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Abstract— Consensus algorithms constitute a powerful tool
for computing average values or coordinating agents in many
distributed applications. Unfortunately, the same property that
allows this computation (i.e., the nontrivial nullspace of the
state matrix) leads to unbounded state variance in the presence
of measurement errors. In this work, we explore the trade-off
between relative and absolute communication (feedback) in the
presence of measurement errors. We evaluate the robustness
of first and second order integrator systems under a param-
eterized family of controllers (homotopy), that continuously
trade between relative and absolute feedback interconnections,
in terms of the H2 norm of an appropriately defined input-
output system. Our approach extends the previous H2 norm
based analysis to systems with directed feedback intercon-
nections whose underlying weighted graph Laplacians are
diagonalizable. Our results indicate that any level of absolute
communication is sufficient to achieve a finite H2 norm, but
purely relative feedback can only achieve finite norms when
the measurement error is not exciting the subspace associated
with the consensus state. Numerical examples demonstrate
that smoothly reducing the proportion of absolute feedback
in double integrator systems smoothly decreases the system
performance (increases the H2 norm) and that this performance
degradation is more rapid in systems with relative feedback in
only the first state (position).

I. INTRODUCTION

Consensus problems arise in a wide range of applications
including coordination of vehicular or robotic networks [1],
[2], synchronization in power systems [3]–[6] and biological
networks [7], as well as clock synchronization in computer
networks [8]. There have been a number of algorithms
proposed to attain consensus, most typically employ local or
distributed information sharing to compute an average value
or coordinated state, see e.g [1], [2]. The majority of these
algorithms exploit the structure of an underlying Laplacian
matrix, which provides the system with a nontrivial nullspace
in the system matrix that corresponds to the state average [9].

However, in many applications where consensus algo-
rithms are used, agents are required to take measurements,
which are inherently imperfect, and thus subject to stochastic
disturbances. As a result of these disturbances, consensus al-
gorithms typically result in agents (nodes) fluctuating around
the equilibrium state rather than converging to a single
value. Interestingly, the same feature that allows consensus
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algorithms to work (the nontrivial nullspace of the state
operator) is the same source of this undesired behavior that
leads to poor system robustness to perturbations.

Some works overcome this limitation by employing a
common reference value or providing some sort of ‘ab-
solute’ state information at each node. For example, the
authors of [10] show that for vehicular networks under
distributed disturbances, at least one vehicle must have access
to its global position (absolute state) to achieve closed-
loop stability. The underlying interconnection topology has
also been shown to strongly affect achievable performance
limits in linear consensus networks [11]. Bamieh et al. [12]
demonstrated that for the continuous-time version of the
consensus algorithm agents communicating over a 1D lattice
can maintain coherence subject to stochastic disturbances.
Robustness of leader-follower consensus under measurement
error has been shown to depend on both the communication
topology and scaling factors [13].

This work explores both of these aspects by studying
the trade-offs between relative and absolute communication
(feedback) in the presence of measurement errors using a
parametrized family of controllers (homotopy) that contin-
uously adjust a convex combination of absolute feedback
(global feedback) and relative feedback (local feedback) in
the control law. More precisely, we compute the system per-
formance in terms of the input-output H2 norm of first and
second order integrator systems subject to distributed dis-
turbances, see e.g. [12]. We extend previous analysis which
assumed symmetric feedback interconnections [14] and spe-
cific output structure to systems with directed feedback
interconnection. In particular, we analyze systems whose
underlying graph structure emits a diagonalizable weighted
graph Laplacian. This class of system is slightly more general
than systems whose interconnections are described by normal
weighted graph Laplacians, which were analyzed in [15],
[16].

Using this novel framework for H2 norm computations,
we evaluate the norm of single and double integrator systems
connected over strongly connected digraphs with measure-
ment error. The effects of measurement errors have previ-
ously been studied in the context of symmetric feedback
interconnections [17]. Mallada et al. studied the clock syn-
chronization problem and explored how the graph structure
affects the consensus under measurement error [8]. Our
results are consistent with previous studies of systems with
symmetric feedback which indicated that absolute feedback
can improve system robustness, e.g. [7]. In fact, we find that
any level of absolute communication is sufficient to achieve
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finite H2 norm. In contrast, purely relative feedback can
only achieve finite norms when the measurement error is
not exciting the unobservable subspace associated with the
consensus state.

