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Abstract— In this paper we investigate the performance of
linear networked dynamical systems over digraphs with a
globally reachable node. We consider first and second order
systems subject to distributed disturbances and define an output
that quantifies the performance through the input-output H2

norm of the system. We develop a generalized framework for
computing the H2 norm for this class of systems, and apply this
framework to evaluate two performance measures for systems
whose underlying network graphs result in normal weighted
graph Laplacian matrices. We find closed-form solutions for the
measure that quantifies the total deviation of the states from
the average, and bounds on the measure that quantifies the
weighted squared difference between the states of neighboring
nodes. Numerical examples indicate that a second order system
connected over a cycle graph may have better performance
when its underlying graph is directed due to complex eigen-
values of the Laplacian. The results also indicate that the H2

norm of a symmetric system is less than or equal to that of the
corresponding perturbed non-symmetric system for either line
or complete graphs when the network size is sufficiently large.

I. INTRODUCTION

The most commonly studied aspect of linear networked
dynamical systems is stability, i.e. determining conditions
under which the agents in the network reach a synchronized
state [1]–[3]. Once it is known that synchrony can be
achieved, it is worthwhile to investigate the synchronization
performance, e.g. the effort required to restore and/or main-
tain synchrony in the presence of persistent stochastic distur-
bances. This synchronization performance can, for example,
be a measure of the system’s efficiency and/or robustness
and can be evaluated in terms of coherence or the degree of
disorder in distributed consensus [4], [5], and linear oscillator
networks [6], [7]. Performance has also been assessed in
terms of transient real power losses in transmission [8] and
renewable energy integrated power networks [9], as well as
in microgrids [10]. It has also been evaluated in terms of the
effective resistance of undirected graphs [7], which allows
one to leverage efficient computational approaches [11]. Re-
cent progress has been also made for computing the effective
resistance of directed graphs [12], [13]. The effect of the
graph topology on performance has also been investigated
[14], [15], but directed graphs were not considered.

Networked dynamical systems in many contexts can be
modeled as first or second order systems that interact over
a graph through coupling functions, and are subjected to
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distributed disturbances. Performance measures of such sys-
tems are often obtained by defining a system output such
that the desired performance is quantified through the input-
output (IO) H2 norm of the system. Certain H2 norm based
performance measures for systems with underlying graphs
described by a symmetric weighted graph Laplacian can be
obtained in closed form [7]–[10]. Closed form solutions have
also been obtained for first order consensus systems with
normal weighted graph Laplacian matrices [5]. The question
of whether or not one can obtain a closed form expression
for the IO H2 norm for related second order systems that
interact over general digraphs remains open.

In this work, we take a step toward answering this question
by providing a means to compute the performance of linear
networked dynamical systems over digraphs with a globally
reachable node. We consider first and second order systems
subject to distributed disturbance inputs, and specify the
system output so that the squared H2 norm quantifies the
performance of the IO system. We define two performance
measures; one that quantifies the weighted squared differ-
ence between the states of neighboring nodes, and one
that measures the deviation of the states from the average.
The related system outputs can be described in terms of a
weighted symmetric Laplacian matrix that is associated with
an undirected and connected output graph.

We derive a framework for computing the H2 norm for the
class of systems discussed above by first decomposing the IO
system into two subsystems that are associated with the zero
and non-zero eigenvalues of the weighted graph Laplacian
matrix. We show that the states of the subsystem associated
with the zero eigenvalue are unobservable from the output,
and use this fact to provide analytical expressions for the
H2 norm as a function of the observability Gramian of the
subsystem associated with the non-zero eigenvalues of this
Laplacian matrix. Then we apply this framework to systems
whose underlying graphs emit weighted graph Laplacians
that are normal matrices. We obtain the closed-form H2

norm of the second order system for the case in which the
performance measure quantifies the deviation from the state
average. We obtain bounds on the H2 norm of the first order
system with an arbitrary undirected and connected output
graph. Finally, we discuss how our results generalize some
of the existing literature concerning systems with normal and
symmetric weighted Laplacian matrices, and demonstrate
that directed communication can improve performance.

Numerical examples illustrate how the bounds for the
first order system and the exact solutions for both the first
and the second order systems scale with network size for



the special cases of directed and undirected cycle graphs.
Results from a second numerical study suggest that the
H2 norm of a symmetric system might be a lower bound
for the corresponding perturbed non-symmetric system for
sufficiently large networks whose coupling is represented by
either a line or a complete graph.

