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Abstract— Voltage collapse is a type of blackout-inducing
dynamic instability that occurs when the power demand exceeds
the maximum power that can be transferred through the
network. The traditional (preventive) approach to avoid voltage
collapse is based on ensuring that the network never reaches
its maximum capacity. However, such an approach leads to
inefficiencies as it prevents operators to fully utilize the network
resources and does not account for unprescribed events. To
overcome this limitation, this paper seeks to initiate the study
of voltage collapse stabilization.

More precisely, for a DC network, we formulate the problem
of voltage stability as a dynamic problem where each load
seeks to achieve a constant power consumption by updating
its conductance as the voltage changes. We show that such
a system can be interpreted as a dynamic game, where each
player (load) seeks to myopically maximize their utility, and
where every stable power flow solution amounts to a Local
Nash Equilibrium.

Using this framework, we show that voltage collapse is
equivalent to the non-existence of a Local Nash Equilibrium in
the game and, as a result, it is caused by the lack of cooperation
between loads. Finally, we propose a Voltage Collapse Stabilizer
(VCS) controller that uses (flexible) loads that are willing to co-
operate and provides a fair allocation of the curtailed demand.
Our solution stabilizes voltage collapse even in the presence of
non-cooperative loads. Numerical simulations validate several
features of our controllers.

I. INTRODUCTION

Voltage collapse (VC) is a type of outage in power
networks that arises when the aggregate power demand
exceeds the capacity of the network to transfer the required
power [1],[2],[3]. When such a point is achieved, (inflexible)
constant power loads tend to rapidly reduce their effective
impedance bringing the voltage abruptly to zero. While this
mechanism is intrinsically dynamic, associated with a saddle
node bifurcation [4],[5], the inability to correct this behavior
from the generation side has lead power engineers to take
a rather static (preventive) approach to address it. That is,
to ensure that the point of maximum network loading is
never reached [6]. As a consequence, there has been a vast
body of work trying to quantify voltage stability margins.
This includes classical works, such as [7], [8],[9],[10] and
more recently, [11], [12]. However, this approach leads to
inefficiencies as it prevents operators to fully utilize the
network resources and does not account for unprescribed
events that can still produce a blackout.

This work seeks to initiate the study of voltage collapse
stabilization. More precisely, we aim to investigate how to
use (flexible) demand response to reduce consumption to
match network capacity –when the total demand exceeds it–
and prevent inflexible demand from driving the system to
voltage collapse. To the best of our knowledge, this work is
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the first effort on addressing the dynamic aspect of voltage
collapse to design controllers aimed at preventing it. Such
control schemes requires to overcome two main challenges.
Firstly, it needs to stabilize an operating point that under
inflexible load behavior is unstable.1 Secondly, it needs to
prevent collapse even in the presence of inflexible loads.

The work is motivated by the rapid development of power
electronics and information technology [14] that, for the first
time since the power system inception, has the potential to
provide enough demand-side controllability that could allow
to envision the possibility of stabilizing voltage collapse.
However, despite the additional flexibility that controllable
demand provides, there are numerous questions that remain
to be answered. Among them:
• Is voltage collapse stabilization possible?
• Can stabilization be achieved via decentralized actions?
• How should we allocate the necessary demand reduction

among the flexible loads?
In this paper, we build a game theoretic framework to

investigate these questions in the context of direct current
(DC) networks. More precisely, we consider a star resistive
DC network where each load seeks to consume a constant
power by dynamically updating its conductance using a
standard voltage droop. We show that such system can be
interpreted as a dynamic game, where each player (load)
seeks to (locally) maximize its utility, and where every stable
power flow solution amounts to a Local Nash Equilibrium
(LNE) (Section III). Interestingly, voltage collapse can then
be interpreted as the consequence of selfish actions of non-
cooperative demand, which leads to the need of introducing
coordination to overcome it.

The rest of the paper is organized as follows. Section II
introduces our DC network model of constant power loads
as well as some required game theory terminology. Section
III frames our network model as a load satisfiability game
where the unique Nash Equilibrium (NE) is the voltage
collapse state, and shows that stable power flow solutions are
LNE that prevent myopic players to reach their NE. Section
IV describes our voltage collapse stabilizer controller and
studies its static and dynamic properties. We illustrate several
features of our controllers using numerical simulations in
Section V and conclude in Section VI.

II. PRELIMINARIES

In this section we introduce the network model to be
considered in this paper as well as the game theoretic
framework to be used.

A. DC Power Network Model
We consider the star DC network model described in

Figure 1, where E denotes the source voltage, and gl the

1At a saddle node bifurcation a stable and an unstable equilibria are
merged, which leads to an unstable equilibrium [13].



Fig. 1. Star DC Network with Several Dynamic loads

conductance of a transmission line that transfer power to n
loads and gi denotes the ith load conductance, i ∈ N :=
{1, . . . , n}. We consider two types of loads, the flexible
loads, belonging to the set F = {1, ..., nF } (nF = |F |),
and the inflexible loads, belonging to I = {nF + 1, ..., n},
nI = |I|. Hence, the set of all loads is N = I ∪ F =
{1, . . . , n}. We further use g = (g1, . . . , gn) ∈ Rn≥0 to denote
the vector of conductances and g−i ∈ Rn−1 the vector of all
load conductances except gi.