We present numerical examples exploring the system
performance as we trade between relative and absolute
feedback for second order systems. The results demonstrate
that smoothly reducing the proportion of absolute feedback
smoothly decreases the system performance and that this
performance degradation is more rapid in a system with
relative feedback only in the first order state (position).

This paper is organized as follows. In Section II, we
define the notation and provide mathematical preliminaries
related to our analysis. In Section III, we introduce the
dynamics of the first and second order integrator systems
subject to measurement errors. In Section IV, we present our
main results, which utilize a novel framework to compute
the H2 norm for systems whose communication graphs
are represented by diagonalizable weighted graph Laplacian
matrices. Section V provides a numerical study investigating
the trade-off between absolute and relative feedback in each
of the states. Section VI concludes the paper.

II. PRELIMINARIES

For a complex number x = a + bi, Re(x) = a is the
real part of x and Im(x) = b is the imaginary part of x.
x̄ = a−bi denotes the conjugate of x. Given a set of complex
numbers S = {s1 s2 · · · sn}, diag(S) ∈ Cn×n denotes a
diagonal matrix with the ordered elements of S along its
main diagonal. 0n×n ∈ Rn×n denotes an matrix with all
elements equal to zero, and In×n ∈ Rn×n indicates an n×n
identity matrix. 1n ∈ Rn is a column vector with all elements
equal to 1, and 0n ∈ Rn is a column vector of zeros.

Given a matrix A ∈ Cn×n, A−1 is the inverse of A, i.e.,
A−1A = AA−1 = In×n. Ā and AT respectively denote
the conjugate and transpose of A. A∗ denotes the conjugate
transpose of A. tr(A) denotes the trace of A. [A]pq denotes
the element in the pth row and qth column of A.

A weighted digraph is a triplet G = (N, E ,W ), where N
is the set of nodes, and E is a set of ordered pairs (i, j)
of nodes i, j ∈ N called edges. W is a set of nonnegative
weights w(i,j) associated with each ordered node pair (i, j).
When (i, j) ∈ E then w(i,j) > 0 is the associated edge
weight, w(i,j) = 0 for node pairs (i, j) /∈ E . A directed path
is an ordered sequence of nodes i ∈ N such that any pair of
consecutive nodes in this sequence is an edge of the graph. A
directed graph G is called strongly connected if there exists
directed path from any node to any other node.

Given a weighted digraph G = (N, E ,W ), with N =
{1, 2, · · · , n}, the elements of its weighted Laplacian matrix,
L, are defined as

[L]ij =

{
−w(i,j), if i 6= j∑n
h=1,h6=i w(i,h) otherwise.

Given such a Laplacian matrix, if we denote the ith

eignevalue of L as λi and sort the eigenvalues as Re(λ1) ≤

Re(λ2) ≤ · · · ≤ Re(λn), then λ1 = 0. Given the associated
matrix of eigenvectors T =

[
t1 t2 · · · tn

]
where ti is

the eigenvector associated with λi, t1 = 1
n1n ∈ Rn. The

following remark comes from [9].
Remark 1: The weighted graph Laplacian matrix associ-

ated with strongly connected directed graph has only one
zero eigenvalue.

III. PROBLEM SETUP

In this section, we first introduce the dynamics for first and
second-order systems subject to distributed state measure-
ment errors. These systems have feedback interconnections
defined over directed graphs G = (N, E ,W ) wherein a
nonzero edge weight w(i,j) indicates that node i passes
information to node j. We thus refer to the graphs describing
the feedback interconnection structures as communication
graphs.

We consider linear systems, G, of the form

ż = Az +Bw (1a)
y = Cz, (1b)

where z ∈ Rn is the system state variable, w ∈ Rm is the
disturbance and y ∈ Rp is the output. We next define the
A, B and C matrices for the types of first and second order
systems analyzed in this work.

