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Abstract—This paper studies the projected saddle-point
dynamics associated to a convex–concave function, which
we term saddle function. The dynamics consists of gradient
descent of the saddle function in variables corresponding to
convexity and (projected) gradient ascent in variables cor-
responding to concavity. We examine the role that the local
and/or global nature of the convexity–concavity properties
of the saddle function plays in guaranteeing convergence
and robustness of the dynamics. Under the assumption that
the saddle function is twice continuously differentiable, we
provide a novel characterization of the omega-limit set of
the trajectories of this dynamics in terms of the diagonal
blocks of the Hessian. Using this characterization, we
establish global asymptotic convergence of the dynamics
under local strong convexity–concavity of the saddle func-
tion. When strong convexity–concavity holds globally, we
establish three results. First, we identify a Lyapunov func-
tion (that decreases strictly along the trajectory) for the pro-
jected saddle-point dynamics when the saddle function cor-
responds to the Lagrangian of a general constrained convex
optimization problem. Second, for the particular case when
the saddle function is the Lagrangian of an equality-
constrained optimization problem, we show input-to-state
stability (ISS) of the saddle-point dynamics by providing
an ISS Lyapunov function. Third, we use the latter result to
design an opportunistic state-triggered implementation of
the dynamics. Various examples illustrate our results.

Index Terms—Asymptotic stability, constrained convex
optimization, input-to-state stability, primal-dual dynamics,
saddle-point dynamics.
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I. INTRODUCTION

SADDLE-POINT dynamics and its variations have been
used extensively in the design and analysis of distributed

feedback controllers and optimization algorithms in several do-
mains, including power networks, network flow problems, and
zero-sum games. The analysis of the global convergence of this
class of dynamics typically relies on some global strong/strict
convexity–concavity property of the saddle function defining
the dynamics. The main aim of this paper is to refine this
analysis by unveiling two ways in which convexity–concavity of
the saddle function plays a role. First, we show that local strong
convexity–concavity is enough to conclude global asymptotic
convergence, thus generalizing previous results that rely on
global strong/strict convexity–concavity instead. Second, we
show that, if global strong convexity–concavity holds, then
one can identify a novel Lyapunov function for the projected
saddle-point dynamics for the case when the saddle function
is the Lagrangian of a constrained optimization problem.
This, in turn, implies a stronger form of convergence, that is,
input-to-state stability (ISS) and has important implications in
the practical implementation of the saddle-point dynamics.

A. Literature Review

The analysis of the convergence properties of (projected)
saddle-point dynamics to the set of saddle points goes back to [2]
and [3], motivated by the study of nonlinear programming and
optimization. These works employed direct methods, examin-
ing the approximate evolution of the distance of the trajectories
to the saddle point and concluding attractivity by showing it to
be decreasing. Subsequently, motivated by the extensive use of
the saddle-point dynamics in congestion control problems, the
literature on communication networks developed a Lyapunov-
based and passivity-based asymptotic stability analysis, see,
e.g., [4] and references therein. Motivated by network opti-
mization, more recent works [5], [6] have employed indirect,
LaSalle-type arguments to analyze asymptotic convergence.
For this class of problems, the aggregate nature of the objective
function and the local computability of the constraints make
the saddle-point dynamics corresponding to the Lagrangian
naturally distributed. Many other works exploit this dynamics to
solve network optimization problems for various applications,
e.g., distributed convex optimization [6], [7], distributed
linear programming [8], bargaining problems [9], and power
networks [10]–[14]. Another area of application is the game
theory, where saddle-point dynamics is applied to find the Nash
equilibria of two-person zero-sum games [15], [16]. In the con-
text of distributed optimization, the recent work [17] employs
a (strict) Lyapunov function approach to ensure asymptotic
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convergence of saddle-point-like dynamics. The work [18]
examines the asymptotic behavior of the saddle-point dynamics
when the set of saddle points is not asymptotically stable, and
instead, trajectories exhibit oscillatory behavior. Our previous
work has established global asymptotic convergence of the
saddle-point dynamics [19] and the projected saddle-point
dynamics [20] under global strict convexity–concavity as-
sumptions. The works mentioned previously require similar
or stronger global assumptions on the convexity–concavity
properties of the saddle function to ensure convergence. Our
results here directly generalize the convergence properties
reported previously. Specifically, we show that traditional as-
sumptions on the problem setup can be relaxed if convergence
of the dynamics is the desired property: global convergence of
the projected saddle-point dynamics can be guaranteed under
local strong convexity–concavity assumptions. Furthermore,
if traditional assumptions do hold, then a stronger notion
of convergence, that also implies robustness, is guaranteed:
if strong convexity–concavity holds globally, the dynamics
admits a Lyapunov function and in the absence of projection,
the dynamics is ISS, admitting an ISS Lyapunov function.

B. Statement of Contributions

Our starting point is the definition of the projected saddle-
point dynamics for a differentiable convex–concave function,
referred to as saddle function. The dynamics has three compo-
nents: gradient descent, projected gradient ascent, and gradient
ascent of the saddle function, where each gradient is with re-
spect to a subset of the arguments of the function. This unified
formulation encompasses all forms of the saddle-point dynam-
ics mentioned in the literature review previously. Our contri-
butions shed light on the effect that the convexity–concavity
of the saddle function has on the convergence attributes of
the projected saddle-point dynamics. Our first contribution is
a novel characterization of the omega-limit set of the trajec-
tories of the projected saddle-point dynamics in terms of the
diagonal Hessian blocks of the saddle function. To this end, we
use the distance to a saddle point as a LaSalle function, ex-
press the Lie derivative of this function in terms of the Hessian
blocks, and show it is nonpositive using second-order proper-
ties of the saddle function. Building on this characterization,
our second contribution establishes global asymptotic conver-
gence of the projected saddle-point dynamics to a saddle point
assuming only local strong convexity–concavity of the saddle
function. Our third contribution identifies a novel Lyapunov
function for the projected saddle-point dynamics for the case
when strong convexity–concavity holds globally and the saddle
function can be written as the Lagrangian of a constrained op-
timization problem. This discontinuous Lyapunov function can
be interpreted as multiple continuously differentiable Lyapunov
functions, one for each set in a particular partition of the domain
determined by the projection operator of the dynamics. Interest-
ingly, the identified Lyapunov function is the sum of two previ-
ously known and independently considered LaSalle functions.
When the saddle function takes the form of the Lagrangian of an
equality constrained optimization, then no projection is present.
In such scenarios, if the saddle function satisfies global strong
convexity–concavity, our fourth contribution establishes ISS of
the dynamics with respect to the saddle point by providing an
ISS Lyapunov function. Our last contribution uses this func-
tion to design an opportunistic state-triggered implementation

of the saddle-point dynamics. We show that the trajectories of
this discrete-time system converge asymptotically to the saddle
points and that executions are Zeno free, i.e., that the difference
between any two consecutive triggering times is lower bounded
by a common positive quantity. Examples illustrate our results.

II. PRELIMINARIES

This section introduces our notation and preliminary no-
tions on convex–concave functions, discontinuous dynamical
systems, and ISS.

A. Notation

Let R, R≥0 , and N denote the set of real, nonnegative real,
and natural numbers, respectively. We let ‖ · ‖ denote the 2-
norm on Rn and the respective induced norm on Rn×m . Given
x, y ∈ Rn , xi denotes the ith component of x, and x ≤ y denotes
xi ≤ yi , for i ∈ {1, . . . , n}. For vectors u ∈ Rn and w ∈ Rm ,
the vector (u;w) ∈ Rn+m denotes their concatenation. For a ∈
R and b ∈ R≥0 , we let

[a]+b =
{

a, if b > 0,

max{0, a}, if b = 0.

For vectors a ∈ Rn and b ∈ Rn
≥0 , [a]+b denotes the vector

whose ith component is [ai ]+bi
, for i ∈ {1, . . . , n}. Given a

set S ⊂ Rn , we denote by cl(S), int(S), and |S| its closure,
interior, and cardinality, respectively. The distance of a point
x ∈ Rn to the set S ⊂ Rn in 2-norm is ‖x‖S = infy∈S ‖x − y‖.
The projection of x onto a closed set S is defined as the set
projS(x) = {y ∈ S | ‖x − y‖ = ‖x‖S}. When S is also con-
vex, projS(x) is a singleton for any x ∈ Rn . For a matrix
A ∈ Rn×n , we use A � 0, A � 0, A 	 0, and A ≺ 0 to de-
note that A is positive semidefinite, positive definite, negative
semidefinite, and negative definite, respectively. For a sym-
metric matrix A ∈ Rn×n , λmin(A) and λmax(A) denote the
minimum and maximum eigenvalue of A. For a real-valued
function F : Rn × Rm → R, (x, y) �→ F (x, y), we denote by
∇xF and ∇yF the column vector of partial derivatives of F
with respect to the first and second arguments, respectively.
Higher order derivatives follow the convention ∇xyF = ∂ 2 F

∂x∂y ,

∇xxF = ∂ 2 F
∂x2 , and so on. A function α : R≥0 → R≥0 is class K

if it is continuous, strictly increasing, and α(0) = 0. The set of
unbounded class K functions are called K∞ functions. A func-
tion β : R≥0 × R≥0 → R≥0 is class KL if for any t ∈ R≥0 ,
x �→ β(x, t) is class K and for any x ∈ R≥0 , t �→ β(x, t) is
continuous, decreasing with β(x, t) → 0 as t → ∞.

B. Saddle Points and Convex–Concave Functions

Here, we review notions of convexity, concavity, and saddle
points from [21]. A function f : X → R is convex if

f(λx + (1 − λ)x′) ≤ λf(x) + (1 − λ)f(x′)

for all x, x′ ∈ X (where X is a convex domain) and all λ ∈
[0, 1]. A convex differentiable f satisfies the following first-
order convexity condition:

f(x′) ≥ f(x) + (x′ − x)�∇f(x)

for all x, x′ ∈ X . A twice differentiable function f is locally
strongly convex at x ∈ X if f is convex and ∇2f(x) � mI for
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some m > 0 (note that this is equivalent to having ∇2f � 0
in a neighborhood of x). Moreover, a twice differentiable f is
strongly convex if∇2f(x) � mI for all x ∈ X for some m > 0.
A function f : X → R is concave, locally strongly concave,
or strongly concave if −f is convex, locally strongly convex,
or strongly convex, respectively. A function F : X × Y → R
is convex–concave (on X × Y) if, given any point (x̃, ỹ) ∈
X × Y , x �→ F (x, ỹ) is convex and y �→ F (x̃, y) is concave.
When the space X × Y is clear from the context, we refer to
this property as F being convex–concave in (x, y). A point
(x∗, y∗) ∈ X × Y is a saddle point of F on the set X × Y
if F (x∗, y) ≤ F (x∗, y∗) ≤ F (x, y∗) for all x ∈ X and y ∈ Y .
The set of saddle points of a convex–concave function F is
convex. The function F is locally strongly convex–concave
at a saddle point (x, y) if it is convex–concave and either
∇xxF (x, y) � mI or ∇yyF (x, y) 	 −mI for some m > 0.
Finally, F is globally strongly convex–concave if it is convex–
concave and either x �→ F (x, y) is strongly convex for all y ∈ Y
or y �→ F (x, y) is strongly concave for all x ∈ X .