Using this notation, we can use Kirchoff’s voltage and
current laws (KVL and KCL) to compute the voltage applied
to each load

v(g) =
Egl∑

i∈N gi + gl
. (1)

Thus, the total power consumed by each load i ∈ N becomes

Pi(g) = v2(g)gi =

(
Egl

geq(g) + gl

)2

gi, (2)

where geq(g) =
∑
i∈N gi is the equivalent conductance. The

difference between the power consumed by each load i ∈ N
and its nominal demand P0,i is

∆Pi(g) = Pi(g)− P0,i. (3)

The total power consumed by all the loads in the system
is

Ptot(g) =

n∑
i=1

Pi(g) =
(Egl)

2

(geq(g) + gl)2
geq(g). (4)

For an arbitrary set S ⊂ N , the aggregate power consumed
by every i ∈ S is

PS(g) =
∑
i∈S

Pi(g) =
(Egl)

2

(geq(g) + gl)2
gS , (5)

where gS =
∑
i∈S gi. Notice that if Sc := N\S and gSc =∑

i∈Sc gi, then: geq(g) = gS + gSc .
Definition 1 (Voltage Collapse): The system (10) under-

goes voltage collapse whenever v(g(t))→ 0 as t→ +∞.

Network Capacity (PS,max): Since voltage collapse is the
result of the network reaching its maximum capacity [2], it
is of interest to compute the maximum value that PS(g) in
(5) can achieve for fixed value of gSc .

A straightforward calculation shows that for all i ∈ S
∂

∂gi
Pi(g) =

(Egl)
2

(geq(g) + gl)3
(gl + geq(g)− 2gi) , (6)

which implies that

∂

∂gS
PS(g) =

(Egl)
2

(geq(g) + gl)3
(gl + gSc − gS) . (7)

From (7), it is easy to see that PS(gS ; gSc) is an increasing
function of gS up until gS = gl+gSc , and decreasing for all
gS > gl + gSc . Therefore, the maximum power that can be
supplied to the loads in S is given by

PS,max = PS(g∗S ; gSc) =
E2gl

4

gl
gl + gSc

(8)

and is achieved whenever g∗S =
∑
i∈S g

∗
i = gl + gSc .

In the special case where S = N , (8) becomes:

Pmax = Ptot(g
∗
S ; gSc) =

E2gl
4

(9)

and it is achieved by g∗N = geq(g∗) =
∑
i∈N g

∗
i = gl.

Dynamic Load Model: We assume that each load i ∈ N
has a constant power demand P0,i. For an inflexible load
i ∈ I , this demand P0,i must always be satisfied. This is
achieved by dynamically changing the conductance gi in
order to change the power consumption Pi(g). Following
[2], we use the following dynamic model

ġi =− (v2(g)gi − P0,i) = −∆Pi(g), i ∈ I. (10)

For the case of flexible loads, we assume that although
they aim to satisfy their own constant power demand P0,i,
at the same time they are willing to consume less than P0,i

whenever P0,tot :=
∑
i∈N P0,i > Pmax. Thus, our goal it to

design a control law

ġi = ui, i ∈ F, (11)

where the input ui is such that in equilibrium ∆Pi(g) = 0
whenever P0,tot < Pmax.

Power Flow Solutions: Given an equilibrium g∗ of (10)-
(11), there exists a unique voltage v(g∗) and power consump-
tion P (g∗) = (Pi(g

∗), i ∈ N). The pair (v, P ) is referred as
power flow solution. Thus, given the one-to-one relationship
between g and the pair (v, P ), we refer to g∗ as a power
flow solution.

B. Game Theory
We now present the game theoretical preliminaries that

will allows us to better grasp the level of coordination
required to prevent voltage collapse.

Definition 2 (Normal Form Game [15]): A Normal
Form Game is given by the triple 〈N,S,u〉 where:

1) N = {1, ..., n}, is the set of players.
2) S := S1 × ... × Sn, with Si being the strategy set of

player i ∈ N , is the set of strategies.
3) u = {ui, i ∈ N}, where ui : S := S1 × ...× Sn → R,
∀i ∈ N , is the set of payoff functions.

Given a game 〈N,S,u〉 we seek to understand the set of
strategies s = (s1, . . . , sn) ∈ S for which every player has
no incentive to move. Moreover, since in our context it is
in general difficult to understand the best response of each
player, we focus on locally optimal strategies.

Definition 3 (Nash Equlibirum [15]): A strategy s∗ =
(s1, .., sn) ∈ S is a (strict) Nash Equilibrium (NE) if and
only if for each i ∈ N

ui(s
∗
i , s
∗
−i) > ui(si, s

∗
−i), ∀si ∈ Si. (12)

Definition 4 (Local Nash Equlibrium [16]): A strategy
s∗ = (s1, .., sn) ∈ S is a (strict) Local Nash Equilibrium
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(LNE) if and only if for each i ∈ N there exists an open
set Wi ⊂ Si such that:

ui(s
∗
i , s
∗
−i) > ui(si, s

∗
−i), ∀si ∈Wi\{s∗i }. (13)

Whenever the payoff functions ui are sufficiently smooth,
it is possible to verify (13) using first and second order
derivatives.

