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Abstract— Economic dispatch and frequency regulation are
typically viewed as fundamentally different problems in power
systems, and hence are typically studied separately. In this
paper, we frame and study a joint problem that optimizes both
slow timescale economic dispatch resources and fast timescale
frequency regulation resources. We provide sufficient conditions
under which the joint problem can be decomposed without
loss of optimality into slow and fast timescale problems. These
slow and fast timescale problems have appealing interpretations
as the economic dispatch and frequency regulation problems
respectively. Moreover, the fast timescale problem can be solved
using a distributed algorithm that preserves the stability of
the network during transients. We also apply this optimal
decomposition to propose an efficient market mechanism for
economic dispatch that coordinates with frequency regulation.

I. INTRODUCTION

One of the main objectives of every power system op-
erator is to schedule power generation to meet demand at
every time instant [1]–[3]. This is a challenging task that
seeks to schedule generators in a cost-efficient manner while
also respecting their limitations (e.g., ramp constraints and
capacity constraints) and responding rapidly to any supply-
demand imbalances that may emerge (e.g., generator outages
and line outages). To make matters more complex, slow
timescale control is typically performed using market mech-
anisms while fast timescale control is done via engineered
controllers.

The complexity of this global system operation problem
means that it is typically broken up into two separate sub-
problems – (slow timescale) economic dispatch and (fast
timescale) frequency regulation – which are studied inde-
pendently of each other.

Economic dispatch operates at a slow timescale (intervals
of 5 minutes or longer) and focuses on efficiency with respect
to costs. In particular, the economic dispatch problem seeks
to optimally schedule generators so that the total generation
cost is minimized subject to line limits and generation
capacity and ramping constraints. Economic dispatch has a
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long history [1], [4]–[8]. It is currently implemented using a
market mechanism known as supply function bidding. In this
mechanism, generators submit supply functions to the system
operator which specify (as a function of price) the amount
a generator is willing to produce. The system operator
uses those bids to construct the implied cost functions and
solves a centralized optimization problem (over single or
multiple time periods) to schedule generators in a way that
minimizes system costs while meeting demand and slow
timescale operating constraints (including line limits, gen-
eration capacity constraints, generation ramping constraints,
minimum generation constraints, security constraints, etc.).
A centralized market implementation is important both to
collect bid costs from generators and also because physical
laws of power flows impose coupled constraints between
generators.

Frequency regulation operates at a fast timescale (from 30
seconds to a few minutes) and focuses on stability rather than
efficiency. In particular, the operator seeks to compensate the
remaining imbalance between generation and demand, which
drives a deviation from the nominal frequency, by quickly
rescheduling fast ramping generators. Frequency regulation
has a long history [2], [9], [10]. It is currently implemented
by a mechanism known as Automatic Generation Control
(AGC), which aims to rebalance power and restore the
nominal frequency within independent control areas using
local measurements. Within each area, AGC uses information
on frequency deviation and inter-area flows to compute the
necessary change in power needed to rebalance supply and
demand in the system, and allocates this change among
different generators based on the market clearing allocations
from the last economic dispatch execution [1].

A. Contributions of this paper

While economic dispatch and frequency regulation each,
individually, have large and active literatures; these literatures
are almost completely disparate. To this point, there has been
no rigorous analysis of whether the combination of economic
dispatch and frequency regulation solves the global system
operator’s goal of managing generation resources in order to
minimize cost while maintaining stability.

The goal of this paper is to initiate such a study. In
particular, we seek to understand when the combination
of economic dispatch and frequency regulation optimally
solves the global system operator’s problem. More generally,
we seek to understand when the global system operator’s
problem can be decomposed, without loss of optimality,
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into subproblems corresponding to economic dispatch and
frequency regulation.

Our main result provides an initial answer. In the context
of a DC power flow model and two classes of generators
(peakers and baseloads), we show that the global system
operator’s problem can be decomposed into two subproblems
corresponding to economic dispatch and frequency regulation
without loss of optimality as long as the time-average prices
at each node within each slow timescale interval (used by
economic dispatch) are zero (Theorem 1).

This theorem can be viewed as providing a first-principles
justification for the current separation of the economic
dispatch and frequency regulation problems. Furthermore,
it provides a guide for the design of market mechanisms
for economic dispatch and control policies for frequency
regulation since it highlights a sufficient condition for such
algorithms to jointly solve the global problem.

