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Phase-coupled Oscillators with Plastic Coupling:
Synchronization and Stability

Andrey Gushchin, Enrique Mallada, and Ao Tang

Abstract—In this article we study synchronization of systems of homogeneous phase-coupled oscillators with plastic coupling
strengths and arbitrary underlying topology. The dynamics of the coupling strength between two oscillators is governed by the phase
difference between these oscillators. We show that, under mild assumptions, such systems are gradient systems, and always achieve
frequency synchronization. Furthermore, we provide sufficient stability and instability conditions that are based on results from
algebraic graph theory. For a special case when underlying topology is a tree, we formulate a criterion (necessary and sufficient
condition) of stability of equilibria. For both, tree and arbitrary topologies, we provide sufficient conditions for phase-locking, i.e.
convergence to a stable equilibrium almost surely. We additionally find conditions when the system possesses a unique stable
equilibrium, and thus, almost global stability follows. Several examples are used to demonstrate variety of equilibria the system has,
their dependence on system’s parameters, and to illustrate differences in behavior of systems with constant and plastic coupling
strengths.

Index Terms—Phase-coupled oscillators, synchronization, plastic coupling, stability, Kuramoto model.
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1 INTRODUCTION

S YNCHRONIZATION of phase-coupled oscillators is an
extensive topic of research that finds applications in a

variety of disciplines including neuroscience [25], [34], [43],
[44], physics [34], [5], mathematics [16] and engineering [10],
[32]. The dynamic behavior of these systems can be quite
rich. For example, the intrinsic symmetry of the network can
produce multiple limit cycles or equilibria with relatively
fixed phases (phase-locked) [3], and the heterogeneity in the
natural oscillation frequency can lead to incoherence [11] or
even chaos [38].

One of the most important properties of a system of
phase-coupled oscillators is how coupling (or interaction)
between oscillators is defined. The Kuramoto model [26] –
a canonical model for studying synchronization phenomena
– uses a trigonometric sin() coupling function that depends
on the phase difference of the two interacting oscillators.
However, broader classes of coupling functions have been
considered – specially in applications to biological systems
– and have proven to lead to richer varieties of dynamic
behaviors [30], [20], [6], [31], [13].

Besides the coupling function, there are two additional
elements that also affect the systems behavior: the coupling
strength (the gain that multiplies the coupling function)
and the interconnection topology (that describes who af-
fects whom). There is a vast body of literature devoted
to understanding the effect of these elements, including
studies of networks with complete graph [36], graph of
diameter two [15] or arbitrary topology [16], [14], [9], [11].
In general, larger (positive) coupling strength and more
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connected topologies tend to promote synchronization and
lead to tightly grouped phase-locked solutions [14], [11].
However, when negative coupling strengths are allowed
among oscillators, new stable phase-locked solutions and
even non-synchronizing traveling waves can appear [19].

Interestingly, a common feature of all these studies is
that the coupling strength is assumed to be fixed. Having
constant coupling strengths generally simplifies the analysis
and allows the theory to provide profound insights on the
behavior of these systems. However, considering varying or
plastic coupling strengths is more suitable for studying os-
cillations in neuroscience, since synaptic neural connections
undergo modifications due to learning or forgetting pro-
cesses [20], [41], [37]. This have motivated some recent em-
pirical studies [8], [35], [39] that seek to understand the effect
of dynamic coupling strength. However, with the exception
of a few studies that consider plastic coupling strength for
complete graph topologies and sinusoidal coupling, there
has not been a systematic study of the dynamical properties
of plastic phase-coupled oscillators.

The goal of this work is to develop a general ana-
lytical framework for studying systems of phase-coupled
homogeneous oscillators with non-constant coupling and
arbitrary underlying topology. We show by providing a
Lyapunov function, that under mild conditions these sys-
tems always achieve frequency synchronization, and de-
rive two sufficient conditions: one for showing stability,
and another one for showing instability of an equilibrium.
Moreover, these conditions characterize all equilibria when
underlying topology is a tree graph. We further characterize
the relationship between the system parameters and its
behavior, as well as the range of admissible asymptotic
coupling strengths. In particular, we show that for almost
all choices of these parameters, the system converges to a
stable equilibrium almost surely.

The structure of the article is the following. Section 2
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formally describes the model, introduces necessary notation
(Subsection 2.1), discusses related work and summarizes
our results (Subsection 2.2). Section 3 provides several ex-
amples that motivate our study. Section 4 contains general
theoretical results: in Subsection 4.1 a Lyapunov function is
introduced and frequency synchronization of oscillators is
shown. Then, in Subsection 4.2 we formulate stability and
instability sufficient conditions. We apply these conditions
in Subsection 4.3 to analyze stability of the in-phase and
anti-phase equilibria. The results presented in Section 4 can
be strengthen when the underlying network topology is a
tree graph as shown in Section 5. In particular, we prove
convergence to a stable equilibrium almost surely in the case
of a general coupling (Subsection 5.1), and almost global
stability in the case of strictly attractive or repulsive con-
nections (Subsection 5.2). Section 6 considers the arbitrary
topology case. More precisely, we show convergence to a
stable equilibrium almost surely using additional assump-
tions on the choice of system’s parameters. Finally, we apply
our stability results to several examples in Section 7, and
conclude in Section 8.

2 PLASTIC PHASE-COUPLED OSCILLATORS

In this section we first formally describe the model, discuss
the meaning of its parameters and define the assumptions
that we will use. We then briefly list related works and
summarize our results.

2.1 Model Description
We study a network of phase-coupled oscillators with plas-
tic coupling strengths whose dynamics are governed by the
following two equations:

φ̇i = ωi +
∑

j∈Ni

Kij · fij(φj − φi), i ∈ V (1a)

K̇ij = sij
(
αij · (Fij(φj − φi) + qij)−Kij

)
, ij ∈ E, (1b)

where E is the set of edges and V the set of vertices.
Equation (1a) defines behavior of an oscillator, and equation
(1b) determines dynamics of the coupling strength. Here φi
is a phase of oscillator i defined on a unit circle S1 so that
all n phase variables are defined on a n-dimensional torus
Tn; ωi is its intrinsic frequency; Ni is a set of oscillators
connected to oscillator i, i.e. the set of its neighbors; Kij

and fij are a coupling strength and a coupling function,
respectively, between connected oscillators i and j.

The positive constants sij in equation (1b) define the
rate of change of the coupling strengths, and Fij(x) ,
−
∫ x
0 fij(t) dt + Cij with a choice of integration constant

Cij that makes
∫ π
0 Fij(t) dt = 0. The parameters qij ∈

(−∞,+∞) and αij > 0 determine the interval of values
that the coupling strength Kij can take. More precisely,
Kij ∈ [αij ·(Fminij +qij), αij ·(Fmaxij +qij)] where Fminij ≤ 0
and Fmaxij ≥ 0 are the minimum and maximum values of
the function Fij , respectively. Two values of qij are of a
special interest: q+

ij , −Fminij ≥ 0 and q−ij , −Fmaxij ≤ 0.
If qij ≥ q+

ij , then the coupling between oscillators i and j is
positive (Kij ≥ 0), while the coupling is negative (Kij ≤ 0)
when qij ≤ q−ij . In particular, when qij = q+

ij = −Fminij

(resp. qij = q−ij = −Fmaxij ), then the coupling strength Kij

Fig. 1: Examples of functions fij satisfying Assumption 1.

takes values from the interval [0, αij ·(Fmaxij −Fminij )] (resp.
[αij · (Fminij − Fmaxij ), 0]).

The topology of system (1) is defined by an undirected
connected graphG = (V,E). Each vertex i ∈ V corresponds
to the oscillator φi, and each edge ij ∈ E corresponds to
the coupling strength Kij , so that |V | = n, where n is a
number of oscillators in a system, andNi = {j ∈ V |ij ∈ E}.
Additionally, if oscillators i and j are not connected, then the
coupling strength between them is always equal to zero, i.e.
Kij ≡ 0 if ij /∈ E. We denote by m the number of edges
in a graph so that |E| = m. Therefore, the total number of
variables and equations in system (1) is n+m. It is assumed
that coupling is symmetric, and Kij and Kji are the same
variable.

System (1) is fairly general and includes other models
studied in the literature as special cases. In particular, when
qij = 0 ∀ i, j and fij(φj − φi) = sin(φj − φi) ∀i, j,
then Fij(φj − φi) = cos(φj − φi) and system (1) becomes
the Kuramoto model with varying coupling strengths also
known as generalized Kuramoto model [41]. We do require
however that the functions fij satisfy the following three
conditions:

Assumption 1 Functions fij ∀ij ∈ E satisfy:

1) Symmetric coupling: fij = fji;
2) Odd: fij(x) = −fij(−x);
3) C1: fij is continuously differentiable.

Examples of two functions fij satisfying these three condi-
tions are shown in Fig. 1.

In this article we study frequency synchronization of sys-
tem (1). We say that system (1) achieves frequency synchro-
nization if φ̇1(t) = · · · = φ̇n(t) = φ̇ and K̇ij(t) = 0 ∀i, j as
t→∞, where φ̇ is a common synchronization frequency. In
the case of homogeneous oscillators, all intrinsic frequencies
of oscillators are equal, i.e. there exists a constant ω such
that ω1 = · · · = ωn = ω. It is easy to see that if such homo-
geneous oscillators synchronize, then their synchronization
frequency is ω. Without loss of generality, we assume that
ω = 0, and in the rest of the article consider the following
system:

φ̇i =
∑

j∈Ni

Kij · fij(φj − φi), i ∈ V (2a)

K̇ij = sij
(
αij · (Fij(φj − φi) + qij)−Kij

)
, ij ∈ E. (2b)

Observe that if
(
φ∗,K∗

)
is an equilibrium of system (2),

then
(
φ∗ + δ1n,K

∗), where 1n is a n-dimensional vector of
ones and δ ∈ R, is also an equilibrium and belongs to the
same limit cycle. We will not differentiate between equilibria
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belonging to the same orbit and thus consider them to be
identical. Therefore, in the rest of the article when we talk
about the stability of an equilibrium

(
φ∗,K∗

)
, we imply

stability of the following set of equilibria: 1

Eφ∗ = {
(
φ,K

)
:
(
φ,K

)
=
(
φ∗ + δ1n,K

∗), δ ∈ R}. (3)

Further, two equilibria (φ̂, K̂) and (φ̄, K̄) of the same system
of plastic phase-coupled oscillators are called topologically
equivalent, if they are characterized by the same phase
differences, i.e. if (φ̂i − φ̂j) = (φ̄i − φ̄j) ∀ij ∈ E, or
if all phase differences are opposite in sign, i.e. when
(φ̂i − φ̂j) = −(φ̄i − φ̄j) ∀ij ∈ E.

