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Abstract: This paper develops a novel framework for power system stability analysis, that
allows for the decentralised design of inverter based controllers. The method requires that each
individual inverter satisfies a standard H1 design requirement. Critically each requirement
depends only on the dynamics of the components and inverters at each individual bus, and
the aggregate susceptance of the transmission lines connected to it. The method is both robust
to network and delay uncertainties, as well as heterogeneous network components, and when
no network information is available it reduces to the standard decentralised passivity su�cient
condition for stability. We illustrate the novelty and strength of our approach by studying the
design of inverter-based control laws in the presence of delays.
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1. INTRODUCTION

The composition of the electric gird is in state of flux (Mil-
ligan et al., 2015). Motivated by the need of reducing
carbon emissions, conventional synchronous combustion
generators, with relatively large inertia, are being replaced
with renewable energy sources with little (wind) or no
inertia (solar) at all (Winter et al., 2015). Alongside, the
steady increase of power electronics on the demand side
is gradually diminishing the load sensitivity to frequency
variations (Wood et al., 1996). As a result, rapid fre-
quency fluctuations are becoming a major source of con-
cern for several grid operators (Boemer et al., 2010; Kirby,
2005). Besides increasing the risk of frequency instabilities,
this dynamic degradation also places limits on the total
amount of renewable generation that can be sustained by
the grid. Ireland, for instance, is already resourcing to wind
curtailment whenever wind becomes larger than 50% of
existing demand in order to preserve the grid stability.

One solution that has been proposed to mitigate this
degradation is to use inverter-based generation to mimic
synchronous generator behavior, i.e. implement virtual
inertia (Driesen and Visscher, 2008a,b). However, while
virtual inertia can indeed mitigate this degradation, it
is unclear whether this particular choice of control is
the most suitable for this task. On the one hand, unlike
generator dynamics that set the grid frequency, virtual
inertia controllers estimate the grid frequency and its
derivative using noisy and delayed measurements. On the
other hand, inverter-based control can be significantly
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faster than conventional generators. Thus using inverters
to mimic generators behavior does not take advantage of
their full potential.

Recently, a novel dynamic droop control (iDroop) (Mal-
lada, 2016) has been proposed as an alternative to virtual
inertia that seeks to exploit the added flexibility present
in inverters. Unlike virtual inertia that is sensitive to
noisy measurements (it has unboundedH2 norm (Mallada,
2016)), iDroop can improve the dynamic performance
without unbounded noise amplification. However, as more
sophisticated controllers such as iDroop are deployed, the
dynamics of the power grid become more complex and
uncertain, which makes the application of direct stabil-
ity methods harder. The challenge is therefore to design
an inverter control architecture that takes advantage of
the added flexibility, while providing stability guarantees.
Such an architecture must take into account the e↵ect of
delays and measurement noise in the design. It must be ro-
bust to unexpected changes in the network topology. And
must provide a “plug-and-play” functionality by yielding
decentralised, yet not overly conservative, stability certifi-
cates.

In this paper we leverage classical stability tools for the
Lur’e problem (Brockett and Willems, 1965) to develop a
novel analysis framework for power systems that allows a
decentralised design of inverter controllers that are robust
to network changes, delay uncertainties, and heteroge-
neous network components. More precisely, by modeling
the power system dynamics as the feedback interconnec-
tion of input-out bus dynamics and network dynamics
(Section 2), we derive a decentralised stability condition
that depends only on the individual bus dynamics and the
aggregate susceptance of the transmission lines connected
to it (Section 3). When no network information is avail-
able, our condition reduces to the standard decentralised
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Fig. 1. Input-output Power Network Model

passivity su�cient condition for stability. We illustrate
the novelty and strength of our analysis framework by
studying the design of inverter-based control laws in the
presence of delays (Section 4).

2. INPUT-OUTPUT POWER NETWORK MODEL

In this section we describe the input-output representation
of the power grid used to derive our decentralised stability
results. We use i 2 V := {1 . . . , n} to denote the ith bus in
the network and the unordered pair {i, j} 2 E to denote
each transmission line.

