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a b s t r a c t

This paper studies the asymptotic convergence properties of the primal–dual dynamics designed for
solving constrained concave optimization problems using classical notions from stability analysis. We
motivate the need for this study by providing an example that rules out the possibility of employing the
invariance principle for hybrid automata to study asymptotic convergence. We understand the solutions
of the primal–dual dynamics in the Caratheodory sense and characterize their existence, uniqueness,
and continuity with respect to the initial condition. We use the invariance principle for discontinuous
Caratheodory systems to establish that the primal–dual optimizers are globally asymptotically stable
under the primal–dual dynamics and that each solution of the dynamics converges to an optimizer.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

The (constrained) primal–dual dynamics is a widespread
continuous-time algorithm for determining the primal and dual
solutions of an inequality constrained convex (or concave) opti-
mization problem. This dynamics, first introduced in the pioneer-
ing works [1,2], has been used in multiple applications, including
network resource allocation problems for wireless systems [3–5]
and distributed stabilization and optimization of power networks
[6–9].

Our objective in this paper is to provide a rigorous treat-
ment of the convergence analysis of the primal–dual dynamics
using classical notions from stability analysis. Since this dynam-
ics has a discontinuous right-hand side, the standard Lyapunov or
LaSalle-based stability results for nonlinear systems, see e.g. [10],
are not directly applicable. This observation is at the basis of the
direct approach to establish convergence taken in [1], where the
evolution of the distance of the solution of the primal–dual dy-
namics to an arbitrary primal–dual optimizer is approximated
using power series expansions and its monotonic evolution is con-
cluded by analyzing the local behavior around a saddle point of the
terms in the series. Instead, [3] takes an indirect approach to estab-
lish convergence, modeling the primal–dual dynamics as a hybrid

∗ Corresponding author.
E-mail addresses: acheruku@ucsd.edu (A. Cherukuri), mallada@caltech.edu

(E. Mallada), cortes@ucsd.edu (J. Cortés).

http://dx.doi.org/10.1016/j.sysconle.2015.10.006
0167-6911/© 2015 Elsevier B.V. All rights reserved.
automaton as defined in [11], and invoking a generalized LaSalle
Invariance Principle to establish asymptotic convergence. How-
ever, the hybrid automaton that corresponds to the primal–dual
dynamics is in general not continuous, thereby not satisfying a key
requirement of the invariance principle stated in [11], and inval-
idating this route to establish convergence. The first contribution
of this paper is an example that illustrates this point. Our second
contribution is an alternative proof strategy to arrive at the same
convergence results of [3].

For the problem setup, we consider an inequality constrained
concave optimization problem described by continuously dif-
ferentiable functions with locally Lipschitz gradients. Since the
primal–dual dynamics has a discontinuous right-hand side, we
specify the notion of solution in the Caratheodory sense (note that
this does not necessarily preclude the study of other notions of
solution). We show that the primal–dual dynamics is a particular
case of a projected dynamical system and, using results from [12],
we establish that Caratheodory solutions exist, are unique, and
are continuous with respect to the initial condition. Using these
properties, we show that the omega-limit set of any solution of
the primal–dual dynamics is invariant under the dynamics. Finally,
we employ the invariance principle for Caratheodory solutions of
discontinuous dynamical systems from [13] to show that the pri-
mal–dual optimizers are globally asymptotically stable under the
primal–dual dynamics and that each solution of the dynamics con-
verges to an optimizer. We believe the use of classical notions of
stability and Lyapunov methods provides a conceptually simple
and versatile approach that can also be invoked in characterizing
other properties of the dynamics.

http://dx.doi.org/10.1016/j.sysconle.2015.10.006
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The paper is organized as follows. Section 2 presents basic nota-
tion and preliminary notions on discontinuous dynamical systems.
Section 3 introduces the primal–dual dynamics andmotivateswith
an example the need for a convergence analysis with classical sta-
bility tools. Section 4 presents the main convergence results. Fi-
nally, Section 5 gathers our conclusions and ideas for future work.

2. Preliminaries

This section introduces notation and basic concepts about
discontinuous and projected dynamical systems.

2.1. Notation

We let R, R≥0, R>0, and Z≥1 be the set of real, nonnegative
real, positive real, and positive integer numbers, respectively. We
denote by ∥ · ∥ the 2-norm on Rn. The open ball of radius δ > 0
centered at x ∈ Rn is represented by Bδ(x). Given x ∈ Rn, xi
denotes the ith component of x. For x, y ∈ Rn, x ≤ y if and only
if xi ≤ yi for all i ∈ {1, . . . , n}. We use the shorthand notation
0n = (0, . . . , 0) ∈ Rn. For a real-valued function V : Rn

→ R and
α > 0, we denote the sublevel set of V by V−1(≤α) = {x ∈ Rn

|

V (x) ≤ α}. For scalars a, b ∈ R, the operator [a]+b is defined as

[a]+b =


a, if b > 0,
max{0, a}, if b = 0.