2.2 Related Work and Contributions
The plastic phase-coupled oscillator model (1) was initially
introduced in [20] as an extension to the classical Kuramoto
model to capture the behavior of neural networks. Because
the strength of synapses – connections between neurons –
can generally change its value and is believed to play a
key role in learning and memory formation in the brain,
it is natural to consider plastic coupling strengths between
oscillators in the Kuramoto model. A well-known synap-
tic plasticity mechanism called Hebbian rule [18] states
that a synapse between two simultaneously active neurons,
i.e. neurons that spike almost at the same time, becomes
stronger. When neurons are modeled by phase-coupled os-
cillators, simultaneously firing neurons can be represented
by oscillators whose phases are almost equal. This idea
is implied in the model (1) with Fij = cos(), where a
connection between two oscillators becomes stronger if it
is small enough and if the phases of these oscillators are
close to each other.

Previous works have introduced and investigated sev-
eral modifications to (1). For example, in [42], [1], [2] time
delays are considered, and the behavior of the system for
different values of delay parameters is experimentally ex-
plored. In [29] the coupling strength equation of (1) was re-
placed by an exponential Spike Timing-Dependent Plasticity
(STDP) rule, in which a coupling strength’s Kij dependence
on a phase difference (φj − φi) is defined via exponential
function instead of function Fij . In [22] a stochastic model
of oscillators is studied, where equations (1) contain additive
Gaussian noise terms. Synchronization of model (1) with the
complete topology, sin() coupling and qij = 0 is explored in
[17] for both, homogeneous and heterogeneous oscillators.
While in our previous work [13] results were obtained for
model (1) with qij = 0 ∀ ij ∈ E, arbitrary choices of
parameter qij are considered in this work.

The contributions of our work with respect to the exist-
ing literature are manifold. Firstly, we perform a thorough
analytical analysis of the system of plastic phase-coupled
oscillators in contrast to the empirical studies [8], [35],
[39]. Secondly, we consider a fairly general form of the
system: instead of studying plastic coupling based on a
trigonometric sin() [40], [41], [42], [17], we investigate a
general class of coupling functions. We further explore the

1. Alternatively, we could consider phase differences (φi − φj) as
the variables of system (2) and study stability of a single equilibrium
instead of a set (3) of equilibria. This approach will be used in Section
6.

(a) constant coupling (K > 0); plastic coupling (q12 = 2)

(b) constant coupling (K < 0); plastic coupling (q12 = −2)

(c) plastic coupling (q12 = 0)

Fig. 2: Example with two oscillators. Green (filled) circles
correspond to stable equilibria, red (not filled) circles corre-
spond to unstable equilibria.

behavior of model (2) for various values of its parameters
and show how they impact the properties of the model such
as synchronization and stability. Finally, several interesting
and important examples are provided that illustrate specific
features of the system and confirm our theoretical results.

3 MOTIVATING EXAMPLES

In this section we illustrate the differences between the plas-
tic oscillator model (2) and the constant coupling counter
part using several simple examples. The number of os-
cillators in these examples varies from two to four, and,
for illustrative purpose, in this section we assume that
fij(φj − φi) = sin(φj − φi) for all connected oscillators i
and j. We demonstrate with these examples that stability
of equilibria may change if the coupling strength becomes
plastic. Additionally, new equilibria may arise in this case
including scenarios with infinitely many equilibria as shown
in Subsection 3.3. Furthermore, the set of equilibria points
and their stability may depend on the value of the pa-
rameter qij . For each example we consider three types of
coupling strengths: constant equal positive, constant equal
negative, and varying coupling strengths. For the varying
or plastic coupling strength we additionally explore the
cases of strictly positive (qij > q+

ij = 1), strictly negative
(qij < q−ij = −1) and symmetric hybrid (qij = 0) con-
nections. All examples presented here will be used again
for illustrative purposes in Section 7, where we apply our
theoretical results to each example to explore its dynamics
and stability of its equilibria.

3.1 Two Oscillators

A system of two connected homogeneous oscillators with
a constant coupling strength K and a trigonometric sin()
coupling function is described by the following equations:

φ̇i = K · sin(φj − φi), (4)
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where i = 1, j = 2 or i = 2, j = 1. This system
has two topologically distinct equilibria: one is in-phase
and stable: φ1 = φ2 (Fig. 2a-i), and the other one is anti-
phase and unstable: φ2 = φ1 + π (Fig. 2a-ii). When the
coupling strength K is constant and negative, then the set of
equilibria of system (4) remains unchanged, but the in-phase
equilibrium now becomes unstable (Fig. 2b-i), whereas the
anti-phase equilibrium becomes stable (Fig. 2b-ii).

System (2) of two oscillators with a plastic coupling
strength and q12 = 0 contains two sets of equilibria that
are characterized by the following conditions:

1). sin(φ2 − φ1) = 0. If φ1 = φ2, then K = α, and when
φ2 = φ1 + π, then K = −α.

2). K = 0, then cos(φ2−φ1) = 0, i.e. φ2 = φ1 +π/2. The
Jacobian for the system of two oscillators takes form:

J =



−K · cos() K · cos() sin()
K · cos() −K · cos() − sin()
α · s · sin() −α · s · sin() −s


 ,

where sin() = sin(φ2 − φ1) and cos() = cos(φ2 − φ1)
for brevity. It can be easily verified that equilibria from
condition 1) above are stable (Fig. 2c-i, 2c-ii), whereas the
equilibria from condition 2) (when K = 0) are unstable (Fig.
2c-iii).

If the coupling strength is plastic and q12 = 2 (positive
coupling), then the set of equilibria and their stability are
the same as in the case of a constant positive K (Fig. 2a).
Similarly, if q12 = −2 (negative coupling), the equilibria and
stability coincide with the ones corresponding to the case of
a constant negative coupling K (Fig. 2b). This property is a
priori not necessarily true given the fact that system (2) has
a larger state space that can in principle change the stability
of an equilibrium.

Therefore, two observations can be made: all equilibria
of system (4) with constant coupling strength are also equi-
libria of system (2) with plastic coupling strength for each
of three values of q12. The second observation is that when
the coupling strength is non-constant and q12 = 0, a new
set of equilibria emerges. This set, however, contains only
unstable equilibria in the case of two oscillators.

3.2 Three Oscillators

In this subsection we consider an example of three con-
nected homogeneous oscillators. We assume that underlying
topology is a complete graph, which means that each oscil-
lator is connected to two others. When the coupling function
is sin() and coupling strength K is constant, the behavior of
the oscillators is defined by the following set of equations:

φ̇1 = K · sin(φ2 − φ1) +K · sin(φ3 − φ1),

φ̇2 = K · sin(φ1 − φ2) +K · sin(φ3 − φ2),

φ̇3 = K · sin(φ1 − φ3) +K · sin(φ2 − φ3).

(5)

When K > 0, system (5) has 3 topologically distinct equilib-
ria (Fig. 3): one is in-phase when φ1 = φ2 = φ3 and stable
(Fig. 3a-i), another one is φ1 = φ2, φ3 = φ1 +π and unstable
(Fig. 3a-ii), and the last one is defined as φ2 = φ1 + 2π/3,
φ3 = φ1 − 2π/3 and is also unstable (Fig. 3a-iii).

When K < 0, the set of equilibria of system (5) remains
the same. Stability properties of the equilibria, however,

(a) constant coupling (K > 0); plastic coupling (qij = 2)

(b) constant coupling (K < 0)

(c) plastic coupling (qij = 0)

(d) plastic coupling (qij = −2)

Fig. 3: Example with three oscillators. Green (filled) circles
correspond to stable equilibria, red (not filled) circles corre-
spond to unstable equilibria.

change, as in the example with two oscillators. In particular,
the first equilibrium becomes unstable (Fig. 3b-i), and the
last two become stable (Fig. 3b-ii, 3b-iii).

We now consider the case of plastic coupling strengths
while assuming that α12 = α23 = α13 = α > 0. When
qij = 0 ∀ij ∈ E, a detailed description of equilibria was
provided in [13] and is omitted here. The equilibria and their
stability when qij = 0 ∀ij ∈ E are illustrated in Fig. 3c.

When qij = 2 for each edge ij ∈ E, equilibria and their
stability coincide with the case of constant positive coupling
strength (Fig. 3a), but when qij = −2 (∀ij ∈ E), a new equi-
librium emerges (Fig. 3d-iv). At this unstable equilibrium,
(φ2 − φ1) = (φ1 − φ3) ≈ 0.785π, K12 = K13 ≈ −2.7808α,
and K23 ≈ −1.7808α.

From the considered examples of two and three oscilla-
tors several observations can be made. First, each equilib-
rium of a system with constant coupling strengths was also
an equilibrium of the corresponding system with varying
coupling strengths. This is not true, however, for all values
of parameters α and q. Second, stability of these common
equilibria can differ for systems with constant and non-
constant coupling. Third, system (2) can possess additional
equilibria, and moreover, the set of equilibria and their
stability may depend on the parameter q.

3.3 Four Oscillators
We consider here the case of four oscillators connected
by a complete graph. Instead of describing all equilibria
of this system, we will show that system (2) with four
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Fig. 4: Equilibria corresponding to β = π/4 (left) and β =
π/6 (right) for the example with four oscillators.

homogeneous oscillators, sin() coupling, equal αij = α > 0
∀ij ∈ E, and qij = 0 ∀ij ∈ E, has infinitely many
topologically distinct equilibria.

These equilibria can be defined by means of a parameter
β. Then, for each value of β ∈ (0, π/2), phases: φ2 = φ1 +
π/2, φ3 = φ1 + β, φ4 = φ3 − π/2, and coupling strengths
K12 = K34 = 0, K13 = cos(β) · α, K14 = K23 = cos(π/2−
β) ·α = sin(β) ·α, K24 = cos(π−β) ·α = − cos(β) ·α define
an equilibrium. Phases corresponding to this equilibrium
with values of parameter β = π/4 and β = π/6 are shown
in Fig. 4. Notice, that in all such equilibria two coupling
strengths are equal to zero, and edges corresponding to non-
zero coupling strengths form a graph with a ring topology.