As mentioned in the previous section, we model the power
network as the feedback interconnection of two systems,
P := diag (p

i

, i 2 V ) and N shown in Figure 1. Each
subsystem p

i

denotes the ith bus dynamics, and maps
u
P,i

to y
P,i

, where u
P,i

denotes the ith bus exogenous
real power injection, i.e., the real power incoming to bus i
from other parts of the network or due to unmodeled bus
elements. The output y

P,i

:= !
i

denotes the bus frequency
deviation from steady state. Similarly, the system N
denotes the network dynamics, which maps the vector of
system frequencies u

N

:= ! = (!
i

, i 2 V ) to the vector
of electric power network demand y

N

= (y
N,i

, i 2 V ), i.e.
y
N,i

is the total electric power at bus i that is being drained
by the network. Thus, if we let d

P

= (d
P,i

, , i 2 V ) denote
the unmodeled bus power injection, then by definition we
get u

P

= �y
N

+ d
P

.

This input-output decomposition provides a general mod-
eling framework for power system dynamics that encom-
passes several existing models as special cases. For exam-
ple, it can include the standard swing equations (Shen and
Packer, 1954), as well as several di↵erent levels of details
in generator dynamics, including turbine dynamics, and
governor dynamics, see e.g., (Zhao et al., 2016). The main
implicit assumption in Figure 1, which is standard in the
literature and well justified in transmission networks (Kun-
dur, 1994), is that voltage magnitudes and reactive power
flows are constant. However, a similar decomposition could
be envisioned in the presence of voltage dynamics and
reactive power flows. Such extension will be subject of
future research.

In this paper we focus on power system models that satisfy
the following assumptions:
Assumption 2.1. P =diag (p1, . . . , pn), with p

i

2 H 1⇥1
1 .

Assumption 2.2. N = 1
s

L
B

, where L
B

2 Rn⇥n is a
weighted Laplacian matrix.

Here H m⇥n

1 denotes the Hardy space of m by n matrix
transfer functions analytic on the open right-half plane

(Re {s} > 0) and bounded on the imaginary axis (jR). We
only consider such a general class of transfer functions to
allow for the consideration of delays, and use real rational
transfer functions to model most components.

In the rest of this section we illustrate how di↵erent
network components can be modeled using this framework
as well as the implications of assumptions 2.1 and 2.2.
For concreteness, we make specific choices on the models
for generators and loads. We highlight however that our
analysis framework can be extended to more complex
models provided they satisfy assumptions 2.1 and 2.2.

2.1 Bus Dynamics

We model the bus dynamics using the standard swing
equations (Shen and Packer, 1954). Thus the frequency
of each bus i evolves according to

p
i

:
M

i

!̇
i

= �D
i

!
i

+ x
i

+ u
P,i

y
P,i

= !
i

, (1)

where the state !
i

represents the frequency deviation from
nominal and x

i

denotes the power injected by inverter-
based generation at bus i. The parameter M

i

� 0 denotes
the aggregate bus inertia. For a generator bus M

i

> 0,
and D

i

> 0 represents the damping coe�cient. For a load
bus M

i

= 0 and D
i

> 0 represents the load sensitivity to
frequency variations (Bergen and Hill, 1981).

We consider linear control laws for the inverter dynamics
that depend solely on the local frequency. Thus, we model
the inverter dynamics as a negative feedback law of the
form

x̂
i

(s) = �c
i

(s) !̂
i

(s) , (2)

where x̂
i

(s) and !̂
i

(s) denote the Laplace transform of
x
i

(t) and !
i

(t), respectively.

Combining (1) and (2) we get the following input-output
representation of the bus dynamics

p
i

(s) =
1

M
i

s+D
i

✓

1 +
c
i

(s)

M
i

s+D
i

◆�1

. (3)

Whenever c
i

(s) = 0, (3) represents a bus without inverter
control, and by choosing either M

i

> 0 or M
i

= 0,
(3) can model generator or load buses respectively. Thus,
(3) provides a compact and flexible representation of the
di↵erent bus elements. It is important to notice that
Assumption 2.1 is rather mild and only requires that the
transfer function (3) of each bus is stable.