A. First order systems

Given a set of coupled first order systems connected over
a weighted digraph G = (N, E ,W ), each node i ∈ N has
the following dynamics:

żi = ui, (2)

where

ui = −α
∑

(i,j)∈E

aij(ẑi − ẑj)− (1− α)ẑi (3)

is the control input at node i ∈ N defined in terms of a
weighting parameter α ∈ (0, 1]. The state measurement at
node i ∈ N is given by

ẑi = zi + ei, (4)

where zi is the actual value of the state and ei is measurement
error. Substituting (4) into (3) leads to

żi = −α
∑

(i,j)∈E

aij(zi − zj)− (1− α)zi

−α
∑

(i,j)∈E

aij(ei − ej)− (1− α)ei, (5)

which can be rewritten in the matrix form of (1) as

ż = −(αL+ (1− α))z − (αL+ (1− α))e (6a)
y = Cz. (6b)
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B. Second order systems

Given a set of coupled second order systems, the dynamics
at each node i ∈ N are given by

z̈i = ui, (7)

where z = x and ż = v are the states of the system whose
measurements are defined analogously to (4) as

ẑi = x̂i = xi + exi (8a)
˙̂zi = v̂i = vi + evi . (8b)

The control input is given by

ui = −α
∑

(i,j)∈Eα

aij(x̂i − x̂j)− (1− α)ax̂i

−β
∑

(i,j)∈Eβ

bij(v̂i − v̂j)− (1− β)bv̂i. (9)

This control structure leads to two different communication
graphs; Gα = (N, Eα,Wα) with wα(i,j)

= aij for (i, j) ∈ Eα,
and Gβ(N, Eβ ,Wβ) with wβ(i,j)

= bij for (i, j) ∈ Eα, which
are respectively associated with the states x = [x1, . . . , xn]T

and v = [v1, . . . , vn]T . When both α, β 6= 0 the two
communication graphs respectively correspond to relative
position and relative velocity feedback, whereas nonzero
coefficients (1 − α) and (1 − β) respectively correspond to
absolute position and velocity feedback.

Rewriting the system (7) in terms of the state and mea-
surement errors leads to

z̈i =− α
∑

(i,j)∈Eα

aij(xi − xj)− (1− α)axi

− β
∑

(i,j)∈Eβ

bij(vi − vj)− (1− β)bvi

− α
∑

(i,j)∈Eα

aij(e
x
i − exj )− (1− α)aexi

− β
∑

(i,j)∈Eβ

bij(e
v
i − evj )− (1− β)bevi .

The corresponding state space form is[
ẋ
v̇

]
=

[
0n×n In×n

−(αLa+(1−α)aI) −(βLb+(1−β)bI)

][
x
v

]
+

[
0n×n 0n×n

−(αLa+(1−α)aI) −(βLb+(1−β)bI)

][
ex

ev

]
, (10a)

y = C

[
x
v

]
, (10b)

where α, β ∈ [0, 1], a, b > 0 andC = [H 0p×n].
In this work we focus on two control schemes: (1) Position

and velocity control (PV) control, where we set a = b = 1
so that there is both relative and absolute feedback for x and
v, and (2) Position and absolute velocity control (PAV),
with a = 1, β = 0, which leads to relative feedback in
position, x and absolute feedback in both x and velocity, v.
These strategies are closely related to the relative position
and absolute velocity control (RPAV) and relative position

relative velocity (RPRV) control strategies introduced in
[12]. More precisely, RPAV control corresponds to our PAV
strategy with α = 1, and RPRV corresponds to our PV
strategy with both α = 1 and β = 1.

IV. H2 NORM COMPUTATIONS

In this section, we provide a novel framework to com-
pute the H2 norm for first and second order systems with
measurement errors whose communication graphs are repre-
sented by diagonalizable weighted graph Laplacian matrices.

We invoke the following interpretation of the H2 norm of
a linear system G of the form (1) as the sum of responses
to impulses at all inputs, see e.g. [18]. This quantity can
computed as

‖G‖2H2
= tr

(∫ ∞
0

ĝ∗(t)ĝ(t)dt

)
, (11)

where ĝ(t) = CeAtB, ĝ(t) ∈ Rm×p is the impulse response
of system G and therefore

‖G‖2H2
= tr

(
B∗
∫ ∞

0

eA
∗tC∗CeAtdtB

)
. (12)

The following proposition specializes (12) to a system with
a diagonalizable state matrix.

Proposition 4.1: Given a linear system G of the form (1).
If the state matrix A is diagonalizable and A = TΛT−1,
then the H2 norm of this system is,

‖G‖2H2
= tr

(
(T−1B)∗X̂T−1B

)
, (13)

where X̂ =
∫∞

0
eΛ∗t(CT )∗CTeΛtdt. In particular[

eΛ∗t(CT )∗CTeΛt
]
ls

= e(λ̄l+λs)t [(CT )∗CT ]ls . (14)

Proof: Since A is diagonalizable it can be written as
A = TΛT−1. Then directly applying (12), we have

‖G‖2H2
= tr

(
B∗
∫ ∞

0

eA
∗tC∗CeAtdtB

)
= tr

(
(T−1B)∗

∫ ∞
0

eΛ∗t(CT )∗(CT )eΛtdtT−1B

)
.

