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Abstract— This paper studies the projected saddle-point dy-
namics for a twice differentiable convex-concave function, which
we term saddle function. The dynamics consists of gradient
descent of the saddle function in variables corresponding to
convexity and (projected) gradient ascent in variables corre-
sponding to concavity. We provide a novel characterization of
the omega-limit set of the trajectories of these dynamics in
terms of the diagonal Hessian blocks of the saddle function.
Using this characterization, we establish global asymptotic
convergence of the dynamics under local strong convexity-
concavity of the saddle function. If this property is global,
and for the case when the saddle function takes the form
of the Lagrangian of an equality constrained optimization
problem, we establish the input-to-state stability of the saddle-
point dynamics by providing an ISS Lyapunov function. Various
examples illustrate our results.

I. INTRODUCTION

Saddle-point dynamics and its variations have been used
extensively in the design and analysis of distributed feedback
controllers and optimization algorithms in several applica-
tions, including power networks, network flow problems, and
zero-sum games. The analysis of the global convergence of
these dynamics typically relies on some global strong/strict
convexity-concavity property of the saddle function that
defines the dynamics. The main aim of this paper is to refine
this analysis by unveiling two ways in which convexity-
concavity of the saddle function plays a role. First, we show
that local strong convexity-concavity is enough to conclude
global asymptotic convergence, thus generalizing previous
results that rely on global strong/strict convexity-concavity to
conclude global convergence. Second, we show that global
strong convexity-concavity in turn implies a stronger form
of convergence, that is, input-to-state stability (ISS) of the
dynamics. This property has important implications for the
practical implementation of the saddle-point dynamics and
its robustness against a wide variety of disturbances.

Literature review

The analysis of the convergence properties of (projected)
saddle-point dynamics to the set of saddle points goes back
to [1], [2], motivated by applications in nonlinear program-
ming and optimization. These works employ direct meth-
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ods, examining the approximate evolution of the distance
of the trajectories to the saddle point along the dynamics
and concluding attractivity by showing it to be decreasing.
Motivated by network optimization problems, more recent
work [3], [4] has employed indirect, LaSalle-type arguments
to analyze the asymptotic convergence properties of these
dynamics. For this class of problems, the aggregate nature
of the objective function and the local computability of the
constraints make the saddle-point dynamics corresponding
to the Lagrangian naturally distributed. Many other works
exploit this strategy to solve network optimization problems
for various applications, e.g., distributed convex optimiza-
tion [4], [5], distributed linear programming [6], bargaining
problems [7], and power network [8], [9], [10]. Another area
of application is game theory, where saddle-point dynamics
is applied to find the Nash equilibria of two-person zero-sum
games [11], [12]. In the context of distributed optimization,
the recent work [13] employs a (strict) Lyapunov function ap-
proach to ensure asymptotic convergence of saddle-point-like
dynamics. The work [14] examines the asymptotic behavior
of the saddle-point dynamics when the set of saddle points
is not asymptotically stable and, instead, the trajectories
exhibit oscillatory behavior. Our previous work has estab-
lished global asymptotic convergence of the saddle-point
dynamics [15] and the projected saddle-point dynamics [16]
under global strict convexity-concavity assumptions. The
works mentioned above require similar or stronger global
assumptions on the convexity-concavity properties of the
saddle function to ensure convergence. By contrast, here we
are able to guarantee global convergence under local strong
convexity-concavity assumptions. Furthermore, we show that
under global strong convexity-concavity, the saddle-point
dynamics is ISS by identifying an ISS Lyapunov function.

Statement of contributions

We start with the definition of the projected saddle-
point dynamics for a differentiable convex-concave func-
tion, which we refer to as saddle function. The dynamics
has three components: gradient descent, projected gradient
ascent, and gradient ascent of the saddle function (where
each gradient is with respect to a subset of the arguments
of the function). Our contributions highlight the effect of
the convexity-concavity properties of the saddle function in
the convergence analysis, namely, that local properties imply
global convergence and global properties imply robustness.
Our first contribution is a novel characterization of the
omega-limit set of the trajectories of the projected saddle-



point dynamics in terms of the diagonal Hessian blocks of
the saddle function. To this end, we use the distance to a
saddle point as a LaSalle function, express the Lie derivative
of this function in terms of Hessian blocks, and show it is
negative using second-order properties of the saddle function.
Building on this characterization, our second contribution
establishes global asymptotic convergence of the projected
saddle-point dynamics to a saddle point assuming only local
strong convexity-concavity of the saddle function. If the
convexity-concavity property is global, and for the case of
saddle functions of the form of a Lagrangian of an equality
constrained optimization problem, our third contribution es-
tablishes the input-to-state stability properties of the saddle-
point dynamics with respect to the set of saddle points. We
illustrate our results in several examples. Proofs are omitted
for reasons of space and will appear elsewhere.