C. Discontinuous Dynamical Systems

Here, we present notions of discontinuous dynamical sys-
tems [22], [23]. Let f : Rn → Rn be Lebesgue measurable and
locally bounded. Consider the differential equation

ẋ = f(x). (1)

A map γ : [0, T ) → Rn is a (Caratheodory) solution of (1) on
the interval [0, T ) if it is absolutely continuous on [0, T ) and
satisfies γ̇(t) = f(γ(t)) almost everywhere in [0, T ). We use the
terms solution and trajectory interchangeably. A set S ⊂ Rn is
invariant under (1) if every solution starting in S remains in S.
For a solution γ of (1) defined on the time interval [0,∞), the
omega-limit set Ω(γ) is defined by

Ω(γ) = {y ∈ Rn | ∃{tk}∞k=1 ⊂ [0,∞) with lim
k→∞

tk = ∞

and lim
k→∞

γ(tk ) = y}.

If the solution γ is bounded, then Ω(γ) �= ∅ by the Bolzano–
Weierstrass theorem [24, p. 33]. Given a continuously differen-
tiable function V : Rn → R, the Lie derivative of V along (1)
at x ∈ Rn is Lf V (x) = ∇V (x)�f(x). The next result is a sim-
plified version of [22, Proposition 3].

Proposition 2.1 (Invariance principle for discontinuous
Caratheodory systems): Let S ∈ Rn be compact and invari-
ant. Assume that, for each point x0 ∈ S, there exists a unique
solution of (1) starting at x0 and that its omega-limit set is in-
variant too. Let V : Rn → R be a continuously differentiable
map such that Lf V (x) ≤ 0 for all x ∈ S. Then, any solution
of (1) starting at S converges to the largest invariant set in
cl({x ∈ S | Lf V (x) = 0}).

D. Input-to-State Stability (ISS)

Here, we review the notion of ISS following [25]. Consider a
system

ẋ = f(x, u) (2)

where x ∈ Rn is the state, u : R≥0 → Rm is the input that
is measurable and locally essentially bounded, and f : Rn ×
Rm → Rn is locally Lipschitz. Assume that starting from any

point in Rn , the trajectory of (2) is defined on R≥0 for any given
control. Let Eq(f) ⊂ Rn be the set of equilibrium points of the
unforced system. Then, the system (2) is input-to-state stable
with respect to Eq(f) if there exists β ∈ KL and γ ∈ K such
that each trajectory t �→ x(t) of (2) satisfies

‖x(t)‖Eq(f ) ≤ β(‖x(0)‖Eq(f ) , t) + γ(‖u‖∞)

for all t ≥ 0, where ‖u‖∞ = ess supt≥0‖u(t)‖ is the essential
supremum (see [24, p. 185] for the definition) of u. This notion
captures the graceful degradation of the asymptotic convergence
properties of the unforced system as the size of the disturbance
input grows. One convenient way of showing ISS is by finding an
ISS-Lyapunov function. An ISS-Lyapunov function with respect
to the set Eq(f) for system (2) is a differentiable function V :
Rn → R≥0 such that

1) there exist α1 , α2 ∈ K∞ such that for all x ∈ Rn ,

α1(‖x‖Eq(f )) ≤ V (x) ≤ α2(‖x‖Eq(f )) (3)

2) there exists a continuous, positive definite function α3 :
R≥0 → R≥0 and γ ∈ K∞ such that

∇V (x)�f(x, v) ≤ −α3(‖x‖Eq(f )) (4)

for all x ∈ Rn , v ∈ Rm for which ‖x‖Eq(f ) ≥ γ(‖v‖).
Proposition 2.2. (ISS-Lyapunov function implies ISS): If (2)

admits an ISS-Lyapunov function, then it is ISS.

III. PROBLEM STATEMENT

In this section, we provide a formal statement of the problem
of interest. Consider a twice continuously differentiable func-
tion F : Rn × Rp

≥0 × Rm → R, (x, y, z) �→ F (x, y, z), which
we refer to as saddle function. With the notation of Section II-B,
we set X = Rn and Y = Rp

≥0 × Rm , and assume that F is
convex–concave on (Rn ) × (Rp

≥0 × Rm ). Let Saddle(F ) de-
note its (nonempty) set of saddle points. We define the projected
saddle-point dynamics for F as

ẋ = −∇xF (x, y, z), (5a)

ẏ = [∇yF (x, y, z)]+y , (5b)

ż = ∇zF (x, y, z). (5c)

When convenient, we use the map Xp-sp : Rn × Rp
≥0 ×

Rm → Rn × Rp × Rm to refer to the dynamics (5). Note that
the domain Rn × Rp

≥0 × Rm is invariant under Xp-sp (this fol-
lows from the definition of the projection operator) and its set
of equilibrium points precisely corresponds to Saddle(F ) (this
follows from the defining property of saddle points and the first-
order condition for convexity–concavity of F ). Thus, a saddle
point (x∗, y∗, z∗) satisfies

∇xF (x∗, y∗, z∗) = 0, ∇zF (x∗, y∗, z∗) = 0, (6a)

∇yF (x∗, y∗, z∗) ≤ 0, y�
∗ ∇yF (x∗, y∗, z∗) = 0. (6b)

Our interest in the dynamics (5) is motivated by two bodies of
work in the literature: one that analyzes primal-dual dynamics,
corresponding to (5a) together with (5b), for solving inequal-
ity constrained network optimization problems, see, e.g., [3],
[5], [11], and [14]; and the other one analyzing saddle-point
dynamics, corresponding to (5a) together with (5c), for solving
equality constrained problems and finding Nash equilibrium of
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zero-sum games, see, e.g., [19] and references therein. By con-
sidering (5a)–(5c) together, we aim to unify these lines of work.
Later, we explain further the significance of the dynamics in
solving specific network optimization problems.

Remark 3.1 (Motivating examples): Consider the following
constrained convex optimization problem:

min{f(x) | g(x) ≤ 0, Ax = b}
where f : Rn → R and g : Rn → Rp are convex continu-
ously differentiable functions, A ∈ Rm×n , and b ∈ Rm . Under
zero duality gap, saddle points of the associated Lagrangian
L(x, y, z) = f(x) + y�g(x) + z�(Ax − b) correspond to the
primal-dual optimizers of the problem. This observation moti-
vates the search for the saddle points of the Lagrangian, which
can be done via the projected saddle-point dynamics (5). In
many network optimization problems, f is the summation of in-
dividual costs of agents and the constraints, defined by g and A,
are such that each of its components is computable by one agent
interacting with its neighbors. This structure renders the pro-
jected saddle-point dynamics of the Lagrangian implementable
in a distributed manner. Motivated by this, the dynamics is
widespread in network optimization scenarios. For example, in
optimal dispatch of power generators [11]–[14], the objective
function is the sum of the individual cost function of each gen-
erator, the inequalities consist of generator capacity constraints
and line limits, and the equality encodes the power balance at
each bus. In congestion control of communication networks [4],
[5], [26], the cost function is the summation of the negative
of the utility of the communicated data, the inequalities define
constraints on channel capacities, and equalities encode the data
balance at each node. •

Our main objectives are to identify conditions that guarantee
that the set of saddle points is globally asymptotically stable
under the dynamics (5) and formally characterize the robust-
ness properties using the concept of ISS. The rest of this paper
is structured as follows. Section IV investigates novel condi-
tions that guarantee global asymptotic convergence relying on
LaSalle-type arguments. Section V instead identifies a strict
Lyapunov function for constrained convex optimization prob-
lems. This finding allows us in Section VI to go beyond conver-
gence guarantees and explore the robustness properties of the
saddle-point dynamics.

IV. LOCAL PROPERTIES OF THE SADDLE FUNCTION IMPLY

GLOBAL CONVERGENCE

Our first result of this section provides a novel characteriza-
tion of the omega-limit set of the trajectories of the projected
saddle-point dynamics (5).

Proposition 4.1 (Characterization of the omega-limit set of
solutions of Xp-sp): Given a twice continuously differentiable,
convex–concave function F , each point in the set Saddle(F )
is stable under the projected saddle-point dynamics Xp-sp and
the omega-limit set of every solution is contained in the largest
invariant set M in E(F ), where

E(F ) = {(x, y, z) ∈ Rn × Rp
≥0 × Rm |

(x − x∗; y − y∗; z − z∗) ∈ ker(H(x, y, z, x∗, y∗, z∗))

for all (x∗, y∗, z∗) ∈ Saddle(F )} (7)

and

H(x, y, z, x∗, y∗, z∗) =
∫ 1

0
H(x(s), y(s), z(s))ds,

(x(s), y(s), z(s)) = (x∗, y∗, z∗) + s(x − x∗, y − y∗, z − z∗),

H(x, y, z) =

⎡
⎣
−∇xxF 0 0

0 ∇yyF ∇yzF

0 ∇zyF ∇zzF

⎤
⎦

(x,y ,z )

. (8)

Proof: The proof follows from the application of the LaSalle
invariance principle for discontinuous Caratheodory systems
(cf., Proposition 2.1). Let (x∗, y∗, z∗) ∈ Saddle(F ) and V1 :
Rn × Rp

≥0 × Rm → R≥0 be defined as

V1(x, y, z)=
1
2
(‖x − x∗‖2 +‖y − y∗‖2 +‖z − z∗‖2). (9)

The Lie derivative of V1 along (5) is

LX p-spV1(x, y, z)

= −(x − x∗)�∇xF (x, y, z) + (y − y∗)�[∇yF (x, y, z)]+y

+ (z − z∗)�∇zF (x, y, z)

= −(x − x∗)�∇xF (x, y, z) + (y − y∗)�∇yF (x, y, z)

+ (z − z∗)�∇zF (x, y, z)

+ (y − y∗)�([∇yF (x, y, z)]+y −∇yF (x, y, z))

≤ −(x − x∗)�∇xF (x, y, z) + (y − y∗)�∇yF (x, y, z)

+ (z − z∗)�∇zF (x, y, z), (10)

where the last inequality follows from the fact that Ti =
(y − y∗)i([∇yF (x, y, z)]+y −∇yF (x, y, z))i ≤ 0, for each i ∈
{1, . . . , p}. Indeed if yi > 0, then Ti = 0, and if yi = 0,
then (y − y∗)i ≤ 0 and ([∇yF (x, y, z)]+y −∇yF (x, y, z))i ≥
0, which implies that Ti ≤ 0. Next, denoting λ = (y; z) and
λ∗ = (y∗; z∗), we simplify the above inequality as

LX p-spV1(x, y, z)

≤ −(x − x∗)�∇xF (x, λ) + (λ − λ∗)�∇λF (x, λ)

(a)
= −(x − x∗)�

∫ 1

0

(
∇xxF (x(s), λ(s))(x − x∗)

+ ∇λxF (x(s), λ(s))(λ − λ∗)
)
ds

+ (λ − λ∗)�
∫ 1

0

(
∇xλF (x(s), λ(s))(x − x∗)

+ ∇λλF (x(s), λ(s))(λ − λ∗)
)
ds

(b)
= [x − x∗; λ − λ∗]�H(x, λ, x∗, λ∗)