For vectors a, b ∈ Rn, [a]+b denotes the vector whose ith
component is [ai]+bi , i ∈ {1, . . . , n}. For a set S ∈ Rn, its interior,
closure, and boundary are denoted by int(S), cl(S), and bd(S),
respectively. Given two sets X and Y , a set-valued map f : X ⇒ Y
associates to each point in X a subset of Y . A map f : Rn

→ Rm

is locally Lipschitz at x ∈ Rn if there exist δx, Lx > 0 such that
∥f (y1) − f (y2)∥ ≤ Lx∥y1 − y2∥ for any y1, y2 ∈ Bδx(x). If f is locally
Lipschitz at every x ∈ K ⊂ Rn, then we simply say that f is locally
Lipschitz on K . The map f is Lipschitz on K ⊂ Rn if there exists a
constant L > 0 such that ∥f (x)−f (y)∥ ≤ L∥x−y∥ for any x, y ∈ K .
Note that if f is locally Lipschitz on Rn, then it is Lipschitz on every
compact set K ⊂ Rn. The map f is locally bounded if for each
x ∈ Rn there exist constants Mx, ϵx > 0 such that ∥f (y)∥ ≤ Mx
for all y ∈ Bϵx(x).

2.2. Discontinuous dynamical systems

Here we present basic concepts on discontinuous dynamical
systems following [13,14]. Let f : Rn

→ Rn be Lebesgue mea-
surable and locally bounded and consider the differential equation

ẋ = f (x). (1)

A map γ : [0, T ) → Rn is a (Caratheodory) solution of (1) on the
interval [0, T ) if it is absolutely continuous on [0, T ) and satisfies
γ̇ (t) = f (γ (t)) almost everywhere in [0, T ). A set S ⊂ Rn is invari-
ant under (1) if every solution starting from any point in S remains
in S. For a solution γ of (1) defined on the time interval [0, ∞), the
omega-limit set Ω(γ ) is defined by

Ω(γ ) =


y ∈ Rn

 ∃{tk}∞k=1 ⊂ [0, ∞)

with lim
k→∞

tk = ∞ and lim
k→∞

γ (tk) = y


.

If the solution γ is bounded, then Ω(γ ) ≠ ∅ by the
Bolzano–Weierstrass theorem [15]. These notions allowus to char-
acterize the asymptotic convergence properties of the solutions
of (1) via invariance principles. Given a continuously differentiable
function V : Rn
→ R, the Lie derivative of V along (1) at x ∈ Rn

is Lf V (x) = ∇V (x)⊤f (x). The next result is a simplified version
of [13, Proposition 3] which is sufficient for our convergence anal-
ysis later.

Proposition 2.1 (Invariance Principle for Discontinuous Caratheo-
dory Systems). Let S ∈ Rn be compact and invariant. Assume that,
for each point x0 ∈ S, there exists a unique solution of (1) starting
at x0 and that its omega-limit set is invariant too. Let V : Rn

→ R
be a continuously differentiable map such that Lf V (x) ≤ 0 for all
x ∈ S. Then, any solution of (1) starting at S converges to the largest
invariant set in cl({x ∈ S | Lf V (x) = 0}).

2.3. Projected dynamical systems

Projected dynamical systems are a particular class of discon-
tinuous dynamical systems. Here, following [12], we gather some
basic notions that will be useful later to establish continuity with
respect to the initial condition of the solutions of the primal–dual
dynamics. LetK ⊂ Rn be a closed convex set. Given a point y ∈ Rn,
the (point) projection of yontoK is projK(y) = argminz∈K ∥z−y∥.
Note that projK(y) is a singleton and themap projK is Lipschitz on
Rn with constant L = 1 [16, Proposition 2.4.1]. Given x ∈ K and
v ∈ Rn, the (vector) projection of v at xwith respect to K is

ΠK(x, v) = lim
δ→0+

projK(x + δv) − x
δ

.

Given a vector field f : Rn
→ Rn and a closed convex polyhedron

K ⊂ Rn, the associated projected dynamical system is

ẋ = ΠK(x, f (x)), x(0) ∈ K. (2)

Note that, at any point x in the interior of K , we have
ΠK(x, f (x)) = f (x). At any boundary point ofK , the projection op-
erator restricts the flow of the vector field f such that the solutions
of (2) remain in K . Therefore, in general, (2) is a discontinuous
dynamical system. The next result summarizes conditions under
which the (Caratheodory) solutions of the projected system (2) ex-
ist, are unique, and continuouswith respect to the initial condition.