Organization

Section II contains notation and preliminaries. Section III
introduces the projected saddle-point dynamics and the prob-
lem statement. Section IV analyzes the asymptotic conver-
gence of the projected saddle-point dynamics using local
properties of the saddle function. Section V studies the
input-to-state stability of the saddle-point dynamics. Finally,
Section VI summarizes our conclusions and ideas for future
work.

II. PRELIMINARIES

This section introduces our notation and preliminary no-
tions on convex-concave functions, discontinuous dynamical
systems, and input-to-state stability.

A. Notation

Let R, R>o denote the set of real, nonnegative real
numbers, respectively. We let || - || denote the 2-norm on R”
and the respective induced norm on R"*™. Given x,y € R™,
x; denotes the ¢-th component of z, and z < y denotes
x; <y;fori € {1,...,n}. For vectors u € R"™ and w € R™,
the vector (u;w) € R™™™ denotes their concatenation. For
a,b € R, we let

ol = {n;ax{(), a},

For vectors a,b € R™, [a];” denotes the vector whose i-th
component is [ai]l:, forie {1,...,n}. Givenaset S C R",
we denote by cl(S), int(S), and |S] its closure, interior, and
cardinality, respectively. The distance of a point x € R"
to the set S C R™ in 2-norm is [|z||s = infycs |z — y||.
The projection of z onto a closed set S is defined as the
set projs(z) = {y € S | llo — y| = [alls}. When S
is convex, projs(z) is a singleton for any x € R™. For a
matrix A € R"*", weuse A >0, A>0,4A<0,and A <0
to denote that A is positive semidefinite, positive definite,
negative semidefinite, and negative definite, respectively. For

if b > 0,
if b=0.

a symmetric matrix A € R™ ", A\,in(A) and Apax(A)
denote the minimum and maximum eigenvalue of A. For
a real-valued function F' : R" x R™ = R, (z,y) — F(z,y),
we denote by V,F' and V F the partial derivative of F
with respect to the first and second arguments, respectively.
Higher-order derivatives follow the convention V,,F =
%, Ve F = f’;@, and so on. A function o : Ry —
R>q is class K if it is continuous, strictly increasing, and
a(0) = 0. The set of unbounded class K functions are called
Koo functions. A function 8 : R>g x R>9 — R is class
KL if for any t € R>g, z +— [(x,t) is class K and for
any x € Rsq, t — fS(z,t) is continuous, decreasing with
B(t) — 0 as t — .

B. Saddle points and convex-concave functions

Here, we review notions on convexity, concavity, and
saddle points from [17]. A function f : X — R is convex if

fz+ (1 =N)a") <Af(z) + (1 =N f(@),

for all x,2’ € X and all \ € [0,1]. A convex differentiable
function f satisfies the following first-order convexity con-
dition

f@') > f) + (2" — )TV (2),

for all z, 2’ € X. A twice differentiable function f is locally
strongly convex at x € X if f is convex and V2f(z) = mI
for some m > 0. Moreover, a twice differentiable f is
strongly convex if V2f(x) = mlI for all z € X for some
m > 0. A function f : X — R is concave, locally
strongly concave, or strongly concave if —f is convex,
locally strongly convex, or strongly convex, respectively. A
function F' : X x Y — R is convex-concave (on X x )))
if, given any point (Z,9) € X x ), x — F(z,y) is convex
and y — F'(Z,y) is concave. When the space X’ x ) is clear
from the context, we refer to this property as F' being convex-
concave in (x,y). A function F' is locally strongly convex-
concave at a saddle point (x,y) if it is convex-concave and
either V., F(x,y) = mI or V,,F(z,y) <= —ml for some
m > 0. A point (z.,y«) € X x Y is a saddle point of
F on the set X x Y if F(z.,y) < F(z4,yx) < F(x,y.),
for all z € X and y € ). The set of saddle points of a
convex-concave function F' is convex.

