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Abstract— Voltage collapse is a type of blackout-inducing
dynamic instability that occurs when the power demand exceeds
the maximum power that can be transferred through the
network. The traditional (preventive) approach to avoid voltage
collapse is based on ensuring that the network never reaches
its maximum capacity. However, such an approach leads to
inefficiencies as it prevents operators to fully utilize the network
resources and does not account for unprescribed events. To
overcome this limitation, this paper seeks to initiate the study
of voltage collapse stabilization.

More precisely, for a DC star network, we formulate the
problem of voltage stability as a dynamic problem where each
load seeks to achieve a constant power consumption by updating
its conductance as the voltage changes. We show that such a
system can be interpreted as a game, where each player (load)
seeks to myopically maximize their utility using a gradient-
based response.

Using this framework, we show that voltage collapse is the
unique Nash Equilibrium of the induced game and is caused
by the lack of cooperation between loads. Finally, we propose a
Voltage Collapse Stabilizer (VCS) controller that uses (flexible)
loads that are willing to cooperate and provides a fair allocation
of the curtailed demand. Our solution stabilizes voltage collapse
even in the presence of non-cooperative loads. Numerical
simulations validate several features of our controllers.

I. INTRODUCTION

Voltage collapse (VC) is a type of outage in power
networks that arises when the aggregate power demand
exceeds the capacity of the network to transfer the required
power [1],[2],[3]. When such a point is achieved, (inflexible)
constant power loads tend to rapidly reduce their effective
impedance, bringing the voltage abruptly to zero. While this
mechanism is intrinsically dynamic, associated with a saddle
node bifurcation [4],[5], the inability to correct this behavior
from the generation side has lead power engineers to take
a rather static (preventive) approach to address it. That is,
to ensure that the point of maximum network loading is
never reached [6]. As a consequence, there has been a vast
body of work trying to quantify voltage stability margins.
This includes classical works, such as [7], [8],[9],[10] and
more recently, [11], [12]. However, this approach leads to
inefficiencies as it prevents operators to fully utilize the
network resources and does not account for unprescribed
events that can still produce a blackout.

This work seeks to initiate the study of voltage collapse
stabilization. More specifically, we aim to investigate how to
use (flexible) demand response to reduce consumption and
match network capacity, when the total demand exceeds it.
In this way we prevent inflexible demand from driving the
system to voltage collapse. To the best of our knowledge,
this work is the first effort on addressing the dynamic aspect
of voltage collapse to design controllers aimed at preventing
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it. Such a control scheme is required to overcome two main
challenges. Firstly, it needs to stabilize an operating point
that under inflexible load behavior is unstable.1 Secondly, it
needs to prevent collapse even in the presence of inflexible
loads.

The work is motivated by the rapid development of power
electronics and information technology [14] that, for the
first time since the inception of the power system, has the
potential to provide enough demand-side controllability that
could allow us to envision the possibility of stabilizing volt-
age collapse. However, despite the additional flexibility that
controllable demand provides, there are numerous questions
that remain to be answered. Among them:
• Is voltage collapse stabilization possible?
• Can stabilization be achieved via decentralized actions?
• How should the necessary demand reduction be allocated

among the flexible loads?
In this work, we provide an initial answer to some of

these questions for a simple direct current DC network. In
particular, we consider a star resistive network where each
load seeks to consume a constant power by dynamically
updating its conductance using a standard voltage droop. We
show that the system can be interpreted as a game, where
each player (load) seeks to (locally) maximize its utility
by choosing a gradient-based response. Notably, voltage
collapse can then be interpreted as the consequence of the
selfish behavior of the players that drive the system towards
the unique Nash equilibrium of the game. This observation
hints at the need of introducing coordination to overcome
voltage collapse, and motivates the proposed voltage collapse
stabilizing control.

The rest of the paper is organized as follows. Section
II introduces our DC network model of constant power
loads as well as some required game theory terminology.
Section III investigates the properties of (10) and frames our
network model as a load satisfiability game where the unique
Nash Equilibrium (NE) is the voltage collapse state. Section
IV describes our voltage collapse stabilizer controller and
studies its static and dynamic properties. We illustrate several
features of our controllers using numerical simulations in
Section V and conclude in Section VI.

II. PRELIMINARIES

In this section we introduce the network model to be
considered in this paper as well as the game theoretic
framework to be used.

A. DC Power Network Model
We consider the DC star network model described in

Figure 1, where E denotes the source voltage, gl the con-
ductance of a transmission line that transfers power to n
loads, and gi denotes the ith load conductance, i ∈ N :=
{1, . . . , n}. We consider two types of loads, the flexible

1At a saddle node bifurcation a stable and an unstable equilibrium are
merged, which leads to an unstable equilibrium [13].
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Fig. 1. Star DC Network with Several Dynamic loads

loads, belonging to the set F = {1, ..., nF } (nF = |F |),
and the inflexible loads, belonging to I = {nF + 1, ..., n}
(nI = |I|). Hence, the set of all loads is N = I ∪ F =
{1, . . . , n}. We further use g = (g1, . . . , gn) ∈ Rn≥0 to denote
the vector of conductances and g−i ∈ Rn−1 the vector of all
load conductances except gi.

