
A Unified Framework for Frequency Control and
Congestion Management

Changhong Zhao∗, Enrique Mallada†, Steven Low∗, and Janusz Bialek‡
∗ Department of Electrical Engineering

California Institute of Technology, Pasadena, CA, USA
{czhao, slow}@caltech.edu

† Department of Electrical and Computer Engineering
Johns Hopkins University, Baltimore, MD, USA

mallada@jhu.edu
‡ Skoltech Center for Energy Systems

Skolkovo Institute of Science and Technology, Moscow, Russia
j.bialek@skoltech.ru

Abstract—The existing frequency control framework in power
systems is challenged by lower inertia and more volatile power in-
jections. We propose a new framework for frequency control and
congestion management. We formulate an optimization problem
that rebalances power, restores the nominal frequency, restores
inter-area flows and maintains line flows below their limits in a
way that minimizes the control cost. The cost can be squared devi-
ations from the reference generations, minimizing the disruption
from the last optimal dispatch. Our control thus maintains system
security without interfering with the market operation. By deriv-
ing a primal-dual algorithm to solve this optimization, we design
a completely decentralized primary frequency control without
the need for explicit communication among the participating
agents, and a distributed unified control which integrates primary
and secondary frequency control and congestion management.
Simulations show that the unified control not only achieves all
the desired control goals in system equilibrium, but also improves
the transient compared to traditional control schemes.

Index Terms—Congestion management, distributed control,
frequency control.

I. INTRODUCTION

The current framework of frequency control and conges-
tion management operates at three different timescales. The
primary frequency control restores power balance in about 30
secs. The secondary control restores the nominal frequency
in about 5–10 mins by bringing in additional generation.
Secondary control of an interconnected system also restores
inter-area flows through the use of Area Control Error (ACE).
Finally the tertiary control consists of economic dispatch com-
bined with congestion management. This is achieved by solv-
ing the Security Constrained Optimal Power Flow (SCOPF)
problem at regular intervals ranging from 5 mins (PJM) to
30 mins (Great Britain) or one hour. SCOPF usually takes
into account N − 1 contingency condition. The penetration of
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distributed and renewable generation reduces system inertia,
threatening the foundation of the current control especially
as the systems become more volatile due to intermittent
renewables and active demand. This motivates a rethinking
of frequency control in a low-inertia world from the first
principle.

In this paper we present a new approach which not only
integrates primary and secondary frequency control but also
performs congestion management at the frequency control
timescale. This new framework is distributed, scalable, and
can exploit active loads and grid-friendly appliances [1]. It
is based on our earlier work on load-side frequency control
[2]–[4]. We explain in this paper how the ideas there can be
applied to generators; in the full version [5] we will combine
both generator and load control.

We consider a network modeled by linearized swing dynam-
ics at generator buses, power flow dynamics on the branches,
and a measure of control effort to agents (generators and
loads) when they participate in the control. We formulate the
controller design as an optimization problem that rebalances
power (primary frequency control), restores the nominal fre-
quency and inter-area flows (secondary frequency control), and
maintains line flows below their limits (congestion manage-
ment) in a way that minimizes the control effort (disutility to
the agents participating in control). We design our controllers
so that the closed-loop system is a distributed primal-dual
algorithm for solving the optimization problem and its La-
grangian dual. In other words we explicitly exploit the network
dynamics to help carry out our primal-dual algorithm over
the power network in real time. This allows a completely
decentralized primary frequency control without the need for
explicit communication among the agents, and a distributed
unified control where communication is only required between
neighboring agents. The asymptotic stability of the primal-
dual algorithm suggests that the proposed control is stable
over an arbitrary network. We demonstrate in simulations that,
compared to the traditional schemes, the unified control not
only implements congestion management at a faster timescale,



but also has a better transient.
The rest of the paper is organized as follows. We explain in

Section II our network model and main design methodology.
We describe our primary frequency control (PFC) in Section
III and a unified control (UC) in Section IV. We use a two-bus
example in Section V to illustrate how PFC and UC achieve
their design goals. We present an itemized derivation of our
controllers in Section VI. We present our simulations of UC
in Section VII. We conclude in Section VIII with implications
of this work. Proofs are omitted due to space limitation but
can be found in [5].