C. Discontinuous dynamical systems

Here we present notions on discontinuous dynamical sys-
tems [18], [19]. Let f : R® — R™ be Lebesgue measurable
and locally bounded. Consider the differential equation

&= f(). (D

A map v:[0,T) — R™ is a (Caratheodory) solution of (1)
on the interval [0,7) if it is absolutely continuous on [0, T)
and satisfies §(t) = f(v(t)) almost everywhere in [0,T).
We use the terms solution and trajectory interchangeably. A
set S C R™ is invariant under (1) if every solution starting
from any point in S remains in S. For a solution « of (1)



defined on the time interval [0, o), the omega-limit set ()
is defined by

Q(y) ={y € R™ | I{tx}721 C [0,00) with lim tg = oo

k—o0

and lim ~(t;) = y}.
k— o0

If the solution  is bounded, then Q() # @ by the Bolzano-
Weierstrass theorem [20, p. 33]. Given a continuously dif-
ferentiable function V' : R™ — R, the Lie derivative of V
along (1) at x € R™ is L4V (z) = VV(z) " f(x). The next
result is a simplified version of [18, Proposition 3].

Proposition 2.1: (Invariance principle for discontinuous
Caratheodory systems): Let S € R™ be compact and in-
variant. Assume that, for each point o € S, there exists a
unique solution of (1) starting at zo and that its omega-limit
set is invariant too. Let V : R®™ — R be a continuously
differentiable map such that £¢V(z) < 0 for all z € S.
Then, any solution of (1) starting at S converges to the largest
invariant set in cl({z € S | L;V (z) = 0}).

D. Input-to-state stability

Here, we review the notion of input-to-state stability (ISS)
following [21]. Consider a system

&= f(z,u), 2

where z € R" is the state, u : R>g — R™ is the input that
is measurable and locally essentially bounded, and f : R™ x
R™ — R™ is locally Lipschitz. Assume that starting from
any point in R", the trajectory of (2) is defined on Rx>( for
any given control. Let Eq(f) C R™ be the set of equilibrium
points of the unforced system. Then, the system (2) is input-
to-state stable (ISS) with respect to Eq(f) if there exists
B € KL and v € K such that each trajectory ¢ — x(t) of (2)
satisfies

l2(@)lacr) < BUI@O)|Eaer): £) +v(llullo)

for all ¢ > 0, where |ulloc = ess sup,sqllu(t)| is the
essential supremum (see [20, p. 185] for the definition)
of u. This notion captures the graceful degradation of the
asymptotic convergence properties of the unforced system
as the size of the disturbance input grows. One convenient
way of showing ISS is by finding an ISS-Lyapunov function
for the dynamics. An ISS-Lyapunov function with respect
to the set Eq(f) for system (2) is a differentiable function
V :R™ — R>( such that

(i) there exist ay, as € Ko such that for all x € R",

ar(zlleqr)) < V(z) < aa(llzllgq); )

(ii) there exists a continuous, positive definite function a3 :
R>9 =+ R>g and v € K such that

V() f(zv) < —as(llzlleacr) @)
for all z € R™, v € R™ for which ||z|[gqr) > v(|[v]])-

Proposition 2.2: (Existence of ISS-Lyapunov function im-

plies ISS): If the system (2) admits an ISS-Lyapunov func-
tion, then it is ISS.

III. PROBLEM STATEMENT

In this section, we provide a formal statement of the prob-
lem of interest. Consider a twice continuously differentiable
function F : R" x RE ;) x R™ — R, (z,y,2) — F(z,y,2),
which we refer to as saddle function. With the notation of
Section II-B, we set here X = R” and J) = R%, x R™, and
assume that F' is convex-concave on (R") x (RZ ; x R™). Let
Saddle(F) denote its set of saddle points, which we assume
non-empty. We define the projected saddle-point dynamics
for F' as

&= —VIF((E,y,Z), (5a)
g =[VyF(2,y,2)], (5b)
2=V_,F(z,y,z). (5¢)

When convenient, we use the map X, : R” XRZ ) x R™ —
R™ x RP x R™ to refer to the dynamics (5). Note that the
domain R™ x IR’;O x R™ is invariant under X, ¢, (this follows
from the definition of the projection operator) and its set of
equilibrium points precisely corresponds to Saddle(F') (this
follows from the defining property of saddle points and the
first-order condition for convexity-concavity of F'). Thus, a
saddle point (., y«, 2« ) satisfies

VIF(I*ay*7Z*) =0, VZF(I*,y*,Z*) =0,
VyF (24, ys, 24) <0, yIVyF(x*,y*7z*) =0.

