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High-Voltage Solution in Radial Power
Networks: Existence, Properties,

and Equivalent Algorithms
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and John W. Simpson-Porco, Member, IEEE

Abstract—The ac power flow equations describe the
steady-state behavior of the power grid. While many algo-
rithms have been developed to compute solutions to the
power flow equations, few theoretical results are avail-
able characterizing when such solutions exist, or when
these algorithms can be guaranteed to converge. In this
letter, we derive necessary and sufficient conditions for
the existence and uniqueness of a power flow solution in
balanced radial distribution networks with homogeneous
(uniform R/X ratio) transmission lines. We study three dis-
tinct solution methods: 1) fixed point iterations; 2) convex
relaxations; and 3) energy functions—we show that the
three algorithms successfully find a solution if and only
if a solution exists. Moreover, all three algorithms always
find the unique high-voltage solution to the power flow
equations, the existence of which we formally establish.
At this solution, we prove that: 1) voltage magnitudes are
increasing functions of the reactive power injections; 2) the
solution is a continuous function of the injections; and
3) the solution is the last one to vanish as the system is
loaded past the feasibility boundary.

Index Terms—Power systems, smart grid, stability of
nonlinear systems.

I. INTRODUCTION

THE AC power flow equations are one of the most widely
used modeling tools in power systems. They characterize

the steady-state relationship between power injections at each
bus and the voltage magnitudes and phase angle that are nec-
essary to transmit power from generators to loads. They are
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embedded in every power system operations activity, includ-
ing optimal power flow, state estimation, security/stability
assessment, and controller design [1].

Since the power flow equations are nonlinear, solutions
may not exist, and even when a solution exists, there may
be multiple solutions. The insolvability of these equations
may indicate a system-wide instability, such as voltage col-
lapse [2]. Nonetheless, decades of experience show that there
is typically a unique “high-voltage” solution [3]. The high-
voltage (small-current) solution is typically assumed to be the
desired operating point for the network [4], although there are
exceptions to this when the system is operated close to volt-
age collapse [5]. In general then, establishing the existence,
uniqueness, and properties of this high-voltage solution is a
prerequisite for static and dynamic network analysis.

The second implication of power flow nonlinearity is that —
even when solutions exist — finding them can be challenging.
While many iterative algorithms (e.g., Newton-Raphson and
Gauss-Seidel variants [6]) are effective at solving power flow
equations, they lack useful theoretical guarantees. In particu-
lar, when these algorithms fail to find a solution, it could be (i)
due to an initialization issue, (ii) due to numerical instability,
or (iii) that no solution exists to be found. This uncertainty
introduces conservatism into system operation: when a per-
fectly good solution exists, but the solver fails to find it, the
operator would mistakenly declare the case to be unsafe.

These limitations of conventional nonlinear equation solvers
have spurred the development of new conceptual frameworks
for studying power flow equations [6]. Each framework has a
body of supporting theory and offers an algorithmic approach
for solving the power flow equations. We consider three
frameworks:

(i) fixed point approaches, which exploit contrac-
tion/monotonicity properties of an operator to iteratively
find a power flow solution [7]–[12]; here we propose
and study a novel fixed point approach.

(ii) convex relaxations, which cast the problem of finding a
power flow solution as a convex optimization problem;
a convex super-set containing all power flow solutions is
defined, and minimization of a carefully chosen function
over this set yields the power flow solution [13]–[16].
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(iii) energy functions, where the stable power flow solution
is characterized as a local minimizer of an appropri-
ately defined scalar function; the function can then be
minimized by gradient descent to find the solution [17].1

For a given set of power injections, we show that there are
only two possibilities. Either

1) there are no power flow solutions, or
2) there is a unique “high voltage” power flow solu-

tion,2 and all three approaches described above find this
solution.

The properties we establish (existence of a unique high-
voltage/voltage-regular/stable solution) have been conjectured
to be true for distribution networks. To the best of our knowl-
edge though, formal proofs of these properties have never been
presented. Rigorous proofs are difficult and require special
assumptions on the distribution system. In the next subsec-
tion, we summarize these assumptions and precisely define
the contributions of this letter.