II. A NEW APPROACH TO FREQUENCY CONTROL

A. Notations

Let R be the set of real numbers and N the set of natural
numbers. Given a finite set S ⊂ N we use |S| to denote its
cardinality. For a set of scalar numbers {ai ∈ R | i ∈ S}, we
use aS to denote the column vector of the ai’s; we usually
drop the subscript S when S is clear from the context. For
two vectors a ∈ R|S| and b ∈ R|S′|, (a, b) ∈ R|S|+|S′| is a
column vector. Given any matrix A, we denote its transpose
by AT , and its i-th row by Ai. We use AS to denote the
submatrix of A composed only of the rows Ai for i ∈ S. The
diagonal matrix of a sequence {ai, i ∈ S} is represented by
diag(aS) = diag(ai, i ∈ S), or aS for short when its meaning
is clear. Finally, we use 1(0) to denote the vector/matrix of all
ones (zeros), whose dimension is understood from the context.

We consider a classical power network model [6] which
is represented by a directed graph (N , E), where N :=
{1, . . . , |N |} is the set of buses (or control areas, depending
on the granularity of the model), and E ⊂ N ×N is the set of
lines. A line is denoted interchangeably by e ∈ E , or ij ∈ E
if it is directed from buses i to j. The set of the neighbors
of bus i is defined as N(i) := {j ∈ N|ij ∈ E or ji ∈ E}
We partition the buses N = G ∪ L where G and L are the
set of generator (high inertia) and load (zero inertia) buses
respectively. Assume (N , E) is connected. The main variables
and parameters are summarized in Table I.

B. Network model

The power network is modeled as

θ̇ = ω (1a)

MGω̇G = rG + pMG −DGωG − CGP (1b)
0 = rL −DLωL − CLP (1c)

P = BCT θ (1d)

TG ṗ
M
G = −pMG + pG . (1e)

Here (1b) is the set of generator swing equations in vector
form for generator buses, (1c) is the set of the power balance
equations for load buses, and (1d) is the set of DC power flow
equations in vector form. The generators are modeled as (1e),
where we only consider turbine dynamics and ignore governor
dynamics since the time constants of governors are usually
much smaller than turbines [6]. We also ignore the traditional

TABLE I: Notations.

θ := (θi, i ∈ N ) deviations of bus voltage angles from their
nominal values with respect to the rotating
frame at the nominal frequency.

ω := (ωi, i ∈ N ) deviations of bus frequencies from their
nominal value

r := (ri, i ∈ N ) simultaneous step changes in power injec-
tions on an arbitrary subset of the buses

pMG := (pMi , i ∈ G) mechanic power injections at generators
pG := (pi, i ∈ G) control commands at generators
TG := diag(Ti, i ∈ G) time constants that characterize time delay

of turbines
Diωi, i ∈ N aggregate power of generator friction and

damping as well as frequency-dependent
(uncontrollable) loads like induction mo-
tors (Di>0). Define DG := diag(Di, i ∈
G) and DL = diag(Di, i ∈ L).

Mi > 0, i ∈ G inertia constant of generators; define
MG :=diag(Mi, i ∈ G). For convenience,
also define Mi := 0, i ∈ L at load buses.

P := (Pij , ij ∈ E) active line power flows. For convenience,
define Pji := −Pij for ij ∈ E even
though ji /∈ E since the graph is directed.

C ∈ R|N|×|E| incidence matrix: Cj,e = 1 if line e = jk
is from bus j to some bus k, Cj,e = −1
if line e = ij is from some bus i to bus j,
and Cj,e = 0 otherwise

B := diag(Bij , ij ∈ E) line parameters that depend on line suscep-
tances, voltage magnitudes (assumed fixed)
and reference phase angles. For conve-
nience, define Bji := Bij even though
ji /∈ E since the graph is directed.

droop control since it is a special case of the redesigned
primary frequency control pG below.

We denote the state of the system (1) by x(t) :=
(θ(t), ω(t), P (t), pG(t), pMG (t)).

Definition 1. A state x∗ := (θ∗, ω∗, P ∗, p∗G , p
M,∗
G ) ∈

R2|N |+|E|+2|G| is an equilibrium (point) of (1) if x∗ satisfies
(1) with the right-hand sides of (1a)–(1b), (1e) being zero.

An equilibrium x∗ always has ω∗ = 0, meaning that all bus
frequencies are at their nominal value.