(6a)
(6b)

Our interest in the dynamics (5) is motivated by two bodies
of work in the literature: one that analyzes primal-dual dy-
namics, corresponding to (5a) together with (5b), for solving
inequality constrained network optimization problems, see
e.g., [2], [3], [22], [9]; and the other one analyzing saddle-
point dynamics, corresponding to (5a) together with (5c),
for solving equality constrained problems and finding Nash
equilibrium of zero-sum games, see e.g., [15] and references
therein. By considering (5a)-(5c) together, we seek to unify
these two lines of work.

Our main objectives are to identify conditions that guar-
antee that the set of saddle points is globally asymptotically
stable under the dynamics (5) and formally characterize
the robustness properties using the concept of input-to-state
stability.

IV. PROJECTED SADDLE-POINT DYNAMICS: LOCAL
PROPERTIES IMPLY GLOBAL CONVERGENCE

Our first result of this section characterizes the omega-
limit set of the trajectories of the projected saddle-point
dynamics (5) in terms of second-order information of the
saddle function.

Proposition 4.1: (Characterization of the omega-limit set
of solutions of X, ¢,): Given a convex-concave function F,
the set Saddle(F) is stable under the projected saddle-point



dynamics X, ¢, and the omega-limit set of every solution is
contained in the largest invariant set M in £(F'), where

E(F) ={(z,y,2) ER" x RY; x R™ |
(T — a3y = Yu; 2 — 22) € ker(H(2,Y, 2, Tu, Y, 24)),
for all (x4, y«, 2.) € Saddle(F')}, (7

and
1
T @,y 20y, 22) = / H(a(s), y(s), =(s))ds,

(2(5),y(s),2(5)) = (Tas Yoy 22) + (2 = T,y = Y, 2 = 24),

—V o F 0 0
H(z,y,z) = 0 VyF V. F (8)
0 V. V..F

(z,y,2)

The above result uses LaSalle Invariance principle by
showing that the evolution of the following function is
nonincreasing along the trajectories

1
V1($7y72):§(||$ — P+ lly — vl P+ lz = z]?). )

The next result states that local strong convexity-concavity
around a saddle point together with global convexity-
concavity of the saddle function are enough to guarantee
global convergence. The proof uses the above derived char-
acterization of the omega-limit set.

Theorem 4.2: (Global asymptotic stability of the set of
saddle points under X,.g,): Given a convex-concave function
F which is locally strongly convex-concave at a saddle point,
the set Saddle(F') is globally asymptotically stable under the
projected saddle-point dynamics X, and the convergence
of trajectories is to a point.

The conclusion of the above result hold for slightly weaker
set of conditions on the saddle function. In particular, F' need
only be twice continuously differentiable in a neighborhood
of the saddle point and the local strong convexity-concavity
can be relaxed to a condition on the line integral of Hessian
blocks of F'. We state next this stronger result.

Theorem 4.3: (Global asymptotic stability of the set of
saddle points under X,.;;): Let F' be convex-concave and
continuously differentiable with locally Lipschitz gradient.
Suppose there exists a saddle point (z., y«, z«) and a neigh-
borhood of this point U, C R™ x RZ;O x R™ such that F'
is twice continuously differentiable on U/, and either of the
following is true

(i) for all (z,y,2) € Uy,

/O Ve F(2(5), y(s), 2(5))ds = 0,

(i) for all (z,y,z2) € U,

/1 [ VyF V,.F ]
0 (@(5),9(s),2(5))

Vb V.. F
where (z(s),y(s), z(s)) are given in (8). Then, Saddle(F)
is globally asymptotically stable under the projected saddle-

ds <0,

point dynamics X,.s, and the convergence of trajectories is
to a point.

Next, we illustrate the application of the above result with
an example.

Example 4.4: (Illustration of global asymptotic conver-
gence): Consider F': R? x R>g x R — R given as

F(z,y,2) = f(z) +y(—x1 — 1) + z(x1 —22),  (10)
where
Fay = 101 if ||| < 3,
(= S

Note that F is convex-concave on (R?) x (R>o x R) and
Saddle(F) = {0}. Also, F is continuously differentiable
on the entire domain and its gradient is locally Lipschitz.
Finally, F' is twice continuously differentiable on the neigh-
borhood U, = By /5(0) N (R? x R>o X R) of the saddle point
0 and hypothesis (i) of Theorem 4.3 holds on /.. Therefore,
we conclude from Theorem 4.3 that the trajectories of the
projected saddle-point dynamics of F' converge globally
asymptotically to the saddle point 0. Figure 1 shows an
execution. .