Lemma 1 (Criterion for LNE [16]): Given a game
〈N, {Si, i ∈ N}, {ui, i ∈ N}〉 with doubly
continuously differentiable payoff functions, a strategy
s∗ = (s∗1, .., s

∗
n) ∈ S is a strict LNE whenever

∂

∂si
ui(s

∗) = 0 and
∂2

∂s2
i

ui(s
∗) < 0, ∀i ∈ N. (14)

III. GAME THEORETICAL INTERPRETATION OF VOLTAGE
COLLAPSE

In this section we build a game theoretical framework
that provides a deeper insight on the voltage collapse phe-
nomenon and further suggests the necessity of coordination
among resources in order to prevent voltage collapse without
incurring unnecessary inefficiencies.

A. A Game for Inflexible Constant Power Loads

In our formulation, the set of players is the set of loads,
both conveniently denoted by N . We consider here the case
of inflexible loads, that is, I = N and F = ∅. For each
player i ∈ N the strategy si is given by its conductance
gi ≥ 0. Therefore, the strategy set S := Rn≥0.

Following Definition 2, it remains to define the utility
function of each agent i ∈ N . The following proposition
motivates a particular choice of payoff function.

Proposition 1: Consider the game 〈N,S,u〉, where S =
Rn≥0 and for each load i ∈ N the utility function is given by

ui(gi; g−i) =P0,igi + (Egl)
2ln

(
g−i + gl

gi + g−i + gl

)
− (Egl)

2

(
g−i + gl

gi + g−i + gl
− 1

)
,

(15)

where g−i denotes gN\{i} =
∑
j 6=i gj . Then, the inflexible

load dynamics (10) amounts to the myopic gradient dynamics

ġi =
∂

∂si
ui(s), i ∈ I. (16)

As a consequence, if g∗ ∈ Rn≥0 is a LNE of 〈N,S,u〉, then
it is an equilibrium of (10).

Proof: From equation (10), it follows that if u is the
payoff function of the game 〈N,S,u〉, then

∂ui(gi; g−i)

∂gi
= −

((
Egl

geq(g) + gl

)2

gi − P0,i

)
Integrating above expression with respect to gi gives

ui =

∫ gi

0

(
P0,i −

(Egl)
2

(s+ g−i + gl)2
s

)
ds

=

∫ gi

0

(
P0,i − (Egl)

2 s+ g−i + gl
(s+ g−i + gl)2

)
ds

+

∫ gi

0

(Egl)
2 g−i + gl

(s+ g−i + gl)2
ds

=

[
P0,is−(Egl)

2

(
ln(s+g−i+gl)+

g−i+gl
s+g−i+gl

)]gi
0

We retrieve (15) by substituting for the limit values.
Proposition 1 reverse engineers the utility function such

that any LNE is an equilibrium of (10). Thus, although this
suggests that some of the power flow solutions –which are
represented by the equilibria of (10)– may constitute a LNE,
the following theorem unveils a rather surprising fact.

Theorem 1 (Voltage Collapse is the Unique NE): Given
the induced game 〈N,Rn≥0,u〉 with utility given by (10), the
strategy gi → +∞ ∀i ∈ N is the unique Nash Equilibrium.

Proof: We first show that each player maximizes their
utility by setting gi → +∞. Using (15),

lim
gi→+∞

ui(gi; g−i) = lim
gi→+∞

(Egl)
2 ln

(
g−i + gl

gi + g−i + gl

)
− lim
gi→+∞

(Egl)
2

(
g−i + gl

gi + g−i + gl
− 1

)
+ lim
gi→+∞

P0,igi

= lim
gi→+∞

P0,igi−(Egl)
2

(
ln

(
g−i+gl

gi+g−i+gl

)
−1

)
=+∞

The previous derivation assumes that all other agents
decide finite conductances. In the case where any other agent
j 6= i is also choosing gj →∞, then a similar computation
using (15) gives

lim
gj→∞

ui(gi; g−i) = P0,igi + (Egl)
2,

which implies that

lim
gi→∞

lim
gj→∞

ui(gi; g−i) = lim
gi→∞

P0,igi + (Egl)
2 = +∞

Therefore, choosing gi → +∞ is a strictly dominant strategy
for agent i, i.e. it is the best possible strategy regardless of
the strategy chosen by all other agents.

Theorem 1 unveils an unusual phenomenon. The normal
(and desired) operating point of the DC network in Figure
1, that represents a stable power flow solution of (10), is
not a Nash Equilibrium of the game. We will show next,
that these stable points are in fact LNE that, because of the
myopic nature of (16), prevent players from moving towards
Voltage Collapse.

B. Stable Equilibria are LNE

We focus now in the case where P0,tot < Pmax, which
ensures the existence of power flow solutions, i.e., equilibria
in (10), with I = N .

Definition 5 (S-LNE): A point g∗ is a Stable Local Nash
Equilibrium (S-LNE) if it is a Local Nash Equilibrium of the
induced game 〈N,S,u〉 and a Stable Equilibrium of (10).

We start by first characterizing the region of stable equi-
libria. For this reason, we consider the set

M := {g ∈ Rn :
∑
i∈N

gi < gl}.

Lemma 2 (Characterization of Stable Region): A hyper-
bolic equilibrium2 point g∗ of (10) is stable if and only if
g∗ ∈M .