C. Design methodology

Suppose the system (1) is in an equilibrium before time 0
and there is disturbance r at time 0 on an arbitrary subset of
the buses. Our goal is to design a feedback controller

pG(t) := pG(x(t)) (2)

to drive the system back to a new equilibrium point. The
design requirements are:
R1. Asymptotic stability. The closed-loop system (1) (2) will

always converge to a (new) equilibrium point x∗.
R2. Control goals. The equilibrium x∗ rebalances power and

stabilizes bus frequencies (primary frequency control),
restores bus frequencies and inter-area flows to their
nominal values (secondary frequency control), and en-
sures line limits are satisfied (congestion management).

Our design approach consists of three steps:
D1. Formalize the control goals R2 as an optimization prob-

lem.



D2. Derive the controller pG(x(t)) as a primal-dual algo-
rithm, or its variant, to solve the optimization problem
in step D1.

D3. Prove that the requirements R1 and R2 are satisfied.
This design approach offers three advantages. First the objec-
tive function and the constraints of the optimization problem
in D1 are designed to inherit the decentralized structure
inherent in system (1). A first-order primal-dual algorithm
then often takes the form of a distributed computation, leading
to a controller pG(x(t)) with a distributed structure. Second
the potentially difficult search for a Lyapunov function for
stability proof is often facilitated by the Lagrangian function
of the optimization problem designed in step D1. Finally by
proving that every equilibrium point of the closed-loop system
(1)(2) solves the optimization problem defined in step D1, the
controller design automatically satisfies the requirement R2.

We allow a generator to perform primary frequency con-
trol only, unified control (primary + secondary + congestion
management), or neither.1 In practice one often has to iterate
between steps D1–D3.

III. PRIMARY FREQUENCY CONTROL

In this section we specify the optimization problem for the
primary frequency control, design a decentralized controller,
and discuss how it satisfies our requirements R1 and R2.

A. Control goals

Primary frequency control cannot in general drive the
system to an equilibrium of (1), but only to a point where
frequencies are synchronized ω∗i = ω∗j , not necessarily zero.
This motivates the following definition.

Definition 2. A state x∗ := (θ∗, ω∗, P ∗, p∗G , p
M,∗
G ) ∈

R2|N |+|E|+2|G| is called a frequency synchronized solution of
(1) if and only if all of the following are satisfied.

(i) x̃∗ := (θ̃∗(t), ω∗, P ∗, p∗G , p
M,∗
G ), where θ̃∗(t) := ω∗t +

θ∗, is a solution of (1).
(ii) Right-hand sides of (1b), (1e) are zero.

(iii) ω∗ ∈ span{1N }.

Conditions (i) and (ii) say that x∗ satisfies (1) with ω̇G ,
ṗMG equal to zero but θ̇ not necessarily zero. Condition (iii) is
equivalent to ω∗i = ω∗j for all i, j ∈ N . Conditions (ii)(iii) are
necessary conditions for (i). Clearly a frequency synchronized
solution x∗ that also has ω∗ = 0 is an equilibrium of (1) with
θ̇ ≡ 0.

The goal of a primary frequency controller pG(x(t)) is to
drive the system (1) to a frequency synchronized solution
x∗ after any disturbance r ∈ R|N |. In general frequency
synchronized solutions are nonunique and we want to design
the controller pG(x(t)) such that at the resulting x∗, the cor-
responding (θ∗, ω∗, P ∗, p∗G) solves the following optimization

1For ease of exposition, however, the discussion in this paper assumes either
all generators perform the primary control or all performs the unified control.
The results however can easily extend to the case where a generator may run
either one of them or neither.

problem.
Primary Frequency Control (PFC):

min
θ,ω,P,pG

∑
i∈G

ci(pi) +
∑
i∈N

Di(ωi)
2

2
(3a)

subject to rG + pG −DGωG − CGP = 0 (3b)
rL −DLωL − CLP = 0 (3c)

P = BCT θ (3d)

pPFC
i
≤ pi ≤ pPFC

i ∀i ∈ G. (3e)

This problem formalizes the goal of primary frequency con-
trol: PFC (3) rebalances power and stabilizes bus frequencies
at a common value (not necessarily nominal) in a way that
minimizes the sum of the total effort ci for controlling the
generators i ∈ G and a quadratic penalty on the steady-
state frequency deviation, subject to the capacity limits (3e)
of generator reserves for primary frequency control. Indeed
the control costs ci minimize deviations from the reference
generation dispatch and therefore PFC disrupts as little as
possible the last optimal dispatch from tertiary frequency
control. The constraints (3b)–(3d) ensures that, if the closed
system converges to a frequency-synchronized solution x∗ that
solves PFC (3), then x∗ satisfies the power balance conditions
(1b)(1c) and the power flow equation (1d) with ω̇G ≡ 0.