Proposition 2.2 (Existence, Uniqueness, and Continuity With Re-
spect to the Initial Condition [12, Theorem 2.5]). Let f : Rn

→ Rn

be Lipschitz on a closed convex polyhedron K ⊂ Rn. Then,

(i) (existence and uniqueness): for any x0 ∈ K , there exists a unique
solution t → x(t) of the projected system (2) with x(0) = x0
defined over the domain [0, ∞),

(ii) (continuity with respect to the initial condition): given a sequence
of points {xk}∞k=1 ⊂ K with limk→∞ xk = x, the sequence
of solutions {t → γk(t)}∞k=1 of (2) with γk(0) = xk for all
k, converge to the solution t → γ (t) of (2) with γ (0) = x
uniformly on every compact set of [0, ∞).

3. Problem statement

This section reviews the primal–dual dynamics for solving
constrained optimization problems and justifies the need to
rigorously characterize its convergence properties. Consider the
concave optimization problem on Rn,

maximize f (x), (3a)
subject to g(x) ≤ 0m, (3b)

where the continuously differentiable functions f : Rn
→ R and

g : Rn
→ Rm are strictly concave and convex, respectively, and

have locally Lipschitz gradients. The Lagrangian of the problem (3)
is given as

L(x, λ) = f (x) − λ⊤g(x), (4)
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where λ ∈ Rm is the Lagrange multiplier corresponding to the
inequality constraint (3b). Note that the Lagrangian is concave in x
and convex (in fact linear) in λ. Assume that the Slater’s conditions
are satisfied for the problem (3), that is, there exists x ∈ Rn such
that g(x) < 0m. Under this assumption, the duality gap between
the primal and dual optimizers is zero and a point (x∗, λ∗) ∈

Rn
×Rm

≥0 is a primal–dual optimizer of (3) if and only if it is a saddle
point of L over the domain Rn

× Rm
≥0, i.e.,

L(x, λ∗) ≤ L(x∗, λ∗) and L(x∗, λ) ≥ L(x∗, λ∗),

for all x ∈ Rn and λ ∈ Rm
≥0. For convenience, we denote the set

of saddle points of L (equivalently the primal–dual optimizers) by
X × Λ ⊂ Rn

× Rm. Note that since f is strictly concave, the set
X is a singleton. Furthermore, (x∗, λ∗) is a primal–dual optimizer
if and only if it satisfies the following Karush–Kuhn–Tucker (KKT)
conditions (cf. [17, Chapter 5]),

∇f (x∗) −

m
i=1

(λ∗)i∇gi(x∗) = 0, (5a)

g(x∗) ≤ 0m, λ∗ ≥ 0m, λ⊤

∗
g(x∗) = 0. (5b)

Given this characterization of the solutions of the optimization
problem, it is natural to consider the primal–dual dynamics on
Rn

× Rm
≥0 to find them

ẋ = ∇xL(x, λ) = ∇f (x) −

m
i=1

λi∇gi(x), (6a)

λ̇ = [−∇λL(x, λ)]+λ = [g(x)]+λ . (6b)

When convenient, we use the notation Xp-d : Rn
×Rm

≥0 → Rn
×Rm

to refer to the dynamics (6). Given that the primal–dual dynamics
is discontinuous, we consider solutions in the Caratheodory sense.
The reason for this is that, with this notion of solution, a point is an
equilibrium of (6) if and only if it satisfies the KKT conditions (5).

Our objective is to establish that the solutions of (6) exist and
asymptotically converge to a solution of the concave optimization
problem (3) using classical notions and tools from stability
analysis. Our motivation for this aim comes from the conceptual
simplicity and versatility of Lyapunov-like methods and their
amenability for performing robustness analysis and studying
generalizations of the dynamics. One way of tackling this problem,
see e.g., [3], is to interpret the dynamics as a state-dependent
switched system, formulate the latter as a hybrid automaton as
defined in [11], and then employ the invariance principle for hybrid
automata to characterize its asymptotic convergence properties.
However, this route is not valid in general because one of the
key assumptions required by the invariance principle for hybrid
automata is not satisfied by the primal–dual dynamics. The next
example justifies this claim.