The infinite set of equilibria defined for the case of four
oscillators can be generalized for all systems with even n >
2 number of oscillators: φ1 . . . φn

2−1 have the same phase
φ, oscillators φn

2
. . . φn−2 have phase φ − π

2 , and two other
oscillators have phases φn−1 = φ− β and φn = φ− β − π

2 .

4 SYNCHRONIZATION AND STABILITY ANALYSIS

This section contains general results obtained for system
(2) with arbitrary values of parameters qij and arbitrary
underlying topology. We first show in Theorem 1 by pro-
viding a Lyapunov function that system (2) of homogeneous
oscillators is gradient, and thus always converges to a set of
equilibria, i.e. achieves frequency synchronization (Subsec-
tion 4.1). After that we formulate sufficient instability and
stability conditions for equilibria of system (2) with arbitrary
underlying topology and arbitrary qij in Theorems 2 and
3, respectively (Subsection 4.2). We then apply the derived
results to explore the stability of the in-phase and anti-phase
equilibria in Subsection 4.3.

4.1 Frequency Synchronization
In Theorem 1 we prove that system (2) of homogeneous
oscillators is a gradient system and always achieves fre-
quency synchronization. A similar result was obtained in
[40], where a potential function was found for system (2)
and frequency synchronization was shown, but only for the
case of a complete graph topology and for qij = 0, ∀ij ∈ E.
Therefore, Theorem 1 generalizes the result from [40] for
the case of an arbitrary topology and arbitrary values of
parameters qij .

Theorem 1 (Frequency synchronization) System (2) is a
gradient system and achieves frequency synchronization for all
initial values of phases and coupling strengths.

Proof. Notice that all phase variables φi are defined on a n-
dimensional torus Tn which is compact. The result of the
theorem holds if the coupling strengths Kij are defined on
the whole Rm. Indeed, we can provide a potential function
V :

V =−
∑

ij∈E,i>j
KijFij(φi − φj)−

∑

ij∈E,i>j
qijKij

+
1

2

∑

ij∈E,i>j

K2
ij

αij
.

(6)

This function is well-defined, radially unbounded, bounded
below, and it is easy to verify that the derivative of V with
respect to time is:

V̇ = (∇V )T ∗




φ̇i
.
.

φ̇n
K̇21

.

.

K̇n,n−1




= −
n∑

i=1

(φ̇i)
2 −

∑

ij∈E,i>j

(K̇ij)
2

αijsij
.

We can see that V̇ is always non-positive and is equal to
zero if and only if φ̇i = 0 and K̇ij = 0 for all i and j. Thus,
by LaSalle’s Invariance Principle [27], the trajectories of (2)
always converge to a set of equilibria. In other words, for all
initial conditions frequency synchronization occurs.

Remark Notice that Theorem 1 does not imply pointwise
convergence to a single equilibrium. It is also not guaranteed that
equilibria of system (2) are isolated.

4.2 Stability and Instability Conditions

The main results of this subsection are Theorem 2 which is a
sufficient instability condition, and Theorem 3 that defines a
sufficient condition for stability of an equilibrium of system
(2). These results are based on Lyapunov’s indirect method
[24], that states:

1) If Reλi < 0 for all eigenvalues of the Jacobian matrix
J , then equilibrium is asymptotically stable.

2) If Reλi > 0 for at least one eigenvalue of the
Jacobian matrix J , then equilibrium is unstable.

Let B ∈ Rn×m denote an oriented incidence matrix of a
graph that defines underlying topology of system (2). Then
element (i, e) of this matrix is

B(i, e) =





1 if i is the head of e,
−1 if i is the tail of e,
0 otherwise,

(7)

where e is an edge of graph G. Although the definition of
matrix B implies that G is oriented, all properties of this
matrix used in this article do not depend on a particular ori-
entation. Therefore, we assume that for a given undirected
graph G, an arbitrary orientation of its edges is chosen, i.e.
for every undirected edge e = ij one of the nodes i, j is
designated as the head of e, and another one corresponds to
the tail of e.
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Let α ∈ Rm, s ∈ Rm, K ∈ Rm, f ′ ∈ Rm and f ∈ Rm de-
note vectors whose components are αij , sij ,Kij , f ′ij(φj−φi)
and fij(φj − φi), respectively, for each i, j such that ij ∈ E.
We will use symbol ∗ to denote the componentwise product
of vectors. Jacobian of system (2) does not depend on the
values of parameters qij and can be written in a following
way:

J =

[
B 0
0 I

] [ −diag(K ∗ f ′) −diag(f)
−diag(α ∗ s ∗ f) −diag(s)

] [
BT 0
0 I

]
.

The first matrix in the product is of size (n+m)× (m+m),
the second matrix is of size (m+m)× (m+m) and the last
matrix in the product has dimensions (m + m) × (n + m).
Notice that Jacobian J has a trivial eigenvector [1n 0m]T ,
where 1n ∈ Rn is a vector of ones and 0m ∈ Rm is a
vector of zeros with n and m components, respectively. This
eigenvector emerges due to rotational invariance of system
(2) and corresponds to a zero eigenvalue. Since trajectories
of system (2) are orthogonal to the direction of an orbit,
we still can apply Lyapunov’s indirect method to explore
stability of the set (3). If all remaining eigenvalues of the
Jacobian have negative real part, then equilibrium is stable;
if there exists an eigenvalue with a positive real part, then
equilibrium is unstable.

The component of vector f that corresponds to the edge
e = ij is equal to fij(φi − φj) if edge e = ij is oriented
from a tail j to a head i, and thus B(i, e) = 1, B(j, e) =
−1. Similarly, if edge e = ij is oriented from a tail i to a
head j, then B(i, e) = −1, B(j, e) = 1 and component of f
associated with edge ij is equal to fij(φj − φi).

Each partition P of the graph’s vertices into two sets V −

and V + such that V −∩V + = ∅ and V −∪V + = V , defines
a cut C(P ) , {ij ∈ E|i ∈ V −, j ∈ V +}. With each cut
C(P ) we associate a cut vector cP ∈ Rm which is defined
as follows:

cP (e) =





1 if e goes from V − to V +,
−1 if e goes from V + to V −,
0 if e /∈ C(P ).

(8)

We can now formulate the following instabiliy condition
that is similar to Theorem 2 of [30]:

Theorem 2 (Sufficient instability condition) If there
exists a cut C(P ) such that at equilibrium

(
φ∗,K∗

)
of system

(2): ∑

ij∈C(P )

(Kijf
′
ij − αijf2

ij) < 0, (9)

where Kij = K∗ij , f
′
ij = f ′ij(φ

∗
j − φ∗i ) and fij = fij(φ

∗
j − φ∗i ),

then
(
φ∗,K∗

)
is an unstable equilibrium.

Proof. We first show that the Jacobian of system (2) can be
decomposed into a product of matrices D and A:

J = DA, (10)

where D is a positively-definite diagonal matrix, and A
is a symmetric matrix. We then demonstrate that stability
of equilibria of system (2) does not depend on matrix D,
because matrices J and A have the same number of posi-
tive, negative and zero eigenvalues. Next, for matrix A we
provide a vector ~X such that ~XTA ~X > 0, which guarantees
that the symmetric matrix A has a positive eigenvalue and

so does the Jacobian matrix J . This in turn means that an
equilibrium is unstable due to Lyapunov’s indirect method.

Decomposition (10) is possible because system (2) is a
gradient system. Note that the Hessian matrix H(V ) of the
potential function V is symmetric. Let diagonal (n + m) ×
(n+m) matrix D be defined as

D =

[
I 0
0 diag(α ∗ s)

]
, (11)

then, since equations (2) can be written as follows:
[
φ̇

K̇

]
= −D · ∇V, (12)

decomposition (10) exists with A = −H(V ).
We now show that matrices J and A = −H(V ) have the

same numbers of positive, negative and zero eigenvalues.
Observe that if matrix D

1
2 is a square root of matrix D,

then matrices DA and D
1
2AD

1
2 have the same eigenvalues,

because matrix D is positive-definite. This also implies that
Jacobian of system (2) with homogeneous oscillators has
only real eigenvalues. Next, since A is a symmetric matrix
with real entries, it can be diagonalized by an orthogonal
matrix, i.e. there exists a real orthogonal matrix Q such that
A = QGQT , where G is a diagonal matrix. Further, notice
that

D
1
2AD

1
2 = D

1
2QGQTD

1
2 = LGLT , (13)

where matrix L is defined as L = D
1
2Q and is invertible.

Therefore,

QTAQ = L−1(D
1
2AD

1
2 )(L−1)T = G. (14)

By Sylvester’s law of inertia [7], numbers of positive, neg-
ative and zero eigenvalues of matrices A, D

1
2AD

1
2 and G

are equal. Thus, since J = DA and D
1
2AD

1
2 have equal

eigenvalues, then the numbers of positive, negative and zero
eigenvalues of matrices J and A are the same.

We now consider the symmetric matrix A and show
that when condition (9) is satisfied, matrix A has a positive
eigenvalue. We define a symmetric (2m) × (2m) matrix M
to be:

M =

[
diag(K ∗ f ′) diag(f)

diag(f) diag(1/α)

]
, (15)

where 1/α is a vector with components 1/αij , then

A = −
[
B 0
0 I

]
M

[
BT 0
0 I

]
. (16)

We denote:
B̂ =

[
B 0
0 I

]
, (17)

and then
A = −B̂MB̂T . (18)

Now we will assume that there exists a cut C(P ) that
satisfies condition (9). We define a vector ~Y ∈ R2m to be:

~Y =

[
cP

−cP ∗ f ∗ α
]
, (19)

where cP is a cut vector associated with the cut C(P ), and
multiplication in −cP ∗ f ∗ α is componentwise.

It can be verified that the sum from (9) is equal to
~Y TM~Y . Indeed, if an edge k (1 ≤ k ≤ m) belongs to the
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cutC(P ), then ~Yk = ±1 and ~Yk+m = ∓fkαk. The summand
number k in ~Y TM~Y is equal to:

Y 2
kKkf

′
k + 2YkYm+kfk +

Y 2
m+k

αk
= Kkf

′
k − 2f2

kαk + f2
kαk = Kkf

′
k − f2

kαk,

(20)

which is also the kth summand of the sum (9).
The cut space of the graph G is defined as a space

spanned by all cut vectors cP . It is known (see for example
[4]) that the range of BT is the cut space of G. Therefore,
for the cut vector cP there exists a vector ~x1 ∈ Rn such that
cP = BT~x1. Therefore,

~Y =

[
BT~x1

−cP ∗ f ∗ α
]

=

[
BT 0
0 I

]
·
[

~x1

−cP ∗ f ∗ α
]

= B̂T ~X,

(21)

where ~X =

[
~x1

−cP ∗ f ∗ α
]
∈ Rn+m. Finally,

0 > ~Y TM~Y = ~XT B̂MB̂T ~X = − ~XTA ~X, (22)

which means that there is a vector ~X such that ~XTA ~X > 0
and thus symmetric matrix A has a positive eigenvalue
which implies that Jacobian J has also a positive eigenvalue.
Therefore, equilibrium

(
φ∗,K∗

)
is unstable.