Using this notation, we can use Kirchoff’s voltage and
current laws (KVL and KCL) to compute the voltage applied
to each load

v(g) =
Egl∑

i∈N gi + gl
. (1)

Thus, the total power consumed by each load i ∈ N becomes

Pi(g) = v2(g)gi =

(
Egl

geq(g) + gl

)2

gi, (2)

where geq(g) =
∑
i∈N gi is the equivalent conductance. The

difference between the power consumed by each load i ∈ N
and its nominal demand P0,i > 0 is

∆Pi(g) = Pi(g)− P0,i. (3)

The total power consumed by all the loads in the system
is

Ptot(g) =
n∑
i=1

Pi(g) =
(Egl)

2

(geq(g) + gl)2
geq(g). (4)

For an arbitrary set S ⊂ N and its complement Sc = N\S,
we define gS(g) =

∑
i∈S gi and gSc(g) =

∑
i∈Sc gi. The

equivalent conductance can then be written as geq(g) =
gS(g) + gSc(g) and the aggregate power consumed by every
load i ∈ S is defined as

PS(gS ; gSc) =
∑
i∈S

Pi(g) =
(Egl)

2

(gS + gSc + gl)2
gS . (5)

Whenever S = N (Sc = ∅) we drop the second argument in
(5) and use PN (gN ).
Network Capacity (PS,max): Since voltage collapse is the

result of the network reaching its maximum capacity [2], it
is of interest to compute the maximum value that PS(g) in
(5) can achieve for fixed value of gSc .

A straightforward calculation shows that for all i ∈ S
∂

∂gi
Pi(g) =

(Egl)
2

(geq(g) + gl)3
(gl + geq(g)− 2gi) , (6)

and similarly we get

∂

∂gS
PS(gS ; gSc) =

(Egl)
2

(gS + gSc + gl)3
(gl + gSc − gS) .

(7)
From (7), it is easy to see that PS(gS ; gSc) is an increasing

function of gS whenever gS < gS,max(gSc) := gl + gSc , and

decreasing when gS > gS,max(gSc). Therefore, the maximum
power that can be supplied to the loads in S is given by

PS,max = PS(gS,max; gSc) =
E2gl

4

gl
gl + gSc

(8)

and is achieved when gS = gS,max(gSc).
In the special case where S = N , (8) becomes:

Pmax = PN (gN,max) =
E2gl

4
(9)

where gN,max := gl.

Dynamic Load Model: We assume that each load i ∈ N
has a constant power demand P0,i. For an inflexible load
i ∈ I , this demand P0,i must always be satisfied. This is
achieved by dynamically changing the conductance gi in
order to change the power consumption Pi(g). Following
[2], we use the following dynamic model

ġi =− (v2(g)gi − P0,i) = −∆Pi(g), i ∈ I. (10)

Notice that Rn≥0 is invariant, since whenever gi = 0 then
(10) implies that ġi > 0.

Definition 1 (Voltage Collapse): The system (10) under-
goes voltage collapse whenever v(g(t))→ 0 as t→ +∞.

For the case of flexible loads, we assume that although
they aim to satisfy their own constant power demand P0,i,
at the same time they are willing to consume less than P0,i

whenever P0,tot :=
∑
i∈N P0,i > Pmax. Thus, our goal it to

design a control law

ġi = ui, i ∈ F, (11)

where the input ui is such that in equilibrium ∆Pi(g) = 0
whenever P0,tot < Pmax.

Power Flow Solutions: Given an equilibrium g∗ of (10)-
(11), there exists a unique voltage v(g∗) and power consump-
tion P (g∗) = (Pi(g

∗), i ∈ N). The pair (v, P ) is referred as
power flow solution. Thus, given the one-to-one relationship
between g and the pair (v, P ), we refer to g∗ as a power
flow solution.

B. Game Theory
We now present the game theoretical preliminaries that

will allows us to better grasp the level of coordination
required to prevent voltage collapse.

Definition 2 (Normal Form Game [15]): A Normal
Form Game is given by the triple 〈N,S,u〉 where:

1) N = {1, ..., n}, is the set of players.
2) S := S1 × ... × Sn, with Si being the strategy set of

player i ∈ N , is the set of strategies.
3) u = {ui, i ∈ N}, where ui : S := S1 × ...× Sn → R,
∀i ∈ N , is the set of payoff functions.

Given a game 〈N,S,u〉, we seek to understand the set of
strategies s = (s1, . . . , sn) ∈ S for which every player has
no incentive to move. Moreover, since in our context it is
in general difficult to understand the best response of each
player, we focus on locally optimal strategies.

Definition 3 (Nash Equlibirum [15]): A strategy s∗ =
(s∗1, .., s

∗
n) ∈ S is a (strict) Nash Equilibrium (NE) if and

only if for each i ∈ N

ui(s
∗
i , s
∗
−i) > ui(si, s

∗
−i), ∀si ∈ Si. (12)

Definition 4 (Local Nash Equlibrium [16]): A strategy
s∗ = (s∗1, .., s

∗
n) ∈ S is a (strict) Local Nash Equilibrium

1958



(LNE) if and only if for each i ∈ N there exists an open
set Wi ⊂ Si such that:

ui(s
∗
i , s
∗
−i) > ui(si, s

∗
−i), ∀si ∈Wi\{s∗i }. (13)

Whenever the payoff functions ui are sufficiently smooth,
it is possible to verify (13) using first and second order
derivatives.