[
x − x∗
λ − λ∗

]
(c)
≤ 0,

where (a) follows from the fundamental theorem of calculus us-
ing the notation x(s) = x∗ + s(x − x∗) and λ(s) = λ∗ + s(λ −
λ∗) and recalling from (6) that ∇xF (x∗, λ∗) = 0 and (λ −
λ∗)�∇λF (x∗, λ∗) ≤ 0; (b) follows from the definition of H us-
ing (∇λxF (x, λ))� = ∇xλF (x, λ); and (c) follows from the fact



CHERUKURI et al.: THE ROLE OF CONVEXITY IN SADDLE-POINT DYNAMICS: LYAPUNOV FUNCTION AND ROBUSTNESS 2453

that H is negative semidefinite. Now using this fact thatLX p-spV1
is nonpositive at any point, one can deduce, see, e.g., [20, Lem-
mas 4.2–4.4], that starting from any point (x(0), y(0), z(0))
a unique trajectory of Xp-sp exists, is contained in the com-
pact set V −1

1 (V1(x(0), y(0), z(0))) ∩ (Rn × Rp
≥0 × Rm ) at all

times, and its omega-limit set is invariant. These facts imply
that the hypotheses of Proposition 2.1 hold and so, we deduce
that the solutions of the dynamics Xp-sp converge to the largest
invariant set where the Lie derivative is zero, that is, the set

E(F, x∗, y∗, z∗) = {(x, y, z) ∈ Rn × Rp
≥0 × Rm |

(x; y; z) − (x∗; y∗; z∗) ∈ ker(H(x, y, z, x∗, y∗, z∗))}. (11)

Finally, since (x∗, y∗, z∗) was chosen arbitrary, we get that the
solutions converge to the largest invariant set M contained in
E(F ) =

⋂
(x∗,y∗,z∗)∈Saddle(F ) E(F, x∗, y∗, z∗), concluding the

proof. �
Note that the proof of Proposition 4.1 shows that the Lie

derivative of the function V1 is negative, but not strictly nega-
tive, outside the set Saddle(F ). From Proposition 4.1 and the
definition (7), we deduce that if a point (x, y, z) belongs to the
omega-limit set (and is not a saddle point), then the line integral
of the Hessian block matrix (8) from any saddle point to (x, y, z)
cannot be full rank. Elaborating further,

1) if ∇xxF is full rank at a saddle point (x∗, y∗, z∗) and
if the point (x, y, z) �∈ Saddle(F ) belongs to the omega-
limit set, then x = x∗;

2) if

[∇yyF ∇yzF
∇zyF ∇zzF

]
is full rank at a saddle point

(x∗, y∗, z∗), then (y, z) = (y∗, z∗).
These properties are used in the next result, which shows that

local strong convexity–concavity at a saddle point together with
global convexity–concavity of the saddle function are enough
to guarantee global convergence proving Theorem 4.2.

Theorem 4.2 (Global asymptotic stability of the set of saddle
points under Xp-sp): Given a twice continuously differentiable,
convex–concave function F , which is locally strongly convex–
concave at a saddle point, the set Saddle(F ) is globally asymp-
totically stable under the projected saddle-point dynamics Xp-sp

and the convergence of trajectories is to a point.
Proof: Our proof proceeds by characterizing the set E(F )

defined in (7). Let (x∗, y∗, z∗) be a saddle point at which F
is locally strongly convex–concave. Without loss of generality,
assume that∇xxF (x∗, y∗, z∗) � 0 (the case of negative definite-
ness of the other Hessian block can be reasoned analogously).
Let (x, y, z) ∈ E(F, x∗, y∗, z∗) [recall the definition of this set
in (11)]. Since ∇xxF (x∗, y∗, z∗) � 0 and F is twice continu-
ously differentiable, we have that ∇xxF is positive definite in a
neighborhood of (x∗, y∗, z∗) and so

∫ 1

0
∇xxF (x(s), y(s), z(s))ds � 0,

where x(s) = x∗ + s(x − x∗), y(s) = y∗ + s(y − y∗), and
z(s) = z∗ + s(z − z∗). Therefore, by definition of E(F, x∗,
y∗, z∗), it follows that x = x∗ and so, E(F, x∗, y∗, z∗)
⊆ {x∗} × (Rp

≥0 × Rm ). From Proposition 4.1, the trajectories
of Xp-sp converge to the largest invariant set M contained in
E(F, x∗, y∗, z∗). To characterize this set, let (x∗, y, z) ∈ M and
t �→ (x∗, y(t), z(t)) be a trajectory of Xp-sp that is contained in

M, and hence, in E(F, x∗, y∗, z∗). From (10), we get

LX p-spV1(x, y, z)

≤ −(x − x∗)�∇xF (x, y, z) + (y − y∗)�∇yF (x, y, z)

+ (z − z∗)�∇zF (x, y, z)

≤ F (x, y, z) − F (x, y∗, z∗) + F (x∗, y, z) − F (x, y, z)

≤ F (x∗, y∗, z∗) − F (x, y∗, z∗) + F (x∗, y, z)

− F (x∗, y∗, z∗) ≤ 0, (12)

where in the second inequality, we have used the
first-order convexity and concavity property of the
maps x �→ F (x, y, z) and (y, z) �→ F (x, y, z). Now since
E(F, x∗, y∗, z∗) = {(x∗, y, z) | LX p-spV1(x∗, y, z) = 0}, using
the above inequality, we get F (x∗, y(t), z(t)) = F (x∗, y∗, z∗)
for all t ≥ 0. Thus, for all t ≥ 0, LX p-spF (x∗, y(t), z(t)) = 0,
which yields

∇yF (x∗, y(t), z(t))�[∇yF (x∗, y(t), z(t))]+y (t)

+‖∇zF (x∗, y(t), z(t))‖2 = 0.

Note that both terms in the above expression are non-
negative, and so, we get [∇yF (x∗, y(t), z(t))]+y (t) = 0 and
∇zF (x∗, y(t), z(t)) = 0 for all t ≥ 0. In particular, this holds
at t = 0 and so, (x, y, z) ∈ Saddle(F ), and we conclude M ⊂
Saddle(F ). Hence, Saddle(F ) is globally asymptotically stable.
Combining this with the fact that individual saddle points are
stable, one deduces the pointwise convergence of trajectories
along the same lines as in [27, Corollary 5.2]. �

A closer look at the proof of the above result reveals that
the same conclusion also holds under milder conditions on the
saddle function. In particular, F need only be twice continuously
differentiable in a neighborhood of the saddle point and the local
strong convexity–concavity can be relaxed to a condition on the
line integral of Hessian blocks of F . We state next this stronger
result.

Theorem 4.3 (Global asymptotic stability of the set of sad-
dle points under Xp-sp): Let F be convex–concave and contin-
uously differentiable with locally Lipschitz gradient. Suppose
there is a saddle point (x∗, y∗, z∗) and a neighborhood of this
point U∗ ⊂ Rn × Rp

≥0 × Rm such that F is twice continuously
differentiable on U∗ and either of the following holds:

1) for all (x, y, z) ∈ U∗,
∫ 1

0
∇xxF (x(s), y(s), z(s))ds � 0,

2) for all (x, y, z) ∈ U∗,

∫ 1

0

[
∇yyF ∇yzF

∇zyF ∇zzF

]
(x(s),y (s),z (s))

ds ≺ 0,

where (x(s), y(s), z(s)) are given in (8). Then, Saddle(F ) is
globally asymptotically stable under the projected saddle-point
dynamics Xp-sp and the convergence of trajectories is to a point.

We omit the proof of this result for space reasons: The ar-
gument is analogous to the proof of Theorem 4.2, where one
replaces the integral of Hessian blocks by the integral of gen-
eralized Hessian blocks (see [28, ch. 2] for the definition of the
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Fig. 1. Execution of the projected saddle-point dynamics (5) starting
from (1.7256, 0.1793, 2.4696, 0.3532) for Example 4.4. Panel (a) and (b)
show the evolution of (x, y, z) and V1 , respectively. As guaranteed by
Theorem 4.3, the trajectory converges to the unique saddle point 0 and
the function V1 defined in (9) decreases monotonically.

latter), as the function is not twice continuously differentiable
everywhere.

Example 4.4 (Illustration of global asymptotic conver-
gence): Consider F : R2 × R≥0 × R → R given as

F (x, y, z) = f(x) + y(−x1 − 1) + z(x1 − x2) (13)

where

f(x) =

⎧⎪⎨
⎪⎩
‖x‖4 , if ‖x‖ ≤ 1

2
,

1
16

+
1
2

(
‖x‖ − 1

2

)
, if ‖x‖ ≥ 1

2
.

Note that F is convex–concave on (R2) × (R≥0 × R) and
Saddle(F ) = {0}. Also, F is continuously differentiable on
the entire domain and its gradient is locally Lipschitz. Finally,
F is twice continuously differentiable on the neighborhood
U∗ = B1/2(0) ∩ (R2 × R≥0 × R) of the saddle point 0 and hy-
pothesis (1) of Theorem 4.3 holds on U∗. Therefore, we con-
clude from Theorem 4.3 that the trajectories of the projected
saddle-point dynamics of F converge globally asymptotically
to the saddle point 0. Fig. 1 shows an execution. •

Remark 4.5 (Comparison with the literature): Theorems 4.2
and 4.3 complement the available results in the literature
concerning the asymptotic convergence properties of saddle-
point [3], [17], [19] and primal-dual dynamics [5], [20]. The
former dynamics corresponds to (5) when the variable y is ab-
sent and the later to (5) when the variable z is absent. For both
saddle-point and primal-dual dynamics, existing global asymp-
totic stability results require assumptions on the global prop-
erties of F , in addition to the global convexity–concavity of
F , such as global strong convexity–concavity [3], global strict
convexity–concavity, and its generalizations [19]. In contrast,
the novelty of our results lies in establishing that certain local
properties of the saddle function are enough to guarantee global
asymptotic convergence. •

V. LYAPUNOV FUNCTION FOR CONSTRAINED CONVEX

OPTIMIZATION PROBLEMS

Our above discussion has established the global asymptotic
stability of the set of saddle points resorting to LaSalle-type
arguments (because the function V1 defined in (9) is not a
strict Lyapunov function). In this section, we identify instead a
strict Lyapunov function for the projected saddle-point dynam-
ics when the saddle function F corresponds to the Lagrangian

of a constrained optimization problem, cf., Remark 3.1. The
relevance of this result stems from two facts. On the one hand,
the projected saddle-point dynamics has been employed pro-
fusely to solve network optimization problems. On the other
hand, although the conclusions on the asymptotic convergence
of this dynamics that can be obtained with the identified Lya-
punov function are the same as in the previous section, having
a Lyapunov function available is advantageous for a number of
reasons, including the study of robustness against disturbances,
the characterization of the algorithm convergence rate, or as a
design tool for developing opportunistic state-triggered imple-
mentations. We come back to this point in Section VI.