We now formulate a sufficient condition for an equilib-
rium of system (2) to be stable.

Theorem 3 (Sufficient stability condition) If at equilib-
rium

(
φ∗,K∗

)
of system (2), for each ij ∈ E:

Kijf
′
ij − αijf2

ij > 0, (23)

where Kij = K∗ij , f
′
ij = f ′ij(φ

∗
j − φ∗i ) and fij = fij(φ

∗
j − φ∗i ),

then equilibrium
(
φ∗,K∗

)
is asymptotically stable.

Proof. All eigenvalues of the Jacobian of system (2) are real.
To apply Lyapunov’s indirect method, we need to show that
at equilibrium

(
φ∗,K∗

)
Jacobian has only negative eigen-

values. However, it has always at least one zero eigenvalue
that corresponds to the rotational invariance of the system:
if all phases φi (i = 1, . . . , n) are simultaneously shifted by
the same value, the system does not change. The eigenvector
associated with this zero eigenvalue is a vector [1n 0m]T . As
previously mentioned, in this article we do not distinguish
equilibria that belong to the same set (3), and thus study
stability of the whole set Eφ∗ . To show stability of Eφ∗ using
an indirect Lyapunov’s method, we need to show that all
remaining eigenvalues of the Jacobian are strictly negative.

In the proof of Theorem 2 it was shown that the Jacobian
matrix J and symmetric matrix A have the same numbers
of negative, positive and zero eigenvalues. This means that
matrix A also possesses a zero eigenvalue corresponding
to the rotational invariance. Moreover, it is easy to see
that vector [1n 0m]T is also an eigenvector of matrix A
associated with a zero eigenvalue. Therefore, to prove that
equilibrium

(
φ∗,K∗

)
is stable, it is sufficient to demonstrate

that all eigenvalues of matrix A are negative (except for one
zero eigenvalue corresponding to the rotational invariance),
or that ~XTA ~X < 0 for all non-zero vectors ~X ∈ Rn+m,
~X 6∈ span

(
[1n 0m]T

)
, since A is symmetric.

Notice that because A = −B̂MB̂T , the matrix A will
have only negative eigenvalues (except one) if ~Y TM~Y > 0

for all non-zero vectors ~Y ∈ R2m. Indeed, if B̂T ~X 6= 0n+m,
then

~XTA ~X = − ~XT B̂MB̂T ~X = −~Y TM~Y < 0, (24)

where the vector ~Y , B̂T ~X .
Additionally, if ~X = [~x1 ~x2]T , where ~x1 are the first

n components of ~X , and ~x2 are the last m components of
~X , then B̂T ~X = 0n+m only if BT~x1 = 0n and ~x2 = 0m.
And since ker(BT ) = span(1n) for a connected G (see for
example [4]), then B̂T ~X 6= 0n+m if ~X 6= span

(
[1n 0m]T

)
.

Therefore, it is now enough to show that condition (23) is
sufficient for matrix M to be positive definite. Let ~Y ∈ R2m

be an arbitrary vector, then ~Y TM~Y is a sum of m terms,
where the kth term is equal to

Y 2
kKkf

′
k + 2YkYm+kfk +

Y 2
m+k

αk
. (25)

We now consider this term as a quadratic function of Yk.
This equation is the equation of a parabola whose branches
are directed upwards because Kkf

′
k > 0 due to (23). Then,

the minimum value of (25) is achieved at the vertex of the
parabola and is equal to:
(Ym+kfk
Kkf ′k

)2

Kkf
′
k − 2

(Ym+kfk
Kkf ′k

)
Ym+kfk +

Y 2
m+k

αk

= −Y
2
m+kf

2
k

Kkf ′k
+
Y 2
m+k

αk
= Y 2

m+k

(
− f2

k

Kkf ′k
+

1

αk

)
.

(26)

The last expression is positive if Ym+k 6= 0 and if condition
(23) is satisfied.

Suppose that Ym+k = 0, then (25) becomes equal to
Y 2
kKkf

′
k ≥ 0, and is equal to zero only if Yk = 0. Since ~Y is

a non-zero vector, there exists at least one component k of
vector ~Y such that the sum (25) is strictly positive, and for all
other components these sums are non-negative. Therefore,
for all vectors ~Y ∈ R2m: ~Y TM~Y > 0, and ~XTA ~X < 0
for all vectors ~X ∈ Rn+m such that ~X 6∈ span

(
[1n 0m]T

)
.

Thus, all eigenvalues of A except one are negative, so are
eigenvalues of J , and therefore th equilibrium

(
φ∗,K∗

)
is

asymptotically stable.

Remark Condition (23) is equivalent to the following condi-
tion:

(Fij + qij) · f ′ij − f2
ij > 0, (27)

where Fij = Fij(φ
∗
j − φ∗i ), since Kij = αij(Fij + qij) at an

equilibrium, and αij > 0.
We have proved frequency synchronization of system (2)

and found sufficient stability and instability conditions of
its equilibria for a fairly general class of functions fij . In the
next subsection we will apply these conditions for a more
specific class of these functions to investigate stability of in-
phase and anti-phase equilibria.

4.3 Stability of In-phase and Anti-phase Equilibria
In this subsection we investigate the stability properties
of two special types of equilibria of system (2): in-phase
and anti-phase equilibria. Equilibrium (φ∗,K∗) is called
in-phase, if φ∗1 = φ∗2 = · · · = φ∗n, while for an anti-
phase equilibrium the absolute value of the phase difference
between any two oscillators is either zero or π: |φ∗i −φ∗j | = 0
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or |φ∗i −φ∗j | = π for any i, j. To exclude the in-phase equilib-
rium from the set of anti-phase equilibria, we additionally
require that at any anti-phase equilibrium at least for one
pair of oscillators i and j, their phase difference is equal to
π. Such in-phase and anti-phase states are indeed equilibria
of system (2) because fij(0) = fij(π) = 0 for any i and j due
to the Assumption 1. Notice that the in-phase equilibrium is
unique (up to rotational symmetry), and there are 2n−1 − 1
topologically distinct anti-phase equilibria.

In the rest of the article we concentrate on a more special
class of functions fij(). In particular, these functions must
fulfill the following conditions.

Assumption 2 The functions fij ∀ij ∈ E satisfy:

1) Assumption 1;
2) f ′ij(0) > 0, f ′ij(π) < 0;
3) fij(x) > 0, ∀x ∈ (0, π).

Example of a function that meets all conditions of As-
sumption 2 is shown on the left side of Fig. 1. Notice,
that for instance, function fij() = sin() belongs to this
type of functions. If fij() satisfies Assumptions 2, then
its corresponding function Fij is strictly decreasing on the
interval [0, π], and Fij(0) = Fmaxij > 0, Fij(π) = Fminij < 0.
Therefore, there exists a single point x ∈ (0, π) such that
Fij(x) = 0. This property is crucial for showing isolation
of equilibria of system (2) with a tree topology in Corollary
9. If the function fij satisfies Assumption 2, then positive
coupling (qij ≥ q+

ij) between oscillators i and j is also
attractive, and negative coupling (qij ≤ q−ij ) is repulsive.
Thus, in the rest of the article we will use these concepts
interchangeably.

For any set of phase values φ1, . . . , φn there exists a
unique arc of a circle S1 that contains all phase values and
has a minimum possible length. Let d(φ) denote the length
of this arc for phases φ1, . . . , φn. Next theorem provides
characterization of the in-phase equilibrium.

Theorem 4 (Stability of the in-phase equilibrium) If
functions fij() satisfy Assumption 2, then the in-phase equilib-
rium (φ∗,K∗) is:

• asymptotically stable, if qij > q−ij ∀ij ∈ E;
• unstable, if qij < q−ij ∀ij ∈ E.

Moreover, if qij < q−ij ∀ij ∈ E, or qij > q+
ij ∀ij ∈ E, then the

in-phase equilibrium is the only equilibrium satisfying d(φ) < π.

Proof. The first part of this theorem can be shown by a
direct application of Theorems 2 and 3. Indeed, for the in-
phase equilibrium and functions fij satisfying Assumption
2: fij(0) = 0 and f ′ij(0) > 0 for each ij ∈ E. Further,
(Fij(0)+qij) > 0 if qij > q−ij , because Fij(0) = Fmaxij (func-
tion Fij is decreasing on [0, π]). Then, (Fij(0)+qij)·f ′ij(0) >
0 ∀ij ∈ E, condition (27) is satisfied, and the equilibrium is
stable by Theorem 3. Similarly, (Fij(0)+qij) < 0 if qij < q−ij
which means that αij(Fij(0) + qij) · f ′ij(0) = Kijf

′
ij(0) < 0

∀ij ∈ E, condition (9) is satisfied, and the equilibrium is
unstable according to Theorem 2.

The second part of this theorem is similar to Lemma 3
of [30] and can be proved as follows. Condition d(φ) < π
implies that all phases of oscillators belong to the same half-
circle. Suppose that qij < q−ij ∀ij ∈ E (strictly repulsive
coupling), or qij > q+

ij ∀ij ∈ E (strictly attractive coupling)

and there exists a non-in-phase equilibrium (φ̂, K̂) with
d(φ) < π. Let φmin be the minimal phase value among all
oscillators for this equilibrium. Then at least one oscillator k
with phase value φ̂k = φmin is connected to an oscillator l
with strictly greater phase value φ̂l > φ̂k, because the graph
is assumed to be connected. Therefore, 0 < (φ̂l − φ̂k) < π
and fkl(φ̂l − φ̂k) > 0 due to the Assumption 2. If qij < q−ij
∀ij ∈ E, then all coupling strengths are strictly negative:

Kij < 0 ∀ij ∈ E. Thus, ˙̂
φk =

∑
l∈Nk

K̂kl · fkl(φ̂l − φ̂k) < 0.