Since eΛt is a diagonal matrix, (14) can be proved by matrix
multiplication.

A. First order systems

We now present the main results for first order systems
beginning with a discussion of the conditions under which
the state matrix is diagonalizable.

Lemma 4.2: If a Laplacian matrix L = TΛT−1 is diag-
onalizable, where [Λ]ii = λi and T =

[
t1 t2 · · · tn

]
,

ti ∈ Cn is the eigenvector associated with eigenvalue λi.
Then −(αL + (1− α)In×n) = T (−αΛ− (1− α)I)T−1 is
also diagonalizable. All of the eigenvalues of −(αL+ (1−
α)In×n) have non-positive real part if α ∈ [0, 1].

Lemma 4.2 shows that for a first order system of the
form (6), the state matrix is diagonalizable if and only
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if the Laplacian matrix is diagonalizable. Given a fixed
communication graph and α ∈ [0, 1], the eigenvectors of the
state matrix are exactly the same as those of the weighted
Laplacian matrix, L. When α ∈ [0, 1), all of the eigenvalues
of αL+ (1− α)In×n are strictly positive.

Theorem 4.3: Given a linear system (1) with state matrix
A = −(αL+(1−α)In×n). If the system has a directed com-
munication graph associated with a diagonalizable Laplacian
matrix L and 0 ≤ α < 1, then the H2 norm can be
represented in the form (13) with[

X̂
]
ls

=
[T ∗C∗CT ]ls

(αλ̄l + (1− α)) + (αλs + (1− α))
. (15)

Here T is a invertible matrix that diagonalizes L, i.e. L =
TΛT−1 and [Λ]ii = λi is the ith eigenvalue of L. λi is
sorted as 0 = λ1 ≤ Re(λ2) ≤ · · · ≤ Re(λn).

Proof: From lemma 4.2, we find that all of the eigen-
values of the state matrix are strictly negative for 0 ≤ α < 1.
Applying (14), we obtain[∫ ∞

0

eΛ∗t(CT )∗CTeΛtdt

]
ls

=

0 +
[T ∗C∗CT ]ls

(αλ̄l + (1− α)) + (αλs + (1− α))
.

Note that Theorem 4.3 only applies for the case 0 ≤ α < 1
(Hurwitz systems). A notable observation is that as α → 1,
the terms in X̂ associated with λ1 = 0 tend to infinity. This
observation indicates that standard consensus algorithms are
not in general robust to noise. Theorem 4.3 implies that
for general systems, some amount of absolute feedback is
needed.

Theorem 4.4: Given a linear system (1) with state matrix
as A = −(αL+ (1−α)In×n), 0 ≤ α ≤ 1. If the system has
a strongly connected communication graph associated with
a diagonalizable Laplacian matrix L and C1n = 0n ∈ Rn,
then the H2 norm can be represented in the form (13) with

[
X̂
]
ls
=

0, l or s = 1
[T ∗C∗CT ]ls

(αλ̄l + (1− α)) + (αλs + (1− α))
, otherwise.

T is a invertible matrix that diagonalizes Laplacian matrix
L = TΛT−1. [Λ]ii = λi is the ith eigenvalue of L. λi is
sorted as 0 = λ1 < Re(λ2) ≤ · · · ≤ Re(λn).

Proof: As the communication graph is strongly con-
nected, there is only one zero eigenvalue in Laplacian matrix
L. As −(αL + (1 − α)In×n) = TDT−1, [D]ii = λ̂i, the
eigenvalues can be sorted as −(1 − α) = λ̂1 > Re(λ̂2) ≥
· · · ≥ Re(λ̂n). For T =

[
t1 t2 · · · tn

]
, as t1 associated

with 0 eigenvalue, t1 = 1
n1n. As Ct1 = 0n, we have

T ∗C∗CT =

[
0 0Tn−1

0n−1 (T ∗CTCT )∗

]
.

(T ∗CTCT )∗ is the principal submatix of T ∗C∗CT . From
form (14), we have the first row and first column of X̂ as

zero vector. Thus even α = 1, λ̂1 = λ1 = 0, the system is
non Hurwitz, the H2 norm still exists.