We now describe our feedback controller pG(x(t)) and
informally show that it indeed drives the system (1) to an
optimal solution of PFC (3).

B. Decentralized control

We design primary frequency control as

pi(t) = pi(ωi(t)) :=


pPFC
i if ωi(t)<−c′i(pPFC

i )

pPFC
i

if ωi(t)>−c′i(pPFC
i

)

(c′i)
−1(−ωi(t)) otherwise

(4)

for all time t ≥ 0 and all generators i ∈ G. As in the
current primary frequency control, the design is completely
decentralized where each generator i only needs to measure
its local frequency deviation ωi(t) to decide its control pi(t).

Theorem 1. The closed-loop system (1)(4) satisfies:
(i) There is a frequency synchronized solution x∗ :=

(θ∗, ω∗, P ∗, p∗G , p
M,∗
G ) where (θ∗, ω∗, P ∗, p∗G) is the

unique optimal for PFC (3)2 and ω∗ is also the unique
optimal for the dual of PFC (3).

(ii) Suppose the control effort of all generators i ∈ G are
ci(pi) = p2i /(2αi) for arbitrary constants αi > 0, and
the capacity constraints (3e) are not binding. Then every
trajectory x(t) :=(θ(t),ω(t),P (t),pG(t),pMG (t)) converges
to the frequency synchronized solution in (i) as t→∞.

Theorem 1 says that our design requirements R1 and R2 for
primary frequency control are met. It also has three interesting
implications. First it implies that the local frequency deviation

2For uniqueness of θ∗, we consider θ to be invariant under a rigid rotation
of all the angles [7].



ωi(t) at each generator conveys exactly the right information
about the power imbalance for the generators themselves to
make globally optimal decisions based on their local marginal
cost functions c′i. This allows a completely decentralized
solution without explicit the need for communication among
generators. Second when the measure ci of control efforts are
quadratic, our PFC controller (4) reduces to the traditional
linear frequency-droop control at generators. An advantage
of the proposed control (4) is that it can be applied also to
load control with more general cost functions ci.3 It allows
incremental deployment where generators still use the tradi-
tional droop control while the loads utilize the proposed PFC
(4). Finally Theorem 1 has an interesting reverse-engineering
implication first observed in [8] [2]: the traditional frequency-
droop control is optimal over an arbitrary power network in
the sense of solving the underlying optimization problem (3)
with quadratic ci. Moreover the closed-loop system defined
by (1)(4) is derived as (a variant of) the standard first-order
primal-dual algorithm to solve PFC (3) and its Lagrangian
dual. Therefore the generator swing dynamics automatically
carries out our primal-dual algorithm over the network in real
time. In this sense, our design explicitly exploits the system
dynamic (1) to help achieve our control goals.

IV. UNIFIED CONTROL

In this section we specify the optimization problem for
the unified control (primary + secondary + congestion man-
agement), design a distributed controller, and discuss how it
satisfies our design requirements R1 and R2.

A. Control goals

Our unified controller pG drives the system (1) to an equi-
librium x∗ := (θ∗, ω∗, P ∗, p∗G , p

M,∗
G ) that solves the following

optimization problem, after any disturbance r ∈ R|N |:
Unified Control (UC):

min
θ,P,pG

∑
i∈G

ci(pi) (5a)

subject to rG + pG − CGP = 0 (5b)
rL − CLP = 0 (5c)

P = BCT θ (5d)
ECP = 0 (5e)

P ij ≤ Pij ≤ P ij ∀ij ∈ E (5f)

pUC
i
≤ pi ≤ pUC

i ∀i ∈ G. (5g)

The problem UC (5) formalizes the goals of the unified
control. It rebalances power, restores bus frequencies and
inter-area flows to their nominal values, and ensures the line
limits are satisfied in a way that minimizes the total effort
ci of generator control subject to power flow equations (5d)
and capacity limits (5g) of generator reserves. Specifically
the constraints (5b)(5c) rebalance the power and stabilize
the bus frequencies. Moreover we will design the controller

3Theorem 1(ii) holds for general convex functions ci given an additional
assumption on their curvatures, if we also have load control. See [5].

pG so that it also restores the frequencies to their nominal
value. Congestion management is implemented by enforcing
line flow limits (5f). To fulfill the zero area control error
(ACE) requirement [6], the net inter-area flows are restored to
the nominal values by imposing (5e), as follows. The power
network is partitioned into a set K of control areas (subgraphs).
Define E ∈ {0, 1}|K|×|N| such that Ek,i = 1 if bus i is in area
k, and Ek,i = 0 otherwise. Therefore the k-th component of
the vector ECP ∈ R|K| is the total net power flow from area
k to the other areas.