Similarly, if qij > q+
ij ∀ij ∈ E, then Kij > 0 ∀ij ∈ E, and

˙̂
φk =

∑
l∈Nk

K̂kl ·fkl(φ̂l− φ̂k) > 0. In both cases (φ̂, K̂) cannot

be an equilibrium.

In [40] it was demonstrated that when in system (2) each
fij = sin(φj − φi), qij = q+

ij = 1, and the underlying
topology is a complete graph, then the in-phase equilibrium
is asymptotically stable. Theorem 4 thus provides a comple-
mentary set of results to [40] under more general topologies
and coupling functions.

A similar result can be formulated for the anti-phase
equilibria of system (2).

Theorem 5 (Stability of anti-phase equilibria) If func-
tions fij() satisfy Assumption 2, then an anti-phase equilibrium
(φ∗,K∗) is:

• asymptotically stable, if qij > q−ij (when φ∗i = φ∗j ),
and qij < q+

ij (when |φ∗i − φ∗j | = π), ∀ij ∈ E;
• unstable, if qij < q−ij (when φ∗i = φ∗j ), and qij > q+

ij

(when |φ∗i − φ∗j | = π), ∀ij ∈ E.

Proof. The proof is again based on the sufficient instability
and stability conditions of Theorems 2 and 3. According
to Theorem 3 (condition (27)), an anti-phase equilibrium
(φ∗,K∗) is stable if

(Fij + qij) · f ′ij > 0,∀ij ∈ E, (28)

because at such equilibria fij = 0 for any i and j. If φ∗i = φ∗j ,
then f ′ij > 0 due to the Assumption 2. Therefore, condition
(28) is satisfied if qij > −Fij(0) which is equivalent to qij >
−Fmaxij = q−ij . Similarly, if |φ∗i − φ∗j | = π, then f ′ij < 0, and
inequality (28) will be fulfilled if Fij(π) + qij < 0, that is, if
qij < −Fminij = q+

ij .
From Theorem 2, an anti-phase equilibrium will be un-

stable if
(Fij + qij) · f ′ij < 0,∀ij ∈ E, (29)

again since at such equilibria fij = 0 for any i and j, and
because Kij = αij(Fij + qij). If φ∗i = φ∗j , then f ′ij > 0, and
condition (29) is met if Fij(0)+qij < 0, i.e. if qij < −Fmaxij =
q−. If in turn |φ∗i − φ∗j | = π, then f ′ij < 0, and equilibrium
is unstable if Fij(π) + qij > 0, i.e. if qij > −Fminij = q+

ij .

Notice that the first part of Theorem 4 follows from
Theorem 5.

Remark Requirements for instability of Theorems 4 and 5
are generally more restrictive than the instability condition of
Theorem 2. Indeed, these requirements guarantee that Kijf

′
ij −

αijf
2
ij < 0 ∀ij ∈ E which is a stronger requirement than (9).

A direct consequence of Theorems 4 and 5 is the follow-
ing result.
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Corollary 6 If qij takes values from an interval (q−ij , q
+
ij)

∀ij ∈ E, then the in-phase and all anti-phase equilibria of system
(2) are asymptotically stable.

Conditions formulated in Theorems 2 and 3 are suffi-
cient, and therefore, there may exist equilibria of system (2)
whose stability cannot be characterized by these conditions.
We overcome this problem in the next section by requiring
underlying topology to be a tree graph. For such graphs we
provide a criterion of stability that allows us to verify the
stability of any equilibrium.

5 PHASE LOCKING FOR TREE TOPOLOGY

In this section we consider system (2) when the underlying
topology graph G is a tree. For example, star and chain
graphs are two graphs belonging to this type of topology.
We apply the results formulated in the previous section and
show how they can be further extended for the tree graphs.
We first consider in Subsection 5.1 the case of a general
coupling, when parameters qij are allowed to take any
arbitrary values except for q+

ij and q−ij , and then explore a
special case when each network connection is either strictly
attractive (qij > q+

ij) or strictly repulsive (qij < q−ij ) in
Subsection 5.2.

5.1 General Coupling

When the topology is a tree, each single edge defines a cut
of G, and condition (9) for a single-edge cut C(P ) = ij
can be written as (Fij + qij) · f ′ij − f2

ij < 0, because Kij =
αij(Fij + qij) at an equilibrium and αij > 0. Thus, using
Theorem 2, a sufficient instability condition for tree graphs
can be formulated as follows.

Corollary 7 (Sufficient instability condition for trees)
If there exists an edge ij ∈ E such that at equilibrium

(
φ∗,K∗

)

of system (2) with tree topology and functions fij satisfying
Assumption 1:

(Fij + qij) · f ′ij − f2
ij < 0, (30)

where Fij = Fij(φ
∗
j − φ∗i ), f ′ij = f ′ij(φ

∗
j − φ∗i ) and fij =

fij(φ
∗
j − φ∗i ), then

(
φ∗,K∗

)
is an unstable equilibrium.

Using Theorem 3 and Corollary 7, the stability of an
equilibrium of system (2) with a tree topology can be de-
termined if (Fij + qij) · f ′ij − f2

ij 6= 0 for every ij ∈ E. As
will be further shown, the last condition is always satisfied
if all functions fij() satisfy Assumption 2. Besides these
additional assumptions on functions fij(), we also require
throughout this subsection that qij 6= q+

ij = −Fminij and
qij 6= q−ij = −Fmaxij , ∀ij ∈ E. The following fact establishes
a property of all equilibria of system (2) with a tree topology,
and with functions fij() satisfying Assumption 2.

Lemma 8 Let
(
φ∗,K∗

)
be an equilibrium of system (2) with

a tree underlying topology and with functions fij() satisfying
Assumption 2, and let fij = fij(φ

∗
j −φ∗i ), Fij = Fij(φ

∗
j −φ∗i ),

Kij = K∗ij . Suppose in addition, that qij 6= q+
ij and qij 6= q−ij ,

∀ij ∈ E. Then, for each pair ij ∈ E exactly one of the following
two conditions is satisfied:

• fij = 0; this implies that either φ∗j − φ∗i = 0, or
φ∗j − φ∗i = π.

• Kij = 0; this implies that Fij + qij = 0.

Proof. Since the underlying topology is defined by a graph
G that is a tree, there are nodes in G each of which has a
single neighbor. These nodes are the leaves of a tree graph
G. Let φi be an oscillator associated with a leaf node i, and
let φj be an oscillator such that node j is a single neighbor of
node i. Then, from equation (2a), at an equilibrium

(
φ∗,K∗

)
:

φ̇i = 0 if and only if Kij = 0 or fij(φ∗j − φ∗i ) = 0. Notice
that Kij = 0 if and only if Fij +qij = 0. When qij 6= −Fminij

and qij 6= −Fmaxij , for function fij satisfying Assumption
2, fij and Fij + qij are not equal to zero simultaneously.
This implies that either fij = 0 or Kij = Fij + qij = 0. We
then remove all leaf nodes from the graph G and apply the
same reasoning for the leaves of a new smaller graph which
is also a tree. We repeat this procedure until we obtain a
single node, and at each step the condition of the theorem is
satisfied.

Corollary 9 Equilibria of system (2) with a tree topology and
functions fij() satisfying Assumption 2, are isolated.

We can now see that when the underlying topology of
system (2) is a tree, qij 6= q+

ij , qij 6= q−ij (∀ij ∈ E), and if
coupling functions fij() satisfy Assumption 2, then at any
equilibrium:

(Fij + qij) · f ′ij − f2
ij 6= 0 (31)

for every ij ∈ E. Indeed, if at equilibrium fij = 0, then
from Lemma 8, Kij 6= 0, and f ′ij 6= 0 due to Assumption 2.
Hence, (Fij +qij) ·f ′ij 6= 0. If Kij = 0, i.e. Fij +qij = 0, then
by definition of Fij , properties of qij , and from Assumption
2: fij 6= 0.

Since Assumption 2 guarantees that condition (31) holds
for every equilibrium, it is possible to formulate a criterion
of stability for system (2) with underlying tree topology.

Theorem 10 (Criterion of stability for tree topology)
If the underlying topology of system (2) is a tree, qij 6= q+

ij ,
qij 6= q−ij , and functions fij() satisfy Assumption 2 for each
ij ∈ E, then an equilibrium

(
φ∗,K∗

)
is stable if and only if

condition (27) holds for every edge ij ∈ E. Moreover, each stable
equilibrium is also asymptotically stable.

Proof. Suppose that for equilibrium
(
φ∗,K∗

)
condition (27)

is satisfied for any ij ∈ E, then this equilibrium is asymp-
totically stable by Theorem 3. Now assume that there exists
an edge ij ∈ E such that condition (27) does not hold for it,
i.e.

(Fij + qij) · f ′ij − f2
ij ≤ 0.

The above inequality must be strict since condition (31)
holds for trees. Now consider a cut C(P ) = ij defined by a
single edge ij. It immediately follows that the equilibrium
must be unstable by Theorem 2.

From this criterion we also conclude that (under the
criterion’s conditions) an equilibrium withK∗ij = 0 for some
edge ij ∈ E will be unstable. We now provide a result
regarding ranks of matrices B̂ and M for a tree topology.
This result will be later used to show convergence to a stable
equilibrium almost surely in Theorem 12.
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Lemma 11 At any equilibrium of system (2) with a tree
underlying topology and qij 6= q+

ij , qij 6= q−ij (∀ij ∈ E):

n = m+ 1,

Rank(B̂) = Rank(B̂T ) = min(n+m,m+m) = 2m,

Rank(M) = 2m.

Proof. First two equations are satisfied even outside of the
equilibria. In particular, the first equation says that in a tree
graph the number of vertices is greater than the number
of edges by one, and is straightforward. The second fact
follows from the properties of the incidence matrix B and
because we consider a tree topology. We now show that at an
equilibrium the third equation is correct. Recall that matrix
M has dimensions (2m) × (2m). Suppose by contradiction
that at some equilibrium Rank(M) < 2m, then there exists
a non-zero vector ~x such that M~x = 0. This system contains
2m equations, the first m of them are of the form:

xiKif
′
i + xm+ifi = 0, (32)

where i = 1, . . . ,m, and the remaining m equations are:

xi · fi + xm+i/αi = 0, (33)

where i = 1, . . . ,m again. We choose a particular index i
such that 1 ≤ i ≤ m, and consider a pair of correspond-
ing equations: one from (32) and another one from (33).
According to Lemma 8, at an equilibrium exactly one of
the following conditions holds: fi = 0 or Ki = 0. We first
consider the case when fi = 0. Then, from the first equation,
xi = 0 because Ki 6= 0, f ′i 6= 0 and fi = 0. And from the
second equation: xm+i = 0 since αi > 0. Now consider the
case when Ki = 0, then fi 6= 0. From the first equation:
xm+i = 0, and then from the second equation: xi = 0 since
fi 6= 0. Therefore, in both cases xi = xm+i = 0, and since
this should be true for all 1 ≤ i ≤ m, vector ~x has to be
a zero vector which contradicts our assumption that ~x is
non-zero.