In the case of frequency regulation, the form of the
problem that emerges from the optimization decomposition
differs in important ways from existing frequency regulation
operations (Section IV). First, the frequency regulation con-
troller proposed in this paper (which builds on [11]), uses
information on generators’ costs to drive the power system
to an operating point that minimizes its costs. On the other
hand, existing approaches use participation factors from the
latest economic dispatch run to drive the power system to a
stable operating point. Since participation factors might not
reflect actual generation costs, the resulting allocation might
not be optimal (from the perspective of cost minimization).

In the case of economic dispatch, we illustrate that the
form of the problem that emerges from the optimization
decomposition can be solved using a market implementation
based on supply function bidding (Section V), similar to ex-
isting operations. However, our proposed mechanism differs
from existing operations in that we allocate frequency reg-
ulation resources optimally and we do so without requiring
additional communication in the market. Existing operations
use economic dispatch LMPs to directly compensate fast
timescale frequency regulation resources, where the latter
are allocated using engineered controllers without regards to
generation costs. The decomposition in this paper suggests
that, instead, supply functions submitted at the economic
dispatch timescale should be used to allocate frequency
regulation resources via the distributed algorithm in Sec-
tion IV. Our main result in Section V shows that, if the
conditions required for optimal decomposition hold, then the
competitive equilibrium of our proposed mechanism leads to
efficient (optimal) operation.

II. SYSTEM MODEL

Our aim in this paper is to understand when the system
operator’s global objective can be decomposed into subprob-
lems that correspond to economic dispatch and frequency
regulation. To this end, we formulate a model of the global
objective that includes the joint objectives of economic
dispatch and frequency regulation and considers balancing
of supply and demand at both the economic dispatch and

frequency regulation timescales. We focus on a DC power
flow model and consider two generation types (peakers and
baseloads) which differ in the responsiveness they provide.

A. Network model

We consider a finite time horizon partitioned into K dis-
crete intervals indexed by k ∈ K where K = {0, 1, . . . ,K −
1}. In principle, the length of each time period k may range
from as little as seconds to as long as minutes. However, in
this paper, we focus on the case where the length of each
time period is on the order tens of seconds.

We consider a connected network with N nodes and L
links. Let N = {1, 2, . . . , N} and L = {1, 2, . . . , L} denote
the set of nodes and links respectively. Index nodes by n ∈ N
and links by l ∈ L. Without loss of generality, we assign each
link l an arbitrary orientation and let i(l) ∈ N and j(l) ∈ N
denote the tail and head of the link respectively.

We assume that node n has a deterministic inelastic
demand dk,n > 0 in period k. We assume that node n has two
generators which we refer to as peaker and baseload and we
denote denote their production quantities in period k by qpk,n
and qbk,n respectively. Let the vectors dk := (dk,1, . . . , dk,N ),
qpk := (qpk,1, . . . , q

p
k,N ), and qbk := (qbk,1, . . . , q

p
k,N ). Then,

qpk + qbk − dk is the vector of nodal injections in period k.
Hence, the supply-demand balance constraints are given by:

1>(qbk + qpk − dk) = 0, k ∈ K, (1)

where 1 ∈ RN denotes the vector of all ones.
We adopt the DC power flow model for line flows. Let

θk,n denote the phase angle of node n in period k. For link
l, let pk,l denote the power flow in period k and Bl denote
the sensitivity of the flow with respect to changes in the
phase difference θk,i(l) − θk,j(l) in period k. Let the vectors
θk := (θk,1, . . . , θk,N ) and pk := (pk,1, . . . , pk,L) and the
matrix B := diag(B1, . . . , BL). Hence, the line flows in
period k are given by:

pk = BC>θk,

where C ∈ RN×L is the incidence matrix of the directed
graph. Then, the injections are given by:

qbk + qpk − dk = Cpk = Lθk, (2)

where L := CBC>.
Note that (1) and (2) are equivalent. For any set of injec-

tions that satisfy (1), we can always find θk that satisfies (2).
Conversely, since 1>C = 0, any injections that satisfy (2)
also satisfy (1). Hence, the line flows can be written in terms
of the power injections:

pk = BC>L†(qbk + qpk − dk),

where L† denotes the pseudo-inverse of L. Let H :=
BC>L†. Let fl denote the capacity of line l and let the
vector f := (f1, . . . , fL). Then the line flow constraints are
given by:

− f ≤ H(qbk + qpk − dk) ≤ f, k ∈ K. (3)
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B. Generation types

As mentioned, we consider two types of generation –
peakers and baseloads – where peaker refers to more re-
sponsive generation and baseload refers to less responsive
generation. Recall that qpk,n and qbk,n denote the production
quantities of the peaker and baseload respectively at node n
in period k.

