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Abstract— Electro-mechanical oscillations in power systems
are typically controlled by simple decentralised controllers.
We derive a formula for computing the delay margin of such
controllers when the power system is represented by a simple
mechanical network. This formula reveals a clear trade-off
between system damping, inertia, and robustness to delays. In
particular, it shows that reducing system inertia, which is a
common consequence of increased renewable generation, can
reduce robustness to unmodelled dynamics.

I. INTRODUCTION

Electrical power systems are large, highly oscillatory,
electro-mechanical networks. Electro-mechanical oscillations
are typically controlled using simple, decentralised con-
trollers, designed to improve damping based on physical
insight [1]. However, as evidenced by the continued need
to re-tune such devices in response to system changes, and
that poorly tuned controllers have been a linked to several
large blackouts [2], problems in this area clearly remain.

To further complicate matters, the introduction of renew-
able generation is causing power systems to change at an
unprecedented rate. Although developments such as ‘virtual
inertia’ allow these new devices to be operated in a similar
fashion to conventional power system components, they are
affecting the nature of the power system as a whole, by
for example: (a) reducing system inertia; (b) increasing the
loading of the transmission system; (c) introducing more
delays and other dynamics. The main contribution of this
paper is to derive a criterion that allow the effects of (a)–(c)
to be quantified in terms of damping, inertia, and robustness.

The setting for this paper is the mechanical network in
Figure 1. This is the well known mechanical analogue of the
‘swing equation’ power system model. The masses, which
are constrained to lie on a circle, are analogous to the
generators, and the springs to the transmission lines. This
model obeys the differential equations

miθ̈i +

n∑
j=1

kij sin (θi − θj) = fi, i ∈ {1, . . . , n} . (1)

In the above θi (t) denotes the angular position of the ith
mass on the circle, mi > 0 its mass, and fi (t) an external
force applied to it tangentially to the circle. The constants
kij ≥ 0 denote the spring constants of the spring connecting
the ith and jth masses. In this paper we investigate trade-
offs between damping, system inertia, and more complex
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Fig. 1. Mechanical analogue of the swing equation model.

dynamics, when eq. (1) is impacted by forces of the form

fi (t) = −di
(
θ̇i (t− τi)− ω0

)
+ f0,i. (2)

In the above di > 0 is a damping constant, τi ≥ 0 a delay,
f0,i some nominal force, and ω0 a nominal angular velocity
(analogous to the AC frequency in the power system).

The motivation for eq. (2) is that in the absence of
delays, to a first approximation, most controllers for re-
ducing electro-mechanical oscillations take this form. That
is they draw insight from the mechanical analogue, and
look to improve damping by applying forces proportional
to deviation of the angular velocity θ̇i relative to some set-
point (for example droop control, power system stabilisers,
or resistive loads). The role of the delay is both to model an
actual delay in the implementation of the control, and also to
introduce more complex dynamics arising from unmodelled
components. Therefore eqs. (1) and (2) provide a simple
representation of a power system which captures the essence
of (a)–(c). The hope is that by better understanding the
behaviour of this simple model, insight can be gained into
how (a)–(c) will impact the behaviour of future power
systems.

Our main contribution is to derive a formula for the
‘delay margin’ of eqs. (1) and (2) when linearised about
an operating point. More specifically we give a formula
for computing a number τmax such that the linearisation of
eqs. (1) and (2) is stable if and only if τi < τmax. This gives
a measure of robustness to unmodelled dynamics. When the
ratios di

mi
are equal for all i, this expression takes the simple

form

τmax =
π
(√

ζ2 + 1− ζ
)

2ωp
. (3)

Here ωp is largest natural frequency of the linearisation of
eq. (1), and ζ the damping ratio of this mode when the delay
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Fig. 2. Trade-off between the largest natural frequency of the system ωp,
the system-wide damping ratio ζ, and the delay margin τ .

equals zero. This formula, which is sketched in Figure 2,
reveals a clear trade-off between damping, the delay margin,
and the system natural frequencies.

Of particular significance with respect to (a)–(c) is that
delay robustness decreases with an increase in the largest
natural frequency. Since reducing the total inertia in the
system will increase the largest natural frequency, we see
that moving to a lower inertia system with more complex
dynamics can significantly degrade robustness. Also of note
is the inverse relationship between delay robustness and
damping. This challenges the paradigm of using damping
as an effective performance measure in a power system
with increasingly complex dynamics, since it reveals that
increasing damping will actually reduce delay robustness.