A. Assumptions Made and Contributions of This Letter

We make several assumptions on the distribution network:
(i) Simplified line model: the shunt elements typically

present in the �-model are neglected, along with voltage
control mechanisms like capacitor banks and tap-changing
transformers; all distribution lines are modeled as series
impedances.

(ii) Balanced operation: the three phases of the system are
balanced, allowing for a single-phase representation.

(iii) Constant r/x ratios of lines longitudinal impedance
parameters: all distribution lines have an equal ratio of
resistance to reactance.

(iv) Strictly positive voltage magnitudes: we consider power
flow solutions with strictly positive voltage magnitudes at
every bus.

While these assumptions limit the applicability of our results
to practical distribution systems, we leverage them to derive
equally strong results:

(i) Existence conditions: We establish necessary and suf-
ficient conditions for the existence of solutions. This is
in contrast to previous works that only establish suffi-
cient [8], [10], [11] or necessary [18] conditions.

(ii) Connections between approaches: We establish connec-
tions between the three approaches (fixed point, relaxation,
energy function) and show that all three approaches either
find the same high-voltage solution (if one exists) or fail (if
no power flow solution exists). These guarantees are stronger
than the guarantees established in previous work on computing
power flow solutions [7], [8], [17], [19].

(iii) Properties of the power flow solution: We establish
several properties of the power flow solution (voltage regular-
ity, stability and continuity). While these properties have been
conjectured in previous work [20], [21], we provide rigorous

1Note that in this letter we use energy function in a generalized sense so
that it may not actually correspond to a Lyapunov function of the dynamics.
However, we still abuse terminology to refer to minimizers of the energy
function as “stable” solutions.

2High-voltage meaning that the voltage magnitude at each bus is higher
than the corresponding voltage magnitude of any other solution.

proofs of these from first principles. We envision that the
strong results established under the special assumptions in this
letter will form the basis of further studies that will extend the
results to be applicable to practical distribution networks.

The rest of this letter is organized as follows. Section II
introduces the power flow equations. Section III describes
three solution algorithms based on fixed-point iterations, con-
vex relaxations, and energy functions. Our main contributions
are developed in Section IV where we show the equivalence
of the three representations and describe additional properties
of the high-voltage solution. Section V concludes this letter.

II. AC POWER FLOW EQUATIONS

We start with notation that is used in this letter:
C: Set of complex numbers,
j:

√−1
arg(x): Phase of the complex number x
|x|: Magnitude of the complex number x
log(x): The vector with entries log(xi) for any x ∈ Rn

exp(x): The vector with entries exp(xi) for any x ∈ Rn

[a, b]: For a, b ∈ Rn with a ≤ b (componentwise), this
denotes {x ∈ Rn : a ≤ x ≤ b}

Z-matrix: Square matrix with non-positive off-diagonal
entries

ei: Vector with all entries 0 except the i-th entry
(equal to 1)

[n]: {1, 2, . . . , n} for any natural number n
�n: Vector in Rn with all entries equal to 1

We will focus exclusively on radial (tree) AC power networks
in steady-state. The grid topology is that of a rooted oriented
tree G = (V, E) where V = {0, . . . , n} is the set of buses and
(by convention) the lines (i, k) ∈ E are oriented away from the
substation bus 0. Each line (i, k) ∈ E in the network has an
associated complex admittance Yik = Yki = Gik − jBik, where
Gik ≥ 0 and Bik > 0. We let N (i) = {k : (i, k) ∈ E or (k, i) ∈
E} denote the set of neighbors of bus i.

At every bus i ∈ V , we denote the voltage phasor by Vi ∈ C,
the squared voltage magnitude by vi = |Vi|2, the voltage phase
by θi = arg(Vi), (net) active power injection by pi, and (net)
reactive power injection by qi. Bus 0 is interpreted as a sub-
station, and taken to be the reference (slack) bus with voltage
phasor 1 exp(j0) per unit. Every other bus i ∈ {1, . . . , n} is
a PQ bus with pi, qi specified and vi, θi to be determined.
Under assumptions (i) and (ii) (Section I-A), the power balance
equation at bus i ∈ V is

pi + jqi = Vi

∑

k∈N (i)

