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Robust decentralized frequency control:
A leaky integrator approach

Erik Weitenberg1, Yan Jiang2, Changhong Zhao3, Enrique Mallada2, Florian Dörfler4, Claudio De
Persis1

Abstract— We investigate the robustness of the
so-called leaky integral frequency controller for the
power network. In particular, using a strict Lyapunov
function, we show the closed-loop system is robust
in the input-to-state stability sense to measurement
noise in the controller. Moreover, an interesting and
explicit trade-off between controller performance and
robustness is discussed and illustrated using a bench-
mark study of the 39-bus New England reference
network.

I. Introduction

The core operation principle of an AC power system
is to balance supply and demand in nearly real time.
Any instantaneous imbalance results in a deviation of the
global system frequency from its nominal value. Thus, a
central control task is to regulate the system frequency
in an economically efficient way and despite fluctuating
loads, variable generation, and possibly faults. Tradi-
tionally, this is achieved using a hierarchical scheme
consisting of the generators’ rotational inertia providing
an instantaneous frequency response and primary (droop
control), secondary automatic generation (AGC), and
tertiary (economic dispatch) control layers operating at
different time scales [1], [2].

This conventional operational strategy is currently
challenged by increasing volatility on all time scales (due
to variable renewable generation and high penetration
of low-inertia sources) as well as the ever-growing com-
plexity of future power systems integrating distributed
generation, demand response, microgrids, and HVDC
systems, among others. Motivated by these paradigm
shifts and recent advances in distributed control and
optimization methods, an active research has emerged
aiming at developing more flexible distributed schemes to
replace, or complement, the traditional frequency control
layers.

In this article, we focus on the secondary and tertiary
control layer. We refer to [3, Section IV.C] for a survey
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covering recent approaches. Although existing schemes,
such as semi-centralized broadcast-based schemes [4]–[6],
consensus-based averaging [7]–[12], primal-dual methods
[13]–[16] and fully decentralized integral control [5], [7],
[17], ensure nominal closed-loop stability at a correct
steady-state frequency, in practice they suffer from poor
robustness to measurement bias and clock drifts [4], [5],
[11], [18].

A conventional remedy to overcome performance and
robustness issues of integral controllers is to implement
them as lag elements with finite DC gain [19]. Indeed,
such approaches have been investigated for fully decen-
tralized frequency control: [17] provides insights on the
closed-loop steady states and transient dynamics mainly
based on numerical analysis and asymptotic arguments;
[20] provides a numerically computable certificate for
ultimate boundedness; and [21] analyses a similar con-
troller augmented with further lead-lag filter filters and
provides a numerical small-signal analysis.

Here we follow the latter approach and propose a
fully decentralized leaky integral controller derived from a
standard lag element. We consider this controller in feed-
back with a nonlinear multi-machine power system model
and provide a formal analysis of the closed-loop system
concerning (i) steady-state frequency regulation, power
sharing, and dispatch properties, and (ii) the transient
dynamics in terms of nominal exponential stability and
input-to-state stability with respect to disturbances. A
trade-off between dynamic and steady-state performance
can be tuned by the DC gain of our controller. We illus-
trate our analytical findings with a detailed simulation
study. We find that our fully decentralized controller is
able to strike an acceptable trade-off between dynamic
and steady-state performance and can compete with
other communication-based distributed controllers.

In the interest of space, all proofs have been omitted.
They can be found in [22].