Lemma 1 (Criterion for LNE [16]): Given a game
〈N, {Si, i ∈ N}, {ui, i ∈ N}〉 with doubly
continuously differentiable payoff functions, a strategy
s∗ = (s∗1, .., s

∗
n) ∈ S is a strict LNE whenever

∂

∂si
ui(s

∗) = 0 and
∂2

∂s2
i

ui(s
∗) < 0, ∀i ∈ N. (14)

III. SYSTEM ANALYSIS WITH INFLEXIBLE LOADS

In this section we characterize the region of stable equilib-
ria of (10) when P0,tot < Pmax and prove that the system un-
dergoes voltage collapse when P0,tot > Pmax. We then build
a game theoretical framework that provides a deeper insight
on the voltage collapse phenomenon and further suggests the
necessity of coordination among resources in order to prevent
voltage collapse without incurring unnecessary inefficiencies.
Throughout this section we assume I = N in (10).

A. Stability Analysis and Voltage Collapse
We start by first characterizing the region of stable equi-

libria of (10). For this reason, we consider the set

M := {g ∈ Rn :
∑
i∈N

gi < gl}. (15)

Lemma 2 (Characterization of Stable Region): A hyper-
bolic equilibrium2 point g∗ of (10) is stable if and only if
g∗ ∈M .

Proof: Let g∗ be an equilibrium of (10), i.e., ∆Pi(g
∗
i ) =

0 for all i ∈ N . The Jacobian of the system is given by

J(g∗) =
2v2(g∗)

geq(g∗) + gl
g∗1Tn − v2(g∗)In (16)

where In ∈ Rn×n is the identity matrix and 1Tn ∈ R1×n is
a vector of all ones.

Let K1(g∗) = 2v2(g∗)
geq(g∗)+gl

g∗1Tn . Since K1(g∗) is a rank 1
matrix, it has n−1 eigenvalues λi(K1) = 0, i ∈ {1, . . . , n−
1}, and one non-zero eigenvalue

λn(K1) =
2v2(g∗)

geq(g∗) + gl
1Tng

∗ =
2v2(g∗)

geq(g∗) + gl
geq(g∗).

The second term in (16) is an identity matrix and for that
the eigenvalues of J(g∗) are shifted from the eigenvalues of
K1(g∗) by −v2(g∗), i.e., λi(J) = λi(K1) − v2(g∗), which
gives

λi(J) =

{
−v2(g∗), i ∈ {1, .., n− 1};

2v2(g∗)
geq(g∗)+gl

geq(g∗)− v2(g∗), i = n.

We can now prove the statement of the lemma.
(⇒) If g∗ is an asymptotically stable hyperbolic

equilibrium, then J(g∗) is Hurwitz and thus:
λn(J) < 0⇒ v2(g∗)(

2geq(g∗)

geq(g∗)+gl
− 1) < 0⇒ geq(g∗) < gl.

2An equilibrium is hyperbolic if its Jacobian is nonsingular.

(⇐) If g∗ ∈ M , then: λn(J) < 0. Since all eigenvalues
of J(g∗) are negative, by Lyapunov’s Indirect Method [13,
Theorem 3.5] g∗ is asymptotically stable.

We now show how in the overload regime (P0,tot > Pmax),
the system is led to voltage collapse.

Theorem 1 (Voltage Collapse with Inflexible Loads):
The dynamic load model (10) with I = N undergoes a
voltage collapse whenever ε := P0,tot − Pmax > 0.

Proof: We have already pointed out that Rn≥0 is
invariant. Also, it is easy to check that (10) is globally
Lipschitz on Rn≥0 since gl > 0. Thus, by [13, Theorem
3.2], there is a unique solution to (10), g(t), that is defined
∀t ≥ 0. Now, consider the function V (g) =

∑
i∈N gi, and

let S+
V (a) = {g ∈ Rn≥0 : V (g) ≤ a}. By taking the time

derivative of V we get

V̇ (g) =
n∑
i=1

ġi=−
n∑
i=1

Pi(g)− P0,i≥P0,tot−Pmax =ε>0.

Therefore, ∀a ≥ 0 if g(0) ∈ S+
V (a), then g(t) escapes

S+
V (a) in finite time and therefore ||g(t)||→ ∞ as t → ∞.

It follows then that geq(t) grows unboundedly and by (1)
v(g(t))→ 0, i.e., the system’s voltage collapses.

Remark 1: Theorem 1 illustrates that our model for in-
flexible loads successfully captures the fundamental property
that excess on power demand beyond the network implies
voltage collapse and thus imitates the system’s dynamics.

B. A Game for Inflexible Constant Power Loads
We now provide a game thoeretical interpretation to volt-

age collapse. In our formulation, the set of players is the set
of loads, both conveniently denoted by N . We consider here
the case of inflexible loads, that is, I = N and F = ∅. For
each player i ∈ N the strategy si is given by its conductance
gi ≥ 0. Therefore, the strategy set S := Rn≥0.

Following Definition 2, it remains to define the utility
function of each agent i ∈ N . The following proposition
motivates a particular choice of payoff function.

Proposition 1: Consider the game 〈N,S,u〉, where S =
Rn≥0 and for each load i ∈ N the utility function is given by

ui(gi; g−i) =P0,igi + (Egl)
2ln

(
g−i + gl

gi + g−i + gl

)
− (Egl)

2

(
g−i + gl

gi + g−i + gl
− 1

)
,

(17)

where g−i denotes gN\{i} =
∑
j 6=i gj . Then, the inflexible

load dynamics (10) amount to the myopic gradient dynamics

ġi =
∂

∂si
ui(s), i ∈ I. (18)

As a consequence, if g∗ ∈ Rn≥0 is a LNE of 〈N,S,u〉, then
it is an equilibrium of (10).

