
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE/ACM TRANSACTIONS ON NETWORKING 1

Skewless Network Clock Synchronization Without
Discontinuity: Convergence and Performance

Enrique Mallada, Member, IEEE, Xiaoqiao Meng, Michel Hack, Li Zhang, and Ao Tang, Senior Member, IEEE

Abstract—This paper examines synchronization of computer
clocks connected via a data network and proposes a skewless
algorithm to synchronize them. Unlike existing solutions, which
either estimate and compensate the frequency difference (skew)
among clocks or introduce offset corrections that can generate
jitter and possibly even backward jumps, our solution achieves
synchronization without these problems. We first analyze the con-
vergence property of the algorithm and provide explicit necessary
and sufficient conditions on the parameters to guarantee synchro-
nization. We then study the effect of noisy measurements (jitter)
and frequency drift (wander) on the offsets and synchronization
frequency, and further optimize the parameter values to minimize
their variance. Our study reveals a few insights, for example,
we show that our algorithm can converge even in the presence
of timing loops and noise, provided that there is a well-defined
leader. This marks a clear contrast with current standards such
as NTP and PTP, where timing loops are specifically avoided.
Furthermore, timing loops can even be beneficial in our scheme
as it is demonstrated that highly connected subnetworks can
collectively outperform individual clients when the time source
has large jitter. The results are supported by experiments running
on a cluster of IBM BladeCenter servers with Linux.

Index Terms—Distributed control, network clock synchroniza-
tion, network time protocol, precision time protocol.

I. INTRODUCTION

K EEPING consistent time among different nodes in a net-
work is a fundamental requirement of many distributed

applications. Nodes’ internal clocks are usually not accurate
enough and tend to drift apart from each other over time, gener-
ating inconsistent time values. Network clock synchronization
allows these devices to correct their clocks to match a global
reference of time, such as the Universal Coordinated Time
(UTC), by performing time measurements through a network.
For example, for the Internet, network clock synchronization
has been an important subject of research, and several different
protocols have been proposed [2]–[8]. These protocols are used

Manuscript received August 25, 2013; revised April 26, 2014; accepted July
04, 2014; approved by IEEE/ACM TRANSACTIONS ON NETWORKING Editor X.
Lin. A preliminary version of this paper appears in the Proceedings of the IEEE
International Conference on Network Protocols (ICNP), Göttingen, Germany,
October 7–10, 2013.
E. Mallada is with the Computational and Mathematical Sciences, California

Institute of Technology (Caltech), Pasadena, CA 91125 USA.
X. Meng, M. Hack, and L. Zhang are with the IBM T. J. Watson Research

Center, Yorktown Heights, NY 10598 USA.
A. Tang is with the School of Electrical and Computer Engineering, Cornell

University, Ithaca, NY 14853 USA (e-mail: atang@ece.cornell.edu).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TNET.2014.2345692

in various applications with diverse precision requirements
such as banking, communications, traffic monitoring, and
security. In modern wireless cellular networks, for instance,
time-sharing protocols need an accuracy of several microsec-
onds to guarantee the efficient use of channel capacity. Another
example is the recently announced Google Spanner [9], a
globally distributed database, which depends on globally syn-
chronized clocks within at most several-milliseconds drifts.
The current de facto standard for IP networks is the Network

Time Protocol (NTP) proposed by Mills [2]. It is a low-cost,
purely software-based solution whose accuracy mostly ranges
from hundreds of microseconds to several milliseconds. On the
other hand, IEEE 1588 (PTP) [4] gives superior performance by
achieving submicrosecond or even nanosecond accuracy. How-
ever, it is relatively expensive as it requires special hardware
support to achieve those accuracy levels and may not be fully
compatible with legacy cluster systems.
Newer synchronization protocols have been proposed with

the objective of balancing between accuracy and cost. For ex-
ample, IBM Coordinated Cluster Time (CCT) [10] is able to
provide better performance than NTP without additional hard-
ware. Its success is based on a skew estimation mechanism [11]
that progressively adapts the clock frequency without offset cor-
rections. Another solution that achieves this objective is the
RADclock [5], [8], which decouples skew compensation from
offset corrections by decomposing the clock into a high perfor-
mance difference clock for measuring time differences and a
less precise absolute clock that provides UTC time.
There are two major difficulties that make the network clock

synchronization problem challenging. First, the frequency of
hardware clocks is sensitive to temperature and is constantly
varying. Second, the latency introduced by the OS and network
congestion delay results in errors in the time measurements
that can be propagated through the network. Thus, most pro-
tocols introduce different ways of estimating the frequency
mismatch (skew) [11], [12] and measuring the time differ-
ence (offset) [13], [14] while maintaining a simple network
topology [2], [4]. This leads in particular to extensive literature
on skew estimation [12], [15]–[17], which suggests that explicit
skew estimation is necessary for clock synchronization.
This paper takes a different approach and shows that using

skew estimation is unnecessary. We provide a simple algorithm
that is able to compensate the clock skew without any explicit
estimation of it. Our algorithm only uses current offset infor-
mation and an exponential average of the past offsets. Thus,
it neither needs to store long offset history nor perform ex-
pensive computations on them. The solution provided in this
paper achieves microsecond-level accuracy without requiring

1063-6692 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE/ACM TRANSACTIONS ON NETWORKING

any special hardware. Since we do not explicitly estimate the
skew, the implementation is simpler and more robust to noise
than IBMCCT, and does not introduce offset corrections, which
avoids the need of decomposing the clock into several compo-
nents to reduce jitter as in RADclock.
By looking at the synchronization problem from a new angle,

this paper also provides several new insights. For example, a
common practice in the clock synchronization community is to
avoid timing loops in the network [2, p. 6], [4, p. 16, Sec. 6.2].
This is because it is thought that timing loops can introduce in-
stability as stated in [2]: “Drawing from the experience of the
telephone industry, which learned such lessons at considerable
cost, the subnet topology\ldots must never be allowed to form a
loop.” Even though, for some parameter values, loops can pro-
duce instability, we show that a set of proper parameters can
guarantee convergence even in the presence of loops. Further-
more, we experimentally demonstrate in Section VI that timing
loops among clients can actually help reduce the jitter of the
synchronization error and are therefore desirable.
The rest of the paper is organized as follows. In Section II,

we provide some background on how clocks are actually im-
plemented in computers and how different protocols discipline
them. Section III motivates and describes our algorithm together
with an intuitive explanation of why it works. In Section IV, we
analyze the convergence property of the algorithm and deter-
mine the set of parameter values and connectivity patterns under
which synchronization is guaranteed. The parameter values that
guarantee synchronization depend on the network topology, but
there exists a subset of them that is independent of topology and
therefore of great practical interest. The effect of noisy mea-
surement and wander is studied in Section V, together with an
optimization procedure that finds optimal parameter values. Ex-
perimental results evaluating the performance of the algorithm
are presented in Section VI. We conclude in Section VII.

II. COMPUTER CLOCKS AND SYNCHRONIZATION

Most computer architectures keep their own estimate of time
using a counter that is periodically increased by either hard-
ware or kernel’s interrupt service routines (ISRs). On Linux
platforms for instance, there are usually several different clock
devices that can be selected as the clock source by changing
the clocksource kernel parameter. One particular counter that
has recently been used by several clock synchronization proto-
cols [5], [10] is the Time Stamp Counter (TSC) that counts the
number of CPU cycles since the last restart of the system. For
example, in the IBM BladeCenter LS21 servers, the TSC is a
64-bit counter that increments every ns since the
CPU nominal frequency MHz.
Based on this counter, each server builds its own estimate
of the global time reference, UTC, denoted here by . For

example, if denotes the counter’s value of computer at
time , then can be computed using

(1)

where is the estimate of the time when the server was turned
on ().