We assume that the peaker and baseload at node n have
minimum generation constraints qp

n
and qb

n
respectively,

maximum generation constraints q̄pn and q̄bn respectively,
and incur costs cpn(qpk,n) and cbn(qbk,n) respectively for their
productions in period k, where the functions cpn : [qp

n
, q̄pn]→

R+ and cbn : [qb
n
, q̄bn] → R+ are convex and continuously

differentiable. We also assume that cpn(qpk,n) → +∞ as
qpk,n → {qpn, q̄

p
n}. Let the vectors qp := (qp

1
, . . . , qp

N
), qb :=

(qb
1
, . . . , qb

N
), q̄p := (q̄p1 , . . . , q̄

p
N ), and q̄b := (q̄b1, . . . , q̄

b
N ).

Then, the generation constraints are given by:

qp ≤ qpk ≤ q̄
p, k ∈ K; (4)

qb ≤ qbk ≤ q̄b, k ∈ K. (5)

To model the fact that baseloads are less responsive than
peakers, we assume that peakers may change production
levels every time period while baseloads can only change
production levels every S time periods where K mod S = 0.
Let S denote the set of time periods in which baseloads may
change production levels, i.e. S = {0, S, 2S, . . . ,K−S}. For
each k ∈ S, let Kk = {k, k+1, . . . , k+S−1} denote the set
of time periods in the corresponding length-S interval during
which baseload productions are constant. For each k ∈ S and
k′ ∈ Kk, define s(k′) := Sbk′/Sc = k. The constraints on
baseloads’ decisions can be represented by:

qbk = qbs(k), k ∈ K. (6)

C. System operator’s objective

The global system operator’s objective is to dispatch the
baseload and peaker generations in order to minimize the
total cost needed to satisfy demand and operating constraints.
This is formalized as follows.

SY STEM : min
∑
k

∑
n

(
cbn(qbn,k) + cpn(qpn,k)

)
over qbk, q

p
k, k ∈ K;

s.t. (1), (3), (4)− (6).

We assume throughout that this optimization is feasible.
In addition to the constraints highlighted above there are

practical issues that must be taken into account in any
feasible solution. At the fast timescale, system demand must
be measured precisely and controls implemented such that
generators do not lose synchrony. Hence, a practical im-
plementation must include mechanisms to restore frequency
and preserve grid stability. It must also include market
mechanisms to extract cost functions from generators.

The current practice in economic dispatch is to clear the
market without fast timescale supply-demand constraints.

Instead, these fast timescale constraints are implemented
using frequency regulation controls without consideration
of the costs of generation. In Section III, we provide an
architectural decomposition of the global objective into slow
timescale and fast timescale subproblems without loss of
optimality under certain conditions. We propose a distributed
frequency regulation algorithm to implement the solution to
the fast timescale subproblem and a market mechanism to
extract cost functions for the subproblems. We address these
in Sections IV and V respectively.

D. Lagrangian relaxation

Crucial to our main result is the relaxation of the supply-
demand balance constraints and line flow constraints. We as-
sociate Lagrange multipliers with the constraints as follows:

λk ∈ R : supply demand constraint (1).

µ−k ∈ RL+ : negative line flow constraint in (3).

µ+
k ∈ RL+ : positive line flow constraint in (3).

ν−k ∈ RN+ : negative generation constraint in (4).

ν+
k ∈ RN+ : positive generation constraint in (4).

ξ−k ∈ RN+ : negative generation constraint in (5).

ξ+
k ∈ RN+ : positive generation constraint in (5).

The Lagrangian is given by:

L(x, y)

=
∑
k

∑
n

(
cbn(qbk,n) + cpn(qpk,n)

)
−
∑
k

(
µ−k + µ+

k

)>
f

+
∑
k

π(λk, µ
−
k , µ

+
k )>

(
qbk + qpk − dk

)
−
∑
k

(
ν−k − ν

+
k

)>
qpk −

∑
k

(
ξ−k − ξ

+
k

)>
qbk

+
∑
k

(
ν−>k qp − ν+>

k q̄p
)

+
∑
k

(
ξ−>k qb − ξ+>

k q̄b
)
,

where π(λk, µ
−
k , µ

+
k ) denotes the vector of nodal prices in

period k:

π(λk, µ
−
k , µ

+
k ) := λk1−H>

(
µ−k − µ

+
k

)
. (7)

Since SY STEM is convex and the constraints are linear, it
can be reformulated as:

max
y

min
x:(6)

L(x, y).