The remainder of this paper is organized as follows.
Section 2 provides mathematical preleminaries and presents
the system models to be studied. In section 3, we derive
generalized analytical expressions for the H2 norm and
apply these expressions to first and second order systems to
evaluate their performance. Section 4 presents numerical ex-
amples that examine the effect of network size and compare
the performance of symmetric and non-symmetric systems.
Section 5 concludes the paper.

II. PROBLEM FORMULATION
A. Mathematical Preliminaries

Given an IO system

ẋ = Ax +Bw, (1)
y = Cx,

where x ∈ Cn is the state, w ∈ Cq is the input, and y ∈ Cp
is the output, the H2 norm of the corresponding impulse
response function G(t) ∈ Cp×q is defined as ‖G(t)‖22 :=
tr
∫∞

0
G(τ)∗G(τ)dτ = tr

∫∞
0
G(τ)G(τ)∗dτ [16]. The H2

norm of G(t) can be computed as

‖G(t)‖22 = tr (B∗XB), (2)

where X is the observability Gramian of (1) given by X :=∫∞
0
eA

∗τC∗CeAτdτ [16], if the integral converges. X can
be computed from the Lyapunov equation [16]:

A∗X +XA = −C∗C. (3)

Uniqueness of the solution to (3) is determined by the well-
known results given in the following propositions.

Proposition 1: The Lyapunov equation (3) has a unique
solution if and only if σ(A∗) ∩ σ(−A) = ∅.

This result follows directly from Theorem 2.4.4.1 in [17].
Proposition 2: X is the unique solution to the Lyapunov

equation (3) if A is Hurwitz [18].

B. System Models

1) Dynamics: Consider n dynamical systems that com-
municate over a digraph G = {N , E} with a globally
reachable node. Here, N = {1, ..., n} is the set of nodes
and E = {(i, k) | i, k ∈ N , i 6= k} is the set of edges.
The edge weight associated with (i, k) ∈ E is denoted by
rik > 0, and rik = 0 if and only if (i, k) /∈ E .

We consider first order systems of this form with dynamics

ẋi = −
n∑
k=1

rik(xi − xk) + wi,

at each node i ∈ N , where wi denotes the disturbance to the
ith system. In matrix form

ẋ = −Lx + w, (4)

where L denotes the weighted graph Laplacian matrix given
by [L]ii =

∑n
k=1 rik, and [L]ik = −rik if i 6= k, ∀i, k ∈ N .

Second order systems of this form have dynamics

ẍi + kdẋi + kpxi = ui + wi,

at each node i ∈ N , with ui = −γp
∑n
k=1 rik(xi − xk) −

γd
∑n
k=1 rik(ẋi− ẋk) ∀i ∈ N . Here, kp, kd, γp, γd ≥ 0, and

wi denotes the disturbance to the ith system. In matrix form[
ẋ
v̇

]
=

[
0 I

−kpI − γpL −kdI − γdL

] [
x
v

]
+

[
0
I

]
w, (5)

where v := ẋ.
2) Performance Measures and IO Systems: We are in-

terested in evaluating the performance of systems that can
be represented by (4) or (5). We consider two performance
measures described based on the interaction of the systems
over an undirected and connected output graph Gout =
{N , Eout}. The first measure is a function of the states xi,
and the edge weights gik > 0 associated with (i, k) ∈ Eout:

P := lim
t→∞

E


n∑

i,k=1

gik(xi − xk)2

 , (6)

where gik = 0 if and only if (i, k) /∈ Eout, and E{·} denotes
the expected value. Since Gout is undirected, gik = gki
∀(i, k) ∈ Eout, and since it is connected, there exists a path
between any i, k ∈ N . Therefore,

P = lim
t→∞

E{xᵀLgx}, (7)

where Lg denotes the symmetric weighted Laplacian matrix
associated with Gout, given by [Lg]ii =

∑n
k=1 gik, and

[Lg]ik = −gik if i 6= k, ∀i, k ∈ N .
The second performance measure is the total steady-state

variance of the difference between each state xi and the
average:

PΠ := lim
t→∞

E

{
n∑
i=1

[xi − (
1

n

n∑
i=1

xi)]
2

}
, (8)

which can equivalently be written as

PΠ = lim
t→∞

E {xᵀΠx} , (9)

where Π := (I − 1
n11

ᵀ) and 1 = [1 . . . 1]ᵀ.
Remark 1: PΠ can be interpreted as a special case of P

in (7) where Lg = Π is the weighted Laplacian matrix of an
undirected complete graph with uniform edge weights 1

n .
The performance measure in (7) is the aggregate weighted

local state error of neighboring nodes in Gout and it reduces
to (9), which is the total error from the global mean, when
Gout is such that any two nodes are neighbors with equal
weight. When the systems (4) and (5) are subject to persistent
stochastic disturbances, (7) and (9) are both measures of the
degree of disorder and robustness in distributed consensus
[4], [5], and linear oscillator networks [6], [7]. The metric
in (7) also quantifies the total transient real power losses
in transmission [8] and renewable energy integrated power
networks [9], as well as in inverter based microgrids [10].