Fig. 1. Time estimation and relative measurements. (a) Illustration of computer
time estimate and UTC time . (b) Offset and relative skewmeasurements.

Fig. 2. Comparison between two TSC counters and skew and offset corrections
using adjtimex(). (a) Variation of the offset between two TSC counters changes
on skew (): The right -axis represents themean offset change inmilliseconds,
and the left -axis the residual offset (offset minus the mean) in microseconds.
(b) Example of skew and offset corrections on linux time: First a 20- s offset
is added and subtracted, and then a skew of 0.3 ppm is introduced.

Thus, synchronizing computer clocks implies correcting
in order to match , i.e., enforcing . There are

two difficulties on this estimation process. First, the initial time
in which the counter starts is unknown. Second, the counter

updating period () is usually unknown with enough
precision and therefore presents a skew .
This is illustrated in Fig. 1(a) where not only increases
at a different rate than , but also starts from a value different
from , represented by .
In practice, can be approximated by a real value since

the time between increments is extremely small (0.416 ns) and
themaximum count register value so large () that it would
take more than 200 years to reach. Therefore, can be de-
scribed by the linear map of the global reference , i.e.,

(2)

where is an additional skew correction implemented to com-
pensate the skew. Equation (2) also shows that if one can set

and , then we obtain a perfectly synchro-
nized clock with .
The main problem is that not only neither nor can be

explicitly estimated, but also varies with time as shown in
Fig. 2(a). Thus, current protocols periodically update and
in order to keep track of the changes of . These updates are
made using the offset between the current estimate and the
global time , i.e., , and the relative frequency
error that is computed using two offset measurements separated
by seconds, i.e.,

(3)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MALLADA et al.: SKEWLESS NETWORK CLOCK SYNCHRONIZATION WITHOUT DISCONTINUITY 3

Fig. 1(b) provides an illustration of thesemeasurements. In most
protocols (see, e.g., [2], [5], and [10]), (3) goes through an ad-
ditional filtering process to reduce the estimation noise. Here,
we will use to denote either the measurement obtained
using (3) or a filtered version of it. To understand the differ-
ences between current protocols, we first rewrite the evolution
of based only on the time instants in which the clock
corrections are performed. We allow the skew correction to
vary over time, i.e., , and write as a function of

. Thus, we obtain

(4a)

(4b)

where is the time elapsed between adaptations,
also known as poll interval [2]. The values and
represent two different types of corrections that a given protocol
chooses to do at time and are usually implemented within
the interval . is usually referred to as offset
correction and as skew correction.1 See Fig. 2(b) for an
illustration of their effect on the linux time.
Remark 1: One of the implicit assumptions of the model (4)

is that we require every server to update their clocks simul-
taneously at time instances . This may seem unrealistic
since its implementation would require sharing a common
time reference, which is the whole purpose of the algorithm.
However, the analysis presented in Section IV can be extended
for pseudo-synchronous implementations as proposed in [18]
where each node measures the offset with their neighbors and
updates whenever .
We now proceed to summarize the different types of adapta-

tions implemented by current protocols. To simplify the com-
parison, we assume that each server can connect directly to the
source of UTC time (). This assumption will be dropped in
Section III after we describe our solution. The main differences
between current protocols lie on whether they use offset correc-
tions, skew corrections, or both and whether they update using
offset values , relative frequency errors , or both.

A. Offset Corrections

These corrections consist in keeping the skew fixed and peri-
odically introducing time changes of size
or where . They
are used by NTPv3 [19] and NTPv4 [2], respectively, under or-
dinary conditions.
These protocols have in general a slow initialization period

as shown in Fig. 3(a). This is because the algorithm must
first obtain a very accurate estimate of the initial frequency
error . Furthermore, these updates usually generate
nonsmooth time evolutions as in Figs. 3(b) and 4(a), and should
be done carefully since they might introduce backward jumps
(), which can be problematic for some
applications.

1These corrections can be implemented in Linux OS using the adjtimex() in-
terface to update the system clock or by maintaining a virtual version of
and directly applying the corrections to it, as in IBM CCT [10] and RADclock
[5]. The latter gives more control on how the corrections are implemented since
it does not depend on kernel’s routines.

Fig. 3. Evolution of NTP time using TSC as reference. (a) NTP initialization
period. (b) NTP in normal regime.

Fig. 4. Current protocols adaptation. (a) Offset corrections. (b) Skew correc-
tions. (c) Offset and skew corrections.

B. Skew Corrections

Another alternative that avoids using steep changes in time is
proposed by the IBM CCT solution [10]. This alternative does
not introduce any offset correction, i.e., , and updates
the skew by .
The behavior of this algorithm is shown in Fig. 4(b).

In [20], it was shown for a slightly modified version of it (used
instead of), the algorithm can achieve

synchronization for very diverse network architectures.
However, the estimation of is nontrivial as it is con-

stantly changing with subsequent updates of and it usu-
ally involves sophisticated computations [11], [12].

C. Skew and Offset Corrections

This type of correction allows dependence on only offset in-
formation as input to and . For instance,
in [6], the updates and
were proposed. This option allows the system to achieve syn-
chronization without any skew estimation. However, the cost of
achieving it is introducing offset corrections in as shown
in Fig. 4(c). Therefore, it suffers from the same problems dis-
cussed in Section II-B.
Another alternative that falls in into this category is the RAD-

clock [5]. In this solution, the offset correction is an ex-
ponential average of the past offsets, and the skew compensation

is a filtered version of . The exponential average
of offsets and filter stage in allows this solution to mit-
igate the jumps and become more robust to jitter. However, it
does not necessarily prevent backward jumps unless the offset
corrections are smaller than the precision of the clock.

III. CONTINUOUS SKEWLESS SYNCHRONIZATION

We now present an algorithm that overcomes the limitations
of the solutions described in Section II. In other words, our so-
lution has the following two properties.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 5. Unstable clock steering using only offset information (5) and stable
clock steering based on exponential average compensation (7).

1) Continuity: The protocol does not introduce steep changes
on the time value, i.e., .

2) Skew independence: The protocol does not use skew infor-
mation as input.

A solution with these properties will therefore prevent unneces-
sary offset corrections that produce jitter andwill bemore robust
to noise by avoiding skew estimation. After describing and mo-
tivating our algorithm, we show how the updating rule can be
implemented in the context of a network environment.
The motivation behind the proposed solution comes from

trying to compensate the problem that arises when one tries to
naively impose properties 1) and 2), i.e., using

and (5)

Fig. 5 shows that this type of clock correction is unstable; the
offset of the slave clock oscillates with an exponen-
tially increasing amplitude. The oscillations in Fig. 5 arise due to
the fundamental limitations of using offset to update frequency.
This is better seen in the continuous-time version of the system
(4) with (5), i.e.,

and

where . If we consider the offset
as the system state, then we have

and

with . This is analogous to a spring mass system
without friction. Thus, it has two purely imaginary eigenvalues
that generate sustained oscillations; see [7] and [21] for similar
examples.2 One way to damp these oscillations in the spring-
mass case is by adding friction. This implies adding a term that
includes a frequency mismatch in our system, which
is equivalent to the protocols of Section II-C, and is therefore
undesired.
However, there are other ways to damp these oscillations

using passivity-based techniques from control theory [22]. The
basic idea is to introduce an additional state that generates the
desired friction to damp the oscillations.
Inspired by [22], we consider the exponentially weighted

moving average of the offset

(6)

2In the discrete-time system, the oscillations increase in amplitude since there
is a delay between the time the offset is measured and the time the update is
made , which makes the system unstable.

and update and using

and (7)

Fig. 5 shows how the proposed strategy is able to compen-
sate the oscillations without needing to estimate the value of

. The stability of the algorithm will depend on how ,
, and are chosen. A detailed specification of these values is

given in Section IV-B.
Finally, since we are interested in studying the effect of timing

loops, we move away from the client–server configuration im-
plicitly assumed in Section II and allow mutual or cyclic inter-
actions among nodes. The interactions between different nodes
is described by a graph , where represents the set
of nodes () and the set of directed edges ;
means node can measure its offset with respect to ,

.
Within this context, a natural extension of (6) and (7) is to

substitute with the weighted average of ’s neighbors
offsets. Thus, we propose the following algorithm to update the
clocks in the network.
Algorithm 1 (Alg1): For each computer node in the net-

work, perform the following actions.
— Compute the time offsets () from to every
neighbor at time .