2An equilibrium is hyperbolic if its Jacobian is nonsingular.
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Proof: Let g∗ be an equilibrium of (10), i.e., ∆Pi(g
∗
i ) =

0 for all i ∈ N . The Jacobian of the system is given by

J(g∗) =
2v2(g∗)

geq(g∗) + gl
g∗1Tn − v2(g∗)In (17)

where In is the identity matrix.
Let K1(g∗) = 2v2(g∗)

geq(g∗)+gl
g∗1Tn . Then, since K1(g∗) is a

rank 1 matrix, it has n − 1 eigenvalues λi(K1) = 0, i ∈
{1, . . . , n− 1}, and one non-zero eigenvalue

λn(K1) =
2v2(g∗)

geq(g∗) + gl
1Tng

∗ =
2v2(g∗)

geq(g∗) + gl
geq(g∗).

Therefore, since the second term in (17) is an iden-
tity matrix, the eigenvalues of J(g∗) are a shifted from
the eigenvalues of K1(g∗) by −v2(g∗), i.e. λi(J(g∗)) =
λi(K1(g∗))− v2(g∗), which gives

λi(J) =

{
−v2(g∗), i ∈ {1, .., n− 1};

2v2(g∗)
geq(g∗)+gl

geq(g∗)− v2(g∗), i = n.

We can now prove the statement of the lemma.
(⇒) If g∗ is an asymptotically stable hyperbolic

equilibrium, then J(g∗) is Hurwitz and thus:
λn(J) < 0⇒ v2(g∗)(

2geq(g∗)

geq(g∗)+gl
− 1) < 0⇒ geq(g∗) < gl.

(⇐) If g∗ ∈ M , then: λn(J) < 0. Since all eigenvalues
of J(g∗) are negative, by [13, Theorem 3.5] J(g∗) is stable.

We are now ready to show the main result of this section.
Theorem 2 (Characterization of Stable Equilibria):

Every stable equilibria of (10) is a LNE of 〈N,S,u〉.
Proof: Let g∗ be a stable equilibrium of (10). Then by

Lemma 2, g∗ ∈M .

∂2ui(g
∗
i )

∂gi
2 = −∂Pi(g

∗
i )

∂gi
= −v2(g∗)

(
1− 2g∗i

geq(g∗) + gl

)
Therefore, since 2g∗i ≤ 2geq(g∗) < geq(g∗) + gl, it follows
that 1 − 2g∗i

geq(g∗)+gl
> 0 and ∂Pi(g

∗
i )

∂g∗i
> 0. Then, by Lemma

1, g∗ is a LNE.
Remark 1: Notice that not all LNE are stable equilibria.

A LNE is a point for which the diagonal elements of the
Jacobian are negative, which does not guarantee that J(g∗)
is Hurwitz. A counter-example is the case of two loads (N =
{1, 2}) whose demand P0,1, P0,2 is such that: 0 < g1 < gl
and gl < g2 < gl + g1. The vector g = (g1, g2) /∈M , but:

∂u2
i

∂g2
i

= − (Egl)
2

(geq(g) + gl)3
(gl + geq(g)− 2gi) < 0,∀i ∈ N.

This point is indeed a LNE, but not a stable equilibrium of
(10) since g1 + g2 > gl.

C. Voltage Collapse with Inflexible Loads
We now show how in the overload regime (P0,tot > Pmax),

the players indeed drive the system to the unique NE.
Theorem 3 (Voltage Collapse with Inflexible Loads):

The dynamic load model (10) with I = N undergoes a
voltage collapse whenever ε := P0,tot − Pmax > 0.

Proof: Notice first that Rn≥0 is invariant, since whenever
gi = 0 (10) implies that ġi > 0. Also, it is easy to check
that (10) is globally Lipschitz on Rn≥0 since gl > 0. Thus

Fig. 2. Region of Stable LNE for the case of two loads

by [13, Theorem 3.2], there is a unique solution to (10),
g(t), that is defined ∀t ≥ 0. Now, consider the function
V (g) =

∑
i∈N

gi
θi

, and let S+
V (a) = {g ∈ Rn≥0 : V (g) ≤ a}.

By taking the time derivative of V we get

V̇ (g) =

n∑
i=1

ġi
θi

=−
n∑
i=1

Pi(g)− P0,i≥P0,tot−Pmax =ε>0.

Therefore, ∀a ≥ 0 if g(0) ∈ S+
V (a), g(t) escapes S+

V (a) in
finite time and therefore ||g(t)||→ ∞ as t → ∞. It follows
then that geq(t) grows unboundedly and by (1) v(g(t))→ 0,
i.e., the system voltage collapses.

Remark 2: Theorem 3 further suggests that our model for
inflexible loads successfully captures the property that excess
on power demand beyond the network capacity implies
voltage collapse.

D. Behavioral Interpretation of Voltage Collapse
We conclude this section by illustrating how the game

theoretical framework developed above allow us to obtain a
behavioral interpretation of voltage collapse.

As Theorem 1 shows, a game representation of (10), for
which power flow solutions can provide some notion of (lo-
cal) optimality (LNE), naturally leads to voltage collapse as a
dominant strategy. This suggests that it is the selfish behavior
of each player –that seeks to maximize their own payoff–
that constitute the underlying cause of voltage collapse.
Surprisingly, under normal operating conditions (P0,tot <
Pmax), it is the myopic behavior of each player, who can only
assess optimality within a neighborhood, that prevents the
players from converging to the dominant strategy (Theorem
2). As soon as such locally optimal solutions disappear (when
P0,tot > Pmax), the players converge to voltage collapse
(Theorem 3).