II. Power System Frequency Control

A. System Description

Consider a network-reduced power system with n gen-
erators modeled by interconnected swing equations [1]

θ̇ =ω (1a)

Mω̇ =−Dω + P ∗ −∇U(θ) + u , (1b)
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where θ ∈ Tn, the n-dimensional torus, and ω ∈ Rn

collect the generator rotor angles and frequencies relative
to the utility frequency, usually given by 2π50 Hz or
2π60 Hz. The diagonal matrices M,D ∈ Rn×n collect the
generator inertia and damping coefficients Mi, Di > 0,
respectively. The generator primary (droop) control is
integrated in the damping coefficient Di, P

∗ ∈ Rn is
vector of nominal power injections, and u ∈ Rn is a
control input to be designed later on. The offset of the
magnetic energy stored in the purely inductive (lossless)
power transmission lines, with respect to a constant
reference, is

U(θ) = −1

2

∑n

i,j=1
BijViVj cos(θi − θj) ,

where Bij ≥ 0 is the inductance of the line connecting
generators i and j with terminal voltage magnitudes
Vi, Vj > 0, which we assume to be constant. Observe
that the vector of power injections with components

(∇U(θ))i =
∑n

j=1
BijViVj sin(θi − θj) (2)

satisfies a zero net flow balance: 1Tn∇U(θ) = 0, where
1n ∈ Rn is the vector of unit entries.

In the following, we will also write these quantities in
vector notation

U(θ) = −1>Γ cos(B>θ), ∇U(θ) = BΓ sin(B>θ).

In the identities above Γ ∈ Rm×m is the diagonal matrix
with its diagonal entries being all the nonzero ViVjBij ’s
corresponding to the inductance and voltage magnitudes
of the transmission lines, and B ∈ Rn×m is the incidence
matrix of the power network.

We remark that all of our subsequent develop-
ments can also be extended to more detailed structure-
preserving power system models with first-order dynam-
ics, algebraic load flow equations, and variable voltages
by using the techniques in [7], [9]. In the interest of
clarity, we will present our ideas for the more concise
model (1).

B. Secondary Frequency Control

In the following, we will refer to a solution (θ(t), ω(t))
of (1) as a synchronous solution if it is of the form
θ̇(t) = ω(t) = ωsync1n, where ωsync is the synchronous
frequency.

Lemma 1 (Synchronization frequency) If there is a
synchronous solution to the powern system model (1),
then the synchronous frequency is given by

ωsync =

∑n
i=1 P

∗
i +

∑n
i=1 u

∗
i∑n

i=1Di
, (3)

where u∗i denotes the steady-state control action.

Equation (3) implies that ωsync = 0 if and only if all
power injections are balanced across the entire network,
i.e.,

∑n
i=1 P

∗
i + u∗i = 0. In this case, a synchronous

solution coincides with an equilibrium (θ∗, ω∗, u∗) ∈

Tn × {0n} × Rn of (1). Our first objective is frequency
regulation, also referred to as secondary control.

Problem 1 (Frequency regulation) Given an un-
known constant vector P ∗, design a control strategy
u = u(ω) to stabilize the power system model (1) to an
equilibrium (θ∗, ω∗, u∗) ∈ Tn × {0n} ×Rn.

Here, we denote by 0n the zero vector in Rn. Observe
that there are manifold choices of u∗ to achieve this task.
Thus, a further objective is the most economic allocation
of steady-state control inputs u∗ given by a solution to
the following economic dispatch problem [23]:

minimizeu∈Rn

∑n

i=1
aiu

2
i (4a)

subject to
∑n

i=1
P ∗i +

∑n

i=1
ui = 0 . (4b)

The term aiu
2
i with ai > 0 is the quadratic generation

cost for generator i. Observe that the unique (due to
strict convexity of the objective and linearity of the
constraint) optimal solution u? of the economic dispatch
must satisfy the identical marginal cost requirement [8],
[10]:

aiu
?
i = aju

?
j ∀i, j ∈ {1, . . . , n} . (5)

We remark that a special case of the identical marginal
cost criterion (5) is fair proportional power sharing [24]
when the coefficients ai are chosen inversely proportional
to a reference power P̄i > 0 for every generator i:

u?i /P̄i = u?j/P̄j ∀i, j ∈ {1, . . . , n} . (6)

Problem 2 (Optimal frequency regulation) Given
an unknown constant vector P ∗, design a control strategy
u = u(ω) to stabilize the power system model (1) to
an equilibrium (θ∗, ω∗, u∗) ∈ Tn × {0n} × Rn where u∗

minimizes the economic dispatch problem (4).
Aside from frequency regulation with steady-state op-

timality, we are interested in fully decentralized con-
trollers with ui = ui(ωi) making use only of local
frequency measurements.