Finally, the control law c
i

(s) defines a general modeling
class for inverter-based decentralised controllers. A num-
ber of conventional architectures can be written in this
form. For example, virtual inertia inverters correspond to

c
i

(s) = K
i

+K⌫

i

s (4)

whereK
i

� 0 andK⌫

i

� 0 are the droop and virtual inertia
constants, and by setting K⌫

i

= 0, we recover the standard
droop control. Similarly, the iDroop dynamic controller is
given by

c
i

(s) =
K⌫

i

s+K�

i

K
i

s+K�

i

(5)

where K⌫

i

� 0, K�

i

� 0 are tunable parameters (Mallada,
2016).
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2.2 Network Dynamics

The network dynamics, under Assumption 2.2, are given
by

N : ✓̇ = u
N

y
N

= L
B

✓
, (6)

where, as mentioned before, the matrix L
B

2 Rn⇥n is
the B

ij

-weighted Laplacian matrix that describes how the
transmission network couples the dynamics of di↵erent
buses.

Thus Assumption 2.2 is equivalent to the DC power flow
approximation, where the parameter B

ij

usually denotes
the susceptance of line {i, j}, although more generally
represents the sensitivity of the power flowing through
line {i, j} due to changes on the phase di↵erence, i.e.,
B

ij

= vivj

xij
cos(✓⇤

i

� ✓⇤
j

) where v
i

and v
j

are the (constant)

voltage magnitudes, x
ij

is the line inductance, and ✓⇤
i

�✓⇤
j

is the steady state phase di↵erence between buses i and j,
see e.g., (Zhao et al., 2013).

To simplify the exposition, we refer here to B
ij

as the
transmission line susceptance. Therefore,

[L
B

]
ii

=
X

j:{i,j}2E

B
ij

denotes the aggregate susceptance of the lines connected
to bus i. As we will soon see in the next section, an
upper bound of this value, i.e. [L

B

]
ii

 1
�i
, can be used

to guarantee stability in a decentralised manner.

2.3 Connection with the Swing Equations

For sake of clarity we derive here a state space description
of the described models, and show how the standard swing
equation model fits into our framework. Since u

N

= y
P

=
! and u

P

= d
P

�y
N

, then using (3) and (6), the state space
representation of the feedback interconnection in Figure 1
amounts to:

✓̇
i

= !
i

(7a)

M
i

!̇
i

= �D
i

!
i

�
X

j:{i,j}2E

B
ij

(✓
i

� ✓
j

) + x
i

+ d
P,i

. (7b)

where the inverter-based power injection x
i

evolves accord-
ing to either

x
i

= �K
i

!
i

�K⌫

i

!̇
i

(8)

for virtual inertia inverter-based control, or

ẋ
i

= �K�

i

(K
i

!
i

+ x
i

)�K⌫

i

!̇
i

(9)

of the case of iDroop.

Equation (7) amounts to the standard swing equations
in which d

P,i

represents the net constant power injection
at bus i. One interesting observation, and perhaps also
a peculiarity of our framework, is that while usually the
phase of bus i (✓

i

) is considered to be part of the bus
dynamics, in our framework this state is part of the
network. This sidesteps the need to define, for example, a
reference bus to overcome the lack of uniqueness in these
angles.

3. A SCALABLE STABILITY CRITERION

This section consists of two main parts. First we give a
generalisation of a classical stability result for single-input-

single-output systems that can be applied to the struc-
tured feedback interconnection in Figure 1. Second, we
discuss how it can be given a plug and play interpretation,
and used to guide controller design in the context of the
electrical power system models from Section 2.