We refer to the optimal y in this problem as the optimal
Lagrange multipliers.

III. ARCHITECTURAL DECOMPOSITION

Our goal in this paper is to understand, from first prin-
ciples, how the structure of the global system operator’s
problem can guide the architecture of power systems con-
trol. To that end, our main result is a decomposition of
the global system operator’s problem into fast and slow
timescale problems. These subproblems can serve as guides
for the design of market mechanisms for economic dispatch
and control policies for frequency regulation. Importantly,
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our decomposition identifies a rigorous connection between
economic dispatch and frequency regulation that ensures,
under certain conditions, that the combination solves the
global system operator’s problem.

Theorem 1. Let (λ∗k, µ
−∗
k , µ+∗

k )k∈K denote optimal La-
grange multipliers. Suppose that for each k ∈ S:∑

k′∈Kk\{k}

π
(
λ∗k′ , µ

−∗
k′ , µ

+∗
k′

)
= 0. (8)

Then (qb∗k , q
p∗
k )k∈K is an optimal solution to SY STEM if

and only if (qb∗k , q
p∗
k )k∈S is an optimal solution to:

ED : min
∑
k∈S

∑
n

(
Scbn(qbk,n) + cpn(qpk,n)

)
over qbk, q

p
k, k ∈ S;

s.t. 1>(qbk + qpk − dk) = 0, k ∈ S;

−f ≤ H
(
qbk + qpk − dk

)
≤ f, k ∈ S;

qb ≤ qbk ≤ q̄b, k ∈ S;

qp ≤ qpk ≤ q̄p, k ∈ S,

and for each k ∈ K \S , qp∗k is an optimal solution to:

FRk : min
∑
n c

p
n(qpk,n)

over qpk;

s.t. 1>(qb∗s(k) + qpk − dk) = 0; (9a)

− f ≤ H
(
qb∗s(k)+qpk−dk

)
≤ f ; (9b)

qp ≤ qpk ≤ q̄
p; (9c)

given qb∗s(k).

Moreover, if generation constraints are not binding at the
optimal solution, i.e.

qb < qb∗k < q̄b, k ∈ K;

qp < qp∗k < q̄p, k ∈ K,

then the converse is also true, i.e. suppose (qb∗k , q
p∗
k )k∈K is an

optimal solution to SY STEM if and only if (qb∗k , q
p∗
k )k∈S

is an optimal solution to ED, and for each k ∈ K \ S , qp∗k
is an optimal solution to FRk, then (8) holds.

The proof of Theorem 1 is given in the Appendix. The
result follows from a dual decomposition of the system
operator’s problem into separate problems that operate on
two different timescales. Note that ED and FRk can be
solved in a modular fashion with causal communication. In
particular, ED can be solved first once and then only the
optimal baseload generations are needed as setpoints in FRk.

We denote the two sub-optimizations by ED and FRk
because they can be interpreted as the economic dispatch and
frequency regulation components, respectively, of existing
operations. The correspondence is immediate in the case
of ED and we discuss how the decomposition leads to
improved market mechanisms for economic dispatch based
on supply function bidding in Section V. However, the
correspondence may not be as clear in the case of FRk.

We show in Section IV that FRk can in fact be solved
via distributed frequency regulation algorithms, although
these algorithms deviate from current practice since current
approaches typically do not optimize for generation costs.

The most important component of Theorem 1 is condi-
tion (8). This condition has an intuitive interpretation that
time-averaged prices at every node over every slow timescale
interval is zero. It is hence unsurprising that, under this
condition, slow timescale quantities can be solved myopi-
cally without regard for fast timescale dispatch. However,
this condition could be restrictive in practice. For instance,
this condition cannot hold at every node simultaneously if
all cost functions are strictly increasing. This is because:

1>
∑

k′∈Kk\{k}

π(λ∗k′ , µ
−∗
k′ , µ

+∗
k′ ) =

∑
k′∈Kk\{k}

λ∗k′1
>1 > 0.

Here, the first equality follows from the fact that H1 = 0
and the second inequality follows from the fact that λ∗k > 0
if all cost functions are strictly increasing. Even if cost
functions could be decreasing (e.g. due to ramp-down costs),
this condition is unlikely to hold often as it requires demand
to have a specific profile and any perturbation in demand
is likely to cause this condition to be violated. Hence,
an important extension of this work is to understand the
efficiency loss in cases where this condition does not hold
and the decomposition is no longer optimal.