Example 3.1 (The Hybrid Automaton Corresponding to the Pri-
mal–Dual Dynamics is Not Continuous). Consider the concave opti-
mization problem (3) onRwith f (x) = −(x−5)2 and g(x) = x2−1,
whose set of primal–dual optimizers is X × Λ = {(1, 4)}. The as-
sociated primal–dual dynamics takes the form

ẋ = −2(x − 5) − 2xλ, (7a)

λ̇ = [x2 − 1]+λ . (7b)

We next formulate this dynamics as a hybrid automaton as defined
in [11, Definition II.1]. The idea to build the hybrid automaton is to
divide the state space R × R≥0 into two domains over which the
vector field (7) is continuous. To this end, we define two modes
represented by the discrete variable q, taking values in Q = {1, 2}.
The value q = 1 represents the mode where the projection in (7b)
is active and q = 2 represents the mode where it is not. Formally,
the projection is active at (x, λ) if [g(x)]+λ ≠ g(x), i.e, λ = 0 and
g(x) < 0. The hybrid automaton is then given by the collection
H = (Q , X, F , Init,D, E,G, R), where Q = {q} is the set of discrete
variables, taking values in Q; X = {x, λ} is the set of continuous
variables, taking values in X = R × R≥0; the vector field F :

Q × X → TX is defined by

F(1, (x, λ)) =


−2(x − 5) − 2xλ

0


,

F(2, (x, λ)) =


−2(x − 5) − 2xλ

x2 − 1


;

Init = X is the set of initial conditions; D : Q ⇒ X specifies the
domain of each discrete mode,

D(1) = (−1, 1) × {0}, D(2) = X \ D(1),

i.e., the dynamics is defined by the vector field (x, λ) →

F(1, (x, λ)) over D(1) and by (x, λ) → F(2, (x, λ)) over D(2);
E = {(1, 2), (2, 1)} is the set of edges specifying the transitions
between modes; the guard map G : Q ⇒ X specifies when a
solution can jump from one mode to the other,

G(1, 2) = {(1, 0), (−1, 0)}, G(2, 1) = (−1, 1) × {0},

i.e., G(q, q′) is the set of points where a solution jumps from mode
q to mode q′; and, finally, the reset map R : Q × X ⇒ X specifies
that the state is preserved after a jump from one mode to another,

R((1, 2), (x, λ)) = R((2, 1), (x, λ)) = {(x, λ)}.

We are now ready to show that the hybrid automaton is not
continuous in the sense defined by [11, Definition III.3]. This notion
plays a key role in the study of omega-limit sets and their stability,
and is in fact a basic assumption of the invariance principle
developed in [11, Theorem IV.1]. Roughly speaking,H is continuous
if two executions ofH starting close to one another remain close to
one another. An execution ofH consists of a tuple (τ , q, x), where τ
is a hybrid time trajectory (a sequence of intervals specifying
where mode transitions and continuous evolution take place), q
is a map that gives the discrete mode of the execution at each
interval of τ , and x is a set of differentiable maps that represent the
evolution of the continuous state of the execution along intervals
of τ . A necessary condition for two executions to ‘‘remain close’’
is to have the time instants of transitions in their mode for the
executions (if there are any) close to one another. To disprove the
continuity of H , it is enough then to show that there exist two
executions that start arbitrarily close and yet experience their first
mode transitions at time instants that are not arbitrarily close.
Select an initial condition (x(0), λ(0)) ∈ (0, 1)× (0, ∞) that gives
rise to a solution of (7) that remains in the set (0, 1) × (0, ∞) for
a finite time interval (0, t ′), t ′ > 0, satisfies (x(t ′), λ(t ′)) = (1, 0),
and stays in the set (1, ∞) × (0, ∞) for some finite time interval
(t ′, T ), T > t ′. The existence of such a solution becomes clear by
plotting the vector field (7), see Fig. 1. Note that by construction,
this also corresponds to an execution of the hybrid automaton
H that starts and remains in domain D(2) for the time interval
[0, T ] and so it does not encounter any jumps in its discrete mode.
Specifically, for this execution, the hybrid time trajectory is the
interval [0, T ], the discrete mode q is always 2 and the continuous
state evolves as t → (x(t), λ(t)). Further, by observing the
vector field, we deduce that in every neighborhood of (x(0), λ(0)),
there exists a point (x̃(0), λ̃(0)) such that a solution of (7) t →

(x̃(t), λ̃(t)) starting at (x̃(0), λ̃(0)) reaches the set (0, 1) × {0}
in finite time t1 > 0, remains in (0, 1) × {0} for a finite time
interval [t1, t2], and then enters the set (1, ∞) × (0, ∞) upon
reaching the point (1, 0). Indeed, this is true whenever x̃ < x(0)
and λ̃ < λ(0). The execution of H corresponding to this solution
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starts in D(2), enters D(1) in finite time t1, and returns to D(2) at
time t2. Specifically, the hybrid time trajectory consists of three
intervals {[0, t1], [t1, t2], [t2, T ′