— Update the skew and the moving average
at time according to

(8a)

(8b)

(8c)

where represents the set of neighbors of and the
weights are positive.

Equation (8) can be interpreted as a discrete-time
second-order consensus algorithmwith an additional smoothing
in which, besides using position information (time estimates

), we use a smoothed version of the position errors
() to control speed (). Consensus algorithms have
been a subject of intensive research since the seminar work of
Jadbabaie et al. [23]; see ,e.g., [22] and references therein. In
particular, application of consensus ideas to computer clock
synchronization can be found in [6] (second-order consensus)
and [18] (first-order consensus). Thus, the analysis presented
in this paper also contributes to this rich literature by character-
izing convergence of discrete-time consensus algorithms.
When using our algorithm, many servers can affect the final

frequency of the system. Thus, when the system synchronizes,
we have

(9)

and are possibly different from their ideal values 1 and
. Their final values depend on the initial condition of all dif-

ferent clocks as well as the topology, which we assume to be a
connected graph in this paper.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MALLADA et al.: SKEWLESS NETWORK CLOCK SYNCHRONIZATION WITHOUT DISCONTINUITY 5

1) Differences With RADclock: Although (8) seems to be
similar to RADclock [5], there are some key differences that
affect their behavior.
1) Even though both solutions used an exponentially
weighted offset estimate, our filtering (8c) does not depend
on the estimated offset error as in [5]. Moreover, while
RADclock uses it to make offset corrections (changing

), we use our weighted offset measurement
to make skew correction (changing). Therefore,
neither the measurement itself nor its use are the same.

2) RADclock explicitly uses offset measurements to intro-
duce correction on the offset () and an estimation
of the skew to compensate it (). Our algorithm only
compensates the skew by using the last measured offsets

and our filtered offset measurement . Thus,
we have neither explicit estimation of the skew nor explicit
compensation of the offset, which makes synchronization
rather unintuitive.

Notation: We use () to denote the matrices of all
zeros (ones) within and () to denote the column
vectors of appropriate dimensions. represents the
identity matrix. Given a matrix with Jordan normal
form , let denote the total number of
Jordan blocks with .
We use , or just to denote the eigen-
values of , and order them decreasingly

. The function is the spectral radius of or equiv-
alently the largest absolute value of its eigenvalues

. Finally, is the transpose of , is
the element of the th row and th column of , and is the th
element of the column vector , i.e., .

IV. CONVERGENCE ANALYSIS

We now analyze the asymptotic behavior of system (8) and
provide a necessary and sufficient condition on the parameter
values that guarantee its convergence to (9). Throughout this
section, we shall assume that the internal skew of each clock
is constant and that the offset measurements can be ob-
tained without incurring in any error. These assumptions will be
relaxed in Section V.
The key insight of our analysis comes from decomposing the

system (12) into two complementary systems that keep track of
two different physical properties. In particular, we will use the
scalars

(10)

to track the average behavior of the system and

(11)

to track how each individual clock deviates from the collective
mean. Here, is the normalized () left eigen-
vector of the zero eigenvalue of the Laplacian matrix
associated with , i.e.,

and
if ,
otherwise

and is the -weighted harmonic mean of , i.e.,
. While in general may not

be unique, it becomes unique when is connected.
It will be more convenient sometimes to use a vector form

representation of (8) given by

(12)

where

is the diagonal matrix with elements . Similarly,
we can express the evolution of and

using

and (13)

where , ,
, and

(14)

The convergence analysis of this section is done in two
stages. First, we provide necessary and sufficient condi-
tions for synchronization in terms of the eigenvalues of
(Section IV-A), and then use Hermite–Biehler Theorem [24] to
relate these eigenvalues with the parameter values that can be
directly used in practice (Section IV-B). The proof details can
be found in Appendixes A–C.

A. Asymptotic Behavior

We start by studying the asymptotic behavior of (12). That is,
we are interested in finding under what conditions the series of
elements converge to (9) as goes to infinity.
We will show that we can study (12) by looking at the evolu-

tion of (13). In particular, we will show that (9) is equivalent to

(15a)

(15b)

Consider the Jordan normal form [25] of

(16)

where , and are the right and left
generalized eigenvectors of such that

if
otherwise.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE/ACM TRANSACTIONS ON NETWORKING

The following lemmas will allow us to connect the behavior of
(13) with (12).
Lemma 1 (Eigenvalues of and Multiplicity of):
has an eigenvalue with multiplicity 2 if and only if

the graph is connected, and .
Furthermore, are the roots of

(17)

where and satisfies

for (18)

Lemma 2 (Jordan Chains Properties): Under the conditions
of Lemma 1, the right and left Jordan chains, and

respectively, associated with and the eigen-
vectors and associated with are given by

(19)

(20)

Moreover, given , with , then the
following conditions must be satisfied:

(21)

The proofs of Lemmas 1 and 2 can be found in
Appendices A-A and A-B.
Lemmas 1 and 2 also provide further information of the struc-

ture of in (16). That is, where

(22)

Moreover, direct application of (21) shows that
, which implies that

and have the same eigenvectors and therefore

(23)

Similarly, it is easy to see that the Jordan normal form of is
given by

(24)

Therefore, under the conditions of Lemmas 1 and 2, and
capture the behavior of a complementary set of eigenvalues of
. We are now ready to state our main convergence result.
Theorem 1 (Convergence): The following three statements

are equivalent.
1) The graph is connected, , and

.
2) Condition (15) is satisfied.
3) The algorithm (12) achieves synchronization, i.e., (9)
holds.

Fig. 6. Graphs with real eigenvalue Laplacians: (a) tree; (b) undirected;
(c) undirected with leader.

Moreover, whenever the system synchronizes, we have

(25a)

(25b)

The proof of Theorem 1 can be found in Appendix B.
Theorem 1 provides an analytical tool to understand the in-
fluence of the different nodes of the graph in the final offset
and frequency . For example, suppose that we know

that node 1 has perfect knowledge of its own frequency ()
and the UTC time at (), and configure
the network such that node 1 is the unique leader like the top
node in Fig. 6(a) and (c). It is easy to show that and

. Then, using (25a)–(25b) and the definition of
, we can see that and

and

However, since node 1 knows and , it can choose
, , and . Thus, we obtain and

, which implies by (9) that every node in the network
will end up with . In other words, Theorem 1 allows us
to understand how the information propagates and how we can
guarantee that every server will converge to the desired time.
Notice that the initial condition used for server 1 is equivalent
to assuming that server 1 is a reliable source of UTC like an
atomic clock for instance.