NOTATION

A � (� ) 0 denotes that a matrix is Hermitian and posi-
tive (semi-)definite. A

1
2 denotes the unique positive definite

square root of A � 0, and
√
a the positive square root of

a > 0. exp (A) is the matrix exponential, and I the identity
matrix. λmin (A) is the smallest eigenvalue of a Hermitian
matrix A. H∞ is the space of transfer functions of stable
linear, time-invariant, continuous time systems (g (s) ∈H∞
if it is analytic for Re {s} > 0, and supRe{s}>0 |g (s)| is
finite).

II. RESULTS

In this section we state and prove a stability criterion for
a delayed feedback interconnection of the form:[

ẋ
ẏ

]
=

[
0 Y ∗

−Y 0

] [
x
y

]
+

[
0
Z∗

]
u

z =
[
0 Z

] [x
y

]
ui = −zi (t− τi) , i ∈ {1, . . . ,m}.

(4)

Here x (t) ∈ Rp and y (t) ∈ Rn, n ≤ p, are the system
states, u (t) , z (t) ∈ Rm are the system input and output,
respectively, Z ∈ Rm×n, and Y ∈ Rn×p.

We call such an interconnection stable if(
sI−

[
0 Y ∗

−Y −Z∗ exp (−sT )Z

])−1
∈H (n+p)×(n+p)

∞ . (5)

where T = diag (τ1, . . . , τm). Amongst other things, this
definition ensures that given any initial condition1, the solu-
tion to eq. (4) satisfies limt→∞(x (t) , z (t)) = 0. Our main
contribution is to show that the largest delays such that eq. (4)
remains stable can be computed by solving an eigenvalue
problem. In Section III we will show that this result can
be used to calculate the delay margin of the swing equation
model.

Theorem 1: Let τ ∈ R, Y ∈ Rn×p, T ∈ Rm×m, and Z ∈
Rm×n. If τ ≥ 0, p ≤ n, rank (Y ) = p, and rank (Z) = n,
then the following statements are equivalent:

(i) For all T such that 0 � T � τI , (5) holds.
(ii) τ < τmax, where

τmax := − 1/λmin

(
2

π

[
0 Y ∗

Y −Z∗Z

])
.

Proof: The proof is structured as follows. We will first
show that if (ii) is true, then (i) is true ((ii) ⇒ (i)). We
will then show that if (ii) is false, then (i) is false (¬(ii) ⇒
¬(i)). This shows that (i) ⇒ (ii) (proof by contrapositive),
establishing the equivalence of the statements (i) and (ii).

((ii)⇒ (i)): It is sufficient to show that

det

([
sI −Y ∗
Y sI + Z∗ exp (−sT )Z

])
6= 0 (6)

for all s ∈ C such that Re {s} ≥ 0, and for all 0 � T � τI
where τ < τmax. Since

det

([
0 −Y ∗
Y Z∗Z

])
= det (Z∗Z) det

(
Y ∗ (Z∗Z)

−1
Y
)
,

which is greater than zero due to the rank conditions on Y
and Z, there exists an ε such that eq. (6) holds for all |s| ≤ ε.
We will now show that eq. (6) is invertible for the remaining
values of s in the closed right half plane. Define

A (s) := =
(
s2I + Y Y ∗ + sZ∗ exp (−sT )Z

)
.

Applying the formula for evaluating blockwise determinants,
it follows that

det

([
sI −Y ∗
Y sI + Z∗ exp (−sT )Z

])
= sp−n det (A (s)) .

Therefore it is sufficient to show that A (s) is invertible for
all s ∈ C such that Re {s} ≥ 0 and |s| > ε. We will do
this in three stages. We will first find an α such that A (s) is
invertible for all |s| > α and T � 0. We will then show that
subject to an upper bound on τ that depends on α, A (s) is
invertible for all ε ≤ |s| ≤ α. Finally we will show that (ii)
implies the required bound on α in stage 2.

Stage 1: We will show that A (s) is invertible for by
showing that |z∗A (s) z| > 0 for all non-zero z ∈ Cn. Since
T � 0, the matrix exponential exp (−sT ) is a contraction
for all Re {s} ≥ 0. This implies (by the Cauchy-Schwartz
inequality) that for any z ∈ Cn

|z∗Z∗ exp (−sT )Zz| ≤ |z∗Z∗Zz| .

1Since eq. (4) contains a delay, the initial condition is some bounded
function (x0, z0) : [−τmax, 0]→ Rp+n.



Furthermore∣∣z∗ (s2I + Y Y ∗
)
z
∣∣ ≥ ∣∣∣z∗ (|s|2 I − Y Y ∗) z∣∣∣ .

Therefore by the reverse triangle inequality (and assuming
that |s|2 I − Y Y ∗ � 0),

|z∗A (s) z| ≥
∣∣∣∣z∗ (s2I + Y Y ∗

)
z
∣∣− |z∗Z∗ exp (−sT )Zz|

∣∣ ,
≥ z∗

(
|s|2 I − Y Y ∗ − |s|Z∗Z

)
z.