III. Decentralized Lag and Leaky Integral
Control

The secondary frequency regulation Problems 1 and
2 have seen many centralized and distributed control
approaches. Since P ∗ is generally unknown, all of these
approaches explicitly or implicitly rely on integral control
of the frequency error. In the following we focus on a fully
decentralized integral control approach.

In standard frequency-domain control design, a stable
and finite DC-gain implementation of a proportional-
integral (PI) controller is given by a lag element [19]

α
Ts+ 1

αTs+ 1
= 1︸︷︷︸

proportional control

+
α− 1

αTs+ 1︸ ︷︷ ︸
leaky integral control

,

where T > 0 and α � 1 is the finite DC gain of the
lag element. The lag element consists of a proportional
channel as well as a first-order lag often referred to as a
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leaky integrator. In our context, a state-space realization
of a decentralized lag element for frequency control is

u =− ω − (α− 1)p (7a)

αT ṗ =ω − p , (7b)

where T is again a diagonal matrix of positive time
constants Ti > 0, and α � 1 is a scalar time constant.
We disregard the proportional channel (that would add
damping akin to droop control) and focus solely on the
leaky integrator to remedy some of the shortcomings of
decentralized integral control (9).

Consider a leaky integral controller of the form

u =− p (8a)

T ṗ =ω −K p , (8b)

where K,T ∈ Rn×n are diagonal matrices of positive
time constants Ki, Ti > 0.

Note that for K = 0, the controller dynamics (8b)
reduces to a simple decentralized integral controller

T ṗ = ω. (9)

In the next section, we will analyze the leaky integrator
(8) in closed loop with the power system (1) and highlight
its merits and trade-offs.

IV. Properties of the Leaky Integral
Controller

The power system model (1) controlled by the leaky
integrator (8) gives rise to the closed-loop system

θ̇ =ω (10a)

Mω̇ =−Dω + P ∗ −∇U(θ)− p (10b)

T ṗ =ω −K p . (10c)

We will analyze the closed-loop system (10) under the
following standing assumption:

Assumption 1 (Existence of synchronous solu-
tion) Assume that the closed-loop (10) admits a syn-
chronous solution (θ∗, ω∗, p∗) of the form

θ̇∗ =ω∗ (11a)

0n =−Dω∗ + P ∗ −∇U(θ∗)− p∗ (11b)

0n =ω∗ −K p∗ . (11c)

where ω∗ = ωsync1n for some ωsync ∈ R. �
By eliminating the variable p∗ from (11), we arrive at

P ∗ − (D +K−1)ωsync1n = ∇U(θ∗) . (12)

Equations (12) take the form of lossless active power flow
equations with injections P ∗−(D+K−1)ωsync1n. Hence,
Assumption 1 is equivalent to saying that the power flow
equations (12) admit a solution. This is always satisfied
provided that ‖P ∗‖ is sufficiently small that the power
transmission lines’ inductance and voltages permit trans-
porting the required power across the network. In what
follows we show the properties of the leaky integrator
and its trade-offs as displayed by the gain K.

A. Steady-State Analysis

Observe that at steady state, the control input u∗ of
the leaky integrator (8) takes the value

u∗ = −p∗ = −K−1ω∗ = −K−1ωsync1n , (13)

that is, it has a finite DC gain analogous to a primary
control (or damping) with coefficient K−1. Hence, anal-
ogous to Lemma 1, we arrive at the following result.

Lemma 2 (Steady-state frequency) Consider the
closed-loop system (10) and its equilibria (11). The ex-
plicit synchronization frequency is given by

ωsync =

∑n
i=1 P

∗
i∑n

i=1Di +K−1i
(14)

Our first (unsurprising) observation is that the leaky
integral controller (8) does generally not regulate the
synchronous frequency ωsync to zero unless

∑
i P
∗
i = 0.