B. Necessary and Sufficient Conditions for Synchronization

We now provide necessary and sufficient conditions in terms
of explicit parameter values (, , and) for Theorem 1 to
hold. We will restrict our attention to graphs that have Laplacian
matrices with real eigenvalues. This includes, for example, trees
[Fig. 6(a)], symmetric graphs with [Fig. 6(b)], and
symmetric graphs with a leader [Fig. 6(c)].
The proof consists on studying the Schur stability of

and has several steps. We first perform a change of variable
that maps the unit circle onto the left half-plane. This trans-
forms the problem of studying the Schur stability into a Hur-
witz stability problem that is solved using Hermite–Biehler The-
orem, which says the following: Given the polynomial

, let and be the real and imaginary
part of , i.e., . Then, is a
Hurwitz polynomial if and only if:
1) ; and
2) the zeros of and are all simple and real and
interlace as runs from to .

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MALLADA et al.: SKEWLESS NETWORK CLOCK SYNCHRONIZATION WITHOUT DISCONTINUITY 7

Theorem 2 (Parameter Values for Synchronization): Con-
sider a connected graph with real eigenvalue Laplacian
matrix . Then, the system (12) achieves synchronization if and
only if:
(i) or equivalently ;
(ii) ;

(iii) ;
where is the largest eigenvalue of .
The proof of Theorem 2 can be found in Appendix C. Note

that although depends on , which is in general unknown,
it is easy to show that , where is
an upper bound of the maximum rate deviation . Further-
more, using Greshgorin’s circle theorem, it is easy to show that

. Therefore, if we set

(26)

convergence is guaranteed for every connected graph with real
eigenvalues.

V. NETWORK DELAYS AND CLOCK WANDER

In Section IV, we showed that in the absence of network
delays and clock wander, the system was able to achieve syn-
chronization on a wide variety of communication topologies. In
other words, we assumed the internal clock skew was fixed
and that each computer could measure its offset with a neighbor

without incurring in any error. We now study the be-
havior of our system when such assumptions are no longer true.
We will model both, network delays and clock drifts using noise
processes.
Network Delays: Since our algorithm does not perform skew

estimation, the network errors only affect the offset measure-
ments in (8). We use to denote the error in-
curred in estimating the offset between nodes and at time ,
i.e., we replace with in (8). This
can be produced for instance by a congested connection between
the two different nodes or due to path delay asymmetries [5].We
assume that has stationary mean
and unit variance and use to weigh
the different connections.
Clock Wander: We model the clock wander as a stochastic

input to the clock skew adaptation. That is, instead of (4b),
changes according to

(27)

where is a random variable with zeromean
and unit variance and a positive scalar use to
model clock heterogeneity. Equation (27) can be derived from
a linear approximation of (4) with a time-varying internal skew

driven by an auto regressive process [12], i.e.,
. We omit the details of the

derivation due to space constraints. This motivates the study of
the stochastic process

(28)

where , with

(29)

and being the incidence matrix of
3 and . The matrix maps the system

state to the performance metric and will be specified in
Section VI.
One interesting difference between network delays ()

and wander () is that in order to obtain good perfor-
mance, the algorithm should reject the noise from network
delays , but compensate the skew fast enough to follow

.
In the remainder of this section, we first study the effect of

biased network noise () in the asymptotic frequency
of the system and time offsets. In particular, we show that for
arbitrarily distributed noise with stationary mean, the system’s
frequency tends to constantly drift unless there is a well-defined
leader in the topology. We then proceed to study how the pa-
rameters and network topology affect the systems performance,
which is represented by the output signal of the stochastic
process.

A. Frequency Drift and Time Offsets

Here, we concentrate on studying the evolution of the first
moment of the stochastic process (28). That is, we want to un-
derstand how evolves as . This is equivalent
to studying (28) in the case when the noise input is constant

, where by definition.
Therefore, we will focus on understanding the effect of a con-

stant input on (28). Again, we will use to understand how
affects the collective behavior of the clocks and to under-
stand how each individual clock deviates from the collective.
The next theorem summarizes the effect of nonzero mean error
on the collective behavior of the system.
Theorem 3 (Frequency Drift): In the presence of noise and

under the condition of Theorem 1, the collective frequency
will constantly drift away from its mean with probability one (in
the set of possible), unless the graph has a unique
leader4. Whenever does have a leader, the mean fre-
quency is given by (25b).
The proof of Theorem 3 can be found in Appendix D.
Remark 2: Theorem 3 provides a precise characterization of

how network delays and loops can produce instabilities. Sim-
ilar results can be obtained for any protocol that controls clock
speeds based on neighbors information. Therefore, this theorem
shows that current industry practice is conservative and allows
us to explore a wider set of topologies with timing loops (pro-
vided that such loops avoid the leader).
We now show how the deviations are affected by .
Theorem 4 (Time Offsets): Under the conditions of

Theorem 1 and graph with unique leader, the de-
viations converge to given by

where is the pseudo inverse of and
.

The proof can be found in Appendix D.

3Notice that using this definition, we have .
4A leader is a node to whom every other node can reach through a directed

path.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE/ACM TRANSACTIONS ON NETWORKING

B. Performance Optimization

We now proceed to study the effect of noisy mea-
surements and wander on the output standard deviation
of the system () when the input is white noise
(). In other words, we seek to find
parameter values that minimize

Since in practice we want to avoid any frequency drift in-
troduced by the noise, we will consider only topologies with a
well-defined leader. Thus, all the randomness of the system is
concentrated in , and we limit to study the stochastic process

where , , and .
This optimization problem is standard in the control theory

community, and it can be shown to be equivalent to

(30a)

subject to (30b)

(30c)

where , is a function of
and . The constrain (30b) has been added

in order to maintain the stability of .
While it is not in general easy to find the global minimum

of (30), there has been intensive research in designing opti-
mization algorithms that find local minimums of the norm
of continuous-time [26] and discrete-time [27] systems. In this
work, we solve (30) using a discrete-time version of the package
Hifoo [26], [28] known as Hifood [29]. Several adaptations
were needed to use Hifood to solve (30). The details of these
changes are documented in Appendix E.
The output of this optimization problem will be used in Ex-

periment 6 of Section VI to demonstrate that the standard belief
that “clock precision degrades with the number of hops” is not
necessarily true.

VI. EXPERIMENTS

To test our solution and analysis, we implement an asyn-
chronous version of Algorithm 1 (Alg1) in C using the IBM
CCT solution as our code base. Each server issues a thread
to handle the connection with each neighbor. Every seconds
(using OS time), each client takes offset measurements with its
assigned neighbor and reports it to the main thread. Similarly,
the main thread wakes up every seconds and gathers the offset
information from all the connections and performs the update
described in (8). We do not perform any explicit filtering of
offset values, besides discarding spurious offsets larger than 500
ms in comparison to previous measurement.5

Our program reads the TSC counter directly using the
assembly instruction to minimize reading latencies and main-

5An offset change of 500 ms within a of even 50 s implies a skew of
10 000 ppm, which is our maximum skew accepted.