Proof:
From equation (10), it follows that if u is the set of payoff

functions of the game 〈N,S,u〉, then

∂ui(gi; g−i)

∂gi
= −

((
Egl

geq(g) + gl

)2

gi − P0,i

)
Integrating the above expression with respect to gi gives

ui =

∫ gi

0

(
P0,i −

(Egl)
2

(s+ g−i + gl)2
s

)
ds
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=

∫ gi

0

(
P0,i − (Egl)

2 s+ g−i + gl
(s+ g−i + gl)2

)
ds

+

∫ gi

0

(Egl)
2 g−i + gl

(s+ g−i + gl)2
ds

=

[
P0,is−(Egl)

2

(
ln(s+g−i+gl)+

g−i+gl
s+g−i+gl

)]gi
0

We retrieve (17) by substituting for the limit values.
Proposition 1 reverse engineers a utility function for each

load such that any equilibrium of (10) is a stationary point of
the game. While this clearly hints that some of the equilibria
of (10) may constitute a LNE the following theorem unveils
a more surprising fact.

Theorem 2 (Voltage Collapse is the Unique NE): Given
the induced game 〈N,Rn≥0,u〉 with utility given by (17), the
strategy gi → +∞ ∀i ∈ N is the unique Nash Equilibrium.

Proof: We first show that each player maximizes their
utility by setting gi → +∞. Using (17),

lim
gi→+∞

ui(gi; g−i) = lim
gi→+∞

(Egl)
2 ln

(
g−i + gl

gi + g−i + gl

)
− lim
gi→+∞

(Egl)
2

(
g−i + gl

gi + g−i + gl
− 1

)
+ lim
gi→+∞

P0,igi

= lim
gi→+∞

P0,igi−(Egl)
2

(
ln

(
g−i+gl

gi+g−i+gl

)
−1

)
=+∞.

The previous derivation assumes that all other agents
decide finite conductances. In the case where any other agent
j 6= i is also choosing gj →∞, then a similar computation
using (17) gives

lim
gj→∞

ui(gi; g−i) = P0,igi + (Egl)
2,

which implies that

lim
gi→∞

lim
gj→∞

ui(gi; g−i) = lim
gi→∞

P0,igi + (Egl)
2 = +∞

Therefore, choosing gi → +∞ is a strictly dominant strategy
for agent i, i.e. it is the best possible strategy regardless of
the strategy chosen by all other agents. Since i was chosen
arbitrarily, results follows.

Theorem 2 unveils an unusual phenomenon. A game
representation of (10) for which power flow solutions can
provide some notion of (local) optimality (LNE) naturally
leads to voltage collapse as a dominant strategy This suggests
that it is the selfish myopic behavior of each player (load)
–that seeks to maximize their own payoff– that produces
voltage collapse. This behavior is reminiscent of the tragedy
of the commons [17], and further suggests that certain level
of coordination may be required in order to prevent voltage
collapse. This is the basis of the solution proposed next.

IV. VOLTAGE COLLAPSE STABILIZER CONTROL

We now focus our attention to the task of preventing
voltage collapse. Thus, we assume that there exists a subset
of the loads F ⊆ N , F 6= ∅, that are receptive to curtailment.
However, from an efficiency perspective, such curtailment
should only occur whenever the total demand exceeds the
network capacity (P0,tot > Pmax). Moreover, if curtailment
does occur, it should be fairly allocated among the flexible
loads. In our setting this translates into designing a controller
that allows for proportional sharing of load shedding among
flexible loads. These design objectives are summarized in the
following problem formulation.

Problem 1 (Voltage Collapse Stabilization): Design a
control signal ui, i ∈ F , such that:
• Load Satisfaction: Whenever P0,tot < Pmax the equilibrium

g∗ ∈M ∩ {g : ∆Pi(g) = 0, i ∈ N}

is the unique asymptotically stable equilibrium within M .
• Efficient Allocation: Whenever P0,tot > Pmax, there exists

a unique equilibrium within cl(M) given by g∗ ∈ EF ∩
cl(M) that is asymptotically stable and leads to a fair
curtailment, i.e., it is the optimal solution to

minimize
∆Pi,i∈F

∑
i∈F

θi
2

(∆Pi)
2

subject to
∑
i∈F

∆Pi = Pmax − P0,tot.
(19)

Remark 2: Since by Lemma 2 the set M in (15) char-
acterizes the region where the system typically operates in
the absence of flexible loads, the goal of Problem 1 is to
maintain this behavior and ensure that if the operating point
gets to the boundary M , then it is stable and efficient.

We will call a control law u that solves Problem 1 a
Voltage Collapse Stabilizing (VCS) control. The rest of this
section is devoted to showing that the following is a VCS
control

ġ = −A(g)(P (g)− P0) (20)

where A(g) = diag{αi(g), i ∈ N},

αi(g) =

{
κ(ḡi−gi)

1+κ(ḡi−gi) , ∀i ∈ F ;

1, ∀i ∈ I;
(21)

and
ḡi =

P0,i

(E/2)2
+
Pmax − P0,tot

γi(E/2)2
, (22)

with γi = θi
∑
j∈F

1
θj

and κ is a positive parameter: 0 <
κ <∞.