]}, where we assume T ′ > t2.
The discrete mode q takes value 2 for the interval [0, t1], 1 for
the interval [t1, t2], and 2 for the interval [t2, T ′

]. The continuous
state t → (x̃(t), λ̃(t)) takes the same values as the solution
of (7) explained above. Thus, the value of the discrete variable
representing the mode of the execution switches from 2 to 1 and
back to 2, whereas the execution corresponding to the solution
of (7) starting at (x(0), λ(0))never switchesmode. This shows that
the hybrid automaton is not continuous. •

Interestingly, even though the hybrid automaton H described
in Example 3.1 is not continuous, one can infer from Fig. 1 that
two solutions of (7) remain close to each other if they start close
enough. This suggests that continuity with respect to the initial
condition might hold provided this notion is formalized the way
it is done for traditional nonlinear systems (and not as done for
hybrid automata where both discrete and continuous states have
to be aligned). The next section shows that this in fact is the case.
This, along with the existence and uniqueness of solutions, allows
us to characterize the asymptotic convergence properties of the
primal–dual dynamics.

4. Convergence analysis of primal–dual dynamics

In this section we show that the solutions of the primal–dual
dynamics (6) asymptotically converge to a solution of the
constrained optimization problem (3). Our proof strategy is to
employ the invariance principle for Caratheodory solutions of
discontinuous dynamical systems stated in Proposition 2.1. Our
first step is then to verify that all its hypotheses hold.

We start by stating a useful monotonicity property of the
primal–dual dynamics with respect to the set of primal–dual
optimizers X × Λ. This property can be found in [1,3] and we
include here its proof for completeness.

Lemma 4.1 (Monotonicity of the Primal–Dual Dynamics With Re-
spect to Primal–Dual Optimizers). Let (x∗, λ∗) ∈ X × Λ and define
V : Rn

× Rm
→ R≥0,

V (x, λ) =
1
2


∥x − x∗∥

2
+ ∥λ − λ∗∥

2. (8)

Then LXp-dV (x, λ) ≤ 0 for all (x, λ) ∈ Rn
× Rm

≥0.

Proof. By definition of LXp-dV (cf. Section 2.2), we have

LXp-dV (x, λ) = (x − x∗)
⊤
∇xL(x, λ) + (λ − λ∗)

⊤
[−∇λL(x, λ)]+λ

= (x − x∗)
⊤
∇xL(x, λ) − (λ − λ∗)

⊤
∇λL(x, λ)

+ (λ − λ∗)
⊤([−∇λL(x, λ)]+λ + ∇λL(x, λ)).

Since L is concave in x and convex in λ, applying the first order
condition of concavity and convexity for the first two terms of the
above expression yields the following bound

LXp-dV (x, λ) ≤ L(x, λ) − L(x∗, λ) + L(x, λ∗) − L(x, λ)

+ (λ − λ∗)
⊤([−∇λL(x, λ)]+λ + ∇λL(x, λ))

= L(x∗, λ∗) − L(x∗, λ) + L(x, λ∗) − L(x∗, λ∗)

+ (λ − λ∗)
⊤([−∇λL(x, λ)]+λ + ∇λL(x, λ)).

Define the shorthand notation M1 = L(x∗, λ∗) − L(x∗, λ), M2 =

L(x, λ∗) − L(x∗, λ∗), and M3 = (λ − λ∗)
⊤([−∇λL(x, λ)]+λ +

∇λL(x, λ)), so that the above inequality reads

LXp-dV (x, λ) ≤ M1 + M2 + M3.
Fig. 1. An illustration depicting the vector field (7) in the range (x, λ) ∈ [0, 1.6] ×

[0, 0.2]. As shown (with a red streamline), there exists a solution of (7) that starts at
a point (x(0), λ(0)) with x(0) < 1 and λ(0) > 0 such that it remains in the domain
λ > 0 at all times except at one time instant t ′ when (x(t ′), λ(t ′)) = (1, 0). (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Since λ∗ is a minimizer of the map λ → L(x∗, λ) over the domain
Rm

≥0 and x∗ is a maximizer of the map x → L(x, λ∗), we obtain
M1,M2 ≤ 0. Replacing −∇λL(x, λ) = g(x), one can write M3 =m

i=1 Ti, where for each i,

Ti = (λi − (λ∗)i)([gi(x)]+λi − gi(x)).