Therefore, if

|s|2 I − Y Y ∗ − |s|Z∗Z � 0 (7)

for all |s| > α (which also ensures that |s|2 I − Y Y ∗ � 0),
then A (s) is invertible for all |s| > α. We will convert this
into an eigenvalue problem. Applying the Schur complement
lemma shows that eq. (7) is equivalent to[

I 1
|s|Y

∗

1
|s|Y I − 1

|s|Z
∗Z

]
� 0.

Hence, if

α := − λmin

([
0 Y ∗

Y −Z∗Z

])
, (8)

then A (s) is invertible for all |s| > α.
Stage 2: We will show that A (s) is invertible for |s| ≤ α

by showing that Im {z∗A (s) z} > 0 for all non-zero z ∈ Cn
and Re {s} ≥ 0, Im {s} ≥ 0. This implies by conjugate
symmetry that Im {z∗A (s) z} < 0 for all z 6= 0,Re {s} ≥
0, Im {s} ≤ 0, implying invertibility for Re {s} ≥ 0 as
required. Since Im

{
s2
}

= 2Re {s} Im {s}, it follows that

Im
{
z∗
(
s2 + Y Y ∗

)
z
}
≥ 0. (9)

In addition, it is easily established that if

Im {v∗s exp (−sΛ) v} > 0, ∀v 6= 0,

where Λ is the diagonal matrix of eigenvalues of T , then

Im {z∗sZ∗ exp (−sT )Zz} > 0, ∀z 6= 0.

It therefore follows that if |s|T � π
2 I , then for all Re {s} ≥

0, Im {s} ≥ 0, |s| > 0,

Im {z∗sZ∗ exp (−sT )Zz} > 0, ∀z 6= 0. (10)

From eqs. (9) and (10) it follows that if τ < π
2α , then

Im {z∗A (s) z} > 0. Hence A (s) is invertible for all s ∈ C
such that Re {s} ≥ 0 and ε < |s| ≤ α.

Stage 3: We will show that (ii) implies that the require-
ments on α in stage 2 are fulfilled. To do so, we need only
show that

π

2α
≤ τmax.

This is immediate from the defintion of α in eq. (8).
(¬(ii)⇒ ¬(i)): It is sufficient to show that (i) is false with

τ ≡ τmax. Let T = τmaxI , which implies that α = π
2τmax

.
This implies that exp (−jαT ) = −jI , and consequently that

A (jα) = Y Y ∗ − α2I + αZ∗Z.

From eqs. (7) and (8) we see that this implies that there
exists a z ∈ Cn such that z∗A (jα) z = 0. Since A (jα) is
Hermitian, this implies that det (A (jα)) = 0. Therefore for
this T and s, eq. (6) is not invertible. Hence (i) is false as
required.

III. DISCUSSION

A. Applying Theorem 1 to the Swing Equations

In this section we will show how to use Theorem 1 to
analyse the stability of the linearisation of the swing equation
model in eqs. (1) and (2). Some care is required here,
since the mechanical model in Figure 1 exhibits a rotational
symmetry. This prevents us from speaking of ‘stability’ in
the standard sense, since if θe ∈ Rn is an equilibrium point,
so is θe + c1n, for any constant c. We will resolve this
using the standard trick of reducing the state dimension to
eliminate this redundancy. To illustrate this, compactly write
the linearisation of eqs. (1) and (2) about an equilibrium
point as[

M
1
2 q̇

M
1
2 q̈

]
=

[
0 I

−M− 1
2LBM

− 1
2 0

][
M

1
2 q

M
1
2 q̇

]
+

[
0

M−
1
2u

]
ui = −diq̇i (t− τi) .

(11)

Here q, q̇, u are the values of θ, θ̇, f relative to equilibrium,
M = diag (m1, . . . ,mn), and LB the weighted Laplacian
matrix obtained from linearising the spring terms in eq. (1).
To resolve the symmetry issue, we will find a new state x
of lower dimension than q which has the 1n mode removed.
This means that the stability claims that follow do not imply
that limt→∞ q (t) = 0, rather that

lim
t→∞

(qi (t)− qj (t)) = 0, i 6= j.

This means that the angles in between the springs settle to
their equilibrium values, but the entire configuration may
be rotated arbitrarily. In the process of performing this
reduction, we will simultaneously put the linearisation in
a form suitable for applying Theorem 1. We outline the
relevant steps below.