While Theorem 1 does not guarantee pointwise conver-
gence and isolation of equilibria in general, for the case of a
tree underlying topology we proved isolation of equilibria
in Corollary 9, and now can show that the system converges
to a stable equilibrium almost surely.

Theorem 12 At any equilibrium of system (2) with a tree
topology, qij 6= q+

ij , qij 6= q−ij (∀ij ∈ E), and with functions
fij satisfying Assumption 2, the Jacobian has only one zero
eigenvalue due to rotational invariance, and system converges to
a stable equilibrium almost surely.

Proof. The Jacobian matrix J and symmetric matrix A in
decomposition (10) are both of size (n + m) × (n + m) or,
using Lemma 11, of size (2m + 1) × (2m + 1). Moreover,
matrix A can be expressed as follows:

A = −B̂MB̂T , (34)

where matrix M is of size (2m)× (2m), and matrices B̂ and
B̂T are of size (2m+1)×(2m), (2m)×(2m+1), respectively.
We now employ the following fact: if matrix A1 has dimen-
sions x×y, matrixA2 is of size y×z andRank(A2) = y, then
Rank(A1A2) = Rank(A1). Using this fact we conclude that

Rank(B̂M) = 2m, and Rank(A) = Rank(B̂MB̂T ) = 2m.
Because rank of a symmetric matrix is equal to the number
of its non-zero eigenvalues, A has a single zero eigenvalue.
Then, since J and A have the same numbers of zero eigen-
values (as was shown in the proof to Theorem 2), Jacobian
matrix J has only one zero eigenvalue which is due to
the rotational invariance. Thus, all equilibria of (2) with a
tree topology and functions fij satisfying Assumption 2,
are hyperbolic (i.e. they do not have any center manifold)
when domain of the system is restricted to the subspace
orthogonal to [1n 0m]T . Therefore, system (2) almost surely
converges to a stable equilibrium (due to Proposition 1 of
[12], for example).

Remark Theorem 12 implies that for a tree topology at
least one stable equilibrium exists. We can verify this fact by
constructing a stable in-phase or anti-phase equilibrium for a
given system (2) with a tree underlying topology, functions fij()
satisfying Assumption 2, and parameters qij such that qij 6= q+

ij

and qij 6= q−ij for all edges ij ∈ E. Without loss of generality,
the phase value of each oscillator at such equilibrium is either
0 or π. To construct a stable equilibrium, we arbitrarily choose
an oscillator to be the root of a tree, assign phase value equal
to zero to this oscillator, and then traverse the tree using, for
example, the breadth-first search. During the tree traversal, at
each iteration we consider an edge connecting a previously visited
oscillator with assigned phase value and a new oscillator whose
phase is determined at this iteration. For example, if edge ij ∈ E
is considered, and previously visited oscillator i has phase φ∗i = 0,
then the phase of oscillator j is assigned with value 0 if qij > q+

ij ,
and with value π, otherwise. The equilibrium constructed in this
manner will be asymptotically stable due to Theorem 5.

5.2 Attractive and Repulsive Coupling

All previously formulated results also hold for systems
where each connection ij ∈ E is either strictly attractive
(qij > q+

ij) or strictly repulsive (qij < q−ij ) coupling. Ad-
ditionally, Lemma 8 can be further improved: for strictly
repulsive or attractive connections, Kij cannot attain a
zero value, and thus each equilibrium is characterized by
conditions fij = 0 for each ij ∈ E. This implies that at
each equilibrium all phase differences are multiples of π.
Moreover, the following result holds.

Theorem 13 (Almost global stability for trees) Suppose
in system (2) the functions fij() satisfy Assumption 2, and the
underlying topology is a tree graph. If each connection ij ∈ E is
either strictly attractive (qij > q+

ij) or strictly repulsive (qij <
q−ij ), then system (2) has a (unique) almost globally asymptotically
stable in-phase or anti-phase equilibrium (φ∗,K∗) that, for each
edge ij ∈ E, (φ∗,K∗) satisfies:

{
φ∗i = φ∗j if qij > q+

ij ,

|φ∗i − φ∗j | = π if qij < q−ij .
(35)

Proof. As was previously mentioned, under the conditions
of this theorem the equilibrium set of system (2) consists
of in-phase and anti-phase equilibria. Due to Theorem 10,
an equilibrium (φ∗,K∗) is stable if and only if condition
(Fij + qij) · f ′ij > f2

ij holds for each edge ij ∈ E. Because
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fij = 0 at each equilibrium of system (2) satisfying assump-
tions of Theorem 13, an equilibrium is stable if and only
if (Fij + qij) · f ′ij > 0. If qij > q+

ij , then this condition
will be satisfied if and only if f ′ij > 0, which implies that
φ∗i = φ∗j due to Assumption 2. If qij < q−ij , then f ′ij must
be negative, and it means that |φ∗i − φ∗j | = π. Therefore,
condition (35) is both necessary and sufficient for stability
of an equilibrium. Moreover, according to Theorem 10, if an
equilibrium is stable, it is also asymptotically stable.

Existence of a stable in-phase or anti-phase equilibrium
satisfying (35) was shown by construction in the remark to
Theorem 12. It remains to show, therefore, the uniqueness
of this constructed stable equilibrium. Suppose, there exists
another stable equilibrium (φ̂, K̂), which is different from
the constructed equilibrium (φ∗,K∗). Since it is stable,
equilibrium (φ̂, K̂), must also satisfy condition (35). And
because (φ̂, K̂) is different from (φ∗,K∗), there exists at
least one pair of oscillators k and l (not necessary connected)
such that |φ∗k − φ∗l | 6= |φ̂k − φ̂l|. It cannot happen if k and
l are connected, i.e. if kl ∈ E, because of the condition (35).
Now, assume that k and l are not connected, then since
the underlying topology graph G is a tree, there exists a
single shortest path from k to l in G: k, p1, . . . , ph, l, where
p1, . . . , ph ∈ V are some oscillators and h ≥ 1. This path
consists of h + 1 edges kp1, p1p2, . . . , phl, and let M be
the number of edges in this path with strictly repulsive
coupling (q < q−). Then, to satisfy condition (35), in any
stable equilibrium the phase difference between oscillators
k and l must be equal to zero ifM is even, and equal to π if
M is odd. Thus, |φ∗k −φ∗l |must be equal to |φ̂k − φ̂l|, which
contradicts our assumption about equilibrium (φ̂, K̂).

Corollary 14 If for system (2) under the assumptions of
Theorem 13, all connections are strictly attractive (qij > q+

ij

∀ij ∈ E), then the in-phase equilibrium is almost globally asymp-
totically stable. If all connections are strictly repulsive (qij < q−ij
∀ij ∈ E), then the unique anti-phase equilibrium satisfying:
|φ∗i − φ∗j | = π ∀ij ∈ E is almost globally asymptotically stable.

Condition |φ∗i − φ∗j | = π ∀ij ∈ E implies that oscillators
are divided into two sets (corresponding to phase values 0
and π, for example) so that each graph edge connects an
oscillator from one set with an oscillators in the other set.
This division can be done if the graph is bipartite which is
always the case when the graph is a tree. Moreover, since
the graph is connected, bipartition is unique, and thus, the
anti-phase equilibrium satisfying condition |φ∗i − φ∗j | = π
∀ij ∈ E is also unique.

6 PHASE LOCKING FOR ARBITRARY TOPOLOGY

In Theorem 12 we demonstrated that when the underlying
topology is a tree, convergence to a stable equilibrium
occurs almost surely. It was possible to show this fact mainly
due to the characterization of the equilibria formulated in
Lemma 8. In particular, for the case of a tree topology all
equilibria are isolated and moreover, hyperbolic. However,
equilibria are not necessary isolated in the case of a non-tree
topology as was demonstrated in Subsection 3.3 by means of
an example of four completely connected oscillators. In that
example all values of parameters qij were equal to zero.

It turns out that the example in Subsection 3.3 is de-
generate. That is, the non-isolation of the equilibria was
mainly due to the special choice of qij and αij . Thus, we
can formulate a result similar to Theorem 12 by making
additional assumption on the choice of parameters α and
q. This leads again towards a condition that guarantees
convergence to a stable equilibrium almost surely.

Theorem 15 Suppose all functions fij() satisfy Assumption
2, and for each ij ∈ E parameters αij and qij are chosen ran-
domly from continuous probability distributions on the intervals
(0,∞) and (−∞,∞), respectively. Then, with probability one in
the selection of these parameters, system (2) converges to a stable
equilibrium almost surely.

Proof. The proof is similar to the proof of Theorem 4 in
[33] and is based on the parametric transversality theorem
(Theorem 6.35 of [28]). To get rid of a zero eigenvalue of
the Jacobian J of system (2) which corresponds to rotational
invariance, instead of n phase variables φ1, . . . , φn we will
consider n − 1 phase differences µj , φj+1 − φ1, where
j = 1, . . . , n− 1. Thus, all other phase values are measured
relative to the phase value of the first oscillator. Notice, since
the sum of all phases is an invariant of system (2), variables
µj , j = 1, . . . , n−1, uniquely define phase values φi, where
i = 1, . . . , n. Let matrices R ∈ Rn×(n−1) and U ∈ Rn×(n−1)

be defined as

R =

[
0Tn−1

In−1

]
, U =

[−1Tn−1

In−1

]
, (36)

where In−1 denotes an identity matrix of dimension n − 1,
and 0n−1, 1n−1 are vectors of zeros and ones, respectively,
of length n− 1. Note that UTR = In−1 and BT = BTRUT .
Then, in the new variables (µ,K) system (2) can be rewrit-
ten as follows:

µ̇ = −UTB diag(K)f [BTRµ],

K̇ = S
(
A(F [BTRµ] + q)−K

)
.