If we define the system output y := L
1/2
g x, we have

ẋ = −Lx + w (10)

y = L1/2
g x,

and[
ẋ
v̇

]
=

[
0 I

−kpI − γpL −kdI − γdL

] [
x
v

]
+

[
0
I

]
w (11)

y =
[
L

1/2
g 0

] [
x
v

]
.

We will refer to the IO systems (10) and (11) by their impulse
response functions. The functions for both systems will be
denoted by GΠ(t) if Lg = Π, and G(t) if Lg is an arbitrary
symmetric weighted Laplacian matrix associated with Gout.

The squared H2 norm quantifies the steady-state variance
of the output if the input is white noise with unit covariance
E{w(τ)w(t)ᵀ} = δ(t− τ)I [8]:

‖G(t)‖22 = lim
t→∞

E{y(t)ᵀy(t)}. (12)

Assuming an input of this type and using the interpretation
in (12), the H2 norms of G(t) and GΠ(t) quantify the
performance measures given by (7) and (9), respectively.

III. ANALYTICAL RESULTS
In this section, we block-diagonalize systems (10) and

(11). Then, we decompose the dynamics into two subsys-
tems; one associated with the zero eigenvalue of the weighted
graph Laplacian matrix L, and one associated with the rest
of the eigenvalues. The states of the subsystem associated
with the zero eigenvalue are shown to be unobservable from
the output. We then exploit this fact to derive analytical
expressions for theH2 norm in terms of the parameters of the
second subsystem. Finally, the framework is applied to sys-
tems whose underlying interconnection can be represented
by normal weighted Laplacian matrices. We obtain a closed-
form solution for PΠ in (9) for the second order system, and
bounds on P in (7) for the first order system.

Prior to stating the main results, we investigate the spectral
properties of L and Lg through the following lemmas.

Lemma 1: L can be decomposed as L = RJR−1, where
R ∈ Cn×n is invertible, J ∈ Cn×n is given by

J =

[
0 0ᵀ

n−1

0n−1 J2

]
, (13)

and J2 ∈ Cn−1×n−1 is in Jordan Canonical Form. If we
define σ(J) := {λi|i = 1, . . . , n} and λ1 = 0, then Re[λi] ∈
R>0 for i = 2, . . . , n. Furthermore, R =

[
1/
√
n R2

]
and

R−1 =
[
q Q∗2

]∗
, where q∗ ∈ C1×n is the normalized left

eigenvector of λ1 = 0, R2 ∈ Cn×n−1, Q2 ∈ Cn−1×n.
Proof: Since L is a Laplacian matrix, L1 = 0. Also,

G having a globally reachable node implies that the zero
eigenvalue has algebraic multiplicity 1 (Lemma 4 in [19]),
hence 0 /∈ σ(J2). By the Gershgorin disk theorem [17],
Re[λi] ∈ R≥0, and λi is not purely imaginary ∀i. Therefore,
0 /∈ σ(J2) implies that Re[λi] ∈ R>0, for i = 2, . . . , n.

Since L = RJR−1 is a similarity transform, the first
column of R, which is 1/

√
n, and the first row of R−1

are the respective normalized right and left eigenvectors
associated with λ1 = 0.

Lemma 2: Lg can be decomposed as Lg = UDUᵀ, where
U ∈ Rn×n is orthogonal, i.e., UUᵀ = In and

D =

[
0 0ᵀ

n−1

0n−1 D2

]
, (14)

where D2 ∈ Rn−1×n−1 is diagonal. If we define σ(D) :=
{µi|i = 1, . . . , n} and µ1 = 0, then 0 /∈ {µi|i = 2, . . . , n} =
σ(D2) ⊆ R>0. Furthermore, U =

[
1/
√
n U2

]
, where

U2 ∈ Rn×n−1 has orthonormal columns.
Proof: The result follows from Lemma 1 and the fact

that Gout is undirected and connected.
Remark 2: If Lg = Π, Lg is a projection matrix with

eigenvalues 0, 1, . . . , 1, i.e. D2 = In−1. Then, the columns
of U2 can be chosen as any orthonormal basis spanning the
subspace of Rn that is orthogonal to 1.

