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Abstract

This paper characterizes the asymptotic convergence

properties of the primal-dual dynamics to the solutions of

a constrained concave optimization problem using clas-

sical notions from stability analysis. We motivate our

study by providing an example which rules out the pos-

sibility of employing the invariance principle for hybrid

automata to analyze the asymptotic convergence. We un-

derstand the solutions of the primal-dual dynamics in the

Caratheodory sense and establish their existence, unique-

ness, and continuity with respect to the initial conditions.

We employ the invariance principle for Caratheodory so-

lutions of a discontinuous dynamical system to show that

the primal-dual optimizers are globally asymptotically

stable under the primal-dual dynamics and that each so-

lution of the dynamics converges to an optimizer.

1 Introduction

The primal-dual dynamics is a popular continuous-
time algorithm to determine the primal and dual so-
lutions of constrained convex (or concave) optimiza-
tion problems. In the case when one deals with in-
equality constraints, the primal-dual dynamics re-
quires a projection in the dual variables which is not
necessary in the case of equality constraints. Such
dynamics, first studied in the classic works [1, 12],
have found numerous applications in recent times,
particularly in network resource allocation prob-
lems [8, 5, 9], network optimization [10, 18, 20], and
in distributed stabilization and optimization of power
networks [16, 24, 17, 23]. These network optimization
problems have aggregate objective functions and con-
straints that can be expressed locally which together
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allow for a distributed implementation of the primal-
dual dynamics, a desirable property for large-scale
problems.

The aim of this paper is to provide a rigorous treat-
ment of the convergence analysis of the primal-dual
dynamics using classical notions from stability anal-
ysis. Since this dynamics has a discontinuous right-
hand side, the standard Lyapunov or LaSalle-based
stability results for nonlinear systems, see e.g. [11],
are not applicable. Due to this roadblock, in [1], the
authors follow a direct approach to establish conver-
gence. They approximate the evolution of the dis-
tance of the solution of the primal-dual dynamics to
an arbitrary primal-dual optimizer using power se-
ries expansion. Then, they derive the monotonicity
property of this distance along the solutions by ana-
lyzing the behavior of each of the terms in the series
locally around the optimizer. Various instances of
this argument are also combined to provide a global
convergence result. Instead, [8] takes an indirect ap-
proach and characterizes convergence using classical
notions such as invariant sets and LaSalle functions.
This work models the primal-dual dynamics as a hy-
brid automaton, as defined in [15], and employs a
LaSalle Invariance Principle for hybrid automata to
show the asymptotic convergence of the solutions.
Such an approach to establish convergence is appeal-
ing because of its conceptual simplicity and the ver-
satility of Lyapunov-like methods in characterizing
other properties of the dynamics. However, the hy-
brid automaton corresponding to the primal-dual dy-
namics is in general not continuous, thereby not sat-
isfying a key requirement of the invariance principle
stated in [15]. The first contribution of this paper
is an example that illustrates this point. Our sec-
ond contribution is an alternative proof strategy that
arrives at the same convergence results of [8]. We
consider an inequality constrained concave optimiza-
tion problem described by continuously differentiable
functions with locally Lipschitz gradients. Since the
primal-dual dynamics has a discontinuous right-hand
side, we start by specifying the notion of solution in
the Caratheodory sense. The reason for this choice



is that the equilibria of the primal-dual dynamics ex-
actly correspond to the primal-dual optimizers of the
corresponding optimization problem. We show that
the primal-dual dynamics is a particular case of a pro-
jected dynamical system and, using results from [19],
we establish that Caratheodory solutions exist, are
unique, and are continuous with respect to the ini-
tial condition. Using these properties, we show that
the omega-limit set of any solution of the primal-dual
dynamics is invariant under the dynamics. Finally,
we employ the invariance principle for Caratheodory
solutions of discontinuous dynamical systems from [2]
to show that the primal-dual optimizers are globally
asymptotically stable under the primal-dual dynam-
ics and that each solution of the dynamics converges
to an optimizer. For reasons of space, the proofs are
omitted and will appear elsewhere.