Theorem 5.1 (Lyapunov function for Xp-sp): Let F : Rn ×
Rp

≥0 × Rm → R be defined as

F (x, y, z) = f(x) + y�g(x) + z�(Ax − b), (14)

where f : Rn → R is strongly convex, twice continuously dif-
ferentiable, g : Rn → Rp is convex, twice continuously differ-
entiable, A ∈ Rm×n , and b ∈ Rm . For each (x, y, z) ∈ Rn ×
Rp

≥0 × Rm , define the index set of active constraints

J (x, y, z) = {j ∈ {1, . . . , p} | yj = 0 and

(∇yF (x, y, z))j < 0}.
Then, the function V2 : Rn × Rp

≥0 × Rm → R,

V2(x, y, z) =
1
2

(
‖∇xF (x, y, z)‖2 + ‖∇zF (x, y, z)‖2

+
∑

j∈{1,...,p}\J (x,y ,z )

((∇yF (x, y, z))j )2
)

+
1
2
‖(x, y, z)‖2

Saddle(F )

is nonnegative everywhere in its domain and V2(x, y, z) = 0 if
and only if (x, y, z) ∈ Saddle(F ). Moreover, for any trajectory
t �→ (x(t), y(t), z(t)) of Xp-sp, the map t �→ V2(x(t), y(t), z(t))

1) is differentiable almost everywhere and if (x(t), y(t),
z(t)) �∈ Saddle(F ) for some t ≥ 0, then d

dt
V2(x(t), y(t), z(t)) < 0 provided the derivative exists.
Furthermore, for any sequence of times {tk}∞k=1 such
that tk → t and d

dt V2(x(tk ), y(tk ), z(tk )) exists for every
tk , we have lim supk→∞

d
dt V (x(tk ), y(tk ), z(tk )) < 0;

2) is right continuous and at any point of dis-
continuity t′ ≥ 0, we have V2(x(t′), y(t′), z(t′)) ≤
limt↑t ′ V2(x(t), y(t), z(t)).

As a consequence, Saddle(F ) is globally asymptotically sta-
ble under Xp-sp and convergence of trajectories is to a point.

Proof: We start by partitioning the domain based on the
active constraints. Let I ⊂ {1, . . . , p} and

D(I) = {(x, y, z) ∈ Rn × Rp
≥0 × Rm | J (x, y, z) = I}.

Note that for I1 , I2 ⊂ {1, . . . , p}, I1 �= I2 , we have D(I1) ∩
D(I2) = ∅. Moreover

Rn × Rp
≥0 × Rm =

⋃
I⊂{1,...,p}

D(I).
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For each I ⊂ {1, . . . , p}, define the function

V I
2 (x, y, z) =

1
2

(
‖∇xF (x, y, z)‖2 + ‖∇zF (x, y, z)‖2

+
∑

j∈{1,...,p}\I
((∇yF (x, y, z))j )2

)

+
1
2
‖(x, y, z)‖2

Saddle(F ) . (15)

These functions will be used later for analyzing the evolution
of V2 . Consider a trajectory t �→ (x(t), y(t), z(t)) of Xp-sp start-
ing at some point (x(0), y(0), z(0)) ∈ Rn × Rp

≥0 × Rm . Our
proof strategy consists of proving assertions (1) and (2) for two
scenarios, depending on whether or not there exists δ > 0 such
that the difference between two consecutive time instants when
the trajectory switches from one partition set to another is lower
bounded by δ.

Scenario 1: Time elapsed between consecutive switches is
lower bounded: Let (a, b) ⊂ R≥0 , b − a ≥ δ, be a time in-
terval for which the trajectory belongs to a partition D(I′),
I′ ⊂ {1, . . . , p} for all t ∈ (a, b). In the following, we show
that d

dt V2(x(t), y(t), z(t)) exists for almost all t ∈ (a, b) and
its value is negative whenever (x(t), y(t), z(t)) �∈ Saddle(F ).
Consider the function V I′

2 defined in (15) and note that t �→
V I′

2 (x(t), y(t), z(t)) is absolutely continuous as V I′
2 is contin-

uously differentiable on Rn × Rp
≥0 × Rm and the trajectory is

absolutely continuous. Employing Rademacher’s Theorem [28],
we deduce that the map t �→ V I′

2 (x(t), y(t), z(t)) is differen-
tiable almost everywhere. By definition, V2(x(t), y(t), z(t)) =
V I′

2 (x(t), y(t), z(t)) for all t ∈ (a, b). Therefore,

d

dt
V2(x(t), y(t), z(t)) =

d

dt
V I′

2 (x(t), y(t), z(t)) (16)

for almost all t ∈ (a, b). Further, since V I′
2 is continuously dif-

ferentiable, we have

d

dt
V I′

2 (x(t), y(t), z(t)) = LX p-spV
I′
2 (x(t), y(t), z(t)). (17)

Now consider any (x, y, z) ∈ D(I′) \ Saddle(F ). Our next
computation shows that LX p-spV

I′
2 (x, y, z) < 0. We have

LX p-spV
I′
2 (x, y, z)

= −∇xF (x, y, z)�∇xxF (x, y, z)∇xF (x, y, z)

+
[

[∇yF (x, y, z)]+y
∇zF (x, y, z)

]�[∇yyF ∇yzF

∇zyF ∇zzF

]
(x,y ,z )[

[∇yF (x, y, z)]+y
∇zF (x, y, z)

]

+ LX p-sp

(
1
2
‖(x, y, z)‖2

Saddle(F )

)
. (18)

The first two terms in the above expression are the Lie deriva-
tive of (x, y, z) �→ V I′

2 (x, y, z) − 1
2 ‖(x, y, z)‖2

Saddle(F )
. This

computation can be shown using the properties of the opera-
tor [·]+y . Now let (x∗, y∗, z∗) = projSaddle(F )(x, y, z). Then,
by Danskin’s Theorem [29, p. 99], we have

∇‖(x, y, z)‖2
Saddle(F ) = 2(x − x∗; y − y∗; z − z∗). (19)

Using this expression, we get

LX p-sp

(
1
2
‖(x, y, z)‖2

Saddle(F )

)

= −(x − x∗)�∇xF (x, y, z) + (y − y∗)�[∇yF (x, y, z)]+y

+ (z − z∗)�∇zF (x, y, z)

≤ F (x∗, y, z) − F (x∗, y∗, z∗) + F (x∗, y∗, z∗)

− F (x, y∗, z∗),

where the last inequality follows from (12). Now using the above
expression in (18), we get

LX p-spV
I′
2 (x, y, z)

≤ −∇xF (x, y, z)∇xxF (x, y, z)∇xF (x, y, z)

+
[

[∇yF (x, y, z)]+y
∇zF (x, y, z)

]�[∇yyF ∇yzF
∇zyF ∇zzF

]
(x,y ,z )[

[∇yF (x, y, z)]+y
∇zF (x, y, z)

]

+ F (x∗, y, z) − F (x∗, y∗, z∗) + F (x∗, y∗, z∗)

− F (x, y∗, z∗) ≤ 0.

If LX p-spV
I′
2 (x, y, z) = 0, then (a) ∇xF (x, y, z) = 0; (b) x =

x∗; and (c) F (x∗, y, z) = F (x∗, y∗, z∗). From (b) and (6),
we conclude that ∇zF (x, y, z) = 0. From (c) and (14), we
deduce that (y − y∗)�g(x∗) = 0. Note that for each i ∈
{1, . . . , p}, we have (yi − (y∗)i)(g(x∗))i ≤ 0. This is be-
cause either (g(x∗))i = 0 in which case it is trivial or
(g(x∗))i < 0 in which case (y∗)i = 0 (as y∗ maximizes the map
y �→ y�g(x∗)) thereby making yi − (y∗)i ≥ 0. Since, (yi −
(y∗)i)(g(x∗))i ≤ 0 for each i and (y − y∗)�g(x∗) = 0, we get
that for each i ∈ {1, . . . , p}, either (g(x∗))i = 0 or yi = (y∗)i .
Thus, [∇yF (x, y, z)]+y = 0. These facts imply that (x, y, z) ∈
Saddle(F ). Therefore, if (x, y, z) ∈ D(I′) \ Saddle(F ), then
LX p-spV

I′
2 (x, y, z) < 0. Combining this with (16) and (17), we

deduce

d

dt
V2(x(t), y(t), z(t)) < 0

for almost all t ∈ (a, b). Therefore, between any two switches in
the partition, the evolution of V2 is differentiable and the value
of the derivative is negative. Since the number of time instances
when a switch occurs is countable, the first part of assertion
1) holds. To show the limit condition, consider t ≥ 0 such that
(x(t), y(t), z(t)) �∈ Saddle(F ). Let {tk}∞k=1 be such that tk → t

and d
dt V2(x(tk ), y(tk ), z(tk )) exists for every tk . By con-

tinuity, limk→∞(x(tk ), y(tk ), z(tk )) = (x(t), y(t), z(t)). Let
B ⊂ Rn × Rp

≥0 × Rm be a compact neighborhood of
(x(t), y(t), z(t)) such that B ∩ Saddle(F ) = ∅. Without loss of
generality, assume that {(x(tk ), y(tk ), z(tk ))}∞k=1 ⊂ B. Define

S = max{LX p-spV
J (x,y ,z )
2 (x, y, z) | (x, y, z) ∈ B}.

The Lie derivatives in the above expression are well-defined
and continuous as each V

J (x,y ,z )
2 is continuously differen-

tiable. Note that S < 0 as B ∩ Saddle(F ) = ∅. Moreover, as
established previously, for each k, d

dt V2(x(tk ), y(tk ), z(tk )) =
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LX p-spV
J (x(tk ),y (tk ),z (tk ))
2 (x(tk ), y(tk ), z(tk )) ≤ S. Thus, we

get lim supk→∞
d
dt V2(x(tk ), y(tk ), z(tk )) ≤ S < 0, establish-

ing 1) for Scenario 1.
To prove assertion 2), note that discontinuity in V2 can

only happen when the trajectory switches the partition. In or-
der to analyze this, consider any time instant t′ ≥ 0 and let
(x(t′), y(t′), z(t′)) ∈ D(I′) for some I′ ⊂ {1, . . . , p}. Looking
at times t ≥ t′, following two cases arise.

a) There exists δ̃ > 0 such that (x(t), y(t), z(t)) ∈ D(I′)
for all t ∈ [t′, t′ + δ̃).

b) There exists δ̃ > 0 and I �= I′ such that (x(t), y(t),
z(t)) ∈ D(I) for all t ∈ (t′, t′ + δ̃).

One can show that for Scenario 1, the trajectory can-
not show any behavior other than the above two cases. We
proceed to show that in both the previously outlined cases,
t �→ V2(x(t), y(t), z(t)) is right continuous at t′. Case a) is
straightforward as V2 is continuous in the domain D(I′) and
the trajectory is absolutely continuous. In case b), I �= I′ im-
plies that there exists j ∈ {1, . . . , p} such that either j ∈ I \ I′
or j ∈ I′ \ I. Note that the later scenario, i.e., j ∈ I′ and
j �∈ I cannot happen. Indeed by definition (y(t′))j = 0 and
(∇yF (x(t′), y(t′), z(t′)))j < 0, and by continuity of the tra-
jectory and the map ∇yF , these conditions also hold for
some finite time interval starting at t′. Therefore, we fo-
cus on the case that j ∈ I \ I′. Then, either (y(t′))j > 0 or
(∇yF (x(t′), y(t′), z(t′)))j ≥ 0. The former implies, due to con-
tinuity of trajectories, that it is not possible to have j ∈ I.
Similarly, by continuity if (∇yF (x(t′), y(t′), z(t′)))j > 0, then
one cannot have j ∈ I. Therefore, the only possibility is
(y(t′))j = 0 and (∇yF (x(t′), y(t′), z(t′)))j = 0. This implies
that the term t �→ (∇yF (x(t), y(t), z(t)))2

j is right continuous
at t′. Since this holds for any j ∈ I \ I′, we conclude right
continuity of V2 at t′. Therefore, for both cases a) and b), we
conclude right continuity of V2 .

