆vmax,

−∆imax ≤ (∆t)−1(ik+1 − ik) ≤ ∆imax

(13)

Remark. In normal power system operation we would likely
only constrain the voltage command (and not the voltage) as
the two would be nearly equivalent. Here we are aggressively
varying both the voltage command and current draw. Given
the generator’s limited regulation bandwidth, the voltage
command and actual command are clearly not the same as
seen in Figure 5. To ensure we respect operational constraints
we limit both.

Remark. We do not impose periodicity constraints on the
voltage error integral term e as this is a virtual (vice physical)
state which can be reset by the control algorithm. The
initial constraint on e represents an equilibrium condition.
Periodicity is imposed on the current i as it is a physical
signal which cannot be discontinuous.

As the maximum energy transfer monotonically increases
with the time duration T = N∆t, determining the minimum
time to achieve a given energy demand E∗ can be solved via
bisection. To show solution trends, we instead exhaustively
vary the time duration from 1s to 50s in 1 second increments
and solve Problem (13) for each case.
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Fig. 2. Maximum Energy Transfer for Various Time Durations

Figure 2 shows the energy transferred to the storage device
for each solution. Note that we are plotting the original
objective here (∆t

∑N−1
k=0 vkis,k) and not the linear surrogate

objective. For reference we also plot the maximum energy
transfer possible if the system had no constraints on initial or



TABLE I
MICROGRID PARAMETERS

C kp ki Pc vnom vmin vmax ∆vmax imin imax ∆imax s1 s2
0.01F 0.5 0.025 300kW 1000V 800V 1200V 80V/s 0A 525A 500A/s -0.4375 A/V 952.4V
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Fig. 3. QCQP and SOCP Solutions for 50s Charging Profile

final states. In this scenario the system would be operated at
the maximum power of 500kW indefinitely. Of this, 200kW
would be going to the energy storage device, which is
the line we plot. For comparison, we also solve the non-
convex QCQP using IPOPT 3.11.0 [11] with gradients and
Hessians supplied by CasADi [12]. For horizon lengths up
to 10 seconds we confirmed with YALMIP’s global solver
BMIBNB that IPOPT is indeed finding the global solution
(to within 0.1%). Solutions to longer horizon lengths were
not proven global due to excessive runtimes. With respect
to the original objective, our surrogate objective gave results
that were at most 0.26% sub-optimal relative to the local
solution returned by IPOPT.

Figure 3 plots the solutions obtained for a 50 second charg-
ing duration. Despite the different objectives, the profiles are
very similar with the QCQP formulation transferring slightly
more net energy. Figure 4 plots the phase-portrait of voltage
and current for the 50s charging profile obtained from the
SOCP formulation. The trajectory begins at (1000V, 300A)
and moves clockwise. The current increases while the voltage
drops, eventually reaching both the voltage and current lower
limits. The current is then held constant while the voltage
recovers. The current is then decreased until we hit the
maximum voltage limit 1200V . The current continues to
decrease to 1200V, 250A at which point the energy storage
device is no longer drawing current (only the constant power
load is). We move along the minimum power bound 300kW ,
and then experience a short additional power draw which
returns us to our starting condition.

Figure 5 plots the time profiles of trajectories ranging
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Fig. 4. Maximum Energy Transfer for 50s Charging Profile

from 10s to 50s. While trends are evident in the voltage
and energy storage commands, they are not simple parabolic
or trapezoidal shapes as proposed in [3] and [5] respectively.
This supports the need for optimization-based approaches to
the design of charging profiles, rather than relying on pre-
specified stages.

Figure 6 plots the percentage error in the equality con-
straint z2

k = vkik. This numerically validates Lemma 1,
showing that the solutions satisfy z2

k = vkik to within solver
tolerances.

Figure 7 plots the solver runtimes for the SOCP and QCQP
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0 5 10 15 20 25 30 35 40 45 50
10

-6

10
-5

10
-4

Fig. 6. Equality Constraint Percent Error (100 × z2k−vkik
vkik

)

0 5 10 15 20 25 30 35 40 45 50

0

0.2

0.4

0.6

0.8

0

50

100

150

Fig. 7. Solver Runtime: SOCP (CPLEX) vs. QCQP (IPOPT)

formulations of Problem (13). Solutions were obtained on a
laptop with an Intel Core i7-4800MQ CPU. On average, the
SOCP formulation is solved 87x faster than the non-convex
QCQP formulation.

V. CONCLUSIONS

This work considered the maximum energy transfer prob-
lem in a microgrid with constant power loads. In its orig-
inal form, the problem is a non-convex QCQP. A convex
approach based on second-order cone programming was
developed and leveraged to design periodic charging profiles.
Future work includes extending this result to AC microgrids
and further characterizing the conditions under which the
linear objective is a good surrogate for the concave objective.
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