Remark 4.5: (Comparison with the literature): Theo-
rems 4.2 and 4.3 complement the available results in the
literature concerning the asymptotic convergence properties
of saddle-point [2], [15], [13] and primal-dual dynamics [3],
[16]. The former dynamics corresponds to (5) when the
variable y is absent and the later to (5) when the variable z is
absent. For both these dynamics, existing global asymptotic
stability results require assumptions on the global properties
of F', in addition to the global convexity-concavity of F'. For
example, global strong convexity-concavity [2], global strict
convexity-concavity, and its generalizations [15]. In contrast,
the novelty of our results lies in establishing that certain local
properties of the saddle function are enough to guarantee
global asymptotic convergence of the projected saddle-point
dynamics. °

V. INPUT-TO-STATE STABILITY OF THE SADDLE-POINT
DYNAMICS

In this section we show that, when the saddle func-
tion possesses other global properties in addition to being
convex-concave, cf. Remark 4.5, the associated saddle-point
dynamics in fact enjoys robustness properties beyond just
global asymptotic convergence. To this end, throughout the
section, we consider saddle functions corresponding to the
Lagrangian of an equality-constrained optimization problem,

F(x,2) = f(x)+ 2" (Az — b), (11)

where A € R™*™ b € R™, and f : R™ — R. The reason
behind this focus is that, in this case, the dynamics (5) is
smooth, and this allows to directly bring to bear the theory of
input-to-state stability outlined in Section II-D. The projected
saddle-point dynamics (5) for the class of saddle functions
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Execution of the projected saddle-point dynamics (5) starting from (1.7256,0.1793,2.4696,0.3532) for Example 4.4. As guaranteed by

Theorem 4.3, the trajectory converges to the unique saddle point O and the function V7 defined in (9) decreases monotonically.

given in (11) takes the form

&=V F(x,z)=-Vf(zr)— Az,
2=V,F(z,z) = Az — b,

(12a)
(12b)

corresponding to equations (5a) and (5c). We term these
simply saddle-point dynamics and denote it as X, : R™ X
R™ — R™ x R™.

Our aim in this section is to establish that the saddle-point
dynamics is ISS with respect to the set Saddle(F') when
disturbance inputs affect it additively. Disturbance inputs
can arise when implementing the dynamics as a controller
of a physical system because of a variety of malfunctions,
including errors in the gradient computation, noise in state
measurements, and errors in the controller implementation.
In such scenarios, the following result shows that the dynam-
ics (12) exhibits a graceful degradation of its convergence
properties, one that scales with the size of the disturbance.

Theorem 5.1: (ISS of saddle-point dynamics): Let the
saddle function F' be of the form (11), with f strongly
convex, twice continuously differentiable, and satisfying
ml = V2f(x) = MI for all x+ € R™ and some constants
0 <m < M < oo. Then, the dynamics

z| |-V F(x,2) 4 |t
2 | V.F(z,2) Uz’
where (ug,u,) : R>g — R™ x R™ is a measurable and

locally essentially bounded map, is ISS with respect to
Saddle(F).

We omit the proof for space reasons, but provide here a
brief outline. For notational convenience, we refer to (13) by
X5 R xR™ xR" xR™ — R™xR™. The proof essentially
pconsists of establishing that the function V5 : R” x R™ —
R>o,

13)

8 8
Va(,2) = 1 X2, 2) 1P + 112 2) [§addieqry (14

. _ 461M4 . . .
with 81 > 0, B2 = , is an ISS-Lyapunov function with

m2

respect to Saddle(F') for X%,. The statement then directly

follows from Proposition 2.2.

Remark 5.2: (Relaxing global bounds on Hessian of f):
The assumption of the Hessian of f in Theorem 5.1 is restric-
tive, but there are functions other than quadratic that satisfy
it, see e.g. [23, Section 6], that satisfy it. We conjecture that
the global upper bound on the Hessian can be relaxed by
resorting to the notion of semiglobal ISS. °

The above result has the following consequence.

Corollary 5.3: (Lyapunov function for saddle-point dy-
namics): Let the saddle function F' be of the form (11), with
f strongly convex, twice continuously differentiable, and
satisfying mI < V2f(x) < MI for all x € R™ and some
constants 0 < m < M < oo. Then, the function V5 (14) is a
Lyapunov function with respect to the set Saddle(F’) for the
saddle-point dynamics (12).