Next we show the limit condition of assertion 2). Let t′ ≥ 0
be a point of discontinuity. Then, from the preceding discus-
sion, there must exist I, I′ ⊂ {1, . . . , p}, I �= I′, such that
(x(t′), y(t′), z(t′)) ∈ D(I′) and (x(t), y(t), z(t)) ∈ D(I) for
all t ∈ (t′ − δ, t′). By continuity, limt↑t ′ V2(x(t), y(t), z(t)) ex-
ists. Note that if j ∈ I and j �∈ I′, then the term getting added
to V2 at time t′, which was absent at times t ∈ (t′ − δ, t′), i.e.,
(∇yF (x(t), y(t), z(t)))2

j , is zero at t′. Therefore, the disconti-
nuity at t′ can only happen due to the existence of j ∈ I′ \ I.
That is, a constraint becomes active at time t′, which was inac-
tive in the time interval (t′ − δ, t′). Thus, the function V2 loses a
nonnegative term at time t′. This can only mean at t′, the value
of V2 decreases. Hence, the limit condition of assertion 2) holds.

Scenario 2: Time elapsed between consecutive switches is
not lower bounded: Observe that three cases arise. First is
when there are only a finite number of switches in partition
in any compact time interval. In this case, the analysis of Sce-
nario 1 applies to every compact time interval and so assertions
1) and 2) hold. The second case is when there exist time in-
stants t′ > 0 where there is the absence of “finite dwell time,”
that is, there exist index sets I1 �= I2 and I2 �= I3 such that
(x(t), y(t), z(t)) ∈ D(I1) for all t ∈ (t′ − ε1 , t

′) and some ε1 >
0; (x(t′), y(t′), z(t′)) ∈ D(I2); and (x(t), y(t), z(t)) ∈ D(I3)
for all t ∈ (t′, t′ + ε2) and some ε2 > 0. Again using the argu-
ments of Scenario 1, one can show that both assertions 1) and

2) hold for this case if there is no accumulation point of such
time instants t′.

The third case instead is when there are infinite switches in
a finite-time interval. We analyze this case in parts. Assume
that there exists a sequence of times {tk}∞k=1 , tk ↑ t′, such that
trajectory switches partition at each tk . The aim is to show left
continuity of t �→ V2(x(t), y(t), z(t)) at t′. Let Is ⊂ {1, . . . , p}
be the set of indices that switch between being active and inactive
an infinite number of times along the sequence {tk} (note that
the set is nonempty as there are an infinite number of switches
and a finite number of indices). To analyze the left continuity at
t′, we only need to study the possible occurrence of discontinuity
due to terms in V2 corresponding to the indices in Is , since all
other terms do not affect the continuity. Pick any j ∈ Is . Then,
the term in V2 corresponding to the index j satisfies

lim
k→∞

(∇yF (x(tk ), y(tk ), z(tk )))2
j = 0. (20)

In order to show this, assume the contrary. This implies the
existence of ε > 0 such that

lim sup
k→∞

(∇yF (x(tk ), y(tk ), z(tk )))2
j ≥ ε.

As a consequence, the set of k for which (∇yF (x(tk ),
y(tk ), z(tk )))2

j ≥ ε/2 is infinite. Recall that if the con-
straint j becomes active at tk , then V2 loses the term
(∇yF (x(tk ), y(tk ), z(tk )))2

j at tk . Further, at tk , if some other
constraint j′ becomes inactive while being active at times just
before tk , then it follows by the definition of active constraint
that (∇yF (x(tk ), y(tk ), z(tk )))2

j ′ = 0. Finally, if some other
constraint becomes active at tk apart from j, then this only de-
creases the value of V2 at tk . Collecting all this reasoning, we
deduce that V2 decreases by at least ε/2 at each tk . From what
we showed before, V2 decreases montonically between any con-
secutive tk ’s. These facts lead to the conclusion that V2 tends to
−∞ as tk → t′. However, V2 takes nonnegative values, yielding
a contradiction. Hence, (20) is true for all j ∈ Is and so

lim
k→∞

V2(x(tk ), y(tk ), z(tk )) = V2(x(t′), y(t′), z(t′))

proving left continuity of V2 at t′. Using this reasoning, one can
also conclude that if the infinite number of switches happen on
a sequence {tk}∞k=1 with tk ↓ t′, then one has right continuity
at t′. Therefore, at each time instant when a switch happens, we
have right continuity of t �→ V2(x(t), y(t), z(t)) and at points
where there is accumulation of switches, we have continuity
(depending on which side of the time instance the accumulation
takes place). This proves assertion 2). Note that in this case too,
we have a countable number of time instants where the partition
set switches and so the map t �→ V2(x(t), y(t), z(t)) is differ-
entiable almost everywhere. Moreover, one can also analyze,
as done in Scenario 1, that the limit condition of assertion 1)
holds in this case. These facts together establish the condition
of assertion 2). Thus, we have shown that trajectories converge
to a saddle point and since Saddle(F ) is stable under Xp-sp (cf.,
Proposition 4.1), we conclude the global asmptotic stability of
Saddle(F ). �

Remark 5.2 (Multiple Lyapunov functions): The Lyapunov
function V2 is discontinuous on the domain Rn × Rp

≥0 × Rm .
However, it can be seen as multiple (continuously differen-
tiable) Lyapunov functions [30], each valid on a domain, patched
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together in an appropriate way such that along the trajectories
of Xp-sp, the evolution of V2 is continuously differentiable with
negative derivative at intervals where it is continuous, and at
times of discontinuity, the value of V2 only decreases. Note that
in the absence of the projection in Xp-sp (that is, no y-component
of the dynamics), the function V2 takes a much simpler form
with no discontinuities and is continuously differentiable on the
entire domain. •

Remark 5.3 (Connection with the literature: II): The two
functions whose sum defines V2 are, individually by themselves,
sufficient to establish asymptotic convergence of Xp-sp using
LaSalle Invariance arguments, see, e.g., [5] and [20]. How-
ever, the fact that their combination results in a strict Lyapunov
function for the projected saddle-point dynamics is a novelty
of our analysis here. In [17], a different Lyapunov function is
proposed and an exponential rate of convergence is established
for a saddle-point-like dynamics, which is similar to Xp-sp but
without projection components. •

VI. ISS AND SELF-TRIGGERED IMPLEMENTATION OF THE

SADDLE-POINT DYNAMICS

Here, we build on the novel Lyapunov function identi-
fied in Section V to explore other properties of the projected
saddle-point dynamics beyond global asymptotic convergence.
Throughout this section, we consider saddle functions F that
corresponds to the Lagrangian of an equality-constrained opti-
mization problem, i.e.,

F (x, z) = f(x) + z�(Ax − b) (21)

where A ∈ Rm×n , b ∈ Rm , and f : Rn → R. The reason be-
hind this focus is that, in this case, the dynamics (5) is smooth
and the Lyapunov function identified in Theorem 5.1 is contin-
uously differentiable. These simplifications allow us to analyze
ISS of the dynamics using the theory of ISS-Lyapunov functions
(cf., Section II-D). On the other hand, we do not know of such a
theory for projected systems, which precludes us from carrying
out ISS analysis for dynamics (5) for a general saddle function.
The projected saddle-point dynamics (5) for the class of saddle
functions given in (21) takes the form

ẋ = −∇xF (x, z) = −∇f(x) − A�z, (22a)

ż = ∇zF (x, z) = Ax − b, (22b)

corresponding to (5a) and (5c). We term these dynamics sim-
ply saddle-point dynamics and denote it as Xsp : Rn × Rm →
Rn × Rm .

A. Input-to-State Stability (ISS)

Here, we establish that the saddle-point dynamics (22) is ISS
with respect to the set Saddle(F ) when disturbance inputs affect
it additively. Disturbance inputs can arise when implementing
the saddle-point dynamics as a controller of a physical system
because of a variety of malfunctions, including errors in the gra-
dient computation, noise in state measurements, and errors in
the controller implementation. In such scenarios, the following
result shows that the dynamics (22) exhibits a graceful degrada-
tion of its convergence properties, one that scales with the size
of the disturbance.

Theorem 6.1 (ISS of saddle-point dynamics): Let the saddle
function F be of the form (21), with f strongly convex, twice
continuously differentiable, and satisfying mI 	 ∇2f(x) 	
MI for all x ∈ Rn and some constants 0 < m ≤ M < ∞.
Then, the dynamics[

ẋ
ż

]
=

[−∇xF (x, z)
∇zF (x, z)

]
+

[
ux

uz

]
(23)

where (ux, uz ) : R≥0 → Rn × Rm is a measurable and locally
essentially bounded map, is ISS with respect to Saddle(F ).

Proof: For notational convenience, we refer to (23) by
Xp

sp : Rn × Rm × Rn × Rm → Rn × Rm . Our proof consists
of establishing that the function V3 : Rn × Rm → R≥0 ,

V3(x, z) =
β1

2
‖XP

sp(x, z)‖2 +
β2

2
‖(x, z)‖2

Saddle(F ) (24)

with β1 > 0, β2 = 4β1 M 4

m 2 , is an ISS-Lyapunov function with re-
spect to Saddle(F ) for Xp

sp. The statement then directly follows
from Proposition 2.2.

We first show (3) for V3 , that is, there exist α1 , α2 > 0 such
that α1‖(x, z)‖2

Saddle(F )
≤ V3(x, z) ≤ α2‖(x, z)‖2

Saddle(F )
for all (x, z) ∈ Rn × Rm . The lower bound follows by choos-
ing α1 = β2/2. For the upper bound, define the function
U : Rn × Rn → Rn×n by

U(x1 , x2) =
∫ 1

0
∇2f(x1 + s(x2 − x1))ds. (25)

By assumption, it holds that mI 	 U(x1 , x2) 	 MI for all
x1 , x2 ∈ Rn . Also, from the fundamental theorem of calcu-
lus, we have ∇f(x2) −∇f(x1) = U(x1 , x2)(x2 − x1) for all
x1 , x2 ∈ Rn . Now pick any (x, z) ∈ Rn × Rm . Let (x∗, z∗) =
projSaddle(F )(x, z), that is, the projection of (x, z) on the set
Saddle(F ). This projection is unique as Saddle(F ) is convex.
Then, one can write

∇xF (x, z) = ∇xF (x∗, z∗) +
∫ 1

0
∇xxF (x(s), z(s))(x −x∗)ds

+
∫ 1

0
∇zxF (x(s), z(s))(z − z∗)ds

= U(x∗, x)(x − x∗) + A�(z − z∗), (26)

where x(s)=x∗+s(x−x∗) and z(s)=z∗+s(z − z∗). Also,
note that

∇zF (x, z) = ∇zF (x∗, z∗) +
∫ 1

0
∇xzF (x(s), z(s))(x −x∗)ds

= A(x − x∗). (27)

The expressions (26) and (27) use ∇xF (x∗, z∗) = 0, ∇z

F (x∗, z∗) = 0, and ∇zxF (x, z) = ∇xzF (x, z)� = A� for all
(x, z). From (26) and (27), we get

‖Xsp(x, z)‖2 ≤ α̃2(‖x − x∗‖2 + ‖z − z∗‖2)

= α̃2‖(x, z)‖2
Saddle(F ) ,

where α̃2 = 3
2 (M 2 + ‖A‖2). In the above computation, we

have used the inequality (a + b)2 ≤ 3(a2 + b2) for any a, b ∈
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R. The above inequality gives the upper bound V3(x, z) ≤
α2‖(x, z)‖2

Saddle(F )
, where α2 = 3β1

2 (M 2 + ‖A‖2) + β2
2 .