Yik(Vi − Vk), (1)

where x denotes the complex conjugate of x. The voltage phase
difference across line (i, k) ∈ E is denoted by φik = θi − θk.
Substituting Vi = √vi exp(jθi) and taking real and imaginary
parts of (1), a simple calculation shows that

pi = Givi +
∑

k∈N (i)
(Biksik − Gikcik) (2a)

qi = Bivi +
∑

k∈N (i)
(−Giksik − Bikcik) (2b)

for each i ∈ V \ {0}, where

Gi :=
∑

k∈N (i)
Gik Bi :=

∑
k∈N (i)

Bik
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denote the total conductance/susceptance incident to bus i, and
we have used the simplifying variables

sik := √vivk sin(φik), cik := √vivk cos(φik). (3)

The power flow equations can be written using only the
variables cik, sik and vi, with the additional constraints that

c2
ik + s2

ik = vivk, (i, k) ∈ E . (4)

The phase differences φ = {φik, (i, k) ∈ E} can be recovered
uniquely (modulo 2π) via sin(φik) = sik√

vivk
.3 Since the network

is a tree, |E | = n, and once θ0 = 0 is fixed there is a one-
to-one mapping between φ and θ = {θi}ni=1, which allows
the phase angles θ to also be uniquely recovered. Since all
lines are homogeneous (assumption (iv) from Section I-A),
Gik/Bik = κ some κ > 0 and for all (i, k) ∈ E . We create a
new system of equations by subtracting κ times (2b) from (2a),
and adding κ times (2a) to (2b), to obtain

p̃i := pi − κqi =
∑

k∈N (i)
B̃iksik, (5a)

q̃i := qi + κpi = B̃ivi −
∑

k∈N (i)
B̃ikcik, (5b)

where B̃ik := (1 + κ)Bik and B̃i := Bi(1 + κ). For nota-
tional simplicity, going forward we will drop the ·̃ and use
Bi, Bi, pi, qi instead of B̃i, B̃i, p̃i, q̃i. The equation (5a) is a
square, full-rank linear system in the variables s = {sik}.
Thus (5a) can be uniquely solved for the flows s as a function
of p, and we denote this solution by s = s(p). The power flow
equations (5) with the constraints (4) then simplify to

Bivi −
∑

k∈N (i)
Bikcik = qi, ∀i ∈ [n] (6a)

sik(p)2 + c2
ik = vivk, ∀(i, k) ∈ E . (6b)

We will sometimes drop the dependence sik(p) for brevity and
simply write sik. Let L = LT ∈ R(n+1)×(n+1) be the Laplacian
matrix of the (undirected) graph, with entries Lik = −Bik and
Lii = Bi. We may write L as the block matrix

L =
(

L00 L0r
Lr0 Lred

)

where the first row/column corresponds to the substation and
Lred ∈ Rn×n is the reduced Laplacian matrix. We let B =
diag(Bi)

n
i=0 be the diagonal matrix with entries Bi, and Bred =

diag(Bi)
n
i=1 be the corresponding reduced matrix.

III. SOLVING THE POWER FLOW EQUATIONS

We now describe three approaches for computing solutions
to the power flow equations (6).

A. Convex Relaxation Approach

We start with the power flow equations (6) and relax both
equations to inequalities:

Bivi −
∑

k∈N (i)

Bikcik ≤ qi, (sik(p))2 + c2
ik ≤ vivk, (7)

3As mentioned before, we assume vi > 0 for all i ∈ V . Having vi = 0 for
some bus i necessarily implies that no power is being transferred through the
lines adjacent to it which implies that no load can exist at that bus.

for all i ∈ [n], and (i, k) ∈ E , respectively. The inequali-
ties (7) are equivalent to the constraints of the second-order
conic relaxation described in [19]. While [19] was the first to
formulate this conic relaxation, no guarantees were established
on when this approach provably finds a power flow solution. In
the context of the optimal power flow problem, [16] describes
several results proving tightness of the convex relaxation, that
is, that the global optimum of the non-convex OPF problem
can be computed by solving a convex relaxation. Here, we are
concerned with simply solving the power flow equations, and
indeed, the results of [16] imply that the power flow equa-
tions for radial networks can be solved by solving a convex
optimization problem. In this letter, we use the convex relax-
ation formulation as a tool to establish several properties of
the power flow solution for radial networks.