Theorem 1 is close in spirit to work in communication
networks that use optimization decomposition to justify and
optimize protocol layering, e.g., see [12]–[15]. Hence, Theo-
rem 1 provides a rigorous way to think about the architectural
design of power networks. Though similar in spirit, Theorem
1 highlights a crucial difference between communication
networks and power networks. In communication networks,
different layers in the protocol stack may coordinate by
communicating primal and dual variables when solving the
sub-optimizations. However, such mechanics do not apply
to timescale decomposition in power networks since sub-
optimizations cannot have non-causal dependencies.

IV. DISTRIBUTED FREQUENCY REGULATION

The goal of this section is to illustrate that the solution
of FRk can be implemented using distributed frequency
regulation controllers that respect the engineering constraints
of the system. Besides achieving optimality, a practical
solution should introduce changes on the power scheduling
that preserve the network stability; it should be robust to
unexpected system events; and it should be able to quickly
aggregate distributed network information in order to guar-
antee constraints (9a) and (9b).

In this section we provide a distributed algorithm that not
only solves FRk, but also cleverly uses network dynamics in
order to aggregate the necessary information. The algorithm
can be interpreted as performing distributed frequency reg-
ulation by sending different regulation signals to each bus.
Importantly, the algorithm only requires local information
and can be shown to preserve the stability of the network.
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A. A dynamic model

Before introducing our algorithm for distributed frequency
regulation, we first need to add dynamics to our system
model. In particular, we describe a model for system changes
within a single time period k in the following.

Let t denote the time evolution within the time period
and assume without loss of generality that t ∈ (k, k + 1].
Let qpk(t) := (qpk,1(t), . . . , qpk,N (t)) denote the quantities
generated by the peakers at time t. We assume that baseloads
and demand do not change within the time period. Hence,
baseloads generate qbk and demand consumes dk. Then, the
system changes within the time period are governed by the
swing equations which we assume to have the following
form:

Mω̇k(t) = qbk + qpk(t)− dk −Dωk(t)− Lθk(t); (10a)

θ̇k(t) = ωk(t), (10b)

where ωk(t) := (ωk,1(t), . . . , ωk,N (t)) are the frequency
deviations from the nominal value at time t, θk(t) :=
(θk,1(t), . . . , θk,N (t)) are the phase angles at time t, M :=
diag(M1, . . . ,MN ) where Mn is the aggregate inertia of
baseload and peaker n, and D := diag(D1, . . . , DN ) where
Dn is the aggregate damping of baseload and peaker n. Here,
the notation ẋ denotes the time derivative, i.e. ẋ = dx/dt.

Equation (10) is a linearized version of the nonlinear
network dynamics widely adopted by the power systems
community, e.g., [2], [16].

B. Current practice

In today’s grid, frequency regulation is implemented using
a control scheme known as Automatic Generation Control
(AGC) that is executed between two different executions of
ED. To implement AGC, the power grid is divided into
several control areas, each one of them in charge of restoring
the frequency to its nominal value and compensating its own
supply demand imbalance.

This is achieved for a given area A by generating a unique
control signal known as Area Control Error (ACEA) given
by

ACEA(t) = KAωA(t) + ∆TieA(t),

where ωA(t) represents the average frequency deviation in
area A, KA is the frequency bias setting and ∆TieA(t)
represents the net area interchange deviation with respect
to the interchange scheduled by ED. The signal ACEA(t)
is then sent through a proportional-integral controller that
outputs the total amount of power generation that needs to
be corrected.

Finally, the total change in power needed is distributed
among generators using participating factors that are pro-
portional to the nodal prices λs(k),n + e>nH

>(µ−s(k)−µ
+
s(k))

in ED where en denotes a unit vector with a 1 in the nth
component.

There are a number of sources of inefficiency in this
approach. First, AGC relies on information from the eco-
nomic dispatch problem that is likely out of date due to
the timescale difference. Second, AGC does not satisfy

the thermal limits at fast timescales. Third, AGC requires
the definition of self-balancing areas which are forced to
independently rebalance supply and demand within each
area [1].

These problems have recently been acknowledged by the
research community [17]–[19]. The main solution strategy
proposed is the use distributed algorithms that dynamically
adapt to power fluctuations in order to rebalance the system
while minimizing the total generation cost. While these
solutions can successfully adapt to rapid changes on the
network, they do not respect the ramping constraints of
baseline generator and cannot be implemented together with
economic dispatch.