Remark 3: The term αi(g) aims to introduce a new
equilibrium point g∗ when P0,tot > Pmax such that, whenever
g∗ satisfies αi(g∗) = 0 ∀i ∈ F , then (∆Pi(g

∗), i ∈ F ) is a
solution to (19). However, as we show in the next section,
this can tentatively introduce new equilibria.

A. Characterization of Equilibria
We now proceed to characterize the set of equilibria of

(20). Given a set of loads G ⊆ N , consider

EG := {g : αi(g)=0, i∈G, ∆Pi(g)=0, i∈Gc} (23)

It is easy to see that the set ∪G⊆FEG compactly encapsulates
every equilibrium of (20). The following lemma will allow
us to further characterize each set (23).

Lemma 3 (Intermediate Value Theorem [18]): Let f ∈
C[a, b]. Then for any ψ ∈ (f(a), f(b)) there exists ξ ∈ [a, b]
such that f(ξ) = ψ.

Lemma 4 (Characterization of EG): Given any set G ⊆
F , the set EG comprises of two finite equilibria g∗1 , g

∗
2 such

that
g∗1,i = g∗2,i = ḡi ∀i ∈ G,

and ∑
i∈Gc

g∗1,i < gl +
∑
i∈G

ḡi <
∑
i∈Gc

g∗2,i (24)

if and only if 0 < P0,Gc < E2gl
4

gl
ḡG+gl

.
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Moreover, whenever G = F , then g∗1 ∈ cl(M) is such that

geq(g∗1) = gl, g
∗
1,i =

P0,i

(E2 )2
, ∀i ∈ I, and v(g∗1) =

E

2
. (25)

Proof: We assume that (20) has 2 equilibria g∗1 , g
∗
2 ∈

EG with the properties as described in the statement of the
Lemma. Since for i ∈ Gc, ∆Pi(g

∗
k) = 0, k ∈ {1, 2}, then

substituting S = Gc into (5) and evaluating the expression
at gk,Gc , k ∈ {1, 2}, yields

PGc(g∗k,Gc ; g∗k,G)−P0,Gc =
(Egl)

2g∗k,Gc

(g∗k,Gc +ḡG + gl)2
−P0,Gc = 0

(26)

where we used the fact g∗k,G =
∑
i∈G ḡi = ḡG (by

assumption). Since P0,i > 0 by definition, we can divide
by P0,Gc in (26) to get

−(g∗k,Gc)2+
( (Egl)

2

P0,Gc

−2(ḡG + gl)
)
g∗k,Gc−(ḡG + gl)

2 =0

(27)

This is a second order polynomial and has 2 real roots if and
only if

∆ =
( (Egl)

2

P0,Gc

−2(ḡG + gl)
)2

− 4(ḡG + gl)
2 > 0

⇐⇒ P0,Gc <
(Egl)

2

4(ḡG + gl)
=
E2gl

4

gl
ḡG + gl

(28)

(⇐) Given G, let ĝ ∈ Rn such that ĝi = ḡi ∀i ∈ G. For ĝ to
be an equilibrium, (27) must hold. We know by assumption
that 0 < P0,Gc < E2gl

4
gl

ḡG+gl
which implies that (27) has two

real roots ĝGc = g∗k,Gc , k = {1, 2}. Each root g∗k,Gc , k ∈
{1, 2}, defines an equivalent conductance gk,eq = g∗k,Gc + ḡG
and a voltage level vk = Egl

gk,eq+gl
. Therefore, there will exist

two equilibria ĝk ∈ EG, with

ĝ1,i = ĝ∗2,i = ḡi ∀i ∈ G,

ĝ1,i =
P0,i

v2
1

, ĝ2,i =
P0,i

v2
2

∀i ∈ Gc.

For the next property, we define the function

f(gGc) = PGc(gGc ; ḡG)− P0,Gc

and observe that f is equivalent to PGc(gGc ; ḡG) shifted by
a constant. Therefore, gGc,max is also a maximizer of f and:

∂f(gGc ; ḡG)

∂gGc

=
∂PGc(gGc ; ḡG)

∂gGc

(7)
=

{
> 0 gGc < gGc,max

< 0 gGc > gGc,max

We can prove by contradiction that the two roots of f satisfy
the condition g∗1,Gc < gGc,max < g∗2,Gc . If this condition is
not met, then both equilibria g∗k,Gc , k ∈ {1, 2}, are either
in (0, gGc,max) or in (gGc,max,+∞). In the first interval f
is strictly increasing, whereas in the second f is strictly
decreasing. In this case,

0 = f(g∗1,Gc) 6= f(g∗2,Gc) = 0,

contradiction. Therefore, the condition holds.
Finally, when G = F (hence Gc = I), let g̃ ∈ Rn such

that: g̃i = ḡi, ∀i ∈ F and g̃i =
P0,i

( E
2 )2

, ∀i ∈ I .

We substitute g̃ into geq(g)

geq(g̃)
(22)
=
∑
i∈F

P0,i

(E2 )2
+
∑
i∈F

1

γi

Pmax−P0,tot

(E2 )2
+
∑
i∈I

P0,i

(E2 )2

=
Pmax

(E2 )2

(9)
= gl.

Moreover, substituting geq(g̃) into (1) yields v(g̃) = E
2 . In

this case, we can verify that αi(g̃) = 0 for all i ∈ F and

Pi(g̃) = v2(g̃)g̃i =
(E

2

)2

g̃i = P0,i ∀i ∈ I

Therefore, g̃ ∈ EG. The point g̃ can be either of g∗1 , g
∗
2 .