Remark 5.4: (ISS with respect to Saddle(F') does not im-
ply bounded trajectories): Note that Theorem 5.1 bounds
only the distance of the trajectories of (13) to Saddle(F).
Thus, if Saddle(F") is unbounded, the trajectories of (13) can
be unbounded under arbitrarily small constant disturbances.
However, if matrix A has full row-rank, then Saddle(F) is
a singleton and the ISS property implies that the trajectory
of (13) remains bounded under bounded disturbances. .

As pointed out in Remark 5.4, if Saddle(F) is not unique,
then the trajectories of the dynamics might not be bounded.
We next look at a particular type of disturbance input under
which this property is still guaranteed. Pick any (x,,z.) €
Saddle(F) and define the function Vj : R” x R™ — R as

Vol 2) = 2 (| X, 2) P 2 (| 22 )

with 81 > 0, By = 4%7%44. One can show, following similar
steps as those of proof of Theorem 5.1 that, the function
Vs is an ISS Lyapunov function with respect to the point
(24, 2z,) for the dynamics Xfp when the disturbance input
to z-dynamics has the special structure u, = Adw,, 4, €
R™. This type of disturbance is motivated by scenarios with
measurement errors in the values of x and z used in (12)



and without any computation error of the gradient term in
the z-dynamics. The following statement makes these facts
precise.

Corollary 5.5: (ISS of saddle-point dynamics): Let the
saddle function F' be of the form (11), with f strongly
convex, twice continuously differentiable, and satisfying
ml < V2f(x) 2 MI for all x € R™ and some constants
0 <m < M < oco. Then, the dynamics

| |[-VuF(z,2) L | U
i 7| V.F(x,2) A, |’
where (u,4.) : Rsg — R?" is measurable and locally

essentially bounded input, is ISS with respect to every point
of Saddle(F).

The proof is analogous to that of Theorem 5.1. One arrives
at the condition (4) for Lyapunov Vs and dynamics (15).
Corollary 5.5 implies that the trajectory of dynamics (15)
remains bounded for bounded input even when the set
Saddle(F') is unbounded.

Example 5.6: (ISS property of saddle-point dynamics):
Consider F : R? x R3 — R of the form (11) with

15)

11 P
f@)=|lz|>, A=|1 0|, and b= |1|. (16)
0 1 1

Then, Saddle(F) = {(z,2) € R xR?® | z = (1,1),z =
(-1,-1,-1) + A(1,—-1,—-1),A € R} is a continuum of
points. Note that V2f(z) = 2I, thus, satisfying the as-
sumption of bounds on the Hessian of f. By Theorem 5.1,
the saddle-point dynamics for this saddle function F' is
input-to-state stable with respect to the set Saddle(F). This
fact is illustrated in Figure 2, which also depicts how the
specific structure of the disturbance input in (15) affects the
boundedness of the trajectories. o

VI. CONCLUSIONS

We have studied the global convergence and robustness
properties of the projected saddle-point dynamics. We have
provided a characterization of the omega-limit set in terms
of the Hessian blocks of the saddle function. Building on
this result, we have established the global asymptotic con-
vergence of the projected saddle-point dynamics assuming
only local strong convexity-concavity of the saddle function.
When the strong convexity-concavity property is global, and
for the case when the saddle function takes the form of a
Lagrangian of an equality constrained optimization problem,
we have established the input-to-state stability of the saddle-
point dynamics by identifying an ISS Lyapunov function.
Future work will generalize the ISS results to more general
classes of saddle functions and exploit their application in
the design of opportunistic state-triggered implementations
of controllers for optimal frequency regulation in power
networks.
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Fig. 2. Plots (a)-(b) show the ISS property, cf Theorem 5.1, of the dynamics (13) for the saddle function F' defined by (16). The initial condition is
x(0) = (—0.0377,2.3819) and z(0) = (0.2580,0.5229,1.0799) and the input w is exponentially decaying in magnitude. As shown in (a)-(b), the
trajectory converges asymptotically to a saddle point as the input is vanishing. Plots (c)-(d) have the same initial condition but the disturbance input
consists of a constant plus a sinusoid. The trajectory is unbounded under bounded input while the distance to the set of saddle points remains bounded,
cf. Remark 5.4. Plots (e)-(f) have the same initial condition but the disturbance input to the z-dynamics is of the form (15). In this case, the trajectory
remains bounded as the dynamics is ISS with respect to each saddle point, cf. Corollary 5.5.
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