C. Distributed frequency regulation

In contrast to AGC, we now introduce a distributed,
continuous-time algorithm that provably solves FRk, and
thus (by Theorem 1) integrates with economic dispatch to
optimally solve the system operator’s problem while satisfy-
ing the thermal line limits.

Our solution is based on a novel reverse and forward
engineering approach for distributed control design in power
systems [11], [17], [18], [20]–[23]. The key step in this
approach is to formulate an optimization problem whose
primal-dual algorithm includes the power network dynamics
as part of it and where the remaining part can be imple-
mented using distributed communication and computation.

The algorithm operates as follows. Each peaker n updates
its power generation using

qpk,n(t) = [cpn
′−1(−ωk,n(t)− πk,n(t))]

q̄pn
qp
n
, (11)

where cpn
′
(x) = ∂

∂xc
p
n(x) and cpn

′−1 denotes its inverse. The
projection [ui]

q̄pn
qp
n

ensures that ui is always within [qp
n
, q̄pn],

and πk,n(t) is a control signal generated using:

DFR : π̇k(t) = ζπ
(
qb∗k − dk + qpk(t)− Lφk(t)

)
; (12a)

µ̇+
k (t) = ζµ

+ [
BC>φk(t)− f

]+
µ+
k

; (12b)

µ̇−k (t) = ζµ
− [
−f −BC>φk(t)

]+
µ−k

; (12c)

φ̇k(t) = χφ
(
Lπk(t)− CB(µ+

k (t)− µ−k (t))
)
, (12d)

where ζπ := diag(ζπ1 , . . . , ζ
π
N ), ζµ

+

:= diag(ζµ
+

1 , . . . , ζµ
+

L ),
ζµ
−

:= diag(ζµ
−

1 , . . . , ζµ
−

L ) and χφ := diag(χφ1 , . . . , χ
φ
N )

denote the respective control gains. Given vectors x, y ∈
RM and M = {1, . . . ,M}, the element-wise projection
[y]+x ensures that the dynamics ẋ = [y]+x have a solution
x(t) that remains in the positive orthant. That is, [y]+x :=
([ym]+xm

)m∈M, with [ym]+xm
= 0 if xm = 0 and ym < 0;

[ym]+xm
= ym, otherwise.

The proposed solution (11)− (12) can be interpreted as a
frequency regulation algorithm in which each peaker receives
a different regulation signal (11) depending on its location
in the network.
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D. Optimality and convergence

We now show how the distributed algorithm described
above converges to the optimal solution of FRk.

To this end, we first modify FRk and define a related
problem FR′k that can be shown to be equivalent to FRk
while, at the same time, making the role of frequency
in maintaining supply-demand balance explicit. This is a
nontrivial modification of FRk and is crucial to guaranteeing
the stability of our distributed algorithm.

FR′k : min
∑
n

(
cpn(qpk,n) +Dn

ω2
n

2

)
over qpk, ωk, θk, φk;

s.t. qb∗s(k) + qpk − dk −Dωk = Lθk; (13a)

qb∗s(k) + qpk − dk = Lφk; (13b)

− f ≤ BC>φk ≤ f ; (13c)

qp ≤ qp ≤ q̄p; (13d)

given qb∗s(k).

Constraint (13a) makes explicit the fact that, whenever sup-
ply and demand do not match, the mismatch is compensated
by a change in the frequency. We have also used the equiv-
alent per node supply-demand balance constraint (2) instead
of the aggregate supply-demand balance constraint (1). Con-
straint (13b) ensures that the optimal solution satisfies ω∗k =
0 so that supply and demand are balanced. Constraint (13c)
imposes line flow limits. However, instead of using actual
line flows BC>θk, we impose these limits on virtual flows
BC>φk which are identical at the optimal solution [11].

The next proposition formally relates FRk and FR′k and
guarantees the optimality of (11)− (12).

Proposition 1 (Optimality). Let qp∗∗k and (qp∗k , ω
∗
k, θ
∗
k, φ
∗
k)

be optimal solutions of FRk and FR′k respectively. Then,
the following statements are true:
(i) Frequency restoration: ω∗k = 0;

(ii) Generation equivalence: qp∗∗k = qp∗k ;
(iii) Line flow equivalence:

BCT>φ∗k = BC>θ∗k = H
(
qb∗s(k) + qp∗∗k − dk

)
.

Moreover, a vector (qp∗k , ω
∗
k, θ
∗
k, φ
∗
k, π
∗
k, µ

+∗
k , µ−∗k ) is an equi-

librium point of (10)− (12) if and only if it is a primal-dual
optimal solution of FR′k.