However, it can achieve approximate frequency regulation
within a prespecified tolerance band.

Corollary 1 (Banded frequency regulation) Con-
sider the closed-loop system (10). The synchronous fre-
quency ωsync takes value in a band around zero that can
be made arbitrarily small by choosing the gains Ki > 0
sufficiently small. In particular, for any ε > 0, if∑n

i=1
K−1i ≥

|
∑n
i=1 P

∗
i |

ε
−
∑n

i=1
Di ,

then |ωsync| ≤ ε.
Though regulating the frequencies to a band around

zero is sufficient in practice, the control input (8) may be-
come ineffective due to a small bandwidth (gain K). We
will repeatedly encounter this trade-off between choosing
a small gain (for desirable steady-state properties) and
large gain (for transient performance). A formal perfor-
mance analysis is deferred to a future work.

Since the steady-state injections of the leaky integral
controller (8) are given by (13), we also find that the
leaky integrator can achieve arbitrary power sharing
ratios by choosing the gains appropriately:

Corollary 2 (Steady-state power sharing) Consider
the closed-loop system (10). The steady-state injections
u∗ of the leaky integral controller achieve fair proportional
power sharing as follows:

Kiu
∗
i = Kju

∗
j ∀i, j ∈ {1, . . . , n} . (15)

Hence, arbitrary power sharing as in (6) can be pre-
scribed by choosing the control gains Ki inversely pro-
portional to the reference powers Ki ∼ 1/P̄i. Similarly,
we have the following result on steady-state optimality:

Corollary 3 (Steady-state optimality) Consider the
closed-loop system (10). The steady-state injections u∗

of the leaky integral controller minimize the economic
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dispatch problem

minimizeu∈Rn

∑n

i=1
Kiu

2
i (16a)

subject to
n∑
i=1

P ∗i +
n∑
i=1

(1 +DiKi)ui = 0 . (16b)

The steady-state injections of the leaky integrator are
optimal for the modified dispatch problem (16) with
appropriately chosen cost functions and and whose con-
straint (16b) matches the constraint of (4b) arbitrarily
well for K chosen sufficiently small.

B. Stability & Robustness Analysis

For ease of analysis, in this subsection we introduce
a change of coordinates for the voltage phase angle θ.
Let δ = θ − 1

n1n1
>
n θ = Πθ be the center-of-inertia

coordinates (see e.g., [25], [9]), where Π = I − 1
n1n1

>
n .

In these coordinates, the open-loop system (1) becomes

δ̇ = Πω (17a)

Mω̇ = −Dω + P ∗ −∇U(δ) + u, (17b)

where by an abuse of notation we use the same symbol
U for the potential function expressed in terms of δ,

U(δ) = −1>Γ cos(B>δ), ∇U(δ) = BΓ sin(B>δ).

Note that B>Π = B>.
The synchronous solution (θ∗, ω∗, p∗) defined in (11)

is mapped into the point (δ∗, ω∗, p∗), with δ∗ = Πθ∗,
satisfying

δ̇∗ = 0n (18a)

0n = −Dω∗ + P ∗ −∇U(δ∗)− p∗ (18b)

0n = ω∗ −K p∗. (18c)

The existence of (δ∗, ω∗, p∗) is guaranteed by Assumption
1. Additionally, we make the following standard assump-
tion, derived from [8], constraining steady-state angle
differences.

Assumption 2 (Security constraint) The synchro-
nous solution (18) is such that B>δ∗ ∈ Θ := (−π2 +ρ, π2 −
ρ)m, where δ∗ = Πθ∗, for a constant scalar ρ ∈

(
0, π

2

)
.

This Assumption is necessary for the theory to follow,
and unremarkable from a practical point of view, as nor-
mally loaded systems usually encounter angle differences
smaller than 15 degrees.