Again the control costs ci minimize deviations from the ref-
erence generation dispatch and therefore UC disrupts as little
as possible the last optimal dispatch from tertiary frequency
control. Once UC attains its goals, SCOPF could be solved
to calculate a new economically-optimal dispatch. This means
that UC maintains system security without interfering with the
market operation.

B. Distributed control

Our controller involves internal variables and is specified
by:

λ̇i = Kλ
i

(
Miω̇i+Diωi+

∑
j∈N(i)

(
Pij −Bij(φi−φj)

))
(6a)

π̇k = Kπ
k

(∑
i∈N (k),j /∈N (k),and j∈N(i)Bij(φi − φj)

)
(6b)

ρ̇+ij = Kρ+

ij

[
Bij(φi − φj)− P ij

]+
ρ+ij

(6c)

ρ̇−ij = Kρ−

ij

[
P ij −Bij(φi − φj)

]+
ρ−ij

(6d)

φ̇i = Kφ
i

(∑
j∈N(i)Bij(λi−λj)−

∑
e∈E Ci,eBe(ρ

+
e −ρ−e )

−
∑
j∈N(i) and k(j)6=k(i)Bij

(
πk(i) − πk(j)

))
(6e)

pi = pi(ωi + λi) (6f)

with (6a)(6e) for all buses i ∈ N , (6b) for all areas k ∈ K,
(6c)(6d) for all lines ij ∈ E , and (6f) for all generators i ∈
G. The diagonal matrices Kλ, Kπ , Kρ+ , Kρ− and Kφ are
positive constant gains. The expression [a]+u in (6c)(6d) are
defined for a ∈ R, u ≥ 0 as

[a]+u :=

{
a if u > 0 or a > 0

0 otherwise

such that ρ+ij ≥ 0 and ρ−ij ≥ 0 are always satisfied along the
trajectory if they start from any nonnegative initial values. We
use N (k) in (6b) to denote all the buses in area k, and k(i)
in (6e) to denote the area where bus i is. The function pi(·) in
(6f) is defined in the same way as (4) except that pPFC

i
, pPFC

i

are replaced by pUC
i

, pUC
i .

We make three remarks on the controller structure. First,
the local nature of the design (6) is in striking contrast with
traditional AGC and congestion management through SCOPF
where global information is used to centrally compute control
decisions. For instance, to update its state λi in (6a), bus i
only needs to measure its local frequency deviation ωi and
branch power flow Pij incident on i, and receive the local



states φj from all its neighbors j. UC (6) can therefore
be implemented with a real-time message passing protocol
between neighboring buses. Second, the only state whose
update requires nonlocal information is πk in (6b) which is
an area-wide state variable for each area. Its update requires
the angle difference φi − φj across each line ij ∈ E that
connects a boundary bus in area k with its neighbor outside
area k. The update (6b) can be carried out either centrally
in each area or in a distributed manner. In the centralized
approach, a designated agent (e.g., area control center) collects
φi(t)−φj(t) from all boundary buses in area k, updates πk(t)
and communicates πk(t) to all buses i in area k for them to
update φi(t) using (6e). In the distributed approach, additional
computation agents are created (tie-line agents), one for each
side of a boundary edge e that connects two separate areas.
Within each area k, these tie-line agents communicate among
each other through an arbitrary (connected) communication
graph. Each agent in an area k maintains two (new) local
variables πke (t) and γke (t) and exchanges (πke (t), γke (t)) with
neighboring tie-line agents within area k and with agents
which are its direct neighbors outside area k; see [4, Section
VI-B] for details. Third, delays in the communication above
have a substantial impact on stability of the closed-loop system
(1)(6). See [9] for an analysis of delay robustness. Fourth,
besides state information that is exchanged in real time, each
bus i also needs to know local network parameters Mi, Di,
and Bij between all its neighbors and itself. See [4, Section
V] for convergence of (1)(6) with uncertain parameters Di.