What remains is to guarantee the convergence of the
distributed frequency regulation algorithm.

Proposition 2 (Convergence). Given the distributed fre-
quency regulation scheme (11) − (12) and the network
dynamics (10). Then, provided that cpn(·) is twice continuous
differentiable with (cpn)′′(·) ≥ α > 0 (α-strictly convex), the
coupled dynamics (11)− (12) and (10) converge globally to
an optimal solution of FRk.

The proof of Proposition 2 follows from [11]. It is easy
to show that by substituting the phase representation of the

line flows BCT θk with pk in FR′k and (10), the whole
system (10) − (12) is a primal-dual algorithm of FR′k (see
[11, Theorem 5]). Therefore, Theorem 10 in [11] guarantees
global asymptotic convergence to an equilibrium point which
by Proposition 1 is an optimal solution of both FR′k and
FRk. We remark the controllers of [11] have additional
states, but the proof in this simpler case is identical.

V. A MARKET MECHANISM FOR ECONOMIC DISPATCH

We now move our attention to the economic dispatch
component of the decomposition provided by Theorem 1.
We illustrate that the solution of the economic dispatch
problem formalized in ED can be implemented using a
market mechanism based on supply function bidding. The
mechanism we propose aligns with current practice, but
differs in an important way that ensures proper coordination
with frequency regulation, thus avoiding the inefficiency of
approaches adopted today.

A. Current practice
The economic dispatch problem is solved in practice

using complicated market mechanisms, see [5], [24]–[26] for
an overview. Briefly, existing markets price slow timescale
economic dispatch resources using nodal prices which are
derived from Lagrange multipliers according to equation (7).
As we described in Section IV-B, the nodal prices are used
to compensate any frequency regulation resources dispatched
within each slow timescale interval.

This implementation is adopted, in part, because of the
short timescale of frequency regulation (on the order of
seconds), which makes it challenging to implement separate
markets for each frequency regulation interval. However,
inefficiencies arise because the Lagrange multipliers may
vary within each slow timescale interval so the prices
computed from the economic dispatch problem may not
provide the appropriate incentives for frequency regulation.
Such inefficiencies are becoming more significant due to the
growth of renewables [27]–[29].

B. Market Mechanism
The approach for economic dispatch suggested by the

decomposition in Theorem 1 is similar to current practice,
but it also provides insight on how to avoid the inefficiency
highlighted above.

In particular, we propose a market mechanism that op-
erates on the timescale of economic dispatch but includes
an efficient pricing mechanism for fast timescale frequency
regulation. Our proposed mechanism is efficient if the con-
ditions for decomposability of the global problem given in
Theorem 1 hold and does not require any more communica-
tion than existing market mechanisms.

Concretely, in our proposal the system operator collects
supply function bids from generators at the slow timescale
and solves the economic dispatch problem as in the current
practice. However, instead of compensating frequency regu-
lation resources using slow timescale nodal prices, the system
operator uses the bids to allocate the peaking resources
efficiently at the fast timescale.
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1) Assumptions: In this section, we make the following
assumptions to simplify the exposition. We assume that
generators are not capacity-constrained, i.e. qb = qp = 0
and q̄b = q̄p =∞. We also assume that peaker and baseload
cost functions are given by:

cpn(·) = (1/ρpn)c(·), cbn(·) = (1/ρbn)c(·),

for some ρpn, ρ
b
n > 0 and some convex and continuously

differentiable function c : R+ → R+. This model includes
the class of quadratic cost functions which is a common
assumption in many studies of electricity markets [30]–[32].

2) Supply functions: We assume that supply functions
are chosen from a parameterized family of functions. In
particular, we represent a supply function by a parameter
ρ > 0 and it indicates that the generator is willing to supply
the quantity s(ρπ) when the price is π. Associate with this
supply function the following surrogate cost function:

ĉ(q, ρ) := (1/ρ)

∫ q

0

s−1(q̄)dq̄.

Numerous studies have explored different functional forms
of s and their impact on the efficiency of the market,
e.g., [6], [26], [33]–[35]. For this paper, we assume that
s(π) = (c′)−1(π). It follows that:

ĉ(q, ρ) = (1/ρ)

∫ q

0

c′(q̄)dq̄ = (1/ρ)c(q).

3) Mechanism: Each baseload and peaker submits supply
functions to the system operator who clears the market by
solving ED and FRk using surrogate cost functions.