Fig. 7. Testbed of IBM BladeCenter blade servers.

tains a virtual clock that can be directly updated. The list of
neighbors is read from a configuration file, and whenever there
is no neighbor, the program follows the local Linux clock. Fi-
nally, offset measurements are taken using an improved ping
pong mechanism proposed in [10].
We run our skewless protocol in a cluster of IBM Blade-

Center LS21 servers with two AMD Opteron processors of
2.40 GHz, and 16 GB of memory. As shown in Fig. 7, the
servers serv1–serv10 are used to run the protocol. The offset
measurements are taken through a Gigabit Ethernet switch.
Server serv0 is used as a common reference. It runs the same

program that implements Alg1, but without skew adaptations,
to measure the offset between itself and the other servers
(serv1–serv10). These measurements are obtained through
a 10-Gb/s Cisco 4x InfiniBand Switch to minimize network
latencies. Since the offset measurements performed by serv0
are done at different instances for different servers, we use
linear interpolation to compensate this error. To compute the
offset between two servers, say serv1 and serv2 (),
we subtract offset measurements obtained form serv0, i.e.,

. Finally, we also eliminate
spurious measurements that generate offsets bigger than 1 ms
as these are clearly due to network or OS latencies.
We use this testbed to validate the analysis in Sections IV

and V. First, we illustrate the effect of different parameters and
analyze the effect of the network configuration on convergence
(Experiment 1). Then, we present a series of configurations that
demonstrate how connectivity between clients is useful in re-
ducing the jitter of a noisy clock source (Experiment 2). We
compare the performance of our protocol with respect to NTP
version 4 (Experiment 3) and IBMCCT (Experiment 4). Finally,
we verify the presence frequency drift in the absence of a leader
(Experiment 5) and study the interplay between network delays,
wander, and parameter values (Experiment 6).
The output performance signal will be the vector of offset

differences between the leader 1 and every other node , i.e.,
with . We will use a

normalized version of it, referred to here asmean relative devia-
tion , as a performance metric. To make these comparisons
fair among different servers, we correct our performance value
by the empirical mean deviation to compensate biases due to
path asymmetries. In other words

(31)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MALLADA et al.: SKEWLESS NETWORK CLOCK SYNCHRONIZATION WITHOUT DISCONTINUITY 9

Fig. 8. Effect of topology on convergence: (a) client–server configuration; (b)
two clients connected to server and mutually connected.

Fig. 9. Loss of stability by change in the network topology. (a) Client–server
configuration with s. The client converges, and the algorithm is stable.
(b) Two clients mutually connected with s. The algorithm becomes
unstable.

where amounts to the sample average. We will also
use the 99% Confidence Interval and the maximum offset
() as metrics of accuracy. For example, if s,
then 99% of the offset samples will be within 10 s of the leader.
Unless explicitly stated, the default parameter values are

(32)

The scalar is a commit or gain factor that will allow us to
compensate the effect of . Notice that by definition of ,

for every node that is not the leader.
Moreover, these values immediately satisfy (i) and (ii) of

Theorem 2 since and
. The remaining condition can be satisfied by modifying

or equivalently . Here, we choose to fix , which makes
condition (iii)

ms

For fixed polling interval , the stability of the system depends
on the value of , which is determined by the underlying
network topology and the values of .
Experiment 1 (Convergence): We first consider the

client–server configuration described in Fig. 8(a) with a
time-step s. In this configuration, , and
therefore condition (iii) becomes s. Fig. 9(a) shows
the offset between serv1 (the leader) and serv2 (the client) in
microseconds. There, we can see how serv2 gradually updates

until the offset becomes negligible.
Fig. 9(a) tends to suggest that the set of parameters given by

(32) and s is suitable for deployment on the servers.
This is in fact true provided that the network is a directed tree
as in Fig. 6(a). The intuition behind this fact is that in a tree,
each client connects only to one server. Thus, those connected

Fig. 10. Configuration of Fig. 8(b) with ms. The algorithm becomes
stable after reducing from 1 s to 500 ms.

to the leader will synchronize first, and then subsequent layers
will follow.
However, once loops appear in the network, there is no longer

a clear dependency since two given nodes can mutually get in-
formation from each other. This type of dependencymight make
the algorithm unstable. Fig. 9(b) shows an experiment with the
same configuration as Fig. 9(a), in which serv2 synchronizes
with serv1 until a third server (serv3) appears after 60 s. At
that moment, the system is reconfigured to have the topology of
Fig. 8(b), introducing a timing loop between serv2 and serv3.
This timing loop makes the system unstable.
The instability arises since after serv3 starts, the new topology

has . Thus, the time-step condition (iii)
becomes ms, which is no longer satisfied by s.
This may be solved for the new topology [Fig. 8(b)] by using

any smaller than 847.8 ms. However, if we want a set of pa-
rameters that is independent of the topology, we can use (26)
and notice that and . We choose

ms ms ms ms

Fig. 10 shows how now serv2 and serv3 can synchronize with
serv1 after introducing this change.
Experiment 2 (Timing Loops Effect): We now show how

timing loops can be used to collectively outperform individual
clients when the time source is noisy.
We run Alg1 on 10 servers (serv1 through serv10). The con-

nection setup is described in Fig. 11. Every node is directly con-
nected unidirectionally to the leader (serv1) and bidirectionally
to additional neighbors. When , then the network
reduces to a star topology, and when , the servers serv2
through serv10 form a complete graph. The dashed arrows in
Fig. 11 show the connections where jitter was introduced. To
emulate a link with jitter, we added random noise with values
taken uniformly from on both directions
of the communication

(33)

Notice that the arrow only shows a dependency relationship;
the ping pong mechanism sends packets in both direction of
the physical communication. We used a value of
ms. Since the error was introduced in both directions of the

ping pong, this is equivalent to a standard deviation of 6.05 ms.
Fig. 12 illustrates the relative offset between the two extreme

cases: The star topology () is shown in Fig. 12(a), and
the complete subgraph () is shown in Fig. 12(b).

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 11. Leader topologies with neighbors connection. Connections to the
leader (serv1) are unidirectional, while the connections among clients (serv2
through serv10) are bidirectional.

Fig. 12. Offset of the nine servers connected to a noisy clock source. (a) Star
topology (). (b) Complete subgraph ().

Fig. 13. Effect of the client’s communication topology on the mean relative
deviation. As the connectivity increases (increases), the mean relative devi-
ation is reduced by factor of 6.26, i.e., a noise reduction of approximately 8 dB.

The worst-case offset for is ms, which
is on the order of the standard deviation of the jitter. How-
ever, when , we obtain a worst-case offset of

s, an order of magnitude improvement.
The change on the mean relative deviation as the con-

nectivity among clients increases is studied in Fig. 13. The re-
sults presented show that even without any offset filtering mech-
anism, the network itself is able to perform a distributed filtering
that achieves an improvement of up to a factor of 6.26 in ,
or equivalently a noise reduction of almost 8 dB.
Experiment 3 (Comparison to NTPv4): We now perform a

thorough comparison between our protocol (Alg1) and NTPv4.
We used a one-hop configuration using serv1 as leader running
an NTPv4 server and Alg1, and serv9 and serv10 as clients,
connected only to serv1, running NTPv4 andAlg1, respectively.
In order to make a fair comparison, we need both algorithms

to use the same polling interval. Thus, we fix s. This
can be done for NTP by setting the parameters and

to 4 (s). The remainder of parameter values
for Alg1 were obtained with our optimization framework (using

and) and are given by

and (34)

Fig. 14. Performance evaluation between our solution (Alg1) and NTPv4.
(a) Offset values of NTPv4 and Alg1 for a period of 60 h. (b) Offset values of
NTPv4 and Alg1 after a 25-ms offset introduced in serv1.

Fig. 15. Empirical CDF and PDF of Alg1 and NTPv4.

Fig. 14(a) shows the time differences between the clients run-
ning NTPv4 and Alg1 (serv9 and serv10) and the leader (serv1)
over a period of 60 h. It can be seen that Alg1 is able to track
serv1’s clock keeping an offset smaller than 5 s for most of the
time, while NTPv4 incurs in larger offsets during the same pe-
riod of time. This difference is produced by the fact that Alg1 is
able to react more rapidly to frequency changes, while NTPv4
incurs in more offset corrections that generate larger jitter.
The mean offsets of Alg1 and NTPv4 are 0.48 and 9.00 s.