In summary, voltage collapse is intrinsically connected to
the selfish myopic desire of each load to match its required
consumption, even when the network cannot provide such
aggregate amount of power. This behavior is reminiscent of
the one present in the tragedy of the commons [17], and
further suggests that certain level of coordination may be
required in order to prevent voltage collapse. This is the
basis of the solution proposed next.

IV. VOLTAGE COLLAPSE STABILIZER CONTROL

We now focus our attention to the task of preventing
voltage collapse. Thus, we assume that there exists a subset
of the loads F ⊆ N , F 6= ∅, that are receptive to
curtailment. However, from an efficiency perspective, such
curtailment should only occur whenever the total demand
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exceeds the network capacity (P0,tot > Pmax). Moreover, if
curtailment does occur, it should be fairly allocated among
the flexible loads. These design objectives are summarized
in the following problem formulation.

Problem 1 (Voltage Collapse Stabilization): Design a
control signal ui, i ∈ F , such that:
• Load Satisfaction: Whenever P0,tot < Pmax the equilibrium

g∗ ∈M ∩ {g : ∆Pi(g
∗) = 0, i ∈ N}

is the unique asymptotically stable equilibrium within M .
• Efficient Allocation: Whenever P0,tot > Pmax, the only

stable equilibrium g∗ leads to a curtailment allocation that
is the optimal solution to

minimize
∆Pi,i∈F

∑
i∈F

θi
2

(∆Pi)
2

subject to
∑
i∈F

∆Pi = Pmax − P0,tot.
(18)

We will call a controller u that solves Problem 1 a Voltage
Collapse Stabilizer (VCS) Controller. The rest of this section
is devoted to show that the following control law is a VCS
Controller:

ġ = −A(g)(P (g)− P0) : Rn → Rn (19)

where A(g) = diag{αi(g), i ∈ N},

αi(gi) =

{
κ(ḡi−gi)

1+κ(ḡi−gi) , ∀i ∈ F ;

1, ∀i ∈ I;
(20)

and

ḡi =
P0,i

(E/2)2
+
Pmax − P0,tot

γi(E/2)2
, (21)

with γi = θi
∑
j∈F

1
θj

and κ is a positive parameter: 0 <
κ <∞.

Remark 3: The term αi(g) aims to introduce a new
equilibrium point g∗ when P0,tot > Pmax such that, whenever
g∗ satisfies αi(g∗) = 0 ∀i ∈ F , {∆Pi(g∗), i ∈ F} is a
solution to (18). However, as we show in the next section,
this can tentatively introduce new equilibria.

A. Characterization of Equilibria

We now proceed to characterize the set of equilibria of
(19). Given a set of indices G, consider

EG := {g : αi(g)=0, i∈G, ∆Pi(g)=0, i∈Gc} (22)

It is easy to see that the set {∪G⊆FEG} compactly encap-
sulates every equilibrium of (19). The following lemma will
allow us to further characterize each set (22).

Lemma 3 (Intermediate Value Theorem [18]): Let f ∈
C[a, b]. Then for any ψ ∈ (f(a), f(b)) there exists ξ ∈ [a, b]
such that f(ξ) = ψ.

Lemma 4 (Characterization of EG): Given any set G ⊆
F , the set EG is composed by two equilibria g∗1 , g

∗
2 such that

g∗1,i = g∗2,i = ḡi ∀i ∈ G,

and ∑
i∈Gc

g∗1,i < gl +
∑
i∈G

ḡi <
∑
i∈Gc

g∗2,i. (23)

Moreover, whenever G = F , then g∗1 ∈ cl(M) is such that

geq(g∗1) = gl, g
∗
1,i =

P0,i

(E2 )2
, ∀i ∈ I, and v(g∗1) =

E

2
. (24)

Proof: If g∗ ∈ EG, then αi(g∗) = 0 for all i ∈ G:

κ(ḡi − g∗i )

1 + κ(ḡi − g∗i )
= 0⇒ g∗i = ḡi i ∈ G (25)

Following (5), let g∗Gc =
∑
i∈Gc g∗i and ḡG =

∑
i∈G ḡi. We

will solve

f(g∗Gc) =
(Egl)

2

(g∗Gc + ḡG + gl)2
g∗Gc − P0,Gc = 0 (26)

for g∗Gc . Following (8), there exists g∗Gc s.t. f(g∗Gc) = 0 only
if P0,Gc(g∗) ≤ E2gl

4
gl

ḡG+gl
, namely when the demand does

not exceed the capabilities of the line. Moreover, the first and
second order derivative of f(g∗Gc) and PGc(g∗) are identical,
since P0,Gc is a constant. Therefore, from (8), f(g∗Gc) is
maximized for g∗Gc,max = ḡG + gl, where

fmax = f(g∗Gc,max) =
E2gl

4

gl
ḡG + gl

− P0,Gc . (27)

In addition, f ∈ C∞[0,∞),

f(0) = −P0,Gc < 0, and lim
g∗
Gc→∞

f(g∗Gc)→ −P0,Gc < 0

Hence, if fmax > 0 (which is true solely when P0,Gc(g∗) <
E2gl

4
gl

ḡG+gl
), then the Intermediate Value Theorem in the two

intervals [0, g∗Gc,max], [g∗Gc,max,∞) concludes that there will
exist g∗Gc

1
∈ (0, g∗Gc,max) and g∗Gc

2
∈ (g∗Gc,max,∞) that are

roots of f(g∗Gc). Thus, there exists g∗1 and g∗2 satisfying (23).
When G = F (hence Gc = I), we have

geq(g∗)
(25)
=
∑
i∈F

ḡ∗i +
∑
i∈I

g∗i
(21)
=
∑
i∈F

P0,i

(E2 )2

+
∑
i∈F

1

γi

Pmax−P0,tot

(E2 )2
+
∑
i∈I

P0,i

(E2 )2
=
Pmax

(E2 )2

(9)
= gl

where in the unmarked equality we used fact that
∑
i∈F

1
γi

=
1 by definition.