If λi > 0, then [gi(x)]+λi = gi(x) and so Ti = 0. If λi = 0, then
λi − (λ∗)i ≤ 0 and [gi(x)]+λi − gi(x) ≥ 0, which implies that Ti ≤ 0.
Therefore, we getM3 ≤ 0, and the result follows. �

Next, we show that the primal–dual dynamics can bewritten as
a projected dynamical system.

Lemma 4.2 (Primal–Dual Dynamics As a Projected Dynamical
System). The primal–dual dynamics can be written as a projected
dynamical system.

Proof. Consider the vector field X : Rn
× Rm

→ Rn
× Rm defined

by

X(x, λ) =


∇xL(x, λ)

−∇λL(x, λ)


. (9)

We wish to show that Xp-d(x, λ) = ΠRn×Rm
≥0

((x, λ), X(x, λ)) for all
(x, λ) ∈ Rn

× Rm
≥0. To see this, note that the maps Xp-d and X take

the same values over int(Rn
× Rm

≥0) = Rn
× Rm

>0. Now consider
any point (x, λ) ∈ bd(Rn

× Rm
≥0). Let I ⊂ {1, . . . ,m} be the set of

indices for which λi = 0 and (−∇λL(x, λ))i < 0. Then, there exist
δ̃ > 0 such that, for all δ ∈ [0, δ̃) and for any j ∈ {1, . . . , n + m},
we have

(projRn×Rm
≥0

((x, λ) + δX(x, λ)))j

=


0, if j − n ∈ I,
(x, λ)j + δ(X(x, λ))j, otherwise .

Consequently, using the definition of the projection operator, cf.
Section 2.3, we get

(ΠRn×Rm
≥0

((x, λ), X(x, λ)))j =


0, if j − n ∈ I,
(X(x, λ))j, otherwise ,
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which impliesXp-d(x, λ) = ΠRn×Rm
≥0

((x, λ), X(x, λ)) for all (x, λ) ∈

bd(Rn
× Rm

≥0). This concludes the proof. �

Next,we use Lemmas 4.1 and 4.2 to show the existence, unique-
ness, and continuity of the solutions of Xp-d starting from Rn

×Rm
≥0.

Our proof strategy consists of using Lemma 4.2 and Proposition 2.2
to conclude the result. A minor technical hurdle in this process is
ensuring the Lipschitz property of the vector field (9), the projec-
tion ofwhich onRn

×Rm
≥0 is Xp-d.We tackle this by using themono-

tonicity property of the primal–dual dynamics stated in Lemma 4.1
implying that a solution of Xp-d (if it exists) remains in a bounded
set, which we know explicitly. This further implies that, given a
starting point, there exists a bounded set such that the values of
the vector field outside this set do not affect the solution starting at
that point and hence, the vector field can bemodified at the outside
points without loss of generality to obtain the Lipschitz property.
We make this construction explicit in the proof.

Lemma 4.3 (Existence, Uniqueness, and Continuity of Solutions of
The Primal–Dual Dynamics). Starting from any point (x, λ) ∈ Rn

×

Rm
≥0, a unique solution t → γ (t) of the primal–dual dynamics Xp-d

exists and remains in (Rn
× Rm

≥0) ∩ V−1(≤V (x, λ)). Moreover, if
a sequence of points {(xk, λk)}

∞

k=1 ⊂ Rn
× Rm

≥0 converge to (x, λ)
as k → ∞, then the sequence of solutions {t → γk(t)}∞k=1 of Xp-d
starting at these points converge uniformly to the solution t → γ (t)
on every compact set of [0, ∞).

Proof. Consider (x(0), λ(0)) ∈ Rn
× Rm

≥0 and let ϵ > 0. Define
V0 = V (x(0), λ(0)), where V is given in (8), and let Wϵ =

V−1(≤V0 + ϵ). Note that Wϵ is convex, compact, and V−1(≤V0) ⊂

int(Wϵ). Let XWϵ : Rn
× Rm

→ Rn
× Rm be a vector field defined

as follows: equal to X on Wϵ and, for any (x, λ) ∈ (Rn
× Rm) \ Wϵ ,

XWϵ (x, λ) = X(projWϵ
(x, λ)).

The vector field XWϵ is Lipschitz on the domainRn
×Rm. To see this,

note that X is Lipschitz on the compact set Wϵ with some Lipschitz
constant K > 0 because f and g have locally Lipschitz gradients.
Let (x1, λ1), (x2, λ2) ∈ Rn

× Rm. Then,

∥XWϵ (x1, λ1) − XWϵ (x2, λ2)∥

= ∥X(projWϵ
(x1, λ1)) − X(projWϵ

(x2, λ2))∥

≤ K∥projWϵ
(x1, λ1) − projWϵ

(x2, λ2)∥

≤ K∥(x1, λ1) − (x2, λ2)∥.