Theorem 2. The closed-loop system (1)(6) satisfies:

(i) There is an equilibrium x∗ := (θ∗, ω∗, P ∗, p∗G , p
M,∗
G )

where (θ∗, P ∗, p∗G) is the unique optimal for UC (5).
(ii) Suppose the control effort of all generators i ∈ G are

ci(pi) = p2i /(2αi) for arbitrary constants αi > 0, and
the capacity constraints (5g) are not binding. Then every
trajectory x(t) :=(θ(t),ω(t),P (t),pG(t),pMG (t)) converges
to the equilibrium in (i) as t→∞.

Theorem 2 confirms that our controller (6) meets not only
our design requirement R1 but also R2. Before we illustrate
how this is achieved using a two-bus example in Section V, we
remark on the important role of the auxiliary variables φi(t)
in UC (6). The variables φi(t) should be interpreted as virtual
phase angles on buses i. The quantities

Bij(φi(t)− φj(t))

should be interpreted as virtual flows on branches ij (cf.
Pij(t) = Bij(θi(t) − θj(t))), because, when all i ∈ N are
generator buses, the virtual flows converge to the actual branch
power flows in equilibrium, i.e.,

P ∗ij = Bij(φ
∗
i − φ∗j ).

Virtual flow is an important concept introduced in [4] to
enforce line flow limits as well as scheduled inter-area flows
(see below).

V. TWO-BUS EXAMPLE

In this section we illustrate our controllers PFC (4) and UC
(6) on an example with only two generator buses N = G =
{1, 2}, and explain how they achieve our design requirement
R2 in equilibrium.

We assume that each generator has a quadratic cost function
ci(pi) = p2i /(2αi), i = 1, 2, that measures their control effort
and that each bus belongs to a different area (k = i ∈ {1, 2}).
To simplify the notation, we remove generator capacity con-
straints (3e) and (5g).

The network dynamics for this simple example are described
by: for i = 1, 2,

θ̇i = ωi (7a)
Miω̇i = ri + pMi −Diωi −B12(θi − θj) i 6= j (7b)
Tiṗ

M
i = −pMi + pi. (7c)

The PFC controller (4) is given by

pi(t) := −αiωi(t), i = 1, 2. (8)

Hence the PFC controller (4) reduces to the standard
frequency-droop control when the cost functions ci are
quadratic. In other words PFC is a generalization of droop
control for arbitrary convex cost functions. Theorem 1 implies
that in equilibrium the generation changes scaled by their
cost parameters αi converge to the same value which is the
equilibrium frequency deviation:

p∗i
αi

= −ω∗, i = 1, 2. (9)

It can be shown that (9) is the key requirement for the
Karus-Kuhn-Tucker optimality condition [10] for PFC (3),
and therefore the equilibrium of the closed-loop system (7)(8)
solves PFC (3).

We next explain our UC controller (6) and illustrate how
it achieves its goals R2 in equilibrium, in three steps starting
with the simplest case where the nominal frequency is restored
but the requirements on the inter-area flow and congestion
management are not enforced.

In this case the controller (6) reduces to: for i = 1, 2,

λ̇i = Kλ
i

(
Miω̇i+Diωi+

(
P12 −B12(φi−φj)

))
i 6= j (10a)

φ̇i = Kφ
i

(
B12(λi−λj)

)
i 6= j (10b)

pi = −αi(ωi + λi). (10c)

At an equilibrium of the closed-loop system (7)(10), we have
θ̇i = ω̇i = λ̇i = φ̇i = 0. This implies ω∗i = 0 from (7a) and
P ∗12 = B12(φ∗1−φ∗2) from (10a). This means, respectively, the
nominal frequency is restored and the virtual flow is equal to
the real line flow. Moreover (10b) implies that λ∗1 = λ∗2 =: λ∗

and hence, since ω∗i = 0, we have

p∗i
αi

= −λ∗ i = 1, 2



i.e., the scaled generation changes of both generators again
converge to a common value as in (9). This implies that the
equilibrium is optimal, in the absence of inter-area constraints
and congestion management.