The paper is organized as follows. Section 2 intro-
duces notation and preliminary concepts on discon-
tinuous dynamical systems. Section 3 defines the
primal-dual dynamics and with an example, moti-
vates the need for a convergence analysis using clas-
sical stability tools. Section 4 contains the main con-
vergence results. Finally, Section 5 gathers our con-
clusions and ideas for future work.

2 Preliminaries

Here we introduce notation and basic concepts about
discontinuous and projected dynamical systems.

2.1 Notation This section introduces basic con-
cepts and preliminaries. We start with some nota-
tional conventions. We let R, R≥0, R>0, and Z≥1
be the set of real, nonnegative real, positive real,
and positive integer numbers, respectively. We de-
note by ‖ · ‖ the 2-norm on Rn. The open ball of
radius δ > 0 centered at x ∈ Rn is represented by
Bδ(x). Given x ∈ Rn, xi denotes the i-th component
of x. For x, y ∈ Rn, x ≤ y if and only if xi ≤ yi
for all i ∈ {1, . . . , n}. We use the shorthand nota-
tion 0n = (0, . . . , 0) ∈ Rn. For a real-valued function
V : Rn → R and α > 0, we denote the sublevel set of
V by V −1(≤ α) = {x ∈ Rn | V (x) ≤ α}. For scalars
a, b ∈ R, the operator [a]+b is defined as

[a]+b =

{
a, if b > 0,

max{0, a}, if b = 0.

For vectors a, b ∈ Rn, [a]+b denotes the vector whose
i-th component is [ai]

+
bi

, i ∈ {1, . . . , n}. For a set
S ∈ Rn, its interior, closure, and boundary are

denoted by int(S), cl(S), and bd(S), respectively.
Given two sets X and Y , a set-valued map f : X ⇒ Y
associates to each point inX a subset of Y . A map f :
Rn → Rm is locally Lipschitz at x ∈ Rn if there exist
δx, Lx > 0 such that ‖f(y1) − f(y2)‖ ≤ Lx‖y1 − y2‖
for any y1, y2 ∈ Bδx(x). If f is locally Lipschitz at
every x ∈ K ⊂ Rn, then we simply say that f is
locally Lipschitz on K. The map f is Lipschitz on
K ⊂ Rn if there exists a constant L > 0 such that
‖f(x)−f(y)‖ ≤ L‖x−y‖ for any x, y ∈ K. Note that
if f is locally Lipschitz on Rn, then it is Lipschitz on
every compact set K ⊂ Rn.

2.2 Discontinuous dynamical systems Here
we present basic concepts on discontinuous dynami-
cal systems following [2, 7]. Let f : Rn → Rn and
consider the differential equation

(2.1) ẋ = f(x).

A map γ : [0, T ) → Rn is a (Caratheodory) solution
of (2.1) on the interval [0, T ) if it is absolutely
continuous on [0, T ) and satisfies γ̇(t) = f(γ(t))
almost everywhere in [0, T ). A set S ⊂ Rn is
invariant under (2.1) if every solution starting from
any point in S remains in S. For a solution γ of (2.1)
defined on the time interval [0,∞), the omega-limit
set Ω(γ) is defined by

Ω(γ) = {y ∈ Rn | ∃{tk}∞k=1 ⊂ [0,∞) with

lim
k→∞

tk =∞ and lim
k→∞

γ(tk) = y}.

If the solution γ is bounded, then Ω(γ) 6= ∅ by the
Bolzano-Weierstrass theorem [21]. These notions al-
low us to characterize the asymptotic convergence
properties of the solutions of (2.1) via invariance
principles. Given a continuously differentiable func-
tion V : Rn → R, the Lie derivative of V along (2.1)
at x ∈ Rn is LfV (x) = ∇V (x)>f(x). The next re-
sult is a simplified version of [2, Proposition 3] which
is sufficient for our convergence analysis later.