Since 0 ∈ σ(L), by Proposition 1, the solution to the
Lyapunov equation in (3) is not unique. In order to overcome
this issue, we block-diagonalize the systems (10) and (11)
by invoking lemmas 1 and 2 to show that the subsystem
associated with the zero eigenvalue does not contribute to
the H2 norm. The next two subsections use this approach to
derive the main results of this work.

A. First Order Systems

The following theorem presents a result for the first order
system in (10), which provides a means of obtaining the
performance measures P and PΠ in (7) and (9).

Theorem 1: System (10) can be transformed into the
block-diagonal system Ĝ(t) with subsystems Ĝ1(t), Ĝ2(t):

˙̂x =

[
Â1 0ᵀ

n−1

0n−1 Â2

]
x̂ +

[
B̂1 0ᵀ

n−1

0n−1 B̂2

]
ŵ (15)

ŷ =

[
Ĉ1 0ᵀ

n−1

0n−1 Ĉ2

]
x̂,

through the relationship G(t) = UĜ(t)R−1, where x̂ :=
R−1x denotes the state, ŵ := R−1w denotes the disturbance
input, and ŷ := Uᵀy denotes the output. Ĝ1(t) is given by
Â1 = 0, B̂1 = 1, Ĉ1 = 0, and Ĝ2(t) is given by Â2 = −J2,
B̂2 = In−1, Ĉ2 = D

1/2
2 Uᵀ

2R2.
Furthermore, the squared H2 norm of G(t) is given by:

‖G‖22 = tr (Q∗2X̂2Q2), (16)

where X̂2 is the observability Gramian of Ĝ2(t), which is
the unique solution to the Lyapunov equation:

J∗2 X̂2 + X̂2J2 = Ĉ∗2 Ĉ2. (17)

Proof: By lemmas 1 and 2, (10) can be rewritten as

ẋ = −RJR−1x + w

y = UD1/2Uᵀx,

which can be transformed into the system in (15) as

˙̂x = −J x̂ + ŵ

ŷ = D1/2UᵀRx̂,



which is denoted by Ĝ(t). Using the definitions of R and U
in lemmas 1 and 2, and the fact that G(t) = UĜ(t)R−1, we
compute the H2 norm of G(t). Since the state x̂1 associated
with λ1 = 0 is unobservable from the output ŷ, Ĝ1(t) does
not contribute to the H2 norm and

‖G‖22 = tr

∫ ∞
0

(R−1)∗Ĝ(τ)∗UᵀUĜ(τ)R−1dτ

= tr

∫ ∞
0

Q∗2e
−J∗

2 τ Ĉ∗2 Ĉ2e
−J2τQ2dτ

= tr

(
Q∗2

∫ ∞
0

e−J
∗
2 τ Ĉ∗2 Ĉ2e

−J2τdτQ2

)
‖G‖22 = tr (Q∗2X̂2Q2).

By Lemma 1, Re[λi] ∈ R>0 for i = 2, . . . , n, therefore X̂2

is the unique solution to (17) due to Proposition 2.
Now we use Theorem 1 to obtain bounds on P in (7) for

the case of a normal weighted Laplacian matrix L.
Corollary 1: Consider the performance measure P in (7),

and suppose that L in system (10) is normal. Then, the
squared H2 norm of G(t) is bounded from above by

‖G‖22 ≤
∑n
i=2 µi

2 mini≥2{Re [λi]}
, (18)

and bounded from below by

‖G‖22 ≥
∑n
i=2 µi

2 maxi≥2{Re [λi]}
. (19)

Proof: Since L is normal, it is unitarily diagonalizable,
i.e. L = RJR∗, and R−1 = R∗, which implies that q = 1,
i.e. L is weight balanced, and Q2 = R∗2 has orthonormal
rows. Since we have J∗2 = J̄2, where J̄2 denotes the complex
conjugate of J2, the Lyapunov equation (17) becomes

J̄2X̂2 + X̂2J2 = Ĉ∗2 Ĉ2.

Using the definition of Ĉ2, and taking the trace of both sides

tr(2 Re [J2]X̂2) = tr(R∗2U2D2U
ᵀ
2R2).