Lemma 1 shows that the relaxation (7) is feasible if and
only if there exists a voltage vector v such that

Bivi −
∑

k∈N (i)

Bik

√
vivk − s2

ik ≤ qi, ∀i ∈ [n]. (8)

We will also refer to the equality form of the above constraint

Bivi −
∑

k∈N (i)

Bik

√
vivk − s2

ik = qi, ∀i ∈ [n]. (9)

We propose computing a power flow solution by maximiz-
ing a weighted linear combination of log-voltage magnitudes:

maximize
v∈Rn

>0

∑n

i=1
wi log(vi) subject to (8) (10)

were wi > 0 are arbitrary positive weights.
Definition 1: The relaxation approach succeeds if (10) is

feasible and the optimal solution satisfies (9). In this case, a
solution to (6) can be computed by taking the optimal solution

v� and defining s�
ik := sik(p), c�

ik :=
√

vivk − (s�
ik)

2. Otherwise,
we say the approach fails.

B. Energy Function Approach

Power flow solutions can also be interpreted as stationary
points of the energy function introduced in [17] and [22]. In the
context of transient stability in lossless transmission networks,
it is known that the energy function is a Lyapunov function
of the power system swing dynamics, and that any power
flow solution at which the energy function is locally convex is
asymptotically stable. We do not pursue such a stability analy-
sis here, and instead use the energy function in a broader sense
— it is simply a function whose stationary points correspond
to power flow solutions. We will nonetheless refer to power
flow solutions at which the energy function is locally convex
(i.e., its Hessian is positive definite) as “stable” solutions. Our
main results will establish that such a solution indeed exists,
and is unique. Our approach here builds on [17]. The energy
function E : R

n
>0 ×Rn → R is defined as

E(v, θ) :=
∑

(i,k)∈E
Bik(vi + vk − 2

√
vivk cos(θi − θk))

+
∑n

i=1
piθi +

∑n

i=1
qi log(vi)/2. (11)
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One may check directly that

∂E

∂ log(v)
= 0 ≡ (5b),

∂E

∂θ
= 0 ≡ (5a), (12)

which shows that power flow solutions are simply stationary
points of the energy function.

Theorem 1 [17]: The energy function E is jointly convex
in (log(v), θ) provided that

n∑

i=1

Bi[2vi]i −
∑

(i,k)∈E

Bik
√

vivk

cik

[(
1 1
1 1

)]

i,k

 0 (13a)

cik = √vivk cos(θi − θk) > 0 (13b)

where

[a]i = aeieT
i ,

[(
a b
b c

)]

i,k
= aeieT

i + b(eieT
k + ekeT

i )+ cekeT
k

The constraints (13) define a convex set in (log(v), θ).4

The power flow equations (5) can therefore be solved by
solving the following optimization problem:

minimize
v,θ

E(v, θ) subject to (13). (14)

Convexity allows us to draw strong conclusions: if there is
a power flow solution in the interior of the domain of the
set (13), it is the unique power flow solution in the set (13).
Conversely, if the optimizer of (14) is not a solution, there are
no solutions to the PF equations in the interior of the set (13).

Definition 2: The energy function approach succeeds if
there exists an optimizer of (14) that satisfies (12). In this
case, a solution to (6) can be computed by taking the opti-
mizer (v�, θ�) and defining s�

ik =
√

v�
i v�

k sin(θ�
i − θ�

k ), c�
ik =√

v�
i v�

k cos(θ�
i − θ�

k ). Otherwise, we say the approach fails.

C. Fixed-Point Approach

Simply by rearranging, the power flow equations (9) can be
rewritten as fixed-point equations:

vi = gi(v) := qi

Bi
+

∑

k∈N (i)

Bik

Bi

√
vivk − s2

ik, ∀i ∈ [n].

This system can be written in vector form as v = g(v). We
can therefore define a fixed-point iteration

v(i+1)← g(v(i)), v(0) = vmax := �n + 2(Lred)
−1q. (15)

Lemma 2 shows that vmax is an upper bound on the voltage
magnitudes of any power flow solution.