(37)

Here F ∈ Rm is a vector whose components are Fij , and q ∈
Rm is a vector containing parameters qij for each ij ∈ E.
Further, A ∈ Rm×m and S ∈ Rm×m are diagonal matrices
with parameters αij and sij (ij ∈ E), respectively, on the
diagonal. In the above equations and further in the proof,
diag(x), where vector x ∈ Rm, denotes a diagonal matrix

of size m×m with elements of x in its diagonal.
The main idea of the proof is to show that at the equi-

libria of system (37), the Jacobian does not have eigenvalues
with zero real part. To show this we first prove that the Ja-
cobian is invertible at each equilibrium for almost all values
of parameters α and q, and then demonstrate that all its
eigenvalues are real. Let T denote the finite collection of all
m×m diagonal matrixes ∆ = diag{δ1, , . . . , δm} such that
either δk = (Fk(0) + qk) · f ′k(0) or δk = (Fk(π) + qk) · f ′k(π),
where k = 1, . . . ,m is the edge index. For each such matrix
∆ ∈ T , we define the closed set

P∆ = {α ∈ Rm : det
(
RTBA∆BTR

)
= 0}, (38)

Matrix ∆ is invertible due to Assumption 2 and because
(Fij(x) + qij) 6= 0 for x = 0 and x = π, since qij 6= q−ij
and qij 6= q+

ij . Additionally, the columns of BTR are
independent since they are rows 2, . . . , n of the incidence
matrix B. Then, P∆ 6= Rm (for instance, if A = ∆−1),
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and thus P∆ is a closed algebraic set having zero measure.
Therefore, P =

⋃
∆∈T

P∆ is also a closed algebraic set having

zero measure, and set Oα = Rm+ \ P is a nonempty open
set. Further, let Oq be the set of vectors q ∈ Rm whose
components satisfy qij 6= q−ij and qij 6= q+

ij . It is easy to
show that the set Rm \ Oq has a zero measure.

Let H(µ,K, q) be a mapping Tn−1 × Rm × Oq →
Rn−1+m:

H(µ,K, q) =

[ −UTB diag(K)f [BTRµ]

S
(
A(F [BTRµ] + q)−K

)
]
, (39)

and α ∈ Oα. Notice that H(µ,K, q) = 0 only at the
equilibria of system (37). Next, the Jacobian of H(µ,K, q)
is

DH(µ,K, q) =
[
∂H
∂µ

∂H
∂K

∂H
∂q

]
, (40)

where

∂H
∂µ

=

[−UTB diag(K ∗ f ′[BTRµ])BTR
−SA diag(f [BTRµ])BTR

]
, (41)

∂H
∂K

=

[−UTB diag(f [BTRµ])
−S

]
, (42)

∂H
∂q

=

[
0(n−1)×m
SA

]
, (43)

and 0x×y denotes a zero matrix of dimensions x by y.
We now show that when H(µ,K, q) = 0, matrix

DH(µ,K, q) has full row rank for all (µ,K, α, q) ∈ Tn−1 ×
Rm ×Oα ×Oq . Consider the following block matrix:

W =



In−1 0(n−1)×m
L 0m×m
A−1L Im


 , (44)

where

L = A diag(f [BTRµ])+ · diag
(

(F [0m] + q) ∗ f ′[0m]

− (F [BTRµ] + q) ∗ f ′[BTRµ]
)
BTR,

(45)

here (·)+ denotes the Moore-Penrose pseudoinverse. Then,
since K = A(F [BTRµ] + q) when H(µ,K, q) = 0,

DH(µ,K, q) · W =[ −UTBA∆(µ)BTR 0(n−1)×m
−SA diag(f [BTRµ])BTR SA

]
,

(46)

where ∆(µ) is a diagonal matrix

∆(µ) = diag
(

(F [BTRµ] + q) ∗ f ′[BTRµ]
)

+ diag
(
f [BTRµ]

)
· diag

(
f [BTRµ]

)+·
· diag

(
(F [0m] + q) ∗ f ′[0m]− (F [BTRµ] + q) ∗ f ′[BTRµ]

)
.

(47)

Because functions f() satisfy Assumption 2, f(x) = 0 if
and only if x ∈ {0, π}, and therefore, for any µ ∈ Tn−1,
the matrix ∆(µ) belongs to T . It implies that matrix
RTBA∆(µ)BTR is invertible for (µ,K, α, q) ∈ Tn−1 ×
Rm ×Oα ×Oq . Next, because

UTB = UTURTB, (48)

and matrix UTU is invertible, it follows that matrix
−UTBA∆(µ)BTR = −(UTU)(RTBA∆(µ)BTR) in (46)
is also invertible. We now conclude that the whole matrix
(46) is invertible, because its rows are independent (SA is a
diagonal matrix with positive numbers on the diagonal). As
a consequence of this, when H(µ,K, q) = 0, the Jacobian
matrix DH(µ,K, q) must have independent rows for all
(µ,K, α, q) ∈ Tn−1 × Rm ×Oα ×Oq .

Thus, H t {0}, and it follows from the parametric
transversality theorem ( [28], Theorem 6.35) that there
exists a set Y ⊂ Oq having zero measure such that if
q ∈ Oq \ Y , then Hq t {0}, where Hq denotes the mapping
(µ,K)→ H(µ,K, q). Therefore, (n− 1 +m)× (n− 1 +m)
matrix [

∂H
∂µ

∂H
∂K

]
(49)

is invertible when H(µ,K, q) = 0 for almost all values of
parameters α and q.

Now observe that matrix (49) is the Jacobian of system
(37). It remains to show that this matrix can have only real
eigenvalues. Indeed, (49) is equal to a product of a diagonal
positively definite matrix and a symmetric matrix:
[
∂H
∂µ

∂H
∂K

]
=

[
UTU 0(n−1)×m

0m×(n−1) SA
] [−A1 −A2

−A3 −A−1

]
,

(50)
where

A1 = RTB diag
(
K ∗ f ′[BTRµ]

)
BTR, (51)

A2 = RTB diag(f [BTRµ]), (52)

and
A3 = diag(f [BTRµ])BTR. (53)

We observe that the second matrix in the product (50) is
indeed symmetric since AT2 = A3, and A1 is symmetric.

To summarize the results, for almost all randomly se-
lected system parameters αij and qij , the Jacobian of system
(37) at each equilibrium cannot have eigenvalues with zero
real part, and system (37) converges to a stable equilibrium
almost surely, so does system (2).

Remark Theorem 15 states that system (2) converges to a
stable equilibrium almost surely for almost all values of param-
eters α and q. In other words, the set of parameters α and q
for which convergence to a stable equilibrium is not guaranteed,
has zero measure. The theorem, however, does not provide a
description of this zero-measure set and, therefore, it cannot be
applied to guarantee convergence to a stable equilibrium for a
given example with some fixed values of parameters. This is the
main distinction between this theorem and its analog Theorem 12
for a tree topology: the latter result guarantees convergence for all
values of the parameters (except for q = q+ and q = q−).

In Corollary 14 we proved that the in-phase equilibrium
is almost globally asymptotically stable in the case of strictly
attractive coupling if the underlying topology is a tree. With
additional requirements on the coupling functions fij() it
is possible to show almost globally asymptotically stability
of the in-phase equilibrium for an arbitrary topology. In
particular, we now assume that each function fij satisfies

Assumption 3 There exists a parameter b ∈ (0, π) such that
functions fij ∀ij ∈ E satisfy:
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TABLE 1: Behavior of system (2) for various choices of its parameters. Parameters sij are from (0,∞) in each case.

Theorem Functions fij Topology Parameters qij Parameters αij Synchronization/Convergence to

Theorem 1 Assumption 1 arbitrary (−∞,∞) (0,∞) frequency synchronization

Theorem 12 Assumption 2 tree qij 6= q+ij , qij 6= q−ij (0,∞) stable eq. a.s.

Theorem 13 Assumption 2 tree qij > q+ij or qij < q−ij (0,∞) unique stable in/anti-phase eq. satisfying (35) a.s.

Theorem 15 Assumption 2 arbitrary Oq \ Y Oα stable eq. a.s.

Theorem 16 Assumption 3 arbitrary Oq \ Y , qij > q+ij Oα in-phase stable eq. a.s.

1) Assumption 1;
2) f ′ij(x) > 0, ∀x ∈ [0, b);
3) f ′ij(x) < 0, ∀x ∈ (b, π].

Notice that Assumption 3 is stronger than Assumption
2 in a sense that if functions fij satisfy Assumption 3,
they also satisfy Assumption 2. Function whose graph is
shown on the left side of Fig. 1 satisfies Assumption 3. The
following theorem is a generalization of [30] to systems with
plastic connectivity.

Theorem 16 (Almost global stability) Suppose functions
fij satisfy Assumption 3 with b ≤ π

n−1 , and qij > q+
ij for each

ij ∈ E, then with probability one in the selection of parameters
α and q, the in-phase equilibrium of system (2) is almost globally
asymptotically stable.

Proof. The proof is almost identical to the proof of Theo-
rem 6 in [30] and is not presented here due to the space
limitations. The main idea is that if all functions fij satisfy
Assumption 3 and qij > q+

ij ∀ij ∈ E, then the in-phase
equilibrium is the only stable equilibrium of system (2).
Then the statement of the theorem follows from Theorem
15.

Remark The in-phase equilibrium will be also almost globally
asymptotically stable if all functions (−fij) satisfy Assumption 3
with b ≤ π

n−1 and qij < q−ij ∀ij ∈ E.
In Table 1 we summarized the convergence results of

system (2) with arbitrary and tree underlying topology, and
for various values of parameters α and q.

7 NUMERICAL ILLUSTRATIONS

In this section we consider several network examples and
apply our results to explore their behavior and investigate
stability of their equilibria. In these examples we will as-
sume that fij = sin(φj − φi) and Fij = cos(φj − φi)
∀ij ∈ E, then q+

ij = 1 and q−ij = −1 ∀ij ∈ E. Thus,
system (2) becomes a generalized Kuramoto model with
plastic coupling strengths. Notice that this choice of func-
tions fij guarantees that Assumptions 2 and 3 are satisfied.
Additionally, (strictly) positive and (strictly) negative coupling
corresponds to (strictly) attractive and (strictly) repulsive
coupling, respectively.

7.1 Two Oscillators (Lemma 8, Theorems 10, 12, 13, 16)

Since two connected oscillators form a tree topology, we
can apply the results of Lemma 8 and Theorems 10, 12. In
particular, for a tree topology case we can easily find all
equilibria of the system using our results (Lemma 8). We
will assume that α12 takes an arbitrary positive value.