However, geq(g̃) = gl < gl +
∑
i∈G ḡi, so g̃ = g∗1 .

We now show that our controller (20) does in fact guar-
antee the existence of an equilibrium that solves (19).

Theorem 3 (Efficient Allocation under Extreme Loading):
Consider the system (20) with equilibria characterized by
the set EF as shown in (23). Then, the conductance
g∗ ∈ EF ∩ cl(M) = {g∗} leads to a curtailment
{∆Pi(g∗), i ∈ F} that is optimal w.r.t. (19).

Proof: We have shown in Lemma 4 that there exists
g∗1 ∈ EF such that geq(g∗1) = gl, i.e., g∗1 ∈ EF ∩ cl(M). For
this equilibrium, the total power is

Ptot(g
∗
1) = v2(g∗1)geq(g∗1)

(25)
=

(
E

2

)2

gl
(9)
= Pmax

We can then compute the allocation of the curtailment
among loads i ∈ F for g = g∗1 :

∆Pi(g
∗
1) =v2(g∗1)ḡi − P0,i

=

(
E

2

)2
(
P0,i

(E2 )2
+
Pmax − P0,tot

γi(
E
2 )2

)
− P0,i

=
Pmax − P0,tot

γi
, ∀i ∈ F.

We can easily check that the allocation of the curtailment
∆Pi(g

∗
1) is proportional to θi

∆Pi(g
∗
1)

∆Pj(g∗1)
=
γj
γi

=
θj
θi
, i, j ∈ F, (29)

and thus is an Efficient Allocation.
Remark 4: Theorem 3 only guarantees that one of the

equilibria of EF solves (19). However, it does not provide
any information regarding all the possible additional equilib-
ria EG. We will show that the remaining equilibria either do
not exist, are unstable, or do not belong to the region M .

We conclude this subsection with showing a case where
EG ∩ cl(M) = ∅.

Theorem 4 (Empty EG under overloading conditions):
When G ( F ⊆ N and P0,tot > Pmax, then EG∩cl(M) = ∅.

Proof: Let g∗ ∈ EG ∩ cl(M) and G ⊂ F . Then, there
will exists a non empty set IF ⊂ F such that I ∪ IF = Gc

(and G = F\IF ). From Lemma 4, g∗G =
∑
i∈G ḡi = ḡG.

Let ḡGc = gl − ḡG. Since g∗ ∈ cl(M), it holds that:

g∗Gc + ḡG < gl = ḡG + ḡGc ⇒ g∗Gc < ḡGc .

The first inequality is strict, otherwise we would conclude
that: gIG =

P0,IG

( E
2 )2

= ḡIG ⇒ G = F , contradiction. We will
now look at how PGc(g∗Gc ; ḡG) behaves with respect to g∗Gc .
Since g∗ ∈ EG ∩ cl(M), then ∆PGc(g∗Gc ; ḡG) = 0. From
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(7), with S = Gc, we obtain that PGc(g∗Gc ; ḡG) is a strictly
increasing function for g∗Gc < gl + ḡG. Therefore:

0 = PGc(g∗Gc ; ḡG)− P0,Gc

g∗Gc<ḡGc

< PGc(ḡGc ; ḡG)− P0,Gc

=

(
E

2

)2

ḡGc − P0,Gc
(9)
= Pmax −

(
E

2

)2

ḡG − P0,Gc

(22)
= (Pmax−P0,tot)

(
1−
∑
i∈G

1

γi

)
<0,

where in the second equality we have substituted for ḡGc =
gl − ḡG and in the last step we have used (22) and the fact
that γi > 0 and

∑
i∈F γ

−1
i = 1. The above contradiction

implies that @ g∗ ∈ EG ∩ cl(M), i.e., EG ∩ cl(M) = ∅ for
G ( F .

So far we have shown that whenever P0,tot > Pmax, the
only feasible set EG in cl(M) is EF (Theorem 4), and EF
contains the equilibrium that solves the efficient curtailment
problem (19) (Lemma 4). However, there can also exist more
equilibria in EG ∩ cl(M)c. The next section will show that
g∗1 ∈ cl(M) is in fact a stable equilibrium under extreme
loading conditions.

Finally, since this equilibrium can change for different
choice of θi, we could span different equilibria for a certain
level of demand, simply by varying the relative values of θi
and θj .

B. Stability Analysis
In this Section we will study the stability of the different

equilibria with the objective of showing that the only equi-
librium chosen by the controller solves Problem 1 and thus
qualifies as a VCS Controller.

The following lemma will be of use in the eigenvalue
computation.

Lemma 5 (Matrix Determinant Lemma [19]): If D is an
invertible n× n matrix and x, y ∈ Rn, then:

det
(
D + xyT

)
= (1 + yTD−1x)det(D) (30)

We can now compute the eigenvalues of the Jacobian of
(20).

Lemma 6 (Computation of Eigenvalues of (20)):
Consider the system (20) and a point g ∈ EG, G ⊆ F .
Then, the eigenvalues of its Jacobian JC(g) at each point g
satisfy: {

λi = ∆Pi(g)κ, i ∈ G,
λi : c(g, λi) = 0, o.w.

(31)

where

c(g, λ) :=

(
1 +

2v
2

(g)

geq(g) + gl

∑
i∈N

αi(g)gi
di(g)− λ

)
(32)

and di(g) = −αi(g)v2(g) + ∆Pi(g) κ
(1+κ(ḡi−gi))2 .