3.1 A Generalisation of a Classical Stability Criterion

Brockett and Willems (1965) gives a method for testing
stability of a feedback interconnection in the presence of an
uncertain constant gain. More specifically it is shown that
for a real rational, stable, strictly proper transfer function
g (s), the feedback interconnection of g (s) and k 2 R is
stable for all

0  k  1

k⇤

if and only if there exists a Strictly Positive Real (SPR)
h (s) such that

h (s) (k⇤ + g (s)) (10)
is SPR (see Dasgupta and Anderson (1996) for this precise
statement). The concept of an SPR transfer function is
given by the following standard definition:
Definition 3.1. A (not necessarily proper or rational)
transfer functions g (s) is Positive Real (PR) if:

(i) g (s) is analytic in Re {s} > 0;
(ii) g (s) is real for all positive real s;
(iii) Re {g (s)} � 0 for all Re {s} > 0.

If in addition there exists an ✏ > 0 such that g (s� ✏) is
PR, then g (s) is SPR.

The following theorem extends this result to the feedback
interconnection in Figure 1, where the Laplacian matrix
L
B

plays the role of the uncertain gain. Our motivation
for trying to extend this result is driven by a desire for
decentralised stability conditions. Since ‘the gain’ of a
Laplacian matrix is dependent on the network topology,
in order to obtain a result that does not require exact
knowledge of the network structure it is necessary to be
able to handle a degree of uncertainty in this gain. The
result in Brockett and Willems (1965) is then the natural
candidate for extension, because it is the strongest possible
result of this type in the scalar case.
Theorem 3.2. Let �1, . . . , �n, be positive constants, and
P 2 H n⇥n

1 satisfy Assumption 2.1. If there exists a
nonzero h such that sh is PR, and for each i 2 {1, . . . , n}:

h (s)
⇣�

i

2
s+ p

i

(s)
⌘

(11)

is SPR, then for any

N 2
⇢

1

s
L
B

: L
B

meets Assumption 2.2 and [L
B

]
ii

 1

�
i

�

,

the feedback interconnection of P and N is stable 1 .

Before proving this result, observe that if we define h̄ (s) =
sh (s), then Theorem 3.2 asks if there exists an h̄ 2 PR
such that

h̄ (s)
⇣�

i

2
+

p
i

s

⌘

2 SPR.

1 Here stability is in the internal stability sense, that is
h

P
I

i

(I +NP )�1
⇥

N I
⇤

2 H1.

This definition does not require that ✓ (t) remains bounded in
response to bounded disturbances, only that LB✓ (t) does. This is
how we avoid the need to define a reference bus.
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This representation makes clearer the connection with the
original result of Brockett and Willems (1965) (c.f. (10)).
However, in order to satisfy the above, it is necessary
for h̄ (s) to have a zero at the origin, which motivates
our choice of statement. Also note that since N is PR,
a standard passivity result for the interconnection in
Figure 1 would require that p

i

is SPR. It can be shown
(though we omit the proof due to space limitations) that
this is a special case of Theorem 3.2. This is because there
exists an h such that if p

i

is SPR, then (11) is satisfied.

Proof. Since P 2 H n⇥n

1 , the interconnection of P and N
is stable if and only if

N (I + PN)�1 2 H n⇥n

1 .

We will now show that the conditions of the theorem are
su�cient for the above. Let D = diag

�

�1

2 , . . . , �n

2

�

, and
define

A =
⇣

D
1
2L

B

D
1
2

⌘

.

Hence N = D� 1
2

�

1
s

A
�

D� 1
2 , and A is a normalised

weighted Laplacian matrix. Factorise A as

A = QXQ⇤,

where X is positive definite with eigenvalues �(X)  1
(i.e., I � X � ✏I), Q 2 Cn⇥(n�m), m > 0, Q⇤Q = I,
✏ > 0. Hence N (I + PN)�1 equals

D� 1
2QXQ⇤D� 1

2

⇣

sI + PD� 1
2QXQ⇤D� 1

2

⌘�1
,

=D� 1
2QX

�

sI +Q⇤D�1PQX
��1

Q⇤D� 1
2 .