Proposition 2.1. (Invariance principle for discon-
tinuous Caratheodory systems): Let S ∈ Rn be com-
pact and invariant. Assume that, for each point
x0 ∈ S, there exists a unique solution of (2.1) start-
ing at x0 and that its omega-limit set is invariant too.
Let V : Rn → R be a continuously differentiable map
such that LfV (x) ≤ 0 for all x ∈ S. Then, any so-
lution of (2.1) starting at S converges to the largest
invariant set in cl({x ∈ S | LfV (x) = 0}).



2.3 Projected dynamical systems Projected
dynamical systems are a particular class of discon-
tinuous dynamical systems. Here, following [19], we
gather some basic notions that will be useful later to
establish continuity with respect to the initial con-
dition of the solutions of the primal-dual dynam-
ics. Let K ⊂ Rn be a closed convex set. Given a
point y ∈ Rn, the (point) projection of y onto K is
projK(y) = argminz∈K ‖z − y‖. Note that projK(y)
is a singleton and the map projK is Lipschitz on Rn
with constant L = 1 [6, Proposition 2.4.1]. Given
x ∈ K and v ∈ Rn, the (vector) projection of v at x
with respect to K is

ΠK(x, v) = lim
δ→0+

projK(x+ δv)− x
δ

.

Given a vector field f : Rn → Rn and a closed
convex polyhedron K ⊂ Rn, the associated projected
dynamical system is

(2.2) ẋ = ΠK(x, f(x)), x(0) ∈ K,

Note that, at any point x in the interior of K, we
have ΠK(x, f(x)) = f(x). At any boundary point of
K, the projection operator restricts the flow of the
vector field f such that the solutions of (2.2) remain
in K. Therefore, in general, (2.2) is a discontinuous
dynamical system. The next result summarizes
conditions under which the (Caratheodory) solutions
of the projected system (2.2) exist, are unique, and
continuous with respect to the initial condition.

Proposition 2.2. (Existence, uniqueness, and con-
tinuity with respect to initial condition [19, Theorem
2.5]): Let f : Rn → Rn be Lipschitz on K. Then,

(i) (existence and uniqueness): for any x0 ∈ K,
there exists a unique solution t 7→ x(t) of the
projected system (2.2) with x(0) = x0 defined
over the domain [0,∞),

(ii) (continuity with respect to the initial condition):
given a sequence of points {xk}∞k=1 ⊂ K with
limk→∞ xk = x, the sequence of solutions {t 7→
γk(t)}∞k=1 of (2.2) with γk(0) = xk for all k,
converge to the solution t 7→ γ(t) of (2.2) with
γ(0) = x uniformly on every compact set of
[0,∞).

3 Problem statement

This section reviews the primal-dual dynamics for
solving constrained optimization problems and jus-
tifies the need to rigorously characterize its asymp-
totic convergence properties. Consider the concave

optimization problem on Rn,

maximize f(x),(3.3a)

subject to g(x) ≤ 0m,(3.3b)

where the continuously differentiable functions f :
Rn → R and g : Rn → Rm are strictly concave
and convex, respectively, and have locally Lipschitz
gradients. The Lagrangian of (3.3) is given as

(3.4) L(x, λ) = f(x)− λ>g(x),

where λ ∈ Rm is the Lagrange multiplier correspond-
ing to the inequality constraint (3.3b). Note that the
Lagrangian is concave in x and convex (in fact linear)
in λ. Assume that the Slater’s conditions is satisfied
for the problem (3.3), that is, there exists x ∈ Rn
such that g(x) < 0m. Under this assumption, the
duality gap between the primal and dual optimizers
is zero and a point (x∗, λ∗) ∈ Rn × Rm≥0 is a primal-
dual optimizer of (3.3) if and only if it is a saddle
point of L over the domain Rn × Rm≥0, i.e.,