Next, to restore inter-area flows to their scheduled values
we replace (10b) with

φ̇i = Kφ
i

(
B12(λi−λj)−B12

(
πi − πj

))
i 6= j

π̇i = Kπ
i

(
B12(φi − φj)

)
i 6= j

for i = 1, 2. In equilibrium we have π̇ = 0 yielding
B12(φ∗1 − φ∗2) = 0, i.e., the inter-area virtual flow is restored
to its scheduled value. Since in equilibrium the deviation
P ∗12 = B12(φ∗1 − φ∗2) = 0, the actual inter-area flow is
also restored to its scheduled value.

Finally for congestion management, we introduce the addi-
tional states ρ+12 and ρ−12 that penalize when the virtual flow
B12(φi−φj) exceeds the line limits P 12 and P 12 respectively.
This is achieved by replacing (10b) with

φ̇i = Kφ
i

(
B12(λi−λj) − Ci,12B12(ρ+12−ρ

−
12)

− B12

(
πi − πj

))
i 6= j

π̇i = Kπ
i

(
B12(φi − φj)

)
i 6= j

ρ̇+12 = Kρ+

12

[
B12(φ1 − φ2)− P 12

]+
ρ+12

ρ̇−12 = Kρ−

12

[
P 12 −B12(φ1 − φ2)

]+
ρ−12
.

The condition ρ̇+12 = ρ̇−12 = 0 in equilibrium enforces P 12 ≤
P ∗12 ≤ P 12.

VI. CONTROLLER DERIVATION

We outline how we derive the PFC controller (4) to illustrate
our design methodology. The crux of our derivation is to con-
struct primal-dual dynamics of a properly designed Lagrangian
and modify it to match the network dynamics:
• Step 1: Remove θ and constraint (3d) from the opti-

mization problem PFC (3) and build the Lagrangian by
relaxing non-local constraints (3b) and (3c)

L(ω, P, pG , ν) =
∑
i∈G

ci(pi) +
∑
i∈N

Di(ωi)
2

2
+ νTG (rG + pG

−DGωG − CGP ) + νTL (rL −DLωL − CLP )

where νG and νL are the Lagrange multipliers of (3b)
and (3c) respectively.

• Step 2: Minimize L(ω, P, pG , ν) with respect to ω and
pG subject to generator constraints (3e), i.e.

L(P, ν) = min
ω,pG∈[pPFC ,pPFC ]

L(ω, P, pG , ν). (13)

It is easy to verify that the minimum is achieved when
ω = ν and pG satisfies (4). We therefore substitute w.l.o.g.
ν with ω in (13) to get L(P, ω) := L(P, ν)|ν=ω .

• Step 3: Maximize (13) with respect to νL = ωL, i.e.

L(P, ωG) = max
ωL

L(P, ω)

which is achieved if and only if the optimal solution
ω∗L(P, ωG) satisfies (1c).

• Step 4: Compute the continuous time primal-dual algo-
rithm of L(P, ωG) with specific choice of gains

Ṗ :=−B[
∂

∂P
L(P, ωG)]T =B(CTω)|ωL=ω∗L(P,ωG)

(14a)

ω̇G :=M−1G [
∂

∂ωG
L(P, ωG)]T

=M−1G (rG+pG(ωG)−DGωG−CGP ) (14b)

where pG(ωG) is given by (4). It is easy to see that
(1a) and (1d) are equivalent to (14a). Therefore, since
by Step 3 ω∗L(P, ωG) must satisfy (1c), the system (14)
is equivalent (1a)-(1d) with pMG substituted by pG(ωG).

• Step 5: Add generator dynamics to (14) by substituting
pG(ωG) in (14b) with pMG which is driven by (1e).

The derivation described above shows how to identify the
network dynamics (1) as part of a variant of primal-dual
algorithm for PFC (3). The same procedure can be extended
to accommodate additional constraints in the optimization
problem and therefore achieve more sophisticated operational
constraints. The only requirement is that P and ω can only
appear in constraints (3b)-(3d). This is handled by introducing
virtual flows to implicitly impose the additional constraints.

VII. SIMULATIONS

We demonstrate the performance of the proposed framework
with simulations of the IEEE 39 bus system, shown in Fig.
1. We assume that the system has two control areas that
are connected by lines (1, 2), (2, 3) and (26, 27). System
parameters are obtained from the Power System Toolbox [11],
with minor modifications.4
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Figure 1: IEEE 39 bus system from [4].