Since Uᵀ
2R2 is unitary, tr(2 Re [J2]X̂2) = tr(D2). Invoking

lemmas 1 and 2, −J2 is Hurwitz, and the Hermitian matrix
Ĉ∗2 Ĉ2 is positive definite. Combining these facts we have
that X̂2 is Hermitian and positive definite. Using the trace
inequality (4) in [20],

tr(D2)

2 maxi≥2{Re [λi]}
≤ tr(X̂2) ≤ tr(D2)

2 mini≥2{Re [λi]}
. (20)

Using the fact that ‖G‖22 = tr (X̂2Q2Q
∗
2) = tr (X̂2R

∗
2R2) =

tr (X̂2), we reach the desired result.
The rate of convergence to consensus, which is the rate at
which all the states reach a consensus value, is determined
by mini≥2{Re [λi]}, therefore maximizing this value would
result in a better rate of convergence. As the result of
Corollary 1 indicates, maximizing this value would also
decrease the upper bound on the H2 norm, resulting in a
tighter performance threshold. Bounds also become tighter
with a smaller value of maxi≥2{Re [λi]}−mini≥2{Re [λi]}.

1) Relationship to Previous Results: We now present
propositions showing that Theorem 1 reduces to previously
known results under certain conditions. The result in Propo-
sition 3 provides a first order version of Equation (13) in [8],
which considers the total transient resistive losses in power
networks.

Proposition 3: Consider the performance measure P in
(7), and suppose that L = Lg in system (10). Then, the
squared H2 norm of G(t) is given by

‖G‖22 = tr (X̂2) =
1

2
(n− 1). (21)

Proof: The result follows from applying Theorem 1,
and using the fact that R2 = U2 and Q2 = Uᵀ

2 .
The result of Proposition 4, which was given in [5],

provides a closed-form solution to PΠ for first order systems
whose underlying interconnection can be represented by
normal weighted Laplacian matrices.

Proposition 4: Consider the performance measure PΠ in
(9), and suppose that L in system (10) is normal. Then, the
squared H2 norm of GΠ(t) is given by

‖GΠ‖22 =

n∑
i=2

1

2 Re[λi]
. (22)

Proof: The result follows from invoking Remark 2,
applying Theorem 1 and using the fact that J2 is diagonal
and Q2 = R∗2 has orthonormal rows.

Next, we apply a similar framework to obtain analogous
results for second order systems of the form (11).

B. Second Order Systems

The second order system results are also based on the
decomposition of G(t) into subsystems associated with zero
and non-zero eigenvalues of the weighted graph Laplacian
L. Theorem 2 presents the associated result, which provides
a means of obtaining the performance measures P and PΠ

in (7) and (9) for second order systems of the form (11).
Theorem 2: System (11) can be transformed into the

block-diagonal system Ĝ(t) with subsystems Ĝ1(t), Ĝ2(t):

ψ̇ =

[
Â1 02×(2n−2)

0(2n−2)×2 Â2

]
ψ +

[
B̂1 02×(n−1)

02n−2 B̂2

]
ŵ

(23)

ŷ =

[
Ĉ1 0ᵀ

2n−2

0(n−1)×2 Ĉ2

]
ψ

through the relationship G(t) = UĜ(t)R−1, where ψ :=

T

[
x̂
v̂

]
denotes the state with x̂ := R−1x and v̂ := R−1v,

ŵ := R−1w denotes the disturbance input, ŷ := Uᵀy
denotes the output, and T denotes the permutation matrix

T :=
[
e1 en+1 e3 . . . en e2 en+2 . . . e2n

]
, (24)

with the standard basis vectors ei for R2n, for i = 1, . . . , 2n.

The subsystem Ĝ1(t) is given by Â1 =

[
0 1
−kp −kd

]
,

B̂1 =
[
0 1

]ᵀ
, and Ĉ1 =

[
0 0

]
. The subsystem Ĝ2(t)



is given by Â2
1, B̂2 =

[
0(n−1)×(n−1) In−1

]ᵀ
, and Ĉ2 =[

D
1/2
2 Uᵀ

2R2T2 0n−1×n−1

]
, where T2 denotes the permu-

tation matrix T2 =
[
α2 α3 . . . αn−1 α1

]
, and αi

denotes the ith standard basis vector for Rn−1.
Furthermore, if the solutions to

η2 + (kd + γdλi)η + kp + γpλi = 0, i = 2, . . . , n.

are such that Re[η] < 0, then Â2 is Hurwitz, and the squared
H2 norm of G(t) is given by

‖G‖22 = tr (Q∗2B̂
ᵀ
2 X̂2B̂2Q2). (25)

Here X̂2 is the observability Gramian of Ĝ2(t), which is the
unique solution to the Lyapunov equation:

Â∗2X̂2 + X̂2Â2 = −Ĉ∗2 Ĉ2. (26)

Proof: Invoking lemmas 1 and 2, and using the defini-
tions of x̂, v̂, ŵ and ŷ, we re-write (11) as[

˙̂x
˙̂v

]
=

[
0 I

−kpI − γpJ −kdI − γdJ

] [
x̂
v̂

]
+

[
0
I

]
ŵ

ŷ =
[
D1/2UᵀR 0

] [x̂
v̂

]
.