If q12 = 0, then Lemma 8 can be applied to describe
all equilibria of system (2) with two oscillators. The first
type of equilibria corresponds to condition f12 = 0 which
implies that sin(φ2 − φ1) = 0, and K/α12 = F12 + q12 =
f ′12 + q12 = cos(φ2 − φ1) + q12 = cos(φ2 − φ1). The second
type of equilibria is defined by condition cos(φ2 − φ1) = 0,
i.e. K = 0, and f12 = sin(φ2 − φ1) = 1. Stability of each
equilibrium type can be verified using a criterion provided
in Theorem 10. The criterion’s stability condition (27) takes
the following form:

(cos(φ2 − φ1) + q12) · cos(φ2 − φ1) > 0. (54)

If q12 = 0, then (54) is satisfied for the first type of equilibria
(in-phase (Fig. 2c-i) and anti-phase (Fig. 2c-ii)), making these
equilibria stable. The second equilibrium type correspond-
ing to K = 0 is unstable (Fig. 2c-iii) because (54) does not
hold for it.

Next, if q12 = 2 or q12 = −2, then system (2) of two
oscillators has only in-phase and anti-phase equilibria. We
can use Theorem 13 to conclude that when q12 = 2, then
the in-phase equilibrium is stable (Fig. 2a-i) and the anti-
phase equilibrium is unstable (Fig. 2a-ii), and in the case
when q12 = −2, the in-phase (Fig. 2b-i) and anti-phase
(Fig. 2b-ii) equilibria are unstable and stable, respectively.
We can observe that all results are in agreement with Fig. 2
as expected.

According to Theorem 12, system (2) converges to a
stable equilibrium almost surely for each of the considered
values of parameter q12. Moreover, when q12 = 2 (strictly
attractive coupling) or when q12 = −2 (strictly repulsive
coupling) the system has a unique almost global stable
in-phase (if q12 = 2) or anti-phase (when q12 = −2)
equilibrium, as predicted by Theorem 13. In addition, since
π
2 = b < π

2−1 = π, we can apply Theorem 16 when q12 = 2
to reestablish the almost global stability of the in-phase
equilibrium.
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(a) 2 oscillators, stable equilibrium (b) 3 oscillators, unstable equilibrium (c) 12 oscillators, stable equilibrium

Fig. 5: Behavior of system (2) with qij = 0 (∀ij ∈ E) of two (left), three (center) and twelve (right) oscillators after a small
perturbation from a stable anti-phase, unstable and stable equilibrium, respectively.

The behavior of the system with q12 = 0 of two
oscillators after a small perturbation from the anti-phase
equilibrium is shown in Fig. 5a. This equilibrium is stable,
and the system converges to it after a perturbation.

7.2 Three Oscillators (Theorems 2, 3, 4, 5, 15, 16)
Here we examine the stability of equilibria and the behavior
of system (2) with three all-to-all connected oscillators. In
this case the underlying topology is not a tree and we will
employ Theorems 2 and 3 to show stability or instability. We
will assume for simplicity that αij = 1 for all ij ∈ E, and as
in Subsection 3.2, will explore the cases qij = 0, qij = 2 and
qij = −2 (∀ij ∈ E).

We first consider the case when qij = 0 for each ij ∈ E.
The in-phase equilibrium is stable (Fig. 3c-i) since condition
(27) is satisfied: cos2(0) > sin2(0). Clearly, the anti-phase
equilibrium, i.e. when φ1 = φ2 and φ3 = φ1 + π, is also
stable (Fig. 3c-ii). Now consider equilibrium φ2 = φ1+2π/3,
φ3 = φ1 − 2π/3, and a two-edge cut C(P ) = {12, 13}.
Because 2

(
cos2(2π/3) − sin2(2π/3)

)
< 0, condition (9) is

satisfied and the equilibrium is unstable (Fig. 3c-iii). The
next equilibrium is defined as φ1 = φ2, φ3 = φ1 + π/2.
Using our cut C(P ) = {13, 23}, we obtain: 2

(
cos2(π/2) −

sin2(π/2)
)
< 0, which means that the equilibrium is unstable

(Fig. 3c-iv) due to Theorem 2. If the equilibrium is described
by φ2 = φ1 + π/3, φ3 = φ1 − π/3, then using the cut
C(P ) = {12, 13}, we get 2

(
cos2(π/3) − sin2(π/3)

)
< 0,

and thus the equilibrium is unstable (Fig. 3c-v). In Fig. 5b
behavior of this system is shown after a small perturbation
from this unstable equilibrium. Finally, when φ2 = φ1+π/2,
φ3 = φ1 − π/2, we can use the cut C(P ) = {12, 13} to get
2
(
cos2(π/2) − sin2(π/2)

)
< 0 which makes the equilibrium

unstable (Fig. 3c-vi).
We now assume that qij = 2, ∀ij ∈ E. Then, the in-phase

equilibrium is stable (Fig. 3a-i) since (cos(0)+2)·cos(0) > 0,
and condition (27) is satisfied. Next, the cutC(P ) = {12, 13}
can be used to demonstrate the instability of the anti-phase
equilibrium (Fig. 3a-ii): 2(cos(π) + 2) · cos(π) < 0, so that
condition (9) is fulfilled. Using the same cut C(P ), the
instability of equilibrium φ2 = φ1 + 2π/3, φ3 = φ1 − 2π/3
can be shown (Fig. 3a-iii).

Finally, we explore the case when qij = −2, ∀ij ∈ E.
The in-phase equilibrium is unstable (Fig. 3d-i): (cos(0) −
2) · cos(0) < 0. The stability of the anti-phase equilibrium,

however, cannot be verified by our sufficient condition in
Theorem 3, because (cos(0) − 2) · cos(0) < 0. Further,
equilibrium φ2 = φ1 + 2π/3, φ3 = φ1 − 2π/3 is stable (Fig.
3d-iii): (cos(2π/3) − 2) · cos(2π/3) − sin2(2π/3) > 0. And
Theorem 2 does not allow us to verify the instability of the
last equilibrium (Fig. 3d-iv).

Stability or instability of in-phase and anti-phase equi-
libria in some cases can be also checked using Theorems
3 and 4. As was pointed out in the Remark of Subsection
4.3, the instability conditions of Theorems 4 and 5 are
generally weaker than condition of Theorem 2. For example,
while we could apply Theorem 2 to show that the anti-
phase equilibrium is unstable when qij = 2 (∀ij ∈ E), the
sufficient instability condition of Theorem 5 is not fulfilled.

Because the topology of this example is not a tree,
Theorem 12 cannot be applied. In addition, Theorem 15
formulated for an arbitrary topology, does not guarantee
convergence to a stable equilibrium for given values of the
parameters α and q. Nevertheless, when qij = 2, Theorem
16 can be used since π

2 = b = π
3−1 = π

2 . Therefore, the in-
phase equilibrium is almost globally asymptotically stable
when qij = 2 (∀ij ∈ E), which is in agreement with Fig. 3a.

7.3 Four Oscillators (Theorems 2, 15)

In Subsection 3.3 we described a set of equilibria of system
(2) with qij = 0 (∀ij ∈ E) and αij = α > 0 (∀ij ∈ E) of four
all-to-all connected oscillators, characterized by a parameter
β ∈ (0, π/2). We will first check that each equilibrium of
this set is unstable. At any such equilibrium with fixed β ∈
(0, π/2): φ2 = φ1 + π/2, φ3 = φ1 + β, φ4 = φ1 − (π/2− β),
and we define a cut C(P ) as C(P ) = {12, 13, 14}. Since(
cos2(π/2) − sin2(π/2)

)
+
(
cos2(β) − sin2(β)

)
+
(
sin2(β) −

cos2(β)
)
< 0, then Theorem 2 guarantees that this equilib-

rium is unstable.
This set of equilibria is of a special interest, because it

consists of non-isolated equilibria, and the result of Theorem
15 does not apply to this system. Therefore, the values of
parameters α and q corresponding to this example, i.e. αij =
α > 0 (∀ij ∈ E) and qij = 0 (∀ij ∈ E) belong to the zero-
measure set of parameters that is excluded in the statement
of Theorem 15. The requirement αij = α > 0 (∀ij ∈ E) can
be generalized: it is sufficient that α13 = α14 and α23 = α24

for the described set of equilibria to persist.
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Fig. 6: Stable equilibrium corresponding to the example with
twelve oscillators with ring topology.

7.4 Twelve Oscillators

In [40] it was shown that when in system (2) all coupling
functions are sin(), qij = 0 (∀ij ∈ E), and the underlying
topology is a complete graph, then the only stable equilibria
are those in which every phase difference is a multiple of
π. This property does not generally hold in the case of an
arbitrary topology as we will demonstrate here using an
example with twelve oscillators and sin() coupling func-
tions. The underlying topology is a ring graph, so that the
pairs of connected oscillators are (1, 2), (2, 3), (3, 4), . . . ,
(11, 12), (12, 1). We will assume that αij = α > 0 (∀ij ∈ E),
and qij = q (∀ij ∈ E). The equilibrium is defined by the
following phase values: φ1 = 0, and φi = φi−1 + π/12,
where i = 2, . . . , 12. The phases of the oscillators at the
equilibrium are shown in Fig. 6.

We can apply Theorem 3 to find stability conditions for
this equilibrium under various values of q. Condition (27)
in this example takes the form:

(cos(β) + q) · cos(β)− sin(β)2 > 0, (55)

where β = 2π
n is the phase difference between two neighbor-

ing oscillators in equilibrium, and β = π
6 when n = 12. The

inequality (55) implies that if q > − 1√
3

, then the equilibrium
is stable for n = 12 oscillators. In Fig. 5c the behavior of
the system is shown after a small perturbation from this
equilibrium.

8 CONCLUSION

In this work we studied a model of arbitrarily intercon-
nected homogeneous coupled oscillators with a plastic cou-
pling. We demonstrated that systems of oscillators described
by this model always achieve frequency synchronization.
Sufficient stability and instability conditions for equilibria
were provided for a general underlying topology, and a
criterion of stability was formulated for a tree topology. We
additionally derived a sufficient condition that guarantees
almost surely convergence to a stable equilibrium for tree
topologies, and then obtained an analogous condition for
the arbitrary topology case. Further, under certain assump-
tions on the coupling (strictly attractive or strictly repulsive
connections), we formulated an almost global stability result
for tree topologies. A similar condition was also derived for
arbitrary topologies and strictly attractive connections. We
illustrated our theoretical results with several examples.
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