Now, since geq(g∗) = gl, it follows immediately from (1)
that v(g∗) = E

2 . Moreover, since g∗ is indeed an equilibrium
we must have Pi(g∗) = v2(g∗)g∗i =

(
E
2

)2
g∗i = P0,i, ∀i ∈

I, which leads to g∗i =
P0,i

( E
2 )2

. Finally, we can check that
g∗ = g∗1 since g∗I < geq(g∗) = gl < ḡF + gl.

We now show that our controller (19) does in fact guar-
antee the existence of an equilibrium that solves (18).

Theorem 4 (Efficient Allocation): Consider the system
(19) with equilibria characterized by the set EF as shown in
(22). Then, the conductance g∗ ∈ EF ∩ cl(M) = {g∗} leads
to an efficient curtailment {∆Pi(g∗), i ∈ F} that is optimal
w.r.t. (18).

Proof: We have shown in Lemma 4 that there exists
g∗1 ∈ EF such that geq(g∗1) = gl, i.e. g∗1 ∈ EF ∩ cl(M). For
this equilibrium, the total power is

Ptot(g
∗
1) = v2(g∗)geq(g∗1)

(24)
=

(
E

2

)2

gl
(9)
= Pmax
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For g∗1 we can compute the allocation of the curtailment
among loads i ∈ F :

∆Pi(g
∗) =v2(g∗)ḡi − P0,i

=

(
E

2

)2
(
P0,i

(E2 )2
+
Pmax − P0,tot

γi(
E
2 )2

)
− P0,i

=
Pmax − P0,tot

γi
, ∀i ∈ F

(28)

We can easily check that the allocation of the curtailment
is proportional to the θs

∆Pi(g
∗)

∆Pj(g∗)
=
γj
γi

=
θj
θi
, i, j ∈ F (29)

and thus is an Efficient Allocation.
Remark 4: Theorem 4 only guarantees that one of the

equilibria of EF solves (18). However, it does not provide
any information regarding all the possible additional equilib-
ria EG. We will show that the remaining equilibria either do
not exist, are unstable, or do not belong to the monotonicity
region M .

We conclude this section showing a case where EG = ∅.
Theorem 5 (Infeasiblity of EG under extreme loading):

When G ⊂ F ⊆ N and P0,tot > Pmax, then EG = ∅.
Proof: Since G ⊂ F , then there exists a non empty

set IF ⊂ F such that I ∪ IF = Gc (or G = F\IF ). From
Lemma 4: g∗G =

∑
i∈G ḡi = ḡG. Let ḡGc = gl − ḡG. Since

g∗ ∈M , it holds that:

g∗Gc + ḡG < gl = ḡG + ḡGc ⇒ g∗Gc < ḡGc

Notice that since ḡGc + ḡG = gl, (1) implies that
v(ḡGc ; ḡG) = E

2 .We will now look at how PGc(g∗Gc ; ḡG)
behaves with respect to g∗Gc . Similarly to (7), PGc(g∗Gc ; ḡG)
is a strictly increasing function for g∗Gc < gl+ ḡG. Therefore:

PGc(g∗Gc ; ḡG)− P0,Gc

g∗Gc<ḡGc

<

(
E

2

)2

ḡGc − P0,Gc

(9)
= Pmax −

(
E

2

)2

ḡG − P0,Gc

(21)
= (Pmax−P0,tot)

(
1−
∑
i∈G

1

γi

)
<0

where in the first equality we have substituted for ḡGc =
gl − ḡG and in the last step we have substituted (21) and
rearranged the terms. However, since g∗ ∈ G, then (22) and
thus PGc(g∗Gc ; ḡG) = P0,Gc . The above contradiction implies
that EG ∩M = ∅.

Let g∗ ∈ EG ∩M c, then
∑
i∈N g

∗
i ≥ gl and from (1):

v(g∗) ≤ E
2 . Therefore:

0 ≤
∑
i∈G

Pi(g
∗) =

∑
i∈G

v2(g∗)g∗i =
∑
i∈G

v2(g∗)ḡi

(20)
=
∑
i∈G

P0,i

(v(g∗)
E
2

)2

− 1

+
∑
i∈G

v2(g∗)(Pmax − P0,tot)

γi
(
E
2

)2
< 0

Hence, if P0,tot > Pmax then EG ∩ M c = ∅. Therefore:
EG = (EG ∩M) ∪ (EG ∩M c) = ∅.

So far we have shown that whenever P0,tot > Pmax,
the only feasible set EG is EF , and EF contains the
equilibrium that solves the efficient curtailment problem (18).
The next section will show that this is in fact the only stable
equilibrium under extreme loading conditions.

B. Stability Analysis
In this Section we will study the stability of the different

equilibria with the objective of showing that the chosen
controller solves Problem 1 and thus qualifies as a VCS
Controller.

The following lemma will be of use in the eigenvalue
computation.