Clearly then it is su�cient to show that
�

sI +Q⇤D�1PQX
��1 2 H (n�m)⇥(n�m)

1 . (12)

The above can be immediately recognised as an eigenvalue
condition:

�s /2 �
�

Q⇤D�1P (s)QX
�

, 8s 2 C̄+. (13)

By Theorem 1.7.6 of Horn and Johnson (1991), for any
s 2 C:
�
�

Q⇤D�1P (s)QX
�

⇢ Co
�⇥

D�1
⇤

ii

p
i

(s) , i 2 N
�

⇥ [✏, 1] .

In the above ⇥ denotes the product S1 ⇥ S2 = {ab : a 2
S1, b 2 S2}. Therefore it is su�cient to show that

0 /2 Co
�

s+
⇥

D�1
⇤

ii

p
i

(s) , i 2 V
�

⇥ [✏, 1], (14)

for all s = C̄+. Observe that since each p
i

is bounded,
this condition is trivially satisfied for large s. It is therefore
enough to check that this holds for s 2 C̄+, |s| < R, for
su�ciently large R. This can be done using the separating
hyperplane theorem, applied pointwise in s. In particular,
(14) holds for any given s if and only if there exists a
nonzero h 2 C and � > 0 such that 8i 2 {i, . . . , n}:

Re
�

h
�

s+ k
⇥

D�1
⇤

ii

p
i

(s)
� 

> �, 8 ✏  k  1. (15)

By a very minor adaptation of the argument in Theorem
2 of Brockett and Willems (1965), we can use a function
to define this h pointwise in s. From the conditions of
the theorem and the maximum modulus principle, for any
R � 0, there exists a � > 0 such that 8s 2 C̄+, |s|  R:

Re
�

h (s)
�

s+
⇥

D�1
⇤

ii

p
i

(s)
� 

> �. (16)

Since sh (s) is PR, for all k⇤ � 0,

Re
�

h (s)
�

s+
⇥

D�1
⇤

ii

p
i

(s)
�

+ k⇤sh (s)
 

> �.

Dividing through by (1 + k⇤) shows that under these
conditions

Re

⇢

h (s)

✓

s+
1

1 + k⇤
⇥

D�1
⇤

ii

p
i

(s)

◆�

> �.

Therefore (15) is satisfied on the entire right half plane
for the required range of k values. Consequently (12) is
satisfied, and the result follows.

3.2 A Plug and Play Interpretation

In order to give Theorem 3.2 a plug and play interpreta-
tion, we have to introduce a little conservatism. In direct
analogy with the approach pioneered in Lestas and Vin-
nicombe (2006), we propose to make an a-priori choice of
the function h (s). Observe that once we have done this,
the conditions of Theorem 3.2 can be checked as follows:

(1) For each component, compute the smallest �
i

such
that (11) is satisfied.

(2) Check that 1
�i

� [L
B

]
ii

.

Observe that the above process works completely indepen-
dently of the size of the network, and is therefore highly
scalable. It is also entirely decentralised, giving a plug and
play requirement for individual components. In addition
we have the following appealing properties:

Robustness: Suppose we have an uncertain description of
our model p

i

, for example:

p
i

(s) 2 {p (s) : p (s) = p
i0 (s) +� (s) , k� (s)k1 < 1} .

Then provided we compute the smallest �
i

such that (11)
is satisfied for all p

i

in this set, we can guarantee stability
in a way that is robust to this uncertainty. This has
not compromised scalability, since this process remains
entirely decentralised.

Controller Design: Suppose p
i

has some controller param-
eters that can be specified, for example (as in (2))

p
i

(s) =
1

M
i

s+D
i

✓

1 +
c
i

(s)

M
i

s+D
i

◆�1

,

where c
i

can be chosen. Then provided we can design
c
i

so that p
i

meets the plug and play requirement, the
component can be connected to the network without
compromising stability. Observe that this is an entirely
decentralised synthesis condition, and there is no need
to redesign the controller in response to buses being
added and removed elsewhere in the network. This is an
approach to synthesis that specifically addresses the need
for scalability.