The next step is to show that the Lie derivative of V3 along
the dynamics Xp

sp satisfies the ISS property (4). Again, pick
any (x, z) ∈ Rn × Rm and let (x∗, z∗) = projSaddle(F )(x, z).
Then, by Danskin’s Theorem [29, p. 99], we get

∇‖(x, z)‖2
Saddle(F ) = 2(x − x∗; z − z∗).

Using the above expression, one can compute the Lie derivative
of V3 along the dynamics Xp

sp as

LX p
sp
V3(x, z) = −β1∇xF (x, z)∇xxF (x, z)∇xF (x, z)

− β2(x − x∗)�∇xF (x, z) + β2(z − z∗)�∇zF (x, z)

+ β1∇xF (x, z)�∇xxF (x, z)ux

+ β1∇xF (x, z)�∇xzF (x, z)uz

+ β1∇zF (x, z)�∇zxF (x, z)ux

+ β2(x − x∗)�ux + β2(z − z∗)�uz .

Due to the particular form of F , we have

∇xF (x, z) = ∇f(x) + A�z, ∇zF (x, z) = Ax − b,

∇xxF (x, z) = ∇2f(x), ∇xzF (x, z) = A�,

∇zxF (x, z) = A, ∇zzF (x, z) = 0.

Also, ∇xF (x∗, z∗) = ∇xf(x∗) + A�z∗ = 0 and ∇zF (x∗,
z∗) = Ax∗ − b = 0. Substituting these values in the ex-
pression of LX p

sp
V3 , replacing ∇xF (x, z) = ∇xF (x, z) −

∇xF (x∗, z∗) = ∇f(x) −∇f(x∗) + A�(z − z∗) = U(x∗, x)
(x − x∗) + A�(z − z∗), and simplifying

LX p
sp
V3(x, z) =

− β1(U(x∗, x)(x − x∗))�∇2f(x)(U(x∗, x)(x − x∗))

− β1(z − z∗)�A∇2f(x)A�(z − z∗)

− β1(U(x∗, x)(x − x∗))�∇2f(x)A�(z − z∗)

− β1(z − z∗)�A∇2f(x)(U(x∗, x)(x − x∗))

− (x − x∗)�U(x∗, x)(x − x∗)

+ β1(U(x∗, x)(x − x∗) + A�(z − z∗))�∇2f(x)ux

+ β1(U(x∗, x)(x − x∗) + A�(z − z∗))�A�uz

+ β2(x − x∗)�ux + β1(A(x − x∗))�Aux + β2(z − z∗)�uz .

Upper bounding now the terms using ‖∇2f(x)‖, ‖U(x∗, x)‖ ≤
M for all x ∈ Rn yields

LX p
sp
V3(x, z)

≤ −[x − x∗; A�(z − z∗)]�U(x∗, x)[x − x∗; A�(z − z∗)]

+ Cx(x, z)‖ux‖ + Cz (x, z)‖uz‖ (28)

where

Cx(x, z) =
(
β1M

2‖x − x∗‖ + β1M‖A‖‖z − z∗‖

+ β2‖x − x∗‖ + β1‖A‖2‖x − x∗‖
)
,

Cz (x, z) =
(
β1M‖A‖‖x − x∗‖ + β1‖A‖2‖z − z∗‖

+ β2‖z − z∗‖
)
,

and U(x∗, x) is
[

β1U∇2f(x)U + β2U β1U∇2f(x)
β1∇2f(x)U β1∇2f(x)

]
.

where U = U(x∗, x). Note that Cx(x, z) ≤ C̃x‖x − x∗; z −
z∗‖ = C̃x‖(x, z)‖Saddle(F ) and Cz (x, z) ≤ C̃z‖x − x∗; z −
z∗‖ = C̃z‖(x, z)‖Saddle(F ) , where

C̃x = β1M
2 + β1M‖A‖ + β2 + β1‖A‖2 ,

C̃z = β1M‖A‖ + β1‖A‖2 + β2 .

From Lemma A.1, we have U(x∗, x) � λm I , where λm > 0.
Employing these facts in (28), we obtain

LX p
sp
V3(x, z) ≤ − λm (‖x − x∗‖2 + ‖A�(z − z∗)‖2)

+ (C̃x + C̃z )‖(x, z)‖Saddle(F )‖u‖.
From Lemma A.2, we get

LX p
sp
V3(x, z) ≤ − λm (‖x − x∗‖2 + λs(AA�)‖z − z∗‖2

+ (C̃x + C̃z )‖(x, z)‖Saddle(F )‖u‖
≤ − λ̃m‖(x, z)‖2

Saddle(F )

+ (C̃x + C̃z )‖(x, z)‖Saddle(F )‖u‖,

where λ̃m = λm min{1, λs(AA�)}. Now pick any θ ∈ (0, 1).
Then

LX p
sp
V3(x, z) ≤ − (1 − θ)λ̃m‖(x, z)‖2

Saddle(F )

− θλ̃m‖(x, z)‖2
Saddle(F )

+ (C̃x + C̃z )‖(x, z)‖Saddle(F )‖u‖
≤ − (1 − θ)λ̃m‖(x, z)‖2

Saddle(F ) ,

whenever ‖(x, z)‖Saddle(F ) ≥ C̃x +C̃ z

θ λ̃m
‖u‖, which proves the

ISS property. �
Remark 6.2 (Relaxing global bounds on Hessian of f ): The

assumption on the Hessian of f in Theorem 6.1 is restrictive,
but there are functions other than quadratic that satisfy it, see,
e.g., [31, Sec. 6]. We conjecture that the global upper bound
on the Hessian can be relaxed by resorting to the notion of
semiglobal ISS, and we will explore this in the future. •

The above result has the following consequence.
Corollary 6.3 (Lyapunov function for saddle-point dynam-

ics): Let the saddle function F be of the form (21), with f
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strongly convex, twice continuously differentiable, and satisfy-
ing mI 	 ∇2f(x) 	 MI for all x ∈ Rn and some constants
0 < m ≤ M < ∞. Then, the function V3 (24) is a Lyapunov
function with respect to the set Saddle(F ) for the saddle-point
dynamics (22).

Remark 6.4 (ISS with respect to Saddle(F ) does not im-
ply bounded trajectories): Note that Theorem 6.1 bounds only
the distance of the trajectories of (23) to Saddle(F ). Thus, if
Saddle(F ) is unbounded, the trajectories of (23) can be un-
bounded under arbitrarily small constant disturbances. How-
ever, if the matrix A has full row rank, then Saddle(F ) is a
singleton and the ISS property implies that the trajectory of (23)
remains bounded under bounded disturbances. •

As pointed out in the previous remark, if Saddle(F ) is not
unique, then the trajectories of the dynamics might not be
bounded. We next look at a particular type of disturbance in-
put that guarantees bounded trajectories even when Saddle(F )
is unbounded. Pick any (x∗, z∗) ∈ Saddle(F ) and define the
function Ṽ3 : Rn × Rm → R≥0 as

Ṽ3(x, z) =
β1

2
‖Xsp(x, z)‖2 +

β2

2
(‖x − x∗‖2 + ‖z − z∗‖2)

with β1 > 0, β2 = 4β1 M 4

m 2 . One can show, following similar
steps as those of proof of Theorem 6.1, that the function Ṽ3 is an
ISS Lyapunov function with respect to the point (x∗, z∗) for the
dynamics Xp

sp when the disturbance input to z-dynamics has the
special structure uz = Aũz , ũz ∈ Rn . This type of disturbance
is motivated by scenarios with measurement errors in the values
of x and z used in (22) and without any computation error of
the gradient term in the z-dynamics. The following statement
makes precise the ISS property for this particular disturbance.

Corollary 6.5 (ISS of saddle-point dynamics): Let the saddle
function F be of the form (21), with f strongly convex, twice
continuously differentiable, and satisfying mI 	 ∇2f(x) 	
MI for all x ∈ Rn and some constants 0 < m ≤ M < ∞.
Then, the dynamics[

ẋ

ż

]
=

[−∇xF (x, z)
∇zF (x, z)

]
+

[
ux

Aũz

]
, (29)

where (ux, ũz ) : R≥0 → R2n is measurable and locally essen-
tially bounded input, is ISS with respect to every point of
Saddle(F ).

The proof is analogous to that of Theorem 6.1 with the key
difference that the terms Cx(x, z) and Cz (x, z) appearing in (28)
need to be upper bounded in terms of ‖x − x∗‖ and ‖A�(z −
z∗)‖. This can be done due to the special structure of uz . With
these bounds, one arrives at the condition (4) for Lyapunov Ṽ3
and dynamics (29). One can deduce from Corollary 6.5 that the
trajectory of (29) remains bounded for bounded input even when
Saddle(F ) is unbounded.

Example 6.6 (ISS property of saddle-point dynamics): Con-
sider F : R2 × R2 → R of the form (21) with

f(x) = x2
1 + (x2 − 2)2 ,

A =
[

1 −1
−1 1

]
, and b =

[
0
0

]
. (30)

Then, Saddle(F ) = {(x, z) ∈ R2 × R2 |x = (1, 1), z =(0, 2)
+ λ(1, 1), λ ∈ R} is a continuum of points. Note that∇2f(x) =

Fig. 2. Plots (a) and (b) show the ISS property, cf., Theorem 6.1, of
the dynamics (23) for the saddle function F defined by (30). The initial
condition is x(0) = (−0.3254,−2.4925) and z(0) = (−0.6435,−2.4234)
and the input u is exponentially decaying in magnitude. Panels (a), (c),
and (e) depict the evolution of (x, z). Panels (b), (d), and (f) depict the
distance of the state trajectories to the set of saddle points. As shown in
(a) and (b), the trajectory converges asymptotically to a saddle point as
the input is vanishing. Plots (c) and (d) have the same initial condition
but the disturbance input consists of a constant plus a sinusoid. The
trajectory is unbounded under bounded input while the distance to the set
of saddle points remains bounded, cf., Remark 6.4. Plots (e) and (f) have
the same initial condition but the disturbance input to the z-dynamics is
of the form (29). In this case, the trajectory remains bounded as the
dynamics is ISS with respect to each saddle point, cf., Corollary 6.5.