This difference in mean is mainly due to an asymmetric path on
the measurements from serv9 to serv1. After compensating this
bias, Alg1 achieves a performance of s,

s, and amaximum offset of s, while NTPv4
obtains s, s, and a maximum offset
of ms. Thus, not only does Alg1 achieve a reduc-
tion of by a factor of 5.0 (7 dB) with respect to NTPv4,
but it also obtains smaller confidence intervals and maximum
offset values.
A more detailed and comprehensive analysis is presented

in Fig. 15 where we plot the cumulative distribution func-
tion (CDF) and probability density function (PDF) of the
samples. The improvement of Alg1 with respect to NTPv4 is
again clearly seen here.
Finally, we investigate the speed of convergence. Starting

from both clients synchronized to server serv1, we introduce a
25-ms offset. Fig. 14(b) shows how Alg1 is able to converge to
a 20- s range within 1 h, while NTPv4 needs 4.5 h to achieve
the same synchronization precision.
Experiment 4 (Comparison to IBM CCT): We now proceed

to compare the performance of Alg1 with respect to IBM CCT.
Notice that unlike IBM CCT, our solution does not perform any
previous filtering of the offset samples; the filtering is performed
instead by calibrating the parameters. Here, we use ,

ms, , , and .
In Fig. 16(a), we present the mean relative deviation

for two clients connected directly to the leader as the jitter is

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MALLADA et al.: SKEWLESS NETWORK CLOCK SYNCHRONIZATION WITHOUT DISCONTINUITY 11

Fig. 16. Performance evaluation between our solution (Alg1) and IBM CCT.
(a) Mean relative deviation . (b) Maximum offset.

Fig. 17. Frequency drift.

increased from s to s,
doubling each time, with a granularity in the random
generator of 1 s. The worst-case offset is shown in Fig. 16(b).
Each data point is computed using a sample run of 250 s.
Our algorithm consistently outperforms IBMCCT in terms of

both and worst-case offset. The performance improvement
is due to two reasons. First, the noise filter used by the IBM
CCT algorithm is tailored for noise distributions that are mostly
concentrated close to zero with sporadic large errors. However,
it does not work properly in cases where the distribution is more
homogeneous as in this case. Second, by choosing

, the protocol becomes very robust to offset
errors.
Experiment 5 (Frequency Drift Without Leader): We now

proceed to experimentally verify that without a leader, the
system tends to constantly drift the frequency. Our analysis
predicts that even the minor bias in the offset measurements
will produce this effect. To verify this phenomenon, we use the
network topology in Fig. 8(b) with s and wait for the
system to converge.
After 1000 s, the timing process of serv1 is turned off. Fig. 17

shows how the offsets of serv2 and serv3 start to grow in a
parabolic trajectory characteristic of a constant acceleration,
i.e., constant drift. After 6600 s, serv1 is restarted, and the
system quickly recovers synchronization. A second-order fit
of the faulty trajectory was performed, obtaining a drift of
approximately 250 ns/s . While this is not quite significant in
the first few minutes, it becomes significant as time goes on.
Experiment 6 (Jitter and Wander Tradeoff): Finally, we use

the proposed optimization scheme to show how the op-
timal parameter values depend on the different noise conditions
within the network described in Fig. 18. We consider three dif-
ferent noise scenarios in which we either add jitter between
server serv1 and servers serv2 and serv3, and/or add wander
on servers serv2–serv7. In all the cases, we used s

Fig. 18. Network scenarios and optimal parameters. (a) Jitter. (b) Wander.
(c) Jitter and wander.

Fig. 19. Performance optimization: offset variance versus server number.

and make offset measurements through the InfiniBand switch
to minimize any additional source of noise.
The jitter is generated by adding in both directions of the

physical communication a random value similarly to Experi-
ment 2 [cf. (33)], but with a s. This generates
an aggregate offset measurement noise of zero mean and stan-
dard deviation of 40.8 s. On the other hand, the wander is gen-
erated by adding Gaussian noise with zero mean and standard
deviation of 0.2 ppm in the adaptations. As discussed in
Section V, this noise can be used to emulate the wander of a
bad-quality clock.
We used different values of and to differentiate the

noise conditions in the optimization scheme. The large jitter sce-
nario is represented by , , and

otherwise. The large wander scenario is represented by
and . Finally, the large jitter and wander

scenario is represented using , ,
and otherwise. The output parameter values for all three
cases are present also in Fig. 18.
Fig. 19 shows the standard deviation of the offset between

servers serv2–serv7 and serv1 in the three experimental sce-
narios and for the three different sets of parameters shown in
Fig. 18. It can be seen that although the configuration tuned
for jitter performs very well in cases with large jitter, it per-
forms quite poorly in scenarios with large wander. Similarly, the
configuration tuned for wander does not perform well in high
jitter scenarios. However, the configuration tuned for jitter and
wander is able to provide acceptable performance in all three
experimental scenarios. Thus, we experimentally demonstrate a
fundamental tradeoff between jitter and wander.
Finally, it is interesting to notice that due to the fact the op-

timization is solved using as perfor-
mance metric, the choice of parameters does not degrade the
performance of each clock with the hop count.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE/ACM TRANSACTIONS ON NETWORKING

VII. CONCLUSION

This paper presents a clock synchronization protocol that is
able to synchronize networked nodes without explicit estima-
tion of the clock skews and steep corrections on the time. Our so-
lution is guaranteed to converge even in the presence of timing
loops that allow different clients to share timing information
and even collectively outperform individual clients when the
time source has large jitter. The system is robust to noisy mea-
surements and wander provided that the topology has a well-
defined leader, and we can optimize the parameter values to
minimize noise variance. We implemented our solution on a
cluster of IBM BladeCenter servers and empirically verified our
predictions and our protocol’s supremacy over some existing
solutions.
Further evaluation of our protocol is needed. In particular, we

are interested in comparing our solution to other protocols such
as PTP and RADclock, as well as studying its robustness under
stressed scenarios. Another interesting direction is to devise a
distributed algorithm, exploiting our optimization framework,
that can adapt the parameter values depending on the network
condition.

APPENDIX A
PROOF OF LEMMAS

A. Proof of Lemma 1

Proof: We first compute the characteristic polynomial

where is as defined in (17) and we have itera-
tively used the determinant property of block matrices

where

and is the Schur complement of
[25].

Thus, is a double-root of the characteristic polynomial
if and only if , , and has a simple zero
eigenvalue, i.e., (18). Now, since is nonsingular, (18) must
hold for the eigenvalues of as well, which is in fact true if and
only if the directed graph is connected [20].

B. Proof of Lemma 2

Proof: We start by computing the right Jordan chain. By
definition of , . Thus, if ,
then the following system of equations must be satisfied:

(35a)

(35b)

(35c)

Equation (35a) implies . Now, since , (35c) im-
plies , which when substituted in (35b) gives

. Thus, since , and .
By choosing (for some), we obtain

.
Notice that the computation also shows that is the unique

eigenvector of , which implies that there is only one
Jordan block, of size 2. The second member of the chain, ,
and can be computed similarly by solving
and . This gives

In computing , we obtain and
. follows by taking .

The vectors , and can be solved in the same way using
, , and

. This gives ,

and . We set
; this can be done without loss of generality

provided we still satisfy and for .
Finally, gives , gives , and

gives .