Using (24) and the definition of ψ, we obtain

ψ̇ = T

[
0 I

−kpI − γpJ −kdI − γdJ

]
T ᵀψ + T

[
0
I

]
ŵ

ŷ =

[[
0 0ᵀ

n−1

0n−1 D
1/2
2 Uᵀ

2R2

]
0

]
T ᵀψ.

Evaluating this expression leads to the system (23), i.e. Ĝ(t).
Applying the definition of the impulse response function

results in G(t) = UĜ(t)R−1. Since the states of Ĝ1(t), i.e.
the system associated with λ1 = 0, are unobservable from
the output ŷ, Ĝ1(t) does not contribute to the H2 norm:

‖G‖22 = tr

∫ ∞
0

(R−1)∗Ĝ(τ)∗UᵀUĜ(τ)R−1dτ

= tr

∫ ∞
0

Q∗2B̂
ᵀ
2 e
−Â∗

2τ Ĉ∗2 Ĉ2e
−Â2τ B̂2Q2dτ

= tr

(
Q∗2B̂

ᵀ
2

∫ ∞
0

e−Â
∗
2τ Ĉ∗2 Ĉ2e

−Â2τdτB̂2Q2

)
‖G‖22 = tr (Q∗2B̂

ᵀ
2 X̂2B̂2Q2).

It remains to show that X̂2, the observability Gramian of
Ĝ2(t), is the unique solution to the Lyapunov equation (26).
The eigenvalues of Â are the solutions to

η2 + (kd + γdλi)η + kp + γpλi = 0, i = 1, . . . , n. (27)

where λi ∈ σ(L) = σ(J). For i = 1, λ1 = 0, which
determines the characteristic equation of Â1. Then, for i =
2, . . . , n, we have n − 1 equations characterizing σ(Â2),
which by assumption satisfy Re[η] < 0, so Â2 is Hurwitz.
Then by Proposition 2, X̂2 is unique.

1Â2 is not given explicitly for the sake of brevity.

Theorem 2 shows that the H2 norm of system (11) is
determined by the subsystem Ĝ2(t) associated with the non-
zero eigenvalues of L.

Remark 3: The change of basis applied in Theorem 2 is
common in the literature and it is known that Â2 character-
izes convergence in consensus networks [1], [21]. Theorem
2 shows that the associated subsystem Ĝ2 also characterizes
the performance of the full system.

Using Theorem 2, we now study the measures P in (7)
and PΠ in (9) for the special case of normal L.

The following lemma, which will be useful for the anal-
yses that follow, states a condition on kp, kd, γp and γd that
is implied by Â2 being Hurwitz.

Lemma 3: Let λ ∈ C such that Re[λ] > 0. If the roots of
η2 + (kd + γdλ)η + kp + γpλ = 0 are such that Re[η] < 0,
then kp, γp or kd, γd are not both zero.

Proof: If kp = γp = 0, then η = 0. If kd = γd = 0,
we have η2 + c = 0, where c = kp + γpλ. Since kp, γp ≥ 0,
and Re[λ] > 0 we can write c as c = a+ ib with a ≥ 0, and
b ∈ R. b = 0 gives Re[η] = 0, so we assume b 6= 0. We can
also write −c in phasor form as −c = mejθ, m ≥ 0, and
θ ∈ R, so that η2 = mejθ, which gives

η = ±
√
mejθ/2 = ±

√
m(cos (θ/2) + j sin (θ/2)).

Since b 6= 0, the magnitude of c is non-zero, i.e. m 6= 0,
then it cannot hold that Re[η] < 0.

Corollary 2: Consider the performance measure PΠ in
(9). Suppose L in system (11) is normal and the solutions to

η2 + (kd + γdλi)η + kp + γpλi = 0, i = 2, . . . , n

are such that Re[η] < 0. Then, the squared H2 norm of
GΠ(t) is given by

‖GΠ‖22 =

n∑
i=2

φi
2(αiφ2

i + βiξiφi − β2
i )
, (28)

where αi = kp + γp Re[λi], φi = kd + γd Re[λi], βi =
γp Im[λi] and ξi = γd Im[λi].

Proof: Since L is normal, J in (13) is diagonal. By
invoking Remark 2, D2 = In−1, and we can choose U = R,
so that Ĉ2 =

[
In−1 0n−1×n−1

]
.