Definition 3: The fixed-point approach succeeds if the
iteration (15) converges to a point v� ∈ R

n
>0 satisfying g(v) =

v. In this case, a solution to (6) can be computed by taking the
fixed point v� and defining s�

ik = sik(p), c�
ik = (vivk − (s�

ik)
2)

1
2 .

Otherwise, we say the approach fails.

4The condition cik > 0 is equivalent to requiring that the phase differences
between neighboring buses are smaller than π

2 . In Theorem 2, it is shown
that this is always the case for the high-voltage power flow solution.

IV. THEORETICAL RESULTS ON PF APPROACHES

AND PROPERTIES OF THE PF SOLUTION

For each approach presented in Section III, it is of interest
to understand when the approach succeeds and when it fails.
The following theorem addresses these questions.

Theorem 2 (Equivalent Power Flow Approaches): The fol-
lowing two statements are equivalent:

(i) the power flow equations (6) have a solution;
(ii) the approaches (10), (14), and (15) succeed.

If either of these equivalent statements are true, all three
approaches compute the same power flow solution.

Proof: We begin by proving (i) =⇒ (ii). Suppose that a
power flow solution exists. The reduced power flow equa-
tions (9) have a solution, and hence ∃va such that g(va) = va

and hence ∃va such that g(va) ≥ va. Lemma 2 shows that
va ≤ vmax and g(vmax) ≤ vmax. Note that the map g is
monotone, since each component of g is a non-decreasing
function of each vi. Further, we have for any v ∈ [va, vmax]
that g(v) ≥ g(va) ≥ va, and that g(v) ≤ g(vmax) ≤ vmax. We
invoke Theorem 4 (Appendix) with a = va, b = vmax, and
F = g, establishing that the fixed-point iteration (15) con-
verges to a fixed point and in fact converges to a maximal
fixed point v�, such that v� ≥ v for every

v ∈ {v s.t va ≤ v ≤ vmax, g(v) ≥ v}.
a) Proof that the fixed-point approach succeeds: The

above argument proves that the fixed point approach succeeds
since (15) converges to the PF solution v�.

b) Proof that the convex relaxation approach succeeds:
By scaling each constraint in (10) by Bi and rearranging, the
feasible set of (10) can be written as g(v) ≥ v. Since there
is a power flow solution, (10) is feasible. Given any feasible
solution of v′ of (10), the argument from the beginning of this
proof with va = v′ establishes that v� ≥ v′. Since the objective
of (10) is strictly increasing in each component of v, v� must
be the optimal solution since v� ≥ v′ for every feasible solution
v′. Thus, if there is a power flow solution, (10) has a unique
optimizer that satisfies (9) and hence the relaxation approach
succeeds.

c) Proof that the energy function approach succeeds:
Define a new mapping g̃ : Rn → Rn as g̃(γ ) = Bred(exp(γ )−
g(exp(γ ))), where γ ∈ Rn. Lemma 3 shows that ∂ g̃

∂γ
is sym-

metric and that the convexity conditions (13) are equivalent
to the condition ∂ g̃

∂γ

 0 on the Jacobian of g̃. Further, since

g̃i(γ ) = Bi(exp(γi)− gi(exp(γi))) and gi is increasing in each
component of γ , ∂ g̃i

∂γk
≤ 0 for each k �= i. Thus, the matrix ∂ g̃

∂γ
is a Z-matrix. We rewrite (10) as an optimization problem
where the decision variables are γ = log(v) as follows:

maximize
γ

∑

i

wiγi subject to g̃(γ ) ≤ q,

and the unique optimal solution (from part (b)) is log(v�).
Writing the KKT conditions for this problem establishes exis-
tence of a vector λ ≥ 0 such that ∂ g̃

∂γ
λ = w. By Lemma 4,

this implies that ∂ g̃
∂γ

must be positive definite at the optimal
solution. Define γ � = log(v�) and θ� such that θ�

i − θ�
k =

arcsin(sik/
√

v�
i v�

k), with θ�
0 = 0. The positive definiteness of
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∂ g̃
∂γ

at γ = γ � shows that the energy function optimization
problem (14) has a stationary point (γ �, θ�) in the interior of
the feasible set. Since the energy function is strongly convex
in the interior, this stationary point is an isolated local mini-
mum. Since (14) is a convex problem, this stationary point is
the unique global optimum.