The last inequality follows from the Lipschitz property of the map
projWϵ

(cf. Section 2.3).
Next, we employ Proposition 2.2 to establish the existence,

uniqueness, and continuity with respect to the initial condition of
the solutions of the projected dynamical system, XWϵ

p-d , associated
with XWϵ and Rn

× Rm
≥0. Our proof then concludes by showing

that in fact all solutions of the projected system XWϵ
p-d starting in

Wϵ∩Rn
×Rm

≥0 are in one-to-one correspondencewith the solutions
of Xp-d starting in Wϵ ∩ Rn

× Rm
≥0. Let X

Wϵ
p-d : Rn

× Rm
≥0 → Rn

× Rm

be the map obtained by projecting XWϵ with respect to Rn
× Rm

≥0,

XWϵ
p-d (x, λ) = ΠRn×Rm

≥0
((x, λ), XWϵ (x, λ)),

for all (x, λ) ∈ Rn
× Rm

≥0. Since Xp-d is the projection of X with
respect to Rn

× Rm
≥0, we deduce that XWϵ

p-d = Xp-d over the set
Wϵ ∩ Rn

× Rm
≥0. Since XWϵ is Lipschitz, following Proposition 2.2,

we obtain that starting from any point in Rn
× Rm

≥0, a unique
solution of XWϵ

p-d exists over [0, ∞) and is continuous with respect
to the initial condition. Consider any solution t → (x̃(t), λ̃(t)) of
XWϵ
p-d that starts in Wϵ ∩ Rn

× Rm
≥0. Note that since the solution
is absolutely continuous and V is continuously differentiable, the
map t → V (x̃(t), λ̃(t)) is differentiable almost everywhere on
[0, ∞), and hence

d
dt

V (x̃(t), λ̃(t)) = LXWϵ
p-d

V (x̃(t), λ̃(t)),

almost everywhere on [0, ∞). From Lemma 4.1 and the fact that
LXWϵ

p-d
V and LXp-dV are the same over Wϵ ∩ Rn

× Rm
≥0, we conclude

thatV is non-increasing along the solution. Thismeans the solution
remains in the set Wϵ ∩ Rn

× Rm
≥0. Finally, since XWϵ

p-d and Xp-d are
same on Wϵ ∩ Rn

× Rm
≥0, we conclude that t → (x̃(t), λ̃(t)) is also

a solution of Xp-d. Therefore, starting at any point inWϵ ∩Rn
×Rm

≥0,
a solution of Xp-d exists. Using Lemma 4.1, one can show that, if a
solution of Xp-d that starts from a point in Wϵ ∩ Rn

× Rm
≥0 exists,

then it remains in Wϵ ∩ Rn
× Rm

≥0 and so is a solution of XWϵ
p-d .

This, combined with the uniqueness of solutions of XWϵ
p-d , implies

that a unique solution of Xp-d exists starting from any point in
Wϵ ∩ Rn

× Rm
≥0. In particular, this is true for the point (x(0), λ(0)).

Finally, from the continuity of solutions of XWϵ
p-d and the one-to-one

correspondence of solutions ofXp-d andXWϵ
p-d startingWϵ∩Rn

×Rm
≥0,

we conclude the continuity with respect to initial condition for
solutions of Xp-d starting in V−1(x(0), λ(0)). Since (x(0), λ(0)) is
arbitrary, the result follows. �

The next result states the invariance of the omega-limit
set of any solution of the primal–dual dynamics. This ensures
that all hypotheses of the invariance principle for Caratheodory
solutions of discontinuous dynamical systems, cf. Proposition 2.1,
are satisfied.

Lemma 4.4 (Omega-Limit Set of Solution of Primal–Dual Dynamics
is Invariant). The omega-limit set of any solution of the primal–dual
dynamics starting from any point in Rn

× Rm
≥0 is invariant under (6).

The proof of Lemma 4.4 follows the same line of argumentation
that the proof of invariance of omega-limit sets of solutions of
locally Lipschitz vector fields, cf. [10, Lemma 4.1]. We are now
ready to establish our main result, the asymptotic convergence
of the solutions of the primal–dual dynamics to a solution of the
constrained optimization problem.

Theorem 4.5 (Convergence of The Primal–Dual Dynamics to A
Primal–Dual Optimizer). The set of primal–dual solutions of (3) is
globally asymptotically stable on Rn

× Rm
≥0 under the primal–dual

dynamics (6), and the convergence of each solution is to a point.