Theorem 1 (Exponential stability under leaky in-
tegral control) Consider the closed-loop system (17),
(8). Let Assumption 2 hold. The equilibrium (δ∗, ω∗, p∗)
is locally exponentially stable. In particular, given the
incremental state vector

x = x(δ, ω, p) = col(δ − δ∗, ω − ω∗, p− p∗), (19)

the solutions x(t) to (17), (8) that start sufficiently close
to the origin satisfy for all t ≥ 0,

‖x(t)‖2 ≤ λe−αt‖x(0)‖2, (20)

where λ and α are positive constants.

Recall that one key disadvantage of fully decentralized
integral control is its lack of robustness to biased mea-
surement errors. We now show that leaky integral control
(8) is indeed robust to such measurement errors. Instead
of (8), consider

u = −p (21a)

T ṗ = ω −K p+ η , (21b)

where the measurement noise η = η(t) ∈ Rn is assumed
to be an ∞-norm bounded disturbance. In this case,
the bias-induced instability does not occur. In particular,
for a constant vector η, the equilibrium equation (11c)
becomes 0n = ω∗ − K p∗ + η, so that the closed loop
(1), (21) will indeed admit synchronous equilibria. The
governing equations (12) determining the synchronous
frequency ωsync change to

(D +K−1)ωsync1 = P ∗ −∇U(θ∗)−K−1η .

Observe that the bias term η plays now a similar role as
the constant injections P ∗, and their effect can be made
arbitrarily small by increasing the gain K.

It is possible to derive also a robustness performance
criterion. First, we define the specific robust stability
criterion that we will use, adapted from [26].

Definition 1 (Input-to-state-stability with re-
strictions) A system ẋ = f(x, η) is said to be input-
to-state stable (ISS) with restriction X on x(0) = x0
and restriction η ∈ R>0 on η(·) if there exist a class
KL-function β, a class K∞-function γ such that

‖x(t)‖ ≤ β(‖x0‖, t) + γ(‖η(·)‖∞)

for all t ∈ R≥0, x0 ∈ X and inputs η(·) ∈ Ln∞ satisfying

‖η(·)‖∞ := ess sup
t∈R≥0

‖η(t)‖ ≤ η.

Theorem 2 (ISS under biased leaky integral con-
trol) Consider system (17) in closed-loop with the biased
leaky integral controller (21). Let Assumptions 1 and 2
hold. Given a matrix K > 0, there exist a positive con-
stant η and a set X such that the closed-loop system is ISS
from the noise η to the state x = col(δ−δ∗, ω−ω∗, p−p∗)
with restrictions X on x(0) and η on η(·). In particular,
the solutions x(t) = col(δ(t) − δ∗, ω(t) − ω∗, p(t) − p∗),
with (δ(t), ω(t), p(t)) a solution to (17), (21) for which
x(0) ∈ X and ‖η(·)‖∞ ≤ η satisfy for all t ∈ R≥0,

‖x(t)‖2 ≤ λe−α̂t‖x(0)‖2 + γ‖η(·)‖2∞, (22)

where α̂, λ and γ are positive constants. Furthermore, as
a function of the controller gain K, γ is monotonically
decreasing.

Discussion. A few remarks are in order.

– The above theorem tells us that a larger gain K
reduces the effect of the noise η on the state x. This
confirms the beneficial effect of a larger gain K on the
robustness to noise of the leaky integral controller, which
was observed at steady state before. Theorem 2 extends
this observation to the dynamic response of the closed-
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Fig. 1. The 39-bus New England system used in simulations.

loop system. Note, however, that the choice of K affects
the safety region as well as the equilibrium of the system.
We refer to [22] for a more thorough discussion.
– The KL–function from the ISS property in (22) turns
out to be an exponential function, so the stability prop-
erty is in fact exponential ISS with restrictions.
– The need to include restrictions X on the initial
conditions and η̄ on the noise magnitude is due to the
requirement of maintaining the state response within the
safety region Θ.