L(x, λ) ≤ L(x∗, λ∗) and L(x∗, λ) ≥ L(x∗, λ∗),

for all x ∈ Rn and λ ∈ Rm≥0. For convenience, we
denote the set of saddle points of L (equivalently
the primal-dual optimizers) by X × Λ ⊂ Rn × Rm.
Furthermore, (x∗, λ∗) is a primal-dual optimizer if
and only if it satisfies the following Karush-Kuhn-
Tucker (KKT) conditions (cf. [3, Chapter 5]),

∇f(x∗)−
m∑
i=1

(λ∗)i∇gi(x∗) = 0,(3.5a)

g(x∗) ≤ 0m, λ∗ ≥ 0m, λ>∗ g(x∗) = 0.(3.5b)

Given this characterization of the solutions of the
optimization problem, it is natural to consider the
primal-dual dynamics on Rn × Rm≥0 to find them

ẋ = ∇xL(x, λ) = ∇f(x)−
m∑
i=1

λi∇gi(x),(3.6a)

λ̇ = [−∇λL(x, λ)]+λ = [g(x)]+λ .(3.6b)

When convenient, we use the notation Xp-d : Rn ×
Rm≥0 → Rn×Rm to refer to the dynamics (3.6). Given
that the primal-dual dynamics is discontinuous, we
consider solutions in the Caratheodory sense. The
reason for this is that, with this notion of solution,
a point is an equilibrium of (3.6) if and only if it
satisfies the KKT conditions (3.5).

Our objective is to establish that the solutions
of (3.6) exist and asymptotically converge to a so-
lution of the concave optimization problem (3.3) us-
ing classical notions and tools from stability analysis.



Our motivation for this aim comes from the concep-
tual simplicity and versatility of Lyapunov-like meth-
ods and their amenability for performing robustness
analysis and studying generalizations of the dynam-
ics. One way of tackling this problem, see e.g., [8],
is to interpret the dynamics as a state-dependent
switched system, formulate the latter as a hybrid au-
tomaton as defined in [15], and then use the invari-
ance principle for hybrid automata to characterize
its asymptotic convergence properties. However, this
route is not valid in general because one of the key
assumptions required by the invariance principle for
hybrid automata is not satisfied by the primal-dual
dynamics. The next example justifies this claim.

Example 3.1. (The hybrid automaton correspond-
ing to the primal-dual dynamics is not continuous):
Consider the concave optimization problem (3.3) on
R with f(x) = −(x − 5)2 and g(x) = x2 − 1, whose
set of primal-dual optimizers is X×Λ = {(1, 4)}. The
associated primal-dual dynamics takes the form

ẋ = −2(x− 5)− 2xλ,(3.7a)

λ̇ = [x2 − 1]+λ .(3.7b)

We next formulate this dynamics as a hybrid au-
tomaton as defined in [15, Definition II.1]. The idea
to build the hybrid automaton is to divide the state
space R×R≥0 into two domains over which the vector
field (3.7) is continuous. To this end, we define two
modes represented by the discrete variable q, tak-
ing values in Q = {1, 2}. The value q = 1 rep-
resents the mode where the projection in (3.7b) is
active and q = 2 represents the mode where it is
not. Formally, the projection is active at (x, λ) if
[g(x)]+λ 6= g(x), i.e, λ = 0 and g(x) < 0. The hy-
brid automaton is then given by the collection H =
(Q,X, f, Init, D,E,G,R), where Q = {q} is the set
of discrete variables, taking values in Q; X = {x, λ}
is the set of continuous variables, taking values in
X = R× R≥0; the vector field f : Q×X→ TX is

f(1, (x, λ)) =

[
−2(x− 5)− 2xλ

0

]
,

f(2, (x, λ)) =

[
−2(x− 5)− 2xλ

x2 − 1

]
;

Init = X is the set of initial conditions; D : Q ⇒ X
specifies the domain of each discrete mode,