Proof. Let (x∗, λ∗) ∈ X × Λ and consider the function V defined
in (8). For δ > 0, consider the compact set S = V−1(≤δ) ∩ (Rn

×

Rm
≥0). From Lemma 4.3, we deduce that a unique solution of Xp-d

exists starting from any point in S, which remains in S. Moreover,
from Lemma 4.4, the omega-limit set of each solution starting from
any point in S is invariant. Finally, from Lemma 4.1,LXp-dV (x, λ) ≤

0 for all (x, λ) ∈ S. Therefore, Proposition 2.1 implies that any
solution of Xp-d staring in S converges to the largest invariant set
M contained in cl(Z), where Z = {(x, λ) ∈ S | LXp-dV (x, λ) = 0}.
From the proof of Lemma 4.1, LXp-dV (x, λ) = 0 implies

L(x∗, λ∗) − L(x∗, λ) = 0,
L(x, λ∗) − L(x∗, λ∗) = 0,

(λi − (λ∗)i)([gi(x)]+λi − gi(x)) = 0, for all i ∈ {1, . . . ,m}.

Since f is strictly concave, so is the function x → L(x, λ∗) and
thus L(x, λ∗) = L(x∗, λ∗) implies x = x∗. The equality L(x∗, λ∗) −

L(x∗, λ) = 0 implies λ⊤g(x∗) = 0. Therefore Z = {(x, λ) ∈

S | x = x∗, λ
⊤g(x∗) = 0} is closed. Let (x∗, λ) ∈ M ⊂ Z . The
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solution of Xp-d starting at (x∗, λ) remains in M (and hence in Z)
only if ∇f (x∗) −

m
i=1 λi∇gi(x∗) = 0. This implies that (x∗, λ)

satisfies the KKT conditions (5) and hence, M ⊂ X × Λ. Since
the initial choice δ > 0 is arbitrary, we conclude that the set
X × Λ is globally asymptotically stable on Rn

× Rm
≥0. Finally, we

note that convergence is to a point in X × Λ. This is equivalent to
saying that the omega-limit set Ω(x, λ) ⊂ X × Λ of any solution
t → (x(t), λ(t)) of Xp-d is a singleton. This fact follows from
the definition of omega-limit set and the fact that, by Lemma 4.1,
primal–dual optimizers are Lyapunov stable. This concludes the
proof. �

Remark 4.6 (Alternative Proof Strategy via Evolution Variational
Inequalities).We briefly describe here an alternative proof strategy
to the one we have used here to establish the asymptotic
convergence of the primal–dual dynamics. The Caratheodory
solutions of the primal–dual dynamics can also be seen as solutions
of an evolution variational inequality (EVI) problem [18]. Then, one
can show that the resulting EVI problem has a unique solution
starting from each point in Rn

× Rm
≥0, which moreover remains

in Rn
× Rm

≥0. With this in place, the LaSalle Invariance Principle
[18, Theorem 4] for the solutions of the EVI problem can be
applied to conclude the convergence to the set of primal–dual
optimizers. •

Remark 4.7 (Primal–Dual Dynamics with Gains). In power network
optimization problems [7–9] and network congestion control
problems [19,20], it is common to see generalizations of the
primal–dual dynamics involving gain matrices. Formally, these
dynamics take the form

ẋ = K1∇xL(x, λ), (10a)

λ̇ = K2[−∇λL(x, λ)]+λ , (10b)

where K1 ∈ Rn×n and K2 ∈ Rm×m are diagonal, positive
definitematrices. In such cases, the analysis performed here can be
replicated following the same steps but using instead the Lyapunov
function

V ′(x, λ) =
1
2
((x − x∗)

⊤K−1
1 (x − x∗) + (λ − λ∗)

⊤K−1
2 (λ − λ∗)),

to establish the requiredmonotonicity and convergence properties
of (10). •

5. Conclusions

We have considered the primal–dual dynamics for a con-
strained concave optimization problem and established the
asymptotic convergence of its Caratheodory solutions to a primal–
dual optimizer using classical notions from stability theory. Our
technical approach has employed results from projected dynam-
ical systems to establish existence, uniqueness, and continuity
of the solutions, and the invariance principle for discontinuous
Caratheodory systems to characterize their asymptotic conver-
gence. We have also shown by means of a counterexample how
a proof strategy based on interpreting the primal–dual dynam-
ics as a hybrid automaton is not valid in general because of the
lack of continuity (understood in the hybrid sense) of the solu-
tions. The technical approach presented in the paper opens up the
possibility of rigorously characterizing the robustness properties
of the primal–dual dynamics against unmodeled dynamics, distur-
bances, and noise. Motivated by applications to power networks,
we also plan to explore the design of discontinuous dynamics that
can find the solutions to semidefinite programs and quadratically
constrained quadratic programs.
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