Theorem 4.4 provide the condition when α = 1 the H2

norm still exist and derive the expression of H2 norm.
Remark 2: The condition C1n = 0n of Theorem 4.4

means that in the absence of absolute control the system
performance is unbounded in any direction, except for the
directions orthogonal to vector 1n. Therefore the same prop-
erty that allows a system to achieve consensus, i.e., a zero
eigenvalue on the direction spanned by 1n, makes the system
non-robust to noise.

Theorems 4.3 and 4.4 apply to general input and output
matrices B and C. The following corollary addresses the
special case in (6) where the inputs are defined through
measurement errors of the form (4).

Corollary 1: Given a first order system under measure-
ment error of the form (6). If 0 ≤ α < 1, then H2 norm can
be represented as

‖G‖2H2
= tr

(
(T−1)∗X̂T−1

)
, (16a)[

X̂
]
ls
=

(αλ̄l+(1− α))(αλs+(1− α)) [T ∗C∗CT ]ls
(αλ̄l + (1− α)) + (αλs + (1− α))

, (16b)

where L = TΛT−1. The matrix Λ is a diagonal matrix
with eigenvalues of L on its main diagonal, [Λ]ii = λi,
0 ≤ Re(λ2) ≤ · · · ≤ Re(λn). If 0 ≤ α ≤ 1, the
communication graph is strongly connected, and C1n = 0n,
the H2 norm can also be represented in (16) with (16b)
replaced by

[
X̂
]
ls
=

0, l or s = 1

(αλ̄l+(1−α))(αλs+(1−α))[T ∗C∗CT ]ls
(αλ̄l + (1− α)) + (αλs + (1− α))

, otherwise.

Proof: The proof of this lemma is based on Theorem
4.3 and 4.4. Notice that with B = A, A and B are
simultaneously diagonalizable.

B. Second order systems
We now present the H2 norms computations for second

order systems with PV and PAV control laws. We first present
a method for diagonalizing the system state matrices

Lemma 4.5: Given a matrix

A =

[
0 I
G F

]
∈ R2n×2n.

If G and F are simultaneously diagonalizable and G is not
singular, then matrix A is diagonalizable

A = T̂∆T̂−1. (17)
Proof: As G and F are simultaneously diagonalizable

and G is not singular, there is no zeros in the eigenvalues
of matrix G (λG 6= 0) and there exist T such that G =
TΛGT−1 and F = TΛFT−1, where

[
ΛG
]
ii

= λGi and[
ΛF
]
ii

= λFi . We can define a invertible block diagonal
matrix

Tdiag =

[
T

T

]
. (18)
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We denote a permutation matrix

E =
[
e1 en+1 · · · ei ei+n · · · en e2n

]
. (19)

where ∀i ≤ 2n, ei is a column vector with 1 on
its ith position and 0s on the other positions. ei =[
0 · · · 1 · · · 0

]T ∈ R2n. A block diagonal matrix

K =

K1

. . .
Kn

 , Ki =

[
1 0

0
√
λGi

]
. (20)

As all of the eigenvalues of K are non-zero, K is invertible.
Now let R be another block diagonal matrix

R =

R1

. . .
Rn

 , (21a)

where

Ri =

−λFi +
√

(λFi )2+4λGi

2
√
λGi

−λ
F
i −
√

(λFi )2+4λGi

2
√
λGi

1 1

 . (21b)

Since all of the eigenvalues of G are non-zero, R exists and
is invertible. Then we define diagonal matrix

∆ =

∆1

. . .
∆n

 , (22a)

∆i =

λFi −√(λFi )2+4λGi
2

λFi +
√

(λFi )2+4λGi
2

 . (22b)

It is easy to verify that A = T̂∆T̂−1 with T̂ = TdiagEKR.

Proposition 4.6: Consider a linear system (1), and

A =

[
0 I
G F

]
.

If G and F are simultaneous diagonalizable with G and F
are Hurwitz, the system is Hurwitz.

Proof: The proof of Proposition 4.6 is based on
the proof of Lemma 4.5. The eigenvalues are λi(A) =
λFi ±
√

(λFi )2+4λGi
2 . With Re(λFi ) < 0, λi(A) < 0 if and only

if λGi < 0. If G and F are Hurwitz, all of the eigenvalues
of A have negative real part.

Based on Lemma 4.5, we can diagonalize the state matrix
of second order system with our controller. Then we can use
Proposition 4.1 to calculate the H2 norm.