Defining the states ψ̃ := T̃

[
x̂
v̂

]
, where T̃ denotes

T̃ :=
[
e1 en+1 e2 en+2 . . . en−1 e2n−1 en e2n

]ᵀ
,

and ei are the standard basis vectors for R2n, for i =
1, . . . , 2n, we can block diagonalize the system into n
subsystems, each of which is given by[

˙̃
ψ2i−1

˙̃
ψ2i

]
=

[
0 1

−kp − γpλi −kd − γdλi

] [
ψ̃2i−1

ψ̃2i

]
+

[
0
1

]
ŵi

ŷi =
[
1 0

] [ψ̃2i−1

ψ̃2i

]
, (29)

∀i ∈ {1, . . . , n}. Note that, the IO system above corresponds
to Ĝ1(t) for i = 1, and Ĝ2(t) for i = 2, . . . , n. X̂2 is also
block diagonal per (26), and each of its n−1 blocks is given



by the observability Gramian of (29), which we will denote
by X̂(i)

2 ∀i ∈ {2, . . . , n}.
Using the properties of the trace, (25) gives

‖GΠ‖22 = tr (B̂ᵀ
2 X̂2B̂2Q2Q

∗
2) = tr (B̂ᵀ

2 X̂2B̂2U
ᵀ
2 U2) =

tr (B̂ᵀ
2 X̂2B̂2) =

∑n
i=2

[
0 1

]
X̂

(i)
2

[
0 1

]ᵀ
. Invoking

Lemma 3 and solving the Lyapunov equation of (29):[
0 1

]
X̂

(i)
2

[
0
1

]
=

φi
2(αiφ2

i + βiξiφi − β2
i )
.

Summing the above over i = 2, . . . , n gives the result.
In contrast to the result for the first order system in

Proposition 4, the H2 norm of (9) is a function of higher
order terms that depend both on Re[λi] and Im[λi].

Remark 4: The H2 norm in (28) is independent of Im[λi]
if and only if βiξiφi − β2

i = 0. This holds if Im[λi] = 0 or
L is symmetric or γp = 0.

If βiξiφi − β2
i = 0, Equation (28) reduces to

‖GΠ‖22 =

n∑
i=2

1

2(kp + γp Re[λi])(kd + γd Re[λi])
. (30)

Depending on the values of kp, kd, γp and γd in (30), the
denominator in (28) can be quadratic in Re[λi], which could
indicate a smaller H2 norm for sufficiently large Re[λi],
hence better performance compared to the first order system.

The following Corollary presents a special case that
demonstrates the effect of the imaginary parts of the
weighted Laplacian matrix eigenvalues on the computation
of the H2 norm for second order systems.

Corollary 3: Consider the performance measure PΠ in
(9). Let GΠ and G′Π be two systems with realization (11),
respective communication graphs G and G′ and associated
weighted Laplacian matrices L and L′. Suppose that L and
L′ are normal, σ(L′) = {Re[λi]|λi ∈ σ(L), i = 1, . . . , n}
and the solutions to

η2 + (kd + γdλi)η + kp + γpλi = 0, i = 2, . . . , n

are such that Re[η] < 0. If

γd(kd + γd Re[λi])− γp ≥ 0, i = 2, . . . , n, (31)

then ‖GΠ‖22 ≤ ‖G′Π‖22.
Proof: Invoking Remark 4, ‖G′Π‖22 is given by (30).

Condition (31) implies that βiξiφi − β2
i ≥ 0, therefore

φi
2(αiφ2

i + βiξiφi − β2
i )
≤ 1

2αiφi
, i = 2, . . . , n. (32)

Summation of the inequalities in (32) gives the result.
Corollary 3 shows one can achieve a more coherent system

through an appropriate choice of control gains if the weighted
Laplacian eigenvalues have non-zero imaginary parts. This
idea will be studied further in Section 4.

1) Relationship to Previous Results: We now present
propositions which show that Theorem 2 can also be used
to obtain some previous results from the literature.

Propositions 5 and 6 show that under certain conditions,
Theorem 2 leads to the results associated with linear oscil-
lator networks over undirected graphs [7], [8].

Proposition 5: Consider the performance measure P in
(7). Suppose L = Lg in system (11) and the solutions to

η2 + (kd + γdλi)η + kp + γpλi = 0, i = 2, . . . , n.

are such that Re[η] < 0. Then, the squared H2 norm of G(t)
is given by

‖G‖22 =

n∑
i=2

λi
2(kp + γpλi)(kd + γdλi)

. (33)

Proof: The result follows from the block-
diagonalization framework used in the proof of Corollary 2
and the fact that J = D and R = U .