Throughout the simulations we assume Di = 0.1 pu·sec/rad
for all i ∈ N where 1 pu = 100 MVA is the base power. For
all generators i ∈ G, we use a governor-turbine model with
time constants 0.1 sec for the governor and Ti = 2 secs for the
turbine [6]. Moreover, all generators i ∈ G are equipped with
droop control ∆pi = − 1

Ri
ωi where Ri = 10 rad/(sec ·pu), in

addition to any other control schemes we simulate.

4For numerical stability and precision of the simulations, we scale up the
inertia Mi of all generators i ∈ G and all line reactances by a factor of 10.



In the simulations, we implement the unified control (UC)
(6) on all generators i ∈ G, whose control effort functions are
ci(pi) = p2i /(2αi). We assume adequate control capacities for
all i ∈ G such that the constraints (5g) are not binding. Then
(4) and (6f) lead to the design pi(λi+ωi) = −αi(λi+ωi) for
UC. We choose αi = 1 pu · sec/rad for all i ∈ G, and control
gains Kλ

i = Kπ
k = 0.2, Kφ

i = 0.1, and Kρ+

e = Kρ−

e = 1
for all i ∈ N , k ∈ K and e ∈ E .5 For comparison, we also
simulate the case when all the generators run the centralized,
standard automatic generation control (AGC) [6]:

ACEk = P tie
k +Barea

k ωarea
k ∀ area k ∈ K

ṗarea
k = −Karea

k ACEk ∀ area k ∈ K
pi = αip

area
k /(

∑
i∈G(k) αi) ∀ generator i ∈ G(k)

where P tie
k = EkCP is the deviation of net inter-area

flow out of area k, ωarea
k is the average frequency deviation

of all i ∈ G(k), i.e., generators in area k, and Barea
k =∑

i∈G(k)
1
Ri

+
∑
i∈N (k)Di. The total generation adjustments

parea
k for areas k ∈ K are integrals of ACE signals with gains
Karea
k = 0.033 s−1.6 The participation factors of individual

generators are in the same ratio as αi we choose for UC.
We simulate the system after a disturbance r30 = −18 pu.

Fig. 2 shows the frequencies at different buses, for the two
cases when all the generators run AGC, or UC, respectively.
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Figure 2: Frequencies at buses 3, 13, 23, 26, 33, when (a) all generators run
AGC or (b) all generators run UC.

Both control schemes restore bus frequencies to 60 Hz, while
UC leads to a better transient by raising the frequency nadir.
This suggests that UC has the potential to effectively address
large transient frequency deviation, which is the main concern
for low-inertia systems.

Another advantage of UC is to enforce line limits at the
frequency control timescale. This is illustrated in Fig. 3, which
shows the flows on the three tie-lines for the two cases when
all the generators run AGC, or UC, respectively. The total
steady-state flows over these tie-lines are the same for both
cases, since both impose inter-area flow constraints.

We run the simulations above using the simple power
network model (1). We are working on a more comprehensive
set of tests for UC with a much wider range of scenarios
and much more realistic models including, e.g., a higher-
order generator model (with flux decay, excitation, and power
system stabilizer), time-varying voltage magnitudes, nonzero
line resistances, and nonlinear AC power flows.

5Units of these gains are clear from the context and therefore omitted.
6We choose Karea

k that leads to fastest convergence without overshoot above
60 Hz. Frequency nadir is not sensitive to Karea

k .
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Figure 3: Line flows on (1, 2), (2, 3) and (26, 27) which connect two control
areas, when (a) all generators run AGC or (b) all generators run UC. The line
limits are 2.6 pu (dashed horizontal line).

VIII. CONCLUSIONS AND DISCUSSIONS

We have proposed a new framework for frequency control
and congestion management. Our unified control (UC) rebal-
ances power, restores the nominal frequency and inter-area
flows, and maintains line flows below their limits in a way
that minimizes the disruption to the last optimal dispatch.

This can have a profound implication for power system
control. The traditional congestion management is undertaken
on a slow timescale, so no line overloads can be tolerated
and tertiary control must solve N − 1 SCOPF. Since UC
reacts to both generator and line outages on minutes timescale,
transient line overloads can be tolerated since a few minutes
are not long enough to overheat a line. If UC can resolve all
transmission constraints due to generator or line contingencies,
then the tertiary control can solve N − 0 OPF, instead of
N − 1 SCOPF. Otherwise SCOPF need only consider those
contingencies not resolved by UC. This move from the current
N − 1 preventive dispatch towards N − 0 corrective dispatch
can result in significant savings in generation re-dispatch.
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