Proof of converse (ii) =⇒ (i): Conversely, if there are
no power flow solutions, then (10) must be infeasible. If
this was not true, then ∃va such that g(va) ≥ va. Using
Lemma 2, ∃vmax such that g(vmax) ≤ vmax, va ≤ vmax so
that va ≤ g(va) ≤ g(vmax) ≤ vmax. Hence by Theorem 4, there
is a fixed point g(v) = v and hence a power flow solution
exists (which is a contradiction). Thus, the convex relaxation
must be infeasible and the convex relaxation approach cannot
succeed. Since g has no fixed points (as there are no power
flow solutions) the iterative procedure cannot converge to a
fixed point and hence the fixed-point approach fails. Finally,
the energy function approach succeeds only if the optimum
of (14) is a stationary point of the energy function. Since
stationary points are power flow solutions, there are no sta-
tionary points and hence the energy function approach cannot
succeed.

Theorem 2 says that the three approaches from Section III
all find a power flow solution if and only if a power flow
solution exists, and in fact, they all find the same solution. If
any of them fail, then no power flow solution exists. To state
our next result, which establishes several desirable properties
of the power flow solution, we define some notation. Let

S := {(p, q) ∈ R
n × R

n s.t. (10) is feasible}
be the feasible set of injections. For each (p, q) ∈ S, let v(p, q)

be the unique optimal solution of (10), and define θ(p, q) ∈
Rn+1 as the unique solution to

θi − θk = arcsin

(
sik(p)√

vi(p, q), vk(p, q)

)
∀(i, k) ∈ E, θ0 = 0.

Theorem 3 (Properties of High-Voltage Solution): The fol-
lowing statements hold:

(i) S is a convex set and the map (p, q) �→ (v(p, q), θ(p, q))

is continuous on S;
(ii) for any (p, q) �∈ S, there are no solutions to (6);
(iii) for any (p, q) ∈ S, (v(p, q), θ(p, q)) is the unique solu-

tion to the power flow equations that satisfies the following
properties:

High-voltage: v(p, q) ≥ v′ for every solution v′ of (9).
Stability: (v(p, q), θ(p, q)) lies in the domain of convexity

of the energy function (i.e., satisfies (13));
Voltage-regularity: the matrix ∂v

∂q is element-wise positive
at the solution.

Proof: (i): Since
√

xy− z2 is a concave function in (x, y, z),
the feasible set of (10) is jointly convex in (v, p, q). The injec-
tion set S is simply the projection of this set onto the last
two arguments, and is therefore convex. Further, (10) has a
strongly concave objective and hence a unique optimum. It
follows from standard results in parametric convex optimiza-
tion [23, Sec. 6.1] that v(p, q) is a continuous map, and hence
so is θ(p, q).

(ii): If (p, q) �∈ S, (10) is infeasible and hence there are no
power flow solutions.

(iii): The first two properties of the specified solution follow
immediately from the proof of Theorem 2. For the third, that
same proof showed that

∂ g̃

∂γ
= ∂q

∂ log(v)
= ∂q

∂v

(
∂ log(v)

∂v

)−1

= ∂q

∂v
diag(v) (16)

evaluated at the solution is a positive-definite Z-matrix. Since
the network is connected, this matrix is irreducible. The result
follows by applying Lemma 4.

V. CONCLUSION

We have developed and analyzed several approaches to solv-
ing the power flow equations for balanced radial networks with
transmission lines characterized by homogeneous ratios of lon-
gitudinal impedance parameters. We showed these approaches
are equivalent: they all either succeed and find the high-voltage
power flow solution, or they all fail and no power flow solution
exists to be found. In the former case, we established several
desirable properties of the power flow solution found by each
method. While some of these approaches were known, this is
the first paper to systematically study the connections between
these approaches.