V. Case Study

Simulations are performed with the 39-bus New Eng-
land system in Figure 1. The power network is modeled
as (1)-(2) with Mi, Vi, and Bij taken from [27]. The
constants Mi are zero for the 29 load buses. For every
generator bus i, Di is chosen as 20 per unit (pu) so that
a 0.05pu (3Hz) change in frequency will cause a 1pu
(1000MW) change in the generator output power. For
every load bus i, Di is chosen as 0.1pu.

At time t = 5s, a 300MW step increase in real-power
load occurs at each of buses 15, 23, 39. We compare the
following five controllers (located at the 10 generators)
to stabilize the system after such an event:

1) Distributed-averaging based integral control (DAI):

u = −p (23a)

T ṗ = A−1ω − LAp . (23b)

Here A is a diagonal matrix with diagonal entries ai
corresponding to the cost coefficients in (4). The ma-
trix L is the Laplacian matrix of a communication
graph, which we chose as a ring graph connecting all
the generators, with weight 0.1 on each link. Even
though this controller is based on a reliable and fast
communication environment, we include it here for
comparison purposes.

2) Decentralized integral control (9).
3) Leaky integral control (8). The leaky proportional

gain Ki is chosen as 1×10−4 for generators G3, G5,
G6, G9, G10 and 5× 10−5 for other generators.

4) Leaky integral control (8), with Ki’s increased to 50
times of those in case 3.

Note that the values of Ki in all leaky integral control
implementation are proportional to ai’s in DAI designed
to solve the same dispatch problem (4). All controllers
have the integral constant Ti set to 0.05 for every gener-
ator i.

Figure 2 (dashed plots) shows the frequency at gen-
erator 1 (similar trends hold for frequencies at other
generators). First, note that all controllers converge to
stable steady values. Second, it is observed from Figure
2 that both the decentralized integral control and the
DAI control can perfectly restore the frequencies to the
nominal value, whereas the leaky integral control leads
to a steady-state frequency error that increases when
the leaky proportional gains Ki increase, as predicted
in Corollary 1. We conclude that, depending on the
system specifications, the fully decentralized leaky in-
tegral controller can achieve a performance similar to
the communication-based DAI controller – though at the
cost of either a slower convergence rate or a steady-state
offset that can be adjusted by tuning the gain K.

Next, an input noise ηi(t) is added to the right-hand-
sides of (23b), (9), and (8b) for DAI control, decen-
tralized integral control, and leaky integral control of
generator i, respectively. Every second, ηi(t) is generated
subject to a uniform distribution on [0, ηi]. It can be
observed from Figures 2(b)–2(d) and Figures 3(b)–3(d)
that the leaky integral control is more robust to input
noise as K increases; for small values of the Ki, the noise
used in the simulations in fact exceeds the tolerance of
the leaky integral controller. By comparing to Figures
2(a) and 3(a), we see that DAI is more robust to input
noise than the leaky integral control in terms of frequency
(unless K is very high) and generator power outputs.

An important observation from the results above is
that the selection of controller gain K can significantly
impact the performance of the leaky integral control. A
good trade-off between frequency restoration, fair power
sharing, convergence rate, and robustness to input noise
can be achieved under the case of 50×K.

VI. Conclusions

We have discussed the steady-state behavior and ro-
bustness to disturbances of the leaky integral controller,
when applied to the AC power grid. In particular, we
have shown that the closed-loop system is input-to-
state stable with restrictions, with respect to additive
measurement noise. Moreover, given that the noise-to-
state ISS gain is a decreasing function of the controller’s
integral gain K, a trade-off between frequency regulation
on one side and robustness and controller performance
on the other side, was discussed and illustrated using an
extensive simulation study of an IEEE benchmark power
network.
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(b) Decentralized integral
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50×K

Fig. 2. Frequency at generator 1, under different control methods and different input noise levels.
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Fig. 3. Changes in real-power outputs of all the generators, with an input noise level η = 0.01.
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