First we deal with the cases where matrices B and C do
not have special structures.

Theorem 4.7: Given a second order system with state
matrix

A=

[
0n×n In×n

−(αLa+(1− α)aIn×n) −(βLb+(1− β)bIn×n)

]
.

If the Laplacian matrices La and Lb are simultaneously
diagonalizable, α, β ∈ [0, 1), and a, b > 0, the H2 norm
of such system can be represented as

‖Ga‖2H2
= tr

(
P−1T−1

diagB)∗X̂(P−1T−1
diagB)

)
, (23a)

where P = EKR.

[X]ls =
−1

δ̄l + δs
[(CTdiagP )∗CTdiagP ]kn , (23b)

where Tdiag =

[
T

T

]
, T is the matrix that diagonalizes

La = TΛaT−1 and Lb = TΛbT−1, [Λa]ii = λai . E is defined
in (19), K, R and ∆ are obtained from (20), (21) and (22)
respectively, with

λGi = (−αλai − (1− α)a)

λFi = (−βλbi − (1− β)b),

and δi is the eigenvalue of A with form

δi =


λFi −

√
(λFi )2 + 4λGi

2
, (i mod 2) = 1

λFi +
√

(λFi )2 + 4λGi
2

, otherwise.

Proof: The proof of Theorem 4.7 is directly obtained
from Proposition 4.1 and Lemma 4.5.

Notice that in Theorem 4.7, when α, β → 1, ‖Ga‖2H2
→

∞ as some δi → 0. Similarly to the analysis of the previous
section, we now introduce a technique analogous to Theorem
4.4 to deal with the cases when α and β may be equal to
one.

Theorem 4.8: Given a second order system with state
matrix

A=

[
0n×n In×n

−(αLa+(1− α)aIn×n) −(βLb+(1− β)bIn×n)

]
where α, β ∈ [0, 1] and a, b > 0. The Laplacian matrices
La and Lb are simultaneously diagonalizable and the corre-
sponding communication graphs of La and Lb are strongly
connected, with Lb = TΛaT

−1 in which [Λb]ii = λbi , λ
b
i

are sorted as 0 = λb1 < Re(λb2) ≤ · · · ≤ Re(λbn) and
T =

[
t1 t2 · · · tn

]
. C1n = 0n, the H2 norm can be

represented in (23a) with

[
X̂
]
ls
=

0, l or s ≤ 2,
− [(CTdiagEFR)∗CTdiagEFR]ls

δ̄l + δs
, otherwise,

in which Tdiag , E are the same as they are in Theorem 4.7.
For K, R and ∆ , they have similar structure as they are in
Theorem 4.7 except for the first 2 by 2 diagonal blocks of
them.

K1 = I2×2, R1 = I2×2, ∆1 =

[
0 1

(α− 1)a (β − 1)b

]
.

1242



0 0.2 0.4 0.6 0.8 1

,

291.8

292

292.2

292.4

292.6

292.8

293

293.2

293.4

(a) PV control laws

0 0.2 0.4 0.6 0.8 1

,

250

300

350

400

450

500

550

(b) PAV control laws

Fig. 1: The performance (H2 norm) as a function of α and β for the case where α = β for the two different second order
control laws. Smoothly reducing the proportion of absolute feedback in double integrator systems smoothly decreases the
system performance except for systems with symmetric PV control laws. In that case, the absolute feedback and relative
feedback equally contribute to the performance, and increasing the proportion of absolute feedback does not change the
performance.

Proof: It is easy to show that A =
TdiagEKR∆(TdiagEKR)−∗. Notice that different from
Therorem 4.7, in this case, the first 2 by 2 block of ∆ is
not diagonal matrix. As

CTdiagE =
[
0n 0n CTdiagE

∗] .
and K, R are all block diagonal matrix with block size 2,

(CTdiagP )∗(CTdiagP ) = (CTdiagEKR)∗(CTdiagEKR)

=

 0 0 0T2n−2

0 0 0T2n−2

02n−2 02n−2 Y

 (24)

with first two rows and columns are all zeros and Y is a
principal submatrix of (CTdiagP )∗(CTdiagP ).

Remark 3: Under the condition of Theorem 4.8 (the corre-
sponding communication graph of Lb is strongly connected),
if the system is under PV control (a = b = 1) and both
α = β = 1, the first two by two block of ∆ is acturally a
Jordan block associated with zero eigenvalues. which means
the system at most has two zero eigenvalues. If the system
is under PAV control (a = 1, β = 0), however, the system
at most has one zero eigenvalue when α = 1.