APPENDIX B
PROOF OF THEOREM 1

Proof:
1) 2): Since we are under the conditions of Lemmas 1

and 2, then we can use (23), and since , all the eigen-
values of are within the unit circle, i.e., . Therefore,
it follows that . To show (15b),
we first notice that

(36a)

(36b)

(36c)

Therefore, since , (36c) implies that .
Thus, by (36b) we also have for some , which also
implies that giving

for some .
2) 3): This follows directly from (10) and (11).
3) 1): The algorithm achieves synchronization when-

ever (9) holds. Then, it follows from (12) and (9) that asymp-
totically the system behaves according to

Thus, since is invertible, its columns
are linearly independent. Therefore, if the system synchronizes

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MALLADA et al.: SKEWLESS NETWORK CLOCK SYNCHRONIZATION WITHOUT DISCONTINUITY 13

for arbitrary initial condition, then it must be the case that the
effect of the remaining modes vanishes, which can only
happen if for every , and the multiplicity
of is two, i.e., .. Now suppose that either

is not connected, , . Then, by Lemma
1, the multiplicity of is not two, which is a contra-
diction. Similarly, if , , then the system has at least
one eigenvalue . Thus, we must have ,

, , and connected whenever the system
synchronizes for arbitrary initial condition.
Finally, to obtain (25), we use a similar computation to the

one of Lemma 1 to show that and in (24) are given by

Thus, since , a direct computation shows that

where and . Therefore

which implies that , and
. Result fol-

lows by definition of and in (25) and definition of
in (9).

APPENDIX C
PROOF OF THEOREM 2

Proof: We will show that when is connected with
, then (i)–(iii) are equivalent to the conditions of

Theorem 1.
Since is connected and (i)–(ii) satisfies and

, the conditions of Lemma 1 are satisfied. Therefore,
the multiplicity of is two, and by (18) these are the
roots of , which corresponds to the
case . Thus, to satisfy Theorem 1, we need to show that
the remaining eigenvalues are strictly in the unit circle. This is
true for the remaining root of if and only if (i).
For the remaining , this implies that they are Schur poly-

nomials. Thus, we will show that is a Schur polynomial if
and only if (i)–(iii) hold. We drop the subindex for the rest of
the proof.
We first transform the Schur stability problem into a Hurwitz

stability problem. Consider the change of variable .
Then, if and only if .
Now, since by (18), let

where .
We will apply Hermite–Biehler Theorem to , but first let

us express what 1) and 2) of the theorem mean here.

Condition 1) becomes

(37)

Now let and be as in Hermite–Biehler The-
orem, i.e., let

The roots of and are given by and
, respectively, where

(38)

Since the roots and must be real, we must have
and . Therefore, by monotonicity of the square

root, the interlacing condition 2) is equivalent to

(39)

Thus, we will show: (i)–(iii) hold (37) and (39) hold.
It is straightforward to see that, using (i) and (ii), we can get

(37). On the other hand, from (39) together with (37)
gives , which implies that ,
and therefore (ii) follows.
Now using (37) and the definition of in (38),

becomes , which always holds under
(i) and (ii) since the first term is always positive and

by (37).
Using (38), is equivalent to

(40)

Finally, . Thus, since (40) should
hold , then

which is exactly (iii).

APPENDIX D
PROOF OF THEOREMS 3 AND 4

Proof of Theorem 3: Using (11), (28), and (29) we can
modify (36) to get

(41a)

(41b)

(41c)

where
. It follows then that

(41c) implies that , which implies that
.

Therefore, since , constantly drifts unless

(42)

Finally, there are two different scenarios in which (42) can be
satisfied.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE/ACM TRANSACTIONS ON NETWORKING

1) has a unique leader (say): In this case, we have
, i.e., , and . That

is
2) does not have a well-defined root: Thus, there are
at least two nodes with , and is such that

.
However, 2) is only satisfied by a set of values of with zero
measure. Thus, there should be a unique leader for synchroniza-
tion.

Proof of Theorem 4: Similar to the proof of Theorem 3, the
evolution of can be described using

(43a)

(43b)

(43c)

Now, since , then , where is a
fixed point of (43). Thus, (43a) implies that and (43b)

(43c) gives , which implies
since . Finally, using (43c) again, we have

(44)

(45)

(46)

(47)

where in (45) we multiplied by , in (46) we used
and left multiply by , and in (47) we

used identities and .

APPENDIX E
OPTIMIZATION USING HIFOOD

The software package Hifood [29] does not solve (30) di-
rectly. Instead, it solves

(48a)

subject to (48b)

(48c)

where , , and .
In this formulation, is interpreted as evolving according to
the closed-loop standard-form system

and the optimization variable is the static-output feedback
matrix.
Therefore, to use Hifood, we first need to rewrite (30) using

(48). This can be done by setting

Using these definitions, it is straightforward to verify that
, , and .

The main difficulty in solving (30) instead of (48) is that
our controller is a nonlinear function of the parameters

and cannot be readily obtained using (48).
Furthermore, the main source of nonlinearity comes from the
products and . This structure is not
currently supported by traditional software distributions, which
usually only support sparsity patterns, and therefore needs to
be implemented.
Fortunately, Hifood only uses gradient information in their

implementation of BGS and gradient bundle stages. Thus, to
implement discrete-time optimization, we generated a new
MATLAB subroutine that evaluated the norm as well as
its gradients.
The evaluation of the gradient is performed in three stages

using the chain rule. We first compute the gradients of with
respect to , and , which are given by

where is the solution to .
Once , , and are computed, we can use the

subroutines of Hifood to compute , , and . Finally,
we obtain

and similarly for other parameters.

REFERENCES

[1] E. Mallada, X. Meng, M. Hack, L. Zhang, and A. Tang, “Skewless
network clock synchronization,” in Proc. 21st IEEE ICNP, 2013, pp.
1–10.

[2] D. Mills et al., “Network Time Protocol version 4: Protocol and al-
gorithms specification,” Internet Engineering Task Force, Tech. Rep.,
2010.

[3] A. Sobeih, M. Hack, Z. Liu, and L. Zhang, “Almost peer-to-peer clock
synchronization,” in Proc. IEEE IPDPS, 2007, pp. 1–10.

[4] IEEE Standard for a Precision Clock Synchronization Protocol for Net-
worked Measurement and Control Systems, IEEE Std 1588-2008 (Re-
vision of IEEE Std 1588-2002, 2008.

[5] D. Veitch, J. Ridoux, and S. B. Korada, “Robust synchronization of ab-
solute and difference clocks over networks,” IEEE/ACM Trans. Netw.,
vol. 17, no. 2, pp. 417–430, Apr. 2009.

[6] R. Carli and S. Zampieri, “Network clock synchronization based on the
second-order linear consensus algorithm,” IEEE Trans. Autom. Con-
trol, vol. 59, no. 2, pp. 409–422, Feb. 2014.

[7] E. Mallada and A. Tang, “Distributed clock synchronization: Joint fre-
quency and phase consensus,” in Proc. 50th IEEE CDC-ECC, 2011,
pp. 6742–6747.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MALLADA et al.: SKEWLESS NETWORK CLOCK SYNCHRONIZATION WITHOUT DISCONTINUITY 15

[8] J. Ridoux, D. Veitch, and T. Broomhead, “The case for feed-forward
clock synchronization,” IEEE/ACM Trans. Netw., vol. 20, no. 1, pp.
231–242, Feb. 2012.

[9] J. C. Corbett et al., “Spanner: Google’s globally distributed database,”
Trans. Comput. Syst., vol. 31, no. 3, pp. 1–22, Aug. 2013.

[10] S. Froehlich et al., “Achieving precise coordinated cluster time in a
cluster environment,” in Proc. IEEE ISPCS, 2008, pp. 54–58.