Proof: The Jacobian of this system is

JC(g) = A(g)
( 2v2(g)

geq(g) + gl
g1Tn−v2(g)In

)
−D∆P (g)Dκ(g)

(33)
where

D∆P (g) = diag{∆P (g)}, Dκ(g) = diag
{
∂

∂gi
αi(g)

}
,

with ∂
∂gi
αi(g) =

{
−κ

(1+κ(ḡi−gi))2 ∀i ∈ F
0 ∀i ∈ I

.

The eigenvalues of JC(g) are given as the solution of
det(JC(g)−λIn) = 0. Notice that JC(g)−λIn is composed
by a diagonal matrix

D(g, λ) := −D∆P (g)Dκ(g)− v2(g)A(g)− λIn

plus a rank 1 matrix − 2v2(g)
geq(g)+gl

(A(g)g)1Tn = xyT , with

x = − 2v2(g)

geq(g) + gl
(A(g)g), y = 1n.

Moreover, the entries of D(g, λ) can be written as di(g)−λ.
Therefore, using [19], we can compute

det(JC(g)− λIn) = c(g, λ) det(D(g, λ)),

which implies that λi is either equal to ∆Pi(g)κ or is a
solution to c(g, λ) = 0. Result follows.

Having characterized the eigenvalues of JC(g), we now
analyze the stability of the equilibria of (23).

Theorem 5 (Stability of VCS Controller): Consider the
system (20). Then, for 0 < κ <∞ the following holds:

(1) When
∑
i∈N P0,i > Pmax, then the only equilibrium

within cl(M), given by g∗ ∈ EF ∩ cl(M) = {g∗}, is
asymptotically stable and guarantees fair curtailment.

(2) When
∑
i∈N P0,i < Pmax, then the only asymptotically

stable equilibrium in cl(M) is given by g∗ ∈ E∅∩cl(M) =
{g∗}.

Proof: (1) Let
∑
i∈N P0,i > Pmax. Then, by Theorem

1, there does not exist g∗ such that ∆Pi(g
∗) = 0, ∀i ∈ N .

That is, if G = ∅ then E∅ = ∅.
Let g∗ ∈ EG ∩ cl(M). By Theorem 4, if ∅ 6= G ( F ,

then again EG ∩ cl(M) = ∅. Therefore, when P0,tot > Pmax,
EG ∩ cl(M) is nonempty only for G = F .

For g∗ ∈ EF ∩ cl(M), Lemma 4 implies

geq(g∗) = gl, g∗i = ḡi i ∈ F, g∗i =
P0,i

(E2 )2
i ∈ I.

We will compute the eigenvalues of Jc(g∗) using Lemma 6.
For i ∈ F , the eigenvalues are λi = ∆Pi(g

∗)κ. Since

Pi(g
∗) = v2(g∗)g∗i =

(
E

2

)2
(
P0,i

(E2 )2
+

1

γi

Pmax−P0,tot

(E2 )2

)
= P0,i +

1

γi
(Pmax − P0,tot),

it follows that λi = ∆Pi(g
∗)κ = 1

γi
(Pmax−P0,tot)κ < 0, for

all i ∈ F .
The rest of the eigenvalues are computed from (32) by

substituting αi(g∗) = 0 for i ∈ F and αi(g∗) = 1 for i ∈ I:

c(g∗, λ) = 1 +
2v2(g∗)

geq(g∗) + gl

∑
i∈I

g∗i
−v2(g∗)− λ

= 0 (34)

It is easy to show, following the analysis of [20], that c(g∗1 , λ)
always has real roots. We will examine the sign of the roots
of c(g∗, λ) by first looking at its derivative:

∂

∂λ
c(g∗, λ) =

2v2(g∗)

geq(g∗) + gl

∑
i∈I

g∗i
(−v2(g∗)− λ)2

> 0

Hence, since the denominator is non-singular for λ ≥
0, c(g∗, λ) is continuous and strictly increasing for λ ∈
[0,+∞). Moreover, c(g∗, 0) = 1− 2

∑
i∈I gi

geq(g∗)+gl
> 0. Therefore,
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there does not exist λ ≥ 0 such that c(g∗, λ) = 0.
Consequently, λi < 0 for all i ∈ I and we have shown above
that λi < 0 also for all i ∈ F . Therefore, by Lyapunov’s
Indirect Method [13, Theorem 3.2] g∗ ∈ EF ∩ cl(M) is an
asymptotically stable equilibrium of (20).

(2) Let
∑
i∈N P0,i < Pmax and g∗ ∈ E∅ ∩ cl(M). In

this case g∗i 6= ḡi ∀i ∈ N (otherwise g∗ /∈ E∅). Therefore
αi(g

∗) 6= 0. From (31) the eigenvalues of the system satisfy:

c(g∗, λ) = 1 +
2v2(g∗)

geq(g∗) + gl

∑
i∈N

αi(g
∗)g∗i

di(g∗)− λ
= 0 (35)

Since g∗ ∈ E∅∩cl(M), then from (1) v(g∗) ≥ E
2 . Therefore:

g∗i =
P0,i

v2(g∗)
≤ P0,i

(E2 )2
<

P0,i

(E2 )2
+
Pmax − P0,tot

γi(
E
2 )2

= ḡi ⇒ αi(g
∗) > 0

where in the second inequality we have used that Pmax −
P0,tot > 0.