D(1) = (−1, 1)× {0}, D(2) = X \D(1),

i.e., the dynamics is defined by the vector field
(x, λ) → f(1, (x, λ)) over D(1) and by (x, λ) →
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Figure 1: An illustration depicting the vector
field (3.7) in the range (x, λ) ∈ [0, 1.6] × [0, 0.2]. As
shown (with a red streamline), there exists a solu-
tion of (3.7) that starts at a point (x(0), λ(0)) with
x(0) < 1 and λ(0) > 0 such that it remains in the
domain λ > 0 at all times except at one time instant
t when (x(t), λ(t)) = (1, 0).

f(2, (x, λ)) over D(2); E = {(1, 2), (2, 1)} is the set of
edges specifying the transitions between modes; the
guard map G : Q ⇒ X specifies when a solution can
jump from one mode to the other,

G(1, 2) = {(1, 0), (−1, 0)}, G(2, 1) = (−1, 1)× {0},

i.e., G(q, q′) is the set of points where a solution
jumps from mode q to mode q′; and, finally, the
reset map R : Q×X ⇒ X specifies that the state is
preserved after a jump from one mode to another,

R((1, 2), (x, λ)) = R((2, 1), (x, λ)) = {(x, λ)}.

We are now ready to show that the hybrid automaton
is not continuous in the sense defined by [15, Defini-
tion III.3]. This notion plays a key role in the study
of omega-limit sets and their stability, and is in fact
a basic assumption of the invariance principle devel-
oped in [15, Theorem IV.1]. Roughly speaking, H
is continuous if two solutions starting close to one
another remain close to one another. Therefore, to
disprove the continuity of H, it is enough to show
that there exist two solutions that start arbitrarily
close and yet experience mode transitions at time in-
stances that are not arbitrarily close.

Select an initial condition (x(0), λ(0)) ∈ (0, 1) ×
(0,∞) that gives rise to a solution of (3.7) that
remains in the set (0, 1) × (0,∞) for a finite time
interval (0, t), t > 0, satisfies (x(t), λ(t)) = (1, 0), and
stays in the set (1,∞) × (0,∞) for some finite time
interval (t, T ), T > t. The existence of such a solution
becomes clear by plotting the vector field (3.7), see
Figure 1. Note that by construction, this is also a
solution of the hybrid automaton H. This solution
starts and remains in domain D(2) for the time



interval [0, T ] and so it does not encounter any jumps
in its discrete mode. Further, by observing the
vector field, we deduce that in every neighborhood
of (x(0), λ(0)), there exists a point (x̃, λ̃) such that a
solution of (3.7) (that is also a solution of H) starting
at this point reaches the set (0, 1)×{0} in finite time
t1 > 0, remains in (0, 1)×{0} for a finite time interval
[t1, t2], and then enters the set (1,∞)× (0,∞) upon
reaching the point (1, 0). Indeed, this is true for
x̃ < x(0) and λ̃ < λ(0). Such a solution of H starts
in D(2), enters D(1) in finite time t1, and returns
to D(2) at time t2. Thus, the discrete variable
representing the mode of the solution switches from
2 to 1 and back to 2, whereas the solution starting
at (x(0), λ(0)) never switches mode. This shows that
the hybrid automaton is not continuous. •

Interestingly, even though the hybrid automaton H
described in Example 3.1 is not continuous, one can
infer from Figure 1 that two solutions of (3.7) re-
main close to each other if they start close enough.
This suggests that continuity with respect to the
initial condition might hold provided this notion is
formalized the way it is done for traditional nonlin-
ear systems (and not as done for hybrid automata
where both discrete and continuous states have to be
aligned). The next section shows that this in fact is
the case. This, along with the existence and unique-
ness of solutions, allows us to analyze the asymptotic
convergence properties of the primal-dual dynamics.