Now we focus on the special case for a linear system (10)
with the measurement errors are defined as in (8).

Corollary 2: Given a second order with measurement
error of the form (10) where α, β ∈ [0, 1] and a, b >
0. The Laplacian matrices La and Lb are simultaneously
diagonalizable with Lb = TΛaT

−1 in which [Λb]ii = λbi ,
λbi are sorted as 0 = λb1 < Re(λb2) ≤ · · · ≤ Re(λbn) and
T =

[
t1 t2 · · · tn

]
. If α, β ∈ [0, 1), the H2 norm can

be represented as

‖G‖2H2
= tr

(
(R−1K−1B̂ETT−1

diag)
∗X̂R−1K−1B̂ETT−1

diag

)
(25a)[

X̂
]
ls

=
− [(CTdiagEKR)∗CTdiagEKR]ls

δ̄l + δs
, (25b)

where Tdiag , E, K, R and δ are same as in theorem 4.7. B̂
is a block diagonal matrix of the form

B̂i =

[
0 0

−αλai − (1− α)a −βλbi − (1− β)b

]
.

Otherwise, if α, β ∈ [0, 1], the corresponding communication
graphs of La and Lb are strongly connected, and Ct1 = 0n
the H2 norm can still be represented in the form (25) with

[
X̂
]
ls
=

0, l or s ≤ 2
− [(CTdiagEKR)∗CTdiagEKR]ls

δ̄l + δs
, otherwise.

Proof: The proof of this Corollary is based on Theorem
4.7 and Theorem 4.8 with

B=

[
0n×n 0n×n

−(αLa + (1− α)aIn×n) −(βLb + (1− β)bIn×n)

]
has a special form. It is not hard to prove that

B = ETdiagB̂T
−1
diagE

T . (26)

Hence we can replace B by form (26) in (23).

V. SIMULATION RESULTS

In this section, we explore the trade off between absolute
feedback and relative feedback through numerical simula-
tions of second order systems connected over a line graph.
We analyze both symmetric and asymmetric feedback. For
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the case of asymmetric control gains, the weights of the
communication graph in (8) become

aij = bij =

{
1− ε, j > i;

i+ ε, j < i.

Using the results in [19], we can show that the Laplacian
matrix for all these cases are diagonalizable and therefore
we can use the theoretical results provided in the previous
section. We further consider the following output matrix

C = [H 0n×n] , H =


1 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 1

. (27)

Since we assign a special form to the output matrix, C12n =
0, based on remark 2 and corollary 2, the H2 norm is
bounded.

Figure 1 compares the computed performance trade-offs
as we move from absolute to relative feedback for a 50
node system with the following parameter values. α = β,
a = b = 1 for PV control, and b = 1, β = 1 for PAV
control. In both cases we set ε = 0.1 to match the degree
of asymmetry considered in [10]. The results demonstrate
that smoothly reducing the proportion of absolute feedback
(α → 1) in double integrator systems smoothly decreases
the system performance (larger H2 norm) in all cases except
for those with symmetric PV control laws. In general, the
performance degradation is more rapid for PAV control than
for PV control.

VI. CONCLUSION

This paper explores the robustness of first and second
order consensus dynamics under a parameterized family of
controllers employing a convex combination of relative and
absolute feedback structures defined over strongly connected
digraphs. We quantify system robustness in terms of the
H2 norm from stochastic disturbance inputs to outputs cor-
responding to the desired performance measures. We first
present a novel method to compute this norm for systems
whose communication graphs are described by diagonaliz-
able weighted graph Laplacian matrices. Our results demon-
strate that some amount of absolute feedback is required in
order to maintain input-output stability for arbitrary output
matrices.

We then focus on the special case where the state mea-
surements are noisy and study the robustness of systems
with stochastic state measurement errors and find that some
amount of absolute feedback is always required to obtain
finite H2 norm unless the output is of a special form.
We further explore trade-offs between absolute and relative
velocity feedback through numerical simulations of double
integrator systems. Our results show that performance de-
grades smoothly as the relative proportion of relative feed-
back increases except for one case where the performance
remains constant. Future work will explore the effects of

changing the degree of the asymmetric feedback coupling
and its effect on the importance of absolute position and
velocity feedback.
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