The above are just observations about the structure of
the stability tests. The fact that they are based on test-
ing SPRness also brings a number of advantages. More
specifically, provided the transfer functions in (11) are
rational and proper, this condition can be e�ciently tested
using the Kalman-Yakobovich-Popov (KYP) lemma. Fur-
thermore, the synthesis problem: design c

i

such that

h (s)

 

�
i

2
s+

1

M
i

s+D
i

✓

1 +
c
i

(s)

M
i

s+D
i

◆�1
!

2 SPR;

is equivalent to an H1 optimisation problem, with state
space solution given in Sun et al. (1994). Finally if h (s)
has relative degree 1, then (11) can be checked on the
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imaginary axis (for a rather complete list of the di↵erent
characterisations of SPRness, see Wen (1988)). That is
(11) is equivalent to

Re
n

h (j!)
⇣�

i

2
j! + p

i

(j!)
⌘o

> 0, 8! 2 R. (17)

This allows classical intuition from frequency response
methods to be brought to bear on the above problems.

While obviously having many appealing features, all of
the above rests on one crucial decision: the a-priori choice
of h (s). If an arbitrary choice is made, especially when
conducting stability analysis 2 , it is possible that this
approach can be very conservative. We recommend that
h (s) be chosen by defining a set of ‘expected models’

P = {p̄1 (s) , . . . , p̄m (s)} ,
and then designing h (s) so that (11) is satisfied for all the
models in this set. Here p̄

k

are transfer functions describing
the dynamics of ‘typical’ bus models, perhaps obtained
by putting in average values of the model parameters.
Provided m is not too large, this problem should be
resolvable. The idea is that an h that is designed to work
for these transfer functions is a sensible ‘a-priori’ choice,
since it guarantees that if the actual bus dynamics are of
the ‘expected’ type, or can be designed to be close to the
expected type, they will satisfy the network protocol.

4. SCALABLE STABILITY ANALYSIS OF IDROOP

To motivate both the need for Theorem 3.2, and to
illustrate its application, consider a two bus network.
Assume that the buses have the same dynamics, given by

p
i

=
1

s+ 0.1

✓

1 +
1

s+ 0.1
c
i

(s)

◆�1

, (18)

and the Laplacian matrix describing the transmission
network is given by

L
B

=



1 �1
�1 1

�

.

We now consider the problem of how to design an iDroop
controller subject to delay. That is, how to design

c
i

(s) = e�s⌧i
K⌫

i

s+K�

i

K

s+K�

i

,

where ⌧
i

> 0 is the delay, such that the interconnection is
stable. If the delay equals zero, then passivity theory can
be easily applied to answer the stability question. This is
because (18) can be rearranged as

p
i

=

 

✓

1

s+ 0.1

◆�1

+
⇣

c
i

(s)�1
⌘�1

!�1

,

from which we see that p
i

is the parallel interconnection
of c�1

i

and an SPR transfer function. This means that
if c

i

is SPR, so is p
i

, which in turn implies that the
interconnection with the transmission network is stable
(the transmission network is a PR transfer function, and
it is well known that the feedback interconnection of a PR
and SPR transfer function is stable). Hence we arrive at
the rather surprising conclusion that any possible choice
of iDroop controller will lead to a stable interconnection.
2 This is of less concern for synthesis, because the extra degrees of
freedom opened up by designing the controller can be exploited to
meet a wide range of protocols.
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Fig. 2. Bode diagram of p
i

(solid curve), and first order
approximation of the form in (19), with a = 1.37, b =
1 (dashed curve).

This becomes even stranger when realise we can use the
same argument in networks of any size. Is it really true
that any possible set of heterogeneous buses, equipped
with arbitrarily chosen iDroop controllers, interconnected
through any possible network, is stable?