4 Convergence analysis of primal-dual
dynamics

In this section, we show that the solutions of the
primal-dual dynamics (3.6) asymptotically converge
to a solution of the constrained optimization prob-
lem (3.3). Our proof strategy is to employ the invari-
ance principle for Caratheodory solutions of discon-
tinuous dynamical systems stated in Proposition 2.1.
To this end, we verify that all its hypotheses hold.

We start by stating a useful monotonicity property
of the primal-dual dynamics with respect to the set
of primal-dual optimizers X × Λ. This property can
be found in [1, 8].

Lemma 4.1. (Monotonicity of the primal-dual dy-
namics with respect to primal-dual optimizers): Let
(x∗, λ∗) ∈ X× Λ and define V : Rn × Rm → R≥0,

(4.8) V (x, λ) =
1

2

(
‖x− x∗‖2 + ‖λ− λ∗‖2

)
.

Then LXp-d
V (x, λ) ≤ 0 for all (x, λ) ∈ Rn × Rm≥0.

The next step is to show the existence, uniqueness,
and continuity of the solutions of Xp-d starting from
Rn × Rm≥0. The proof strategy consists of expressing
the primal-dual dynamics Xp-d as a projected dy-
namical system and then using Proposition 2.2. A
minor technical hurdle in this process is ensuring the
Lipschitz property of the vector field, which can be
tackled by using the monotonicity property of the
primal-dual dynamics stated in Lemma 4.1.

Lemma 4.2. (Existence, uniqueness, and continuity
of solutions of the primal-dual dynamics): Starting
from any point (x, λ) ∈ Rn × Rm≥0, a unique solution
t 7→ γ(t) of the primal-dual dynamics Xp-d exists and
remains in (Rn×Rm≥0) ∩ V −1(≤ V (x, λ)). Moreover,
if a sequence of points {(xk, λk)}∞k=1 ⊂ Rn × Rm≥0
converge to (x, λ) as k → ∞, then the sequence of
solutions {t 7→ γk(t)}∞k=1 of Xp-d starting at these
points converge uniformly to the solution t 7→ γ(t) on
every compact set of [0,∞).

The next result uses the continuity property with
respect to the initial condition of the primal-dual
dynamics to show that the omega-limit set of any
solution is invariant. This ensures that all hypotheses
of the invariance principle, Proposition 2.1, are met.

Lemma 4.3. (Omega-limit set of solution of primal-
dual dynamics is invariant): The omega-limit set of
any solution of the primal-dual dynamics starting
from any point in Rn×Rm≥0 is invariant under (3.6).

Next, we state our main result, the asymptotic con-
vergence of the solutions of the primal-dual dynamics
to a solution of the optimization problem. The proof
first uses the above stated results to show that for
any δ > 0, the set S = V −1(≤ δ) ∩ (Rn × Rm≥0) is
invariant under Xp-d. The proof then concludes by
showing that the largest invariant set contained in
{(x, λ) ∈ S | LXp-d

V (x, λ) = 0} is the set X× Λ.

Theorem 4.1. (Convergence of the primal-dual dy-
namics to a primal-dual optimizer): The set of
primal-dual solutions of (3.3) is globally asymptot-
ically stable on Rn × Rm≥0 under the primal-dual dy-
namics (3.6), and the convergence of each solution is
to a point.

Remark 4.1. (Alternative proof strategy via evo-
lution variational inequalities): We briefly describe
here an alternative proof strategy to the one we have
used here to establish the asymptotic convergence of



the primal-dual dynamics. The Caratheodory solu-
tions of the primal-dual dynamics can also be seen as
solutions of an evolution variational inequality (EVI)
problem [4]. Then, one can show that the result-
ing EVI problem has a unique solution starting from
each point in Rn × Rm≥0, which moreover remains in
Rn×Rm≥0. With this in place, the LaSalle Invariance
Principle [4, Theorem 4] for the solutions of the EVI
problem can be applied to conclude the convergence
to the set of primal-dual optimizers. •