Lemma 5 (Matrix Determinant Lemma [19]): If D is an
invertible n× n matrix and v, w ∈ Rn, then:

det
(
D + vwT

)
= (1 + wTD−1v)det(D) (30)

We can now compute the eigenvalues of the Jacobian of
(19)

Lemma 6 (Computation of Eigenvalues of (19)):
Consider the system (19). Then, the eigenvalues of its
Jacobian JC(g) at each point g satisfy:{

λi = ∆Pi(g)κ, i ∈ G,
λi : c(λi) = 0, o.w..

(31)

where

c(g, λ) :=

(
1 +

2v
2

(g)

geq(g) + gl

∑
i∈N

ai(gi)gi
di(g)− λ

)
(32)

Proof: The Jacobian of this system is

JC(g) = A(g)
( 2v2(g)

geq(g) + gl
g1Tn−v2(g)In

)
−D∆P (g)Dκ(g)

(33)
where

D∆P (g) = diag{∆P (g)}, Dκ(g) = diag
{
∂

∂gi
αi(gi)

}
,

with ∂
∂gi
αi(gi) =

{
−κ

(1+κ(ḡi−gi))2 ∀i ∈ F
0 ∀i ∈ I

.

The eigenvalues of JC(g) are given as the solution of
det(JC(g)−λIn) = 0. Notice that JC(g)−λIn is composed
by a diagonal matrix

D(g, λ) := −D∆P (g)∆κ(g)− v2(g)A(g)− λIn

plus a rank 1 matrix − 2v2

geq+gl
(A(g)g)1Tn = vwT , with

v = − 2v2

geq + gl
(A(g)g), w = 1n.

Moreover, the entries of D(g, λ) can be written as di(g)−λ,
with di(g) = −ai(gi)v2(g) + ∆Pi(g) κ

(1+κ(ḡi−gi))2 .
Therefore, using [19] we can compute

det(JC(g)− λIn) = c(g, λ) det(D(g, λ)),

which implies that either λi is either equal to ∆Pi(g)κ or is
a solution to c(λ) = 0. Result follows.

Having characterized the eigenvalues of JC(g∗), we now
analyze the stability of the equilibria of (22).
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Theorem 6 (Stability of VCSC Controller): Consider the
system (19). Then, for 0 < κ <∞ the following holds:

(1) When
∑
i∈N P0,i > Pmax, the only asymptotically stable

equilibrium is given by g∗ ∈ EF ∩ cl(M) = {g∗}.
(2) When

∑
i∈N P0,i < Pmax, then the only asymptotically

stable equilibrium within the closure of M is given by
g∗ ∈ E∅ ∩ cl(M) = {g∗}.

Proof: (1) Let
∑
i∈N P0,i > Pmax. Then, by Proposition

3 there does not exist g∗ such that ∆Pi(g
∗) = 0, ∀i ∈ N .

That is, if G = ∅ then E∅ = ∅. Moreover, by Theorem
5, if ∅ 6= G ⊂ F , then again EG = ∅. Therefore, when
P0,tot > Pmax, EG is nonempty only for G = F .

Now for g∗ ∈ EF , Lemma 4 shows that EF comprises
of two equilibria g∗1 , g

∗
2 . We will first examine g∗1 . Again, by

Lemma 4, geq(g∗1) = gl and by Lemma 6 the eigenvalues of
λi = ∆Pi(g

∗)κ for all i ∈ F . Therefore, since

Pi(g
∗
1) = v2(g∗1)g∗1,i =

(
E

2

)2
(
P0,i

(E2 )2
+

1

γi

Pmax−P0,tot

(E2 )2

)
= P0,i +

1

γi
(Pmax − P0,tot),

it follows that λi = ∆Pi(g
∗
1)κ = 1

γi
(Pmax−P0,tot)κ < 0, for

all i ∈ F .
The rest of the eigenvalues are computed from (32) by

substituting αi(g
∗
1,i) = 0 for i ∈ F and αi(g

∗
1,i) = 1 for

i ∈ I:

c(g∗1 , λ) = 1 +
2v2(g∗1)

geq(g∗1) + gl

∑
i∈I

g∗1,i
−v2(g∗1)− λ

= 0 (34)

It is easy to show, following the analysis of [20], that c(g, λ)
always has real roots.

We will examine the sign of the roots of c(g∗, λ) by first
looking at its derivative:

∂

∂λ
c(g∗1 , λ) =

2v2(g∗1)

geq(g∗1) + gl

∑
i∈I

g∗i
(−v2(g∗1)− λ)2

> 0

Hence, since the denominator is non-singular for λ ≥
0, c(g∗1 , λ) is continuous and strictly increasing for λ ∈
[0,+∞). Moreover, c(g∗1 , 0) = 1 − 2

∑
i∈I g1,i

geq(g∗1 )+gl
> 0. There-

fore, there does not exist λ ≥ 0 such that c(g∗1 , λ) = 0.
Consequently, λi < 0 for all i ∈ I and we have shown above
that λi < 0 also for all i ∈ F . Therefore, by Lyapunov’s
Inidrect Method [13, Theorem 3.2] g∗1 ∈ EF is a stable
equilibrium of (19).

The analysis for g∗2 ∈ EF is analogous. The function
c(g∗2 , λ) is again continuous and strictly increasing for λ ∈
[0,+∞). However, since by Lemma 4 g∗I,2 > gl + ḡG,

c(g∗2 , 0) = 1−
2g∗I,2

geq(g∗2) + gl
< 0, while lim

λ→∞
c(g∗2 , λ) = 1.