The consequence of the equilibrium point not being unique
is that rank (LB) < n. We now make the following assump-
tion:

Assumption 1: LB � 0.
This assumption allows M−

1
2LBM

− 1
2 to be factored as

QW 2
NQ
∗, where WN � 0 is diagonal, Q ∈ Rn×p and

Q∗Q = I . Hence we may rewrite eq. (11) as[
WNQ

∗M
1
2 q̇

M
1
2 q̈

]
=

[
0 WNQ

∗

−QWN 0

][
WNQ

∗M
1
2 q

M
1
2 q̇

]
+

[
0
ũ

]
ũi = − di

mi
(
√
miq̇i (t− τi)) .

Introducing the change of variables[
x
y

]
=

[
WNQ

∗M
1
2 0

0 M
1
2

] [
q
q̇

]



simplifies the above to the standard form[
ẋ
ẏ

]
=

[
0 WNQ

∗

−QWN 0

] [
x
y

]
+

[
0
ũ

]
ũi = − di

mi
yi (t− τi) .

(12)

Equation (12) is of a suitable form for stability analysis
with Theorem 1. Let

Z = diag

(√
d1
m1

, . . . ,

√
dn
mn

)
and T = diag (τ1, . . . τn) .

Now putting eq. (12) into the form of eq. (4) shows that
eq. (12) is stable if(
sI −

[
0 WNQ

∗

−QWN −Z∗ exp (−sT )Z

])−1
∈H (n+p)×(n+p)

∞ .

Since T � 0, p ≤ n, rank (QWN ) = p and rank (Z) = n,
Theorem 1 applies. Therefore the linearisation is stable for
all

0 ≤ τi ≤ τ

if and only if

τ < −1/λmin

(
2

π

[
0 WNQ

∗

QWN −Z∗Z

])
.

B. Exhibiting Trade-offs using Theorem 1

In this section we derive eq. (3), which illustrated the
trade-off discussed in the Introduction. In addition we show
that similar relationships hold even in the fully heterogeneous
case. To begin, assume that

d1
m1

= . . . =
dn
mn

=: ρ. (13)

This simplification allows us to calculate τmax in terms of
the natural frequencies of the undamped system and ρ. A
number ωi is a natural frequency of Mq̈+LBq = f , if there
exists a v ∈ Cn such that

ω2
iMv = LBv.

The natural frequencies are therefore precisely the diagonal
entries of the matrix WN . Now, since

det

([
sI −WNQ

∗

−QWN sI + ρI

])
=(s+ ρ)

n
det

(
sI− 1

s+ ρ
W 2
N

)
=(s+ ρ)

n−p
p∏
i=1

(
s2+ ρs− ω2

i

)
,

the eigenvalues of [
0 WNQ

∗

QWN −ρI

]
are −ρ, −ρ±

√
ρ2 + 4ω2

1

2
, . . . ,

−ρ±
√
ρ2 + 4ω2

p

2

 .

Consequently, assuming without loss of generality that ωp is
the largest natural frequency,

τmax =
π

ρ+
√
ρ2 + 4ω2

p

=
π
(√

ρ2 + 4ω2
p − ρ

)
4ω2

p

.

This expression is further simplified by defining the damping
ratio2 through the relationship ρ = 2ζωp. More specifically
the above becomes

τmax =
π
(√

ζ2 + 1− ζ
)

2ωp
,

which is precisely eq. (3). Similar trade-offs hold even if
eq. (13) does not. To see this note observe that if A = A∗

and B � 0, then

λmin (A) ≥ λmin (A−B) .

Therefore if ρmin = mini
di
mi

and ρmax = maxi
di
mi

, then

π
(√

ζ2max + 1− ζmax

)
2ωp

≤ τmax ≤
π
(√

ζ2min + 1− ζmin

)
2ωp

,

where ρmax = 2ζmaxωp and ρmin = 2ζminωp. Unlike before,
calling ζmin and ζmax damping ratios is more suggestive than
precise, but nevertheless indicates that a similar trade-off
exits. The exact trade-off can always be found by solving
the eignenvalue problem in Theorem 1.

C. Fundamental Performance Limitations
To avoid confusion, it is worth explicitly stating that

the trade-offs we have discussed are a consequence of the
particular form of eqs. (1) and (2). They certainly do not
preclude the possibility that by using a more sophisticated
controller, a better balance between damping, inertia, and
robustness can be struck. The take home message is that by
continuing to use simple controllers motivated by improving
system damping in mechanical networks, stability issues
may arise due to reduced system inertia or more complex
unmodelled dynamics. Given the flexibililty of modern power
electronic devices this presents a fantastic opportunity to the
control community to exploit this design freedom to enhance
performance in the power systems of the future.

IV. CONCLUSION

We showed that the delay robustness of a particular
structured interconnection can be computed by solving an
eigenvalue problem. This was used to derive a formula
for the delay robustness of damping controllers in power
networks. This formula revealed a clear trade-off between
system damping, inertia, and delay robustness, illustrating
that reducing inertia can significantly degrade robustness.
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