Equation (34) in Proposition 6 quantifies the transient
resistive losses in power transmission networks [8].

Proposition 6: Consider the performance measure P in
(7). Suppose that L = Lg in system (11). If kp = γd = 0,
and kd, γp > 0, the squared H2 norm of G(t) is given by

‖G‖22 =
1

2kdγp
(n− 1). (34)

If kp = kd = 0, and γp, γd > 0, the squared H2 norm of
G(t) is given by

‖G‖22 =
1

2γpγd

n∑
i=2

1

λi
. (35)

Proof: The result follows directly from (33).
Next, we present numerical examples that provide further

insight into the analytical results.

IV. NUMERICAL EXAMPLES

First, we simulate the systems given by (10) and (11)
connected over a directed cycle graph with unit edge weights
and an undirected cycle graph with edge weights 1

2 . The
eigenvalues of L associated with the latter are the real
parts of the eigenvalues of the former, which are given by
1+ejπ(1− 2k

n ), k = 0, . . . , n−1 [5]. We study the performance
measure PΠ as a special case of P , since exact solutions
to this H2 norm can be computed using Proposition 4 and
Corollary 2. In Fig. 1(a), we examine how the bounds on
the H2 norm for the first order system given in Corollary
1, scale compare to the exact solutions. The bounds become
looser as the network size increases. Since the H2 norm only
depends on the real parts of the weighted Laplacian matrix
eigenvalues, the exact solutions and the bounds are equal
for directed and undirected cycle graphs. In Fig. 1(b), we
compare the H2 norm values for second order systems with
directed and undirected cycle graphs, which are computed
using Corollary 2. For kp = kd = γp = γd = 1, Corollary 3
indicates that the undirected cycle graph is an upper bound
for the directed cycle graph. This result is confirmed in
Fig. 1(b). Also note that the second order system has a
smaller H2 norm compared to the first order system since
the denominator in (30) is quadratic in Re[λi].

In Fig. 2, we study the performance measure P for the
first and the second order systems over line and complete
graphs. For the second order system, we focus on the cases



Fig. 1. Performance measure PΠ in (9) for directed and undirected cycle
graphs for (a) first, and (b) second order systems (10) and (11). Upper and
lower bounds are also provided for the first order system.

Fig. 2. Performance measure P in (7) for systems with non-symmetric
(perturbed), and symmetric Laplacian matrices for (a) line, and (b) complete
graphs with unit edge weights. For cases 1 and 2, kd = 1, γp = 1 and
γp = γd = 1, respectively, and the other parameters are zero.

given in Proposition 6. In each example, we compare the
H2 norms of the systems with symmetric and non-symmetric
Laplacian matrices. For the symmetric case, we set L = Lg ,
and gik = 1,∀(i, k) ∈ E . For the non-symmetric case, we
define a perturbation to the edge weights ∆gik = 0.2, so
that the edge weights become gik + ∆gik, if i > k, and
gik − ∆gik, if i < k ∀(i, k) ∈ E . Then, the resulting
weighted Laplacian matrix is associated with a digraph for
which (i, k) ∈ E ⇐⇒ (k, i) ∈ E , ∀i, k ∈ N . In this
setting, every node is globally reachable, so the graph is
strongly connected. Fig. 2 shows that the H2 norms of the
systems with non-symmetric graph Laplacians are greater
than or equal to those with symmetric graph Laplacians for
systems connected over line graphs with a sufficiently large
number of nodes. In all cases given for the complete graph
in Fig. 2, the H2 norms of the non-symmetric systems are
greater than or equal to that of their symmetric counterparts.
Further analytical investigation of the conditions under which
the H2 norm of a symmetric system can serve as a lower
bound for that of the corresponding perturbed non-symmetric
system is a direction for future work.

V. CONCLUSIONS AND FUTURE WORK

We have studied the performance of first and second order
linear networked dynamical systems over digraphs with a
globally reachable node. Our main results focus on systems
whose underlying interconnection can be represented by
normal weighted Laplacian matrices. For the second order
system, we obtained a closed-form solution to the H2 norm
that quantifies the deviation of the states from the average.
We also obtained bounds on the H2 norm for the first
order system, when the weighted graph Laplacian matrix
associated with the output graph is symmetric. Our numerical

results show that in certain cases theH2 norm of a symmetric
system serves as a lower bound for that of the corre-
sponding perturbed non-symmetric system. The conditions
under which this holds will be investigated analytically as
future work. Extensions to systems with higher order linear
dynamics is another direction of continuing work.
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