Thus, by Lemma 3 there exists λ̄ ∈ (0,+∞) such that
c(g∗2 , λ̄) = 0. Since JC(g∗2) has at least one positive eigen-
value, using again [13, Theorem 3.2] we can conclude that
g∗2 is unstable.

(2) Let
∑
i∈N P0,i < Pmax and g∗ ∈ E∅ ∩ cl(M). In

this case g∗i 6= ḡi ∀i ∈ N (otherwise g∗ /∈ E∅). Therefore

αi(g
∗
i ) 6= 0. From (31) the eigenvalues of the system satisfy:

c(g∗, λ) = 1 +
2v2(g∗)

geq(g∗) + gl

∑
i∈N

αi(g
∗
i )g∗i

di(g∗)− λ
= 0 (35)

Given that g∗ ∈ E∅ ∩ cl(M), then v(g∗) ≥ E
2 from (1).

Therefore:

g∗i =
P0,i

v2(g∗)
≤ P0,i

(E2 )2

g∗i 6=ḡi
< ḡi ⇒ αi(g

∗) > 0

From [20], when αi(g∗) > 0, equation (35) has n− 1 roots
that satisfy λi < maxi{−αi(g∗i )v2(g∗)} = dM < 0. For the
nth eigenvalue, we observe that c(g∗, λ) ∈ C∞(dM , 0] and:

c(d−M ) = lim
λ→d−M

f(λ)→ −∞ < 0

c(0) = 1−
∑
∀i∈N

2g∗i
geq(g∗) + gl

g∈M
> 0

From Lemma 3, there exists λn ∈ (dM , 0) s.t. c(λn) = 0.
Therefore, the nth eigenvalue is also negative and from [13,
Theorem 3.2], g∗ ∈ E∅ ∩ cl(M) is stable.

If g∗ ∈ EG ∩ cl(M) for an arbitrary G 6= ∅, then the only
equilibrium that satisfies this condition is g∗1 ∈ EG. From
(1) v(g∗) ≥ E

2 . Substituting into (31) for i ∈ G:

λi =∆Pi(g
∗)κ = (v2(g∗)ḡi − P0,i)

=P0,i

(
v(g∗)

(E2 )
− 1

)2

+
1

γi

Pmax − P0,tot

(E2 )2
> 0

Since there exists at least one positive eigenvalue, [13, Theo-
rem 3.2] implies that the equilibrium is unstable. Therefore,
the only stable eigenvalue is g∗1 ∈ E∅ ∩ cl(M).

Theorem 6 shows that (19) is indeed a Voltage Collapse
Stabilizer Controller.

V. NUMERICAL ILLUSTRATIONS

In this section, we validate our theoretical results using
numerical illustrations. We consider a DC grid as in Figure
1 with three loads. In all the experiments we start the
simulations with initial set-points such that P0,tot < Pmax
and with conductances close to the equilibrium g∗ where all
demands are met, i.e., g∗ ∈ E∅∩M . Finally, we have chosen
κ = 10.
Case 1 (I=N={1,2,3}): Figure 3 illustrates the behavior of
the system (10)-(11) consisting of only inflexible loads. We
can see that as soon as the aggregate demand reaches Pmax,
the system undergoes a voltage collapse.

Fig. 3. Voltage collapse illustration with inflexible loads.
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Case 2 (F=N={1,2,3}): The case where all loads are flexible
is illustrated in Figure 4. In comparison with Case 1, here
our VCS controller forces the consumption of all loads to
adjust proportionally to their assigned weight θi, in this way
preventing voltage collapse.

Fig. 4. VCS Controller acting on all loads. Supply tracks demand under
varying loading.

Case 3 (F={1,2},I={3}): Finally we illustrate a case with
mixed load types where load 3 is inflexible, and our VCS
controller is executed in loads 1 and 2. We observe in Figure
5 that the flexible loads (1, 2) adjust their demand proportion-
ally to their assigned weights in order to accommodate the
increasing demand of the inflexible load, again preventing
voltage collapse. However, when the system runs out of
flexible demand the system will eventually undergo a voltage
collapse, as predicted in Lemma 4. We observe exactly this
behavior in Figure 6.

Fig. 5. Loads 1,2 are flexible and Load 3 is inflexible. Supply adjusts
according to the assigned weight θi

Fig. 6. Loads 1,2 are flexible and Load 3 is inflexible. VC happens when∑
i∈I P0,i > Pmax

VI. CONCLUSIONS
This work seeks to initiate the study of voltage collapse

stabilization as a mechanism to provide a more efficient

and reliable operation of electric power grids. We develop a
game theoretical framework that sheds light on the behavioral
mechanism that leads to voltage collapse and suggests the
need of cooperation as a means to prevent it. Based on this
insight, we propose a Voltage Collpase Stabilizer controller
that is able to not only prevent voltage collapse, but also
fairly distribute the curtailment among the flexible loads.
Further research needs to be conducted to fully characterize
the behavior of our solution. In particular, the point where
P0,tot = Pmax is a non-trivial point, where the Jacobian of the
system is identically zero and thus requires the treatment of
higher order dynamics. We identify two desired extensions of
this work that are subject of current research: (a) extending
the analysis to a general DC network and (b) extending the
analysis to a general AC network.
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