2I , thus, satisfying the assumption of bounds on the Hessian of
f . By Theorem 6.1, the saddle-point dynamics for this sad-
dle function F is input-to-state stable with respect to the set
Saddle(F ). This fact is illustrated in Fig. 2 , which also depicts
how the specific structure of the disturbance input in (29) affects
the boundedness of the trajectories. •

Remark 6.7 (Quadratic ISS-Lyapunov function): For the
saddle-point dynamics (22), the ISS property stated in
Theorem 6.1 and Corollary 6.5 can also be shown using a
quadratic Lyapunov function. Let V4 : Rn × Rm → R≥0 be

V4(x, z) =
1
2
‖(x, z)‖2

Saddle(F ) + ε(x − xp)�A�(z − zp)

where (xp, zp) = projSaddle(F )(x, z) and ε > 0. Then, one
can show that there exists εmax > 0 such that V4 for any
ε ∈ (0, εmax) is an ISS-Lyapunov function for the dynamics
(22). For space reasons, we omit the complete analysis of this
fact here. •
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B. Self-Triggered Implementation

In this section, we develop an opportunistic state-triggered
implementation of the (continuous-time) saddle-point dynam-
ics. Our aim is to provide a discrete-time execution of the algo-
rithm, either on a physical system or as an optimization strategy,
that do not require the continuous evaluation of the vector field
and instead adjust the stepsize based on the current state of the
system. Formally, given a sequence of triggering time instants
{tk}∞k=0 , with t0 = 0, we consider the following implementa-
tion of the saddle-point dynamics

ẋ(t) = −∇xF (x(tk ), z(tk )), (31a)

ż(t) = ∇zF (x(tk ), z(tk )). (31b)

for t ∈ [tk , tk+1) and k ∈ Z≥0 . The objective is then to design a
criterium to opportunistically select the sequence of triggering
instants, guaranteeing at the same time, the feasibility of the
execution and global asymptotic convergence, see, e.g., [32].
Toward this goal, we look at the evolution of the Lyapunov
function V3 in (24) along (31) as

∇V3(x(t), z(t))�Xsp(x(tk ), z(tk ))

= LX spV3(x(tk ), z(tk ))

+
(
∇V3(x(t), z(t)) −∇V3(x(tk ), z(tk ))

)�

Xsp(x(tk ), z(tk )). (32)

We know from Corollary 6.3 that the first summand is negative
outside Saddle(F ). Clearly, for t = tk , the second summand
vanishes, and by continuity, for t sufficiently close to tk , this
summand remains smaller in magnitude than the first, ensuring
the decrease of V3 . To make this argument precise, we employ
Proposition A.3 in (32) and obtain

∇V3(x(t), z(t))�Xsp(x(tk ), z(tk ))

≤ LX spV3(x(tk ), z(tk )) + ξ(x(tk ), z(tk ))

‖(x(t) − x(tk )); (z(t) − z(tk ))‖‖Xsp(x(tk ), z(tk ))‖
= LX spV3(x(tk ), z(tk ))

+ (t − tk )ξ(x(tk ), z(tk ))‖Xsp(x(tk ), z(tk ))‖2 ,

where the equality follows from writing (x(t), z(t)) in terms of
(x(tk ), z(tk )) by integrating (31). Therefore, in order to ensure
the monotonic decrease of V3 , we require the above expression
to be nonpositive. That is

tk+1 ≤ tk − LX spV3(x(tk ), z(tk ))
ξ(x(tk ), z(tk ))‖Xsp(x(tk ), z(tk ))‖2 . (33)

Note that to set tk+1 equal to the right-hand side of the
above expression, one needs to compute the Lie derivative
at (x(tk ), z(tk )). We then distinguish between two possibili-
ties. If the self-triggered saddle-point dynamics acts as a closed-
loop physical system and its equilibrium points are known, then
computing the Lie derivative is feasible and one can use (33)
to determine the triggering times. If, however, the dynamics is
employed to seek the primal-dual optimizers of an optimization
problem, then computing the Lie derivative is infeasible as it
requires knowledge of the optimizer. To overcome this limita-
tion, we propose the following alternative triggering criterium

that satisfies (33) as shown later in our convergence analysis:

tk+1 = tk +
λ̃m

3(M 2 + ‖A‖2)ξ(x(tk ), z(tk ))
(34)

where λ̃m = λm min{1, λs(AA�)}, λm is given in Lemma A.1,
and λs(AA�) is the smallest nonzero eigenvalue of AA�. In ei-
ther (33) or (34), the right-hand side depends only on the state
(x(tk ), z(tk )). These triggering times for the dynamics (31)
define a first-order Euler discretization of the saddle-point dy-
namics with step-size selection based on the current state of the
system. It is for this reason that we refer to (31) together with
either the triggering criterium (33) or (34) as the self-triggered
saddle-point dynamics. In integral form, this dynamics results
in a discrete-time implementation of (22) given as[

x(tk+1)
z(tk+1)

]
=

[
x(tk )
z(tk )

]
+ (tk+1 − tk )Xsp(x(tk ), z(tk )).

Note that this dynamics can also be regarded as a state-dependent
switched system with a single continuous mode and a reset map
that updates the sampled state at the switching times, cf., [33].
We understand the solution of (31) in the Caratheodory sense
(note that this dynamics has a discontinuous right-hand side).
The existence of such solutions, possibly defined only on a
finite-time interval, is guaranteed from the fact that along any
trajectory of the dynamics there are only countable number of
discontinuities encountered in the vector field. The next result
however shows that solutions of (31) exist over the entire domain
[0,∞) as the difference between consecutive triggering times
of the solution is lower bounded by a positive constant. Also, it
establishes the asymptotic convergence of solutions to the set of
saddle points.

Theorem 6.8 (Convergence of the self-triggered saddle-point
dynamics): Let the saddle function F be of the form (21), with
A having full row rank, f strongly convex, twice differentiable,
and satisfying mI 	 ∇2f(x) 	 MI for all x ∈ Rn and some
constants 0 < m ≤ M < ∞. Let the map x �→ ∇2f(x) be Lip-
schitz with some constant L > 0. Then, Saddle(F ) is single-
ton. Let Saddle(F ) = {(x∗, z∗)}. Then, for any initial condition
(x(0), z(0)) ∈ Rn × Rm , we have

lim
k→∞

(x(tk ), z(tk )) = (x∗, z∗)

for the solution of the self-triggered saddle-point dynamics, de-
fined by (31) and (34), starting at (x(0), z(0)). Further, there
exists μ(x(0),z (0)) > 0 such that the triggering times of this so-
lution satisfy

tk+1 − tk ≥ μ(x(0),z (0)) for all k ∈ N.

Proof: Note that there is a unique equilibrium point to the
saddle-point dynamics (22) for F satisfying the stated hypothe-
ses. Therefore, the set of saddle point is singleton for this F .
Now, given (x(0), z(0)) ∈ Rn × Rm , let V 0

3 = V3(x(0), z(0))
and define

G = max{‖∇xF (x, z)‖ | (x, z) ∈ V −1
3 (≤ V 0

3 )},
where, we use the notation for the sublevel set of V3 as

V −1
3 (≤ α) = {(x, z) ∈ Rn × Rm | V3(x, z) ≤ α}

for any α ≥ 0. Since V3 is radially unbounded, the set
V −1

3 (≤ V 0
3 ) is compact and so, G is well-defined and finite.
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If the trajectory of the self-triggered saddle-point dynamics is
contained in V −1

3 (≤ V 0
3 ), then we can bound the difference

between triggering times in the following way. From Propo-
sition A.3 for all (x, z) ∈ V −1

3 (≤ V 0
3 ), we have ξ1(x, z) =

Mξ2 + L‖∇xF (x, z)‖ ≤ Mξ2 + LG =: T1 . Hence, for all
(x, z) ∈ V −1

3 (≤ V 0
3 ), we get

ξ(x, z) =
(
β2

1 (ξ1(x, z)2 + ‖A‖4 + ‖A‖2ξ2
2 ) + β2

2

) 1
2

≤
(
β2

1 (T 2
1 + ‖A‖4 + ‖A‖2 + ξ2

2 ) + β2
2

) 1
2

=: T2 .

Using the above bound in (34), we get for all k ∈ N

tk+1 − tk =
λ̃m

3(M 2 + ‖A‖2)ξ(x(tk ), z(tk ))

≥ λ̃m

3(M 2 + ‖A‖2)T2
> 0.

This implies that as long as the trajectory is contained in
V −1

3 (≤ V 0
3 ), the intertrigger times are lower bounded by a

positive quantity. Our next step is to show that the trajec-
tory is contained in V −1

3 (≤ V 0
3 ). Note that if (33) is sat-

isfied for the triggering condition (34), then the sequence
{V3(x(tk ), z(tk ))}k∈N is strictly decreasing. Since V3 is non-
negative, this implies that limk→∞ V3(x(tk ), z(tk )) = 0 and
so, by continuity, limk→∞(x(tk ), z(tk )) = (x∗, z∗). Thus, it re-
mains to show that (34) implies (33). To this end, first note the
following inequalities shown in the proof of Theorem 6.1

‖Xsp(x, z)‖2

3(M 2 + ‖A‖2)
≤ ‖(x − x∗); (z − z∗)‖2 , (35a)

∣∣LX spV3(x, z)
∣∣ ≥ λ̃m‖(x − x∗); (z − z∗)‖2 . (35b)

Using these bounds, we get from (34)

tk+1 − tk

=
λ̃m

3(M 2 + ‖A‖2)ξ(x(tk ), z(tk ))

(a)
=

λ̃m‖Xsp(x(tk ), z(tk ))‖2

3(M 2 + ‖A‖2)ξ(x(tk ), z(tk ))‖Xsp(x(tk ), z(tk ))‖2

(b)
≤ λ̃m‖(x(tk ) − x∗); (z(tk ) − z∗)‖2

ξ(x(tk ), z(tk ))‖Xsp(x(tk ), z(tk ))‖2

(c)
≤

∣∣LX spV3(x(tk ), z(tk ))
∣∣

ξ(x(tk ), z(tk ))‖Xsp(x(tk ), z(tk ))‖2

= − LX spV3(x(tk ), z(tk ))
ξ(x(tk ), z(tk ))‖Xsp(x(tk ), z(tk ))‖2 ,

where (a) is valid as ‖Xsp(x(tk ), z(tk ))‖ �= 0, (b) follows
from (35a), and (c) follows from (35b). Thus, (34) implies (33),
which completes the proof. �

Note from the above proof that the convergence implication
of Theorem 6.8 is also valid when the triggering criterium is
given by (33) with the inequality replaced by the equality.

Fig. 3. Illustration of the self-triggered saddle-point dynamics defined
by (31) with the triggering criterium (33). Panel (a) and (b) show the
evolution of (x, z) and V3 , respectively. The saddle function F is defined
in (36). With respect to the notation of Theorem 6.8, we have m = M = 2
and ‖A‖ =

√
3. We select β1 = 0.1, then β2 = 1.6, and from (A.39), ξ1 =

2. These constants define functions V3 [cf., (24)], ξ, and ξ2 [cf., (A.39)]
and also, the triggering times (34). In plot (a), the initial condition is x(0) =
(0.6210, 3.9201,−4.0817), z(0) = 2.0675. The trajectory converges to
the unique saddle point and the intertrigger times are lower bounded by
a positive quantity.