These results form a solid foundation for further investiga-
tion. Immediate future work will study relaxing the assump-
tions from Section I-A. Establishing analogous results for
meshed power networks remains an open problem.

APPENDIX

SUPPORTING LEMMAS

Lemma 1: There exist v ∈ R
n
>0 and c ∈ R|E | satisfying (7)

if and only if there exists v ∈ R
n
>0 satisfying

Bivi −
∑

k∈N (i)

Bik

√
vivk − s2

ik ≤ qi, ∀i ∈ [n]. (17)

Proof: The second constraint of (7) implies that

−
√

vivk − s2
ik ≤ cik ≤

√
vivk − s2

ik.

If (7) does not hold for cik =
√

vivk − s2
ik, it cannot hold for

any other value of cik. We can therefore rewrite the relaxation

as Bivi −∑
k∈N (i) Bik

√
vivk − s2

ik ≤ qi .
Lemma 2: Any solution to g(v) ≥ v satisfies v ≤ vmax.

Further, we have g(vmax) ≤ vmax.

Proof: The proof relies on the inequality
√

vivk − s2
ik ≤√

vivk ≤ vi+vk
2 . We apply this to g to obtain:

gi(v)− vi ≤ qi

Bi
+

∑

k∈N (i)

Bik

Bi

vi + vk

2
− vi

= qi +∑
k∈N (i)

Bik
2 (vk − vi)

Bi
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In vector notation, this inequality can be written as

g(v)− v ≤ (Bred)
−1

(
q− 1

2
(Lredv+ Lr0)

)

= 1

2
(Bred)

−1Lred(v
max − v) (18)

where A = B−1
redLred/2 and we used −L−1

redLr0 = �n and the
definition of vmax. A is an M-matrix (since Lred is a principal
submatrix of a Laplacian of a connected graph and hence an
M-matrix, Bred is diagonal matrix with positive entries). By
Lemma 4, we find that v ≤ vmax. Further, plugging in v = vmax

in (18), we obtain g(vmax) ≤ vmax.
Lemma 3: Define g̃(γ ) = Bred(exp(γ )− g(exp(γ ))). Then

2 ∂ g̃
∂γ

is equal to the matrix in the LHS of (13a) after substituting

v = exp(γ ) and cik =
√

exp(γi + γk)− s2
ik.

Proof: Using the definitions of g, g̃, we have

g̃i(γ ) = Bi exp(γi)−
∑

k

Bik

√
exp(γi + γk)− s2

ik − qi.

For any k �= i, we have

∂ g̃i

∂γk
= −Bik

2

exp(γi + γk)√
exp(γi + γk)− s2

ik

= −Bik

2

√
vivk

cik
.

For k = i, we have

∂ g̃i

∂γi
= Bi exp(γi)−

∑

k

Bik

2

exp(γi + γk)√
exp(γi + γk)− s2

ik

= Bivi −
∑

k

Bik

2

√
vivk

cik
.

Comparing these values with the LHS of (13a), it is easy to
see that the matrix on the LHS of (13a) is simply 2 ∂ g̃

∂γ
.

Theorem 4 (Knaster-Tarski Theorem [24]/Kantorovich
Lemma [25]): Let F : [a, b] �→ [a, b] be a continuous map
where a, b ∈ Rn, a ≤ b such that F is monotone:

F(x) ≥ F(x′) ∀x, x′ ∈ [a, b], x ≥ x′.

Define A = {x ∈ [a, b] : F(x) ≥ x}, B = {x ∈ [a, b] : F(x) ≤
x}. F has a maximal fixed point x� (x ≤ x� ∀x ∈ A) and a
minimal fixed point x� (x� ≤ x ∀x ∈ B). The iteration x(i+1)←
F(x(i)) initialized at x(0) = b converges to x�.

Lemma 4 [26]: If A ∈ Rn×n is an irreducible Z-matrix, the
following statements are equivalent: (i) A is an M-matrix; (ii)
there exists x ≥ 0 such that Ax > 0; (iii) −A is Hurwitz;
(iv) A−1 > 0 entry-wise; (v) Ax ≥ 0 entry-wise ⇒ x ≥ 0
entry-wise for all x ∈ Rn.
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