The answer is, at least in any practical sense, no. To
make this absolutely concrete, let us return to the two bus
example, and suppose we choose K⌫

i

= 1, K�

i

= 5, K
i

=
30, as our iDroop parameters for both buses. A simple
Nyquist argument shows that even a small value of ⌧

i

, for
example 0.05, will destabilise this two bus network. It is of
course not a limitation of iDroop that this can happen, nor
even that surprising; the introduction of delays (and badly
designed controllers) can similarly destabilise networks
where the buses employ virtual inertia or droop controllers.
It does however serve to illustrate the importance of robust
design in the network setting. We will now demonstrate
that, as claimed in Section 3.2, Theorem 3.2 can be used
to do this.

As discussed in Section 3.2, to obtain a plug and play
criterion, we need to make an a-priori choice of h. Let us
just pick

h (s) =
1

s

!0
+ 1

,

with !0 = 30 (!0 could be optimised based on expected
model parameters), and proceed with the robust synthesis
of c

i

(s). Conducting a classical lead-lag design (this is
another advantage of the iDroop controller structure)
allows us to achieve a p

i

which, frequency by frequency,
is similar to a transfer function of the form

a
i

s+ b
i

. (19)

For a delay of ⌧
i

= 0.5, this is illustrated in Figure 2,
where the iDroop controller specified by K⌫

i

= 1.3, K�

i

=
8, K

i

= 0.65, has been chosen. To conclude stability using
Theorem 3.2, we are required to verify that

1
s

!0
+ 1

✓

�
i

2
s+

a
i

s+ b
i

+�
i

(s)

◆

2 SPR, (20)

for some �
i

 1. In the above �
i

(s) is the di↵erence
between (19) and the actual p

i

. A simple way to do this is
to instead verify the condition

1
s

!0
+ 1

✓

�
i

2
s+

a
i

s+ b
i

◆

� ✏
i

2 PR. (21)
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Fig. 3. Nyquist diagram of p
i

(black curve), and the
uncertainty set �

i

with ✏
i

= 0.08 (shaded region).
Since the Nyquist diagram lies inside the shaded
region, satisfying (21) with this ✏

i

is su�cient for (20).

Then, if
�

�

�

�

�

1
s

!0
+ 1

�
i

(s)

�

�

�

�

�

1

< ✏
i

, () |�
i

(j!)| < ✏
i

s

1 +
!2

!2
0

,

then (20) is satisfied. This relaxation is shown in Figure 3.

In addition to guaranteeing further levels of robustness
to unmodelled dynamics, (21) gives a simple way to
characterises any allowable iDroop design in terms of only
three parameters: (a

i

, b
i

, ✏
i

). This is an advantage because
the PR condition in (21) can be rewritten as a set of
inequalities in terms of these parameters. This means that
our network protocol can be understood on the basis of
coarse features of our iDroop design. Using the result of
e.g. Foster and Ladenheim (1963), it can be shown that
(21) is equivalent to the following inequalities:

a
i

� ✏
i

b
i

� 0
b
i

(�
i

!0 � 2✏
i

)� 2✏
i

!0 � . . .

. . .
!0

(b
i

+ !0)

✓

p

a
i

� ✏
i

b
i

�
r

b
i

⇣�
i

!0

2
� ✏

i

⌘

◆2

Provided the design of each individual iDroop controller
satisfies the above, the scalable stability tests are (ro-
bustly) satisfied. We can easily check them for the two
bus example. Substituting in (a

i

, b
i

, ✏
i

) = (1.37, 1, 0.08)
shows that they are satisfied for any �

i

� 0.18, which
is clearly su�cient to conclude stability for this network
(here [L

B

]
ii

= 1). Note that if they were failed, we would
then just have to go back and retune the design of our
iDroop controller to obtain more favourable parameters
(or test (20) instead). To stress the scalability of this
procedure, observe that we did not use the fact that this
was a two bus example at any stage. This same local
method can be used for designing iDroop controllers for
heterogeneous buses in networks of any size, and the above
shows that this specific bus can be connected into any
possible transmission network provided the local aggregate
network susceptance is less than 1/0.18.
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