Fig. 4. Comparison between the self-triggered saddle-point dynamics
and a first-order Euler discretization of the saddle-point dynamics with
two different stepsize rules. The initial condition and implementation
details are the same as in Fig. 3. Both plots show the evolution of the
distance to the saddle point, compared in (a) against a constant-stepsize
implementation with value 0.1 and in (b) against a decaying-stepsize
implementation with value 1/k at the kth iteration. The self-triggered
dynamics converges faster in both cases.

Example 6.9 (Self-triggered saddle-point dynamics): Con-
sider the function F : R3 × R → R,

F (x, z) = ‖x‖2 + z(x1 + x2 + x3 − 1). (36)

Then, with the notation of (21), we have f(x) = ‖x‖2 , A =
[1, 1, 1], and b = 1. The set of saddle points is a singleton,
Saddle(F ) = {(( 1

3 , 1
3 , 1

3 ),− 2
3 )}. Note that ∇2f(x) = 2I and

A has full row-rank, thus, the hypotheses of Theorem 6.8 are
met. Hence, for this F , the self-triggered saddle-point dynam-
ics (31) with triggering times (34) converges asymptotically to
the saddle point of F . Moreover, the difference between two con-
secutive triggering times is lower bounded by a finite quantity.
Fig. 3 illustrates a simulation of dynamics (31) with triggering
criteria (33) (replacing inequality with equality), showing that
this triggering criteria also ensures convergence as commented
previously. Finally, Fig. 4 compares the self-triggered imple-
mentation of the saddle-point dynamics with a constant-stepsize
and a decaying-stepsize first-order Euler discretization. In both
cases, the self-triggered dynamics achieves convergence faster,
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and this may be attributed to the fact that it tunes the stepsize in
a state-dependent way. •

VII. CONCLUSION

This paper has studied the global convergence and robustness
properties of the projected saddle-point dynamics. We have pro-
vided a characterization of the omega-limit set in terms of the
Hessian blocks of the saddle function. Building on this result,
we have established global asymptotic convergence assuming
only local strong convexity–concavity of the saddle function.
For the case when this strong convexity–concavity property is
global, we have identified a Lyapunov function for the dynam-
ics. In addition, when the saddle function takes the form of a
Lagrangian of an equality constrained optimization problem,
we have established the ISS of the saddle-point dynamics by
identifying an ISS Lyapunov function, which we have used
to design a self-triggered discrete-time implementation. In the
future, we aim to generalize the ISS results to more general
classes of saddle functions. In particular, we wish to define a
“semiglobal” ISS property that we conjecture will hold for the
saddle-point dynamics when we relax the global upper bound on
the Hessian block of the saddle function. Further, to extend the
ISS results to the projected saddle-point dynamics, we plan to
develop the theory of ISS for general projected dynamical sys-
tems. Finally, we intend to apply these theoretical guarantees
to determine robustness margins and design opportunistic state-
triggered implementations for frequency regulation controllers
in power networks.

APPENDIX

Here, we collect a couple of auxiliary results used in the proof
of Theorem 6.1.

Lemma A.1 (Auxiliary result for Theorem 6.1: I): Let
B1 , B2 ∈ Rn×n be symmetric matrices satisfying mI 	
B1 , B2 	 MI for some 0 < m ≤ M < ∞. Let β1 > 0, β2 =
4β1 M 4

m 2 , and λm = min{ 1
2 β1m,β1m

3}. Then

W :=
[

β1B1B2B1 + β2B1 β1B1B2

β1B2B1 β1B2

]
� λm I.

Proof: Reasoning with the Schur complement [21, Sec.
A.5.5], the expression W − λm I � 0 holds if and only if the
following hold:

β1B1B2B1 + β2B1 − λm I � 0,

β1B2 − λm I

− β1B2B1(β1B1B2B1 + β2B1 − λm I)−1β1B1B2 � 0.
(A.37)

The first of the above inequalities is true since β1B1B2B1 +
β2B1 − λm I � β1m

3I + β2mI − λm I � 0 as λm ≤ β1m
3 .

For the second inequality, note that

β1B2 − λm I

− β1B2B1(β1B1B2B1 + β2B1 − λm I)−1β1B1B2

� (β1m − λm )I

− β2
1 M 4λmax

(
(β1B1B2B1 + β2B1 − λm I)−1

)
I

�
(

1
2
β1m − β2

1 M 4

λmin(β1B1B2B1 + β2B1 − λm I)

)
I,

where in the last inequality, we have used the fact that λm ≤
β1m/2. Note that λmin

(
β1B1B2B1 + β2B1 − λm I

)
≥

β1m
3 + β2m − λm ≥ β2m. Using this lower bound, the fol-

lowing holds:

1
2
β1m − β2

1 M 4

λmin(β1B1B2B1 + β2B1 − λm I)

≥ 1
2
β1m − β2

1 M 4

β2m
=

1
4
β1m.

The above set of inequalities show that the second inequality
in (A.37) holds, which concludes the proof. �

Lemma A.2 (Auxiliary result for Theorem 6.1: II): Let F be
of the form (21) with f strongly convex. Let (x, z) ∈ Rn × Rm

and (x∗, z∗) = projSaddle(F )(x, z). Then, z − z∗ is orthogonal

to the kernel of A�, and

‖A�(z − z∗)‖2 ≥ λs(AA�)‖z − z∗‖2

where λs(AA�) is the smallest nonzero eigenvalue of AA�.
Proof: Our first step is to show that there exists x∗ ∈ Rn

such that if (x, z) ∈ Saddle(F ), then x = x∗. By contradiction,
assume that (x1 , z1), (x2 , z2) ∈ Saddle(F ) and x1 �= x2 . The
saddle point property at (x1 , z1) and (x2 , z2) yields

F (x1 , z1) ≤ F (x2 , z1) ≤ F (x2 , z2) ≤ F (x1 , z2) ≤ F (x1 , z1).

This implies that F (x1 , z1) = F (x2 , z1), which is a contradic-
tion as x �→ F (x, z1) is strongly convex and x1 is a minimizer
of this map. Therefore, Saddle(F ) = {x∗} × Z , Z ⊂ Rm . Fur-
ther, recall that the set of saddle points of F are the set of
equilibrium points of the saddle point dynamics (22). Hence,
(x∗, z) ∈ Saddle(F ) if and only if

∇f(x∗) + A�z = 0.

We conclude from this that

Z = −(A�)†∇f(x∗) + ker(A�) (A.38)

where (A�)† and ker(A�) are the Moore–Penrose pseu-
doinverse [21, Sec. A.5.4] and the kernel of A�, respec-
tively. By definition of the projection operator, if (x∗, z∗) =
projSaddle(F )(x, z), then z∗ = projZ(z) and so, from (A.38),

we deduce that (z − z∗)�v = 0 for all v ∈ ker(A�). Using this
fact, we conclude the proof by writing

‖A�(z − z∗)‖2 = (z − z∗)�AA�(z − z∗)

≥ λs(AA�)‖z − z∗‖2 ,
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where the inequality follows by writing the eigenvalue de-
composition of AA�, expanding the quadratic expression in
(z − z∗), and lower bounding the terms. �

Proposition A.3 (Gradient of V3 is locally Lipschitz): Let the
saddle function F be of the form (21), with f twice differen-
tiable, map x �→ ∇2f(x) Lipschitz with some constant L > 0,
and mI 	 ∇2f(x) 	 MI for all x ∈ Rn and some constants
0 < m ≤ M < ∞. Then, for V3 given in (24), the following
holds:

‖∇V3(x2 , z2) −∇V3(x1 , z1)‖ ≤ ξ(x1 , z1)‖x2 − x1 ; z2 − z1‖

for all (x1 , z1), (x2 , z2) ∈ Rn × Rm , where

ξ(x1 , z1) =
√

3
(
β2

1 (ξ1(x1 , z1)2 + ‖A‖4 + ‖A‖2ξ2
2 ) + β2

2

) 1
2
,

ξ1(x1 , z1) = Mξ2 + L‖∇xF (x1 , z1)‖,
ξ2 = max{M, ‖A‖}. (A.39)

Proof: For the map (x, z) �→ ∇xF (x, z), note that

‖∇xF (x2 , z2) −∇xF (x1 , z1)‖

=
∥∥∥

∫ 1

0
∇xxF (x(s), z(s))(x2 − x1)ds

+
∫ 1

0
∇zxF (x(s), z(s))(z2 − z1)

∥∥∥
≤ M‖x2 − x1‖ + ‖A‖‖z2 − z1‖
≤ ξ2‖x2 − x1 ; z2 − z1‖, (A.40)

where x(s) = x1 + s(x2 − x1), z(s) = z1 + s(z2 − z1), and
ξ2 = max{M, ‖A‖}. In the above inequalities, we have used
the fact that ‖∇xxF (x, z)‖ = ‖∇2f(x)‖ ≤ M for any (x, z).
Further, the following Lipschitz condition holds by assumption

‖∇xxF (x2 , z2) −∇xxF (x1 , z1)‖ ≤ L‖x2 − x1‖. (A.41)

Using (A.40) and (A.41), we get

‖∇xxF (x2 , z2)∇xF (x2 , z2) −∇xxF (x1 , z1)∇xF (x1 , z1)‖
≤ ‖∇xxF (x2 , z2)(∇xF (x2 , z2) −∇xF (x1 , z1))‖

+ ‖(∇xxF (x2 , z2) −∇xxF (x1 , z1))∇xF (x1 , z1)‖
≤ ξ1(x1 , z1)‖x2 − x1 ; z2 − z1‖, (A.42)

where ξ1(x1 , z1) = Mξ2 + L‖∇xF (x1 , z1)‖. Also

‖∇zF (x2 , z2) −∇zF (x1 , z1)‖ = ‖A(x2 − x1)‖
≤ ‖A‖‖x2 − x1 ; z2 − z1‖. (A.43)

Now note that

∇xV3(x, z) = β1

(
∇xxF (x, z)∇xF (x, z) + A�∇zF (x, z)

)

+ β2(x − x∗),

∇zV3(x, z) = β1A∇xF (x, z) + β2(z − z∗).

Finally, using (A.40), (A.42), and (A.43), we get

‖∇V3(x2 , z2) −∇V3(x1 , z1)‖2 = ‖∇xV3(x2 , z2)

− ∇xV3(x1 , z1)‖2 + ‖∇zV3(x2 , z2) −∇zV3(x1 , z1)‖2

(a)
≤ 3β2

1 ‖∇xxF (x2 , z2)∇xF (x2 , z2)

− ∇xxF (x1 , z1)∇xF (x1 , z1)‖2

+ 3β2
1 ‖A�(∇zF (x2 , z2) −∇zF (x1 , z1))‖2 +3β2

2 ‖x2− x1‖2

+ 3β2
1 ‖A(∇xF (x2 , z2) −∇xF (x1 , z1))‖2 +3β2

2 ‖z2 − z1‖2

≤ ξ(x1 , z1)2‖x2 − x1 ; z2 − z1‖2 ,

where in (a), we have used the inequality (a + b)2 ≤ 3(a2 + b2)
for any a, b ∈ R. This concludes the proof. �
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