Remark 4.2. (Primal-dual dynamics with gains):
In power network optimization problems [24, 17, 23]
and network congestion control problems [14, 22] it
is common to see generalizations of the primal-dual
dynamics involving gain matrices. Formally, these
dynamics take the form

ẋ = K1∇xL(x, λ),(4.9a)

λ̇ = K2[−∇λL(x, λ)]+λ ,(4.9b)

where K1 ∈ Rn×n and K2 ∈ Rm×m are diagonal,
positive definite matrices. In such cases, the analysis
performed here can be replicated following the same
steps but using instead the Lyapunov function

V ′(x, λ) =
1

2
((x− x∗)>K−11 (x− x∗)

+ (λ− λ∗)>K−12 (λ− λ∗)),

to establish the required monotonicity and conver-
gence properties of (4.9). •

Remark 4.3. (Partial primal-dual dynamics): In
certain power network optimization problems [17,
13], the Lagrangian might not be strictly concave
(or strictly convex) in the primal variable. In those
cases, a possible way of finding the optimizers is to
employ a partial primal-dual dynamics obtained from
a reduced Lagrangian. Specifically, for problem (3.3),
assume the state is partitioned into two components,
x = (x1, x2) where x1 ∈ Rr and x2 ∈ Rn−r, with
r ∈ Z≥1, and consider the reduced Lagrangian

L̃(x1, λ) = max
x2∈Rn−r

L((x1, x2), λ)

= L((x1, x
∗
2(x1, λ)), λ),

where x∗2(x1, λ) is a maximizer of the function x2 7→
L((x1, x2), λ) for fixed x1 and λ. Assume the follow-
ing holds

(i) (x∗1, λ
∗) ∈ Rr × Rm≥0 is a saddle point of L̃ over

the domain Rr ×Rm≥0 only if (x∗1, x
∗
2(x∗1, λ

∗), λ∗)
is a saddle point of the Lagrangian L over the
domain Rn × Rm≥0,

(ii) the map x1 7→ L̃(x1, λ) is strictly concave or the
map λ 7→ L̃(x1, λ) is strictly convex.

Then, any solution t 7→ (x1(t), λ(t)) of the primal-
dual dynamics for the reduced Lagrangian L̃, start-
ing from Rr×Rm≥0, will converge to the saddle points

of L̃. This solution augmented with the map t 7→
x∗2(x1(t), λ(t)), that gives the maximizer of the func-
tion x2 7→ L((x1(t), x2), λ(t)) at each time t, results
into the trajectory t 7→ (x1(t), x∗2(x1(t), λ(t)), λ(t))
that converges asymptotically to the primal-dual op-
timizers of (3.3). A common scenario in which as-
sumptions (i) and (ii) mentioned above hold (see,
e.g., [17, 13]) is when the Lagrangian L is separable
in the primal variables, taking the form

L((x1, x2), λ) = L1(x1, λ) + L2(x2, λ),

where L1 and L2 are concave (resp. convex) in
the primal (resp. dual) variable, and either the
map x1 7→ L1(x1, λ) is strictly concave or the map
λ 7→ L1(x1, λ) is strictly convex. •

5 Conclusions

For the primal-dual dynamics corresponding to a con-
strained concave optimization problem, we have con-
sidered its Caratheodory solutions and established
their asymptotic convergence to the primal-dual op-
timizers of the problem. Our technical treatment
used the results from projected dynamical systems
to show the existence, uniqueness, and continuity of
solutions and then applied the invariance principle for
discontinuous Caratheodory solutions to prove their
asymptotic convergence. Leveraging on the technical
approach presented in this paper, in future we wish
to rigorously characterize the robustness properties
of the primal-dual dynamics against unmodeled dy-
namics, disturbances, and noise. Further, motivated
by applications to power networks, we also aim to
explore the design of discontinuous dynamics that
can find the solutions to semidefinite programs and
quadratically constrained quadratic programs.
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