From [20], when αi(g∗) > 0, equation (35) has n−1 roots
that satisfy λi < maxi{−αi(g∗)v2(g∗)} = dM < 0. For the
nth eigenvalue, we observe that c(g∗, λ) ∈ C∞(dM , 0] and:

c(g∗, d−M ) = lim
λ→d−M

c(g∗, λ)→ −∞ < 0

c(g∗, 0) = 1−
∑
i∈N

2g∗i
geq(g∗) + gl

g∈cl(M)
> 0

From Lemma 3, there exists λn ∈ (dM , 0) s.t. c(g∗, λn) = 0.
Therefore, the nth eigenvalue is also negative and from
[13, Theorem 3.2], g∗ ∈ E∅∩cl(M) is asymptotically stable.

If g∗ ∈ EG ∩ cl(M) for an arbitrary G 6= ∅, then the only
equilibrium that could satisfy this condition (when it exists)
is g∗1 ∈ EG. From (1), v(g∗) ≥ E

2 . Substituting into (31) for
i ∈ G:

λi =∆Pi(g
∗)κ = κ(v2(g∗)ḡi − P0,i)

=κP0,i

(v(g∗)

(E2 )

)2

− 1

+
κ

γi

Pmax − P0,tot

(E2 )2
> 0

Since there exists at least one positive eigenvalue, [13, Theo-
rem 3.2] implies that the equilibrium is unstable. Therefore,
the only stable eigenvalue is g∗1 ∈ E∅ ∩ cl(M).

Theorem 5 shows that (20) is indeed a Voltage Collapse
Stabilizing Control. That is, within the region cl(M), the
only stable equilibrium either satisfies ∆Pi(g) = 0 ∀i ∈ N
when Ptot < Pmax or is given by g∗ ∈ EF ∩ cl(M) and
is efficient. However, there may be some other equilibria
that are unstable within cl(M) (Figure 2) or within cl(M)c

(Figure 3).

V. NUMERICAL ILLUSTRATIONS

In this section, we validate our theoretical results using
numerical illustrations. We consider a DC grid as in Figure
1 with three loads. In all the experiments we start the
simulations with initial set-points such that P0,tot < Pmax
and with conductances close to the equilibrium g∗ where
all demands are met, i.e., g∗ ∈ E∅ ∩ M . We explore the
parameter space by slowly varying the demand (P0) with
time and observing the changes in the equilibria. We use
κ = 10.

Fig. 2. Phase Portrait of 2 flexible loads, when P0,1 = 1.57p.u. and
P0,2 = 1.37p.u. (with P0,tot < Pmax = 3.025p.u. and κ = 0.05). The
system converges to the stable equilibrium (3.88, 3.38) for different initial
conditions. Notice that the trajectories starting close to all other equilibria
diverge.

Fig. 3. Phase Portrait of 2 flexible loads, when P0,1 = 1.98p.u. and
P0,2 = 1.78p.u. (with P0,tot > Pmax = 3.025p.u. and κ = 0.05). The
system converges to the stable equilibrium (5.73, 4.27) for different initial
conditions ‘close enough’ to the equilibrium. The trajectories with initial
conditions too far from the equilibrium diverge.

Case 1 (I=N={1,2,3}): Figure 4 illustrates the behavior of
the system (10)-(11) consisting of only inflexible loads. We
can see that as soon as the aggregate demand reaches Pmax,
the system undergoes a voltage collapse.
Case 2 (F=N={1,2,3}): The case where all loads are flexible
is illustrated in Figure 5. In comparison with Case 1, here
our VCS controller forces the consumption of all loads to
adjust proportionally to their assigned weight θi, preventing
in this way voltage collapse.
Case 3 (F={1,2},I={3}): Finally we illustrate a case with
mixed load types where load 3 is inflexible, and our VCS
controller is executed in loads 1 and 2. We observe in Figure
6 that the flexible loads (1, 2) adjust their demand proportion-
ally to their assigned weights in order to accommodate the
increasing demand of the inflexible load, again, preventing
voltage collapse. However, when the system runs out of
flexible demand then it will eventually undergo a voltage
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Fig. 4. Voltage collapse illustration with inflexible loads.

Fig. 5. VCS Controller acting on all loads. Supply tracks demand under
varying loading.

collapse, as predicted in Lemma 4. We observe exactly this
behavior in Figure 7.

Fig. 6. Loads 1,2 are flexible and Load 3 is inflexible. Supply adjusts
according to the assigned weight θi

Fig. 7. Loads 1,2 are flexible and Load 3 is inflexible. VC happens when∑
i∈I P0,i > Pmax

In all cases we verify that the proposed controller tracks
the desired equilibria, whenever it exists.

VI. CONCLUSIONS
This work seeks to initiate the study of voltage collapse

stabilization as a mechanism to provide a more efficient

and reliable operation of electric power grids. We develop a
game theoretical framework that sheds light on the behavioral
mechanism that leads to voltage collapse and suggests the
need of cooperation as a means to prevent it. Based on this
insight, we propose a Voltage Collpase Stabilizer controller
that is able to not only prevent voltage collapse, but also
fairly distribute the curtailment among the flexible loads.
Further research needs to be conducted to fully characterize
the behavior of our solution. In particular, the point where
P0,tot = Pmax is a non-trivial point, where the Jacobian of the
system is identically zero and thus requires the treatment of
higher order dynamics. We identify two desired extensions of
this work that are subject of current research: (a) extending
the analysis to a general DC network and (b) extending the
analysis to a general AC network.
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