[11] L. Zhang, Z. Liu, and C. Honghui Xia, “Clock synchronization al-
gorithms for network measurements,” in Proc. 21st Annu. IEEE IN-
FOCOM, 2002, pp. 160–169.

[12] H. Kim, X. Ma, and B. R. Hamilton, “Tracking low-precision clocks
with time-varying drifts using Kalman filtering,” IEEE/ACM Trans.
Netw., vol. 20, no. 1, pp. 257–270, Feb. 2012.

[13] J. Elson, L. Girod, and D. Estrin, “Fine-grained network time synchro-
nization using reference broadcasts,” SIGOPSOper. Syst. Rev., vol. 36,
no. SI, pp. 147–163, Winter, 2002.

[14] D. Hunt, G. Korniss, and B. K. Szymanski, “Network synchronization
in a noisy environment with time delays: Fundamental limits and trade-
offs,” 2010 [Online]. Available: http://www.arXiv.org

[15] H. Marouani and M. R. Dagenais, “Internal clock drift estimation in
computer clusters,” J. Comput. Syst., Netw., Commun., vol. 2008, p.
583162, Jan. 2008.

[16] S. B. Moon, P. Skelly, and D. Towsley, “Estimation and removal of
clock skew from network delay measurements,” in Proc. 18th Annu.
IEEE INFOCOM, 1999, pp. 227–234.

[17] M. D. Lemmon, J. Ganguly, and L. Xia, “Model-based clock synchro-
nization in networks with drifting clocks,” in Proc. Pacific Rim Int.
Symp. Dependable Comput., 2000, pp. 177–184.

[18] O. Simeone, U. Spagnolini, Y. Bar-Ness, and S. H. Strogatz, “Dis-
tributed synchronization in wireless networks,” IEEE Signal Process.
Mag., vol. 25, no. 5, pp. 81–97, Sep. 2008.

[19] D. Mills, “Network Time Protocol version 3: Specification, imple-
mentation and analysis,” Internet Engineering Task Force, Tech. Rep.,
1992.

[20] D. Xie and S. Wang, “Consensus of second-order discrete-time multi-
agent systems with fixed topology,” J. Math. Anal. Appl., vol. 387, no.
1, pp. 8–16, 2012.

[21] E. Mallada and F. Paganini, “Stability of node-based multipath routing
and dual congestion control,” in Proc. 47th IEEE CDC, 2008, pp.
1398–1403.

[22] W. Ren and R. Beard, Distributed Consensus in Multi-Vehicle Coop-
erative Control. New York, NY, USA: Springer, 2007.

[23] A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups of mo-
bile autonomous agents using nearest neighbor rules,” IEEE Trans.
Autom. Control, vol. 48, no. 6, pp. 988–1001, Jun. 2003.

[24] S. P. Bhattacharyya, H. Chapellat, and L. H. Keel, Robust Control, ser.
The Parametric Approach. Upper Saddle River, NJ, USA: Prentice-
Hall, 1995.

[25] R. A. Horn and C. R. Johnson, Matrix Analysis, 2nd ed. Cambridge,
U.K.: Cambridge Univ. Press, 2013.

[26] D. Arzelier et al., “H2 for HIFOO,” 2010 [Online]. Available: http://
www.arXiv.org

[27] E.-S. M. E. Mostafa, “Computational design of optimal discrete-time
output feedback controllers,” J. Oper. Res. Soc. Jpn., vol. 51, no. 1, pp.
15–28, 2008.

[28] S. Gumussoy et al., “Multiobjective robust control with HIFOO 2.0,”
2009 [Online]. Available: http://www.arXiv.org

[29] A. P. Popov, H. Werner, and M. Millstone, “Fixed-structure discrete-
time controller synthesis with HIFOO,” in Proc. 49th IEEE CDC,
2010, pp. 3152–3155.

Enrique Mallada (S’09–M’13) received the Inge-
niero en Telecommunications degree from Univer-
sidad ORT, Montevideo, Uruguay, in 2005, and the
Ph.D. degree in electrical and computer engineering
with a minor in applied mathematics from Cornell
University, Ithaca, NY, USA, in 2014.
He is currently a Postdoctoral Fellow with the

Center for the Mathematics of Information (CMI),
California Institute of Technology, Pasadena, CA,
USA. His research interests include networks,
control, nonlinear dynamics, and optimization, with

applications to power and information systems.
Dr. Mallada was a recipient of the Organization of American States (OAS)

Academic Scholarship from 2008 to 2010, the Jacobs Fellowship from Cornell
University in 2011, and the Cornell ECE Director’s Thesis Research Award in
2014.

Xiaoqiao Meng received the B.S. degree in elec-
trical engineering from the University of Science
and Technology of China, Hefei, China, in 1998, the
M.S. degree in pattern recognition and intelligent
systems from the Chinese Academy of Sciences,
Beijing, China, in 2000, and the Ph.D. degree in
computer science from the University of California,
Los Angeles (UCLA), CA, USA, in 2006.
From 2006 to 2008, he was a research staff

member with NEC Laboratories America, Princeton,
NJ, USA. Since 2008, he has been a research staff

member with the IBM T. J. Watson Research Center, Yorktown Heights, NY,
USA. His research interests include cloud computing and noSQL database.

Michel Hack received the Ingénieur Civil degree
from the Ecole Nationale Supérieure des Télécom-
munications, Paris, France, in 1969, and the M.S. and
Ph.D. degrees in Petri nets from the Massachusetts
Institute of Technology, Cambridge, MA, USA, in
1972 and 1976, respectively.
He then joined IBM, Yorktown Heights, NY, USA,

as a Research Staff Member. He has worked mostly
on low-level system programming, debugging, and
operating system issues and participated in the devel-
opment of an experimental operating system for the

S/370. He developed correctly rounding decimal/binary conversion algorithms,
now encapsulated in a Z/architecture machine instruction. He is currently in-
volved in clock synchronization projects for mainframe and blade center clus-
ters, as well as in floating-point and high-speed arithmetic. He was a member
of the IEEE P754 project (IEEE 754-2008 Floating-Point standard), and is now
a member of the IEEE P1788 project on Interval Arithmetic.

Li Zhang received the B.S. degree in mathematics
from Beijing University, Beijing, China, the M.S. de-
gree in mathematics from Purdue University, West
Lafayette, IN, USA, and the Ph.D. degree in opera-
tions research from Columbia University, New York,
NY, USA, in 1997.
He is the manager of the System Analysis and

Optimization Group, IBM T. J. Watson Research
Center, Yorktown Heights, NY, USA. He has coau-
thored more than 100 technical articles and over
30 patents. His research interests include control

and performance analysis of computer systems, statistical techniques for
traffic modeling and prediction, and scheduling and resource allocation in
parallel and distributed systems. He also worked on measurement-based clock
synchronization algorithms.

Ao Tang (S’01–M’07–SM’11) received the B.E.
degree (Honors) in electronics engineering from
Tsinghua University, Beijing, China, in 1999, and
the M.S. and Ph.D. degrees in electrical engineering
with a minor in applied and computational mathe-
matics from the California Institute of Technology,
Pasadena, CA, USA, in 2002 and 2006, respectively.
He is currently an Associate Professor with the

School of Electrical and Computer Engineering,
Cornell University, Ithaca, NY, USA, where he
conducts research on the control and optimization

of engineering networks including communication networks, power networks,
and on-chip networks.
Dr. Tang’s recent awards include the Cornell Engineering School Michael

Tien72 Excellence in Teaching Award in 2011, the Young Investigator Award
from the Air Force Office of Scientific Research (AFOSR) in 2012, and the
Presidential Early Career Award for Scientists and Engineers (PECASE) from
the White House in 2012.