Formally, each baseload n submits a sequence of supply
functions (ρ̂bk,n)k∈S where ρ̂bk,n is its supply function in
period k ∈ S and each peaker n submits a sequence of supply
functions (ρ̂pk,n)k∈S where ρ̂ps(k),n is its supply function in
period k ∈ K. Note that each peaker n must choose the same
supply function ρ̂ps(k),n for all periods k′ ∈ Kk. Hence, the
bids in the economic dispatch timescale are used as bids in
the frequency regulation timescale.

We assume that baseloads and peakers are price-takers.
Given a sequence of prices (πk,n)k∈K, each baseload n
chooses bids (ρ̂bk,n)k∈S to maximize its profit:

Bn : max
∑
k∈S S

(
πk,ns(ρ̂

b
k,nπk,n)

−(1/ρbn)c(s(ρ̂bk,nπk,n))
)

over ρ̂bk,n, k ∈ S;

given πk,n, k ∈ S,

and each peaker n chooses bids (ρ̂pk,n)k∈S to maximize its
profit:

Pn : max
∑
k∈K

(
πk,ns(ρ̂

p
s(k),nπk,n)

−(1/ρpn)c(s(ρ̂ps(k),nπk,n))
)

over ρ̂pk,n, k ∈ S;

given πk,n, k ∈ K.

Let ρ̂bk := (ρ̂bk,1, . . . , ρ̂
b
k,N ) and ρ̂pk := (ρ̂pk,1, . . . , ρ̂

p
k,N )

denote the vectors of bids in period k. Given the bids
(ρ̂bk, ρ̂

p
k)k∈S , the system operator solves ED for the dispatch

that minimizes the surrogate costs. The nodal prices are
given by πk = π(λ∗k, µ

−∗
k , µ+∗

k ) where (λ∗k, µ
−∗
k , µ+∗

k ) are
optimal Lagrange multipliers in ED. Then, in each fast
time scale period k ∈ K \ S, it implements the frequency
regulation algorithm DFR with the surrogate costs functions
to drive the system to the optimal solution of FRk. The nodal
prices are again given by πk = π(λ∗k, µ

−∗
k , µ+∗

k ) but now
(λ∗k, µ

−∗
k , µ+∗

k ) are optimal Lagrange multipliers in FRk.

C. Efficiency

Given the above mechanism, our focus is on understanding
the efficiency of an equilibrium. The following formalizes the
notion of a competitive equilibrium we consider.

Definition 1. We say that (ρ̂bk, ρ̂
p
k)k∈S is a competitive

equilibrium if there exists (pk)k∈K such that:
(a) For all n, (ρ̂bk,n)k∈S is an optimal solution to Bn;
(b) For all n, (ρ̂pk,n)k∈S is an optimal solution to Pn;
(c) For all k, πk = π(λ∗k, µ

−∗
k , µ+∗

k ), where: (i)
(λ∗k, µ

−∗
k , µ+∗

k )k∈S are optimal Lagrange multipli-
ers in ED with cpn(qpk,n) = ĉ(qpk,n, ρ̂

p
k,n) and

cbn(qbk,n) = ĉ(qbk,n, ρ̂
b
k,n); and (ii) for all k ∈ K \ S,

(λ∗k, µ
−∗
k , µ+∗

k ) are optimal Lagrange multipliers in
FRk with cpn(qpk,n) = ĉ(qpk,n, ρ̂

p
k,n).

Our main result for this section follows. It highlights that,
as a consequence of Theorem 1, the mechanism we propose
in this section guarantees that any efficient allocation is
supported by a competitive equilibrium.

Proposition 3 (Efficiency). Suppose that (8) holds. Then:
(a) Any competitive equilibrium is efficient.
(b) Any efficient allocation can be sustained by a competi-

tive equilibrium.

Proposition 3 resembles classical welfare theorems,
e.g., [34], [36]–[38]. However, it differs from typical com-
petitive equilibria frameworks because peakers are restricted
to bidding a single supply function over each economic
dispatch interval even though the latter contains multiple fast
timescale market instances.

This creates challenges in guaranteeing existence of equi-
libria and efficiency that do not arise in typical competitive
equilibria frameworks. Specifically, the space of bid func-
tions needs to be expressive enough for generators to convey
their costs (in multiple fast timescale market instances) using
a single bid function. This is not an issue in existing market
frameworks where separate bids are collected for separate
market instances. In this work, we circumvent this challenge
by assuming that s(π) = (c′)−1(π). An important extension
is to understand the existence and efficiency of equilibria
under other supply function bid spaces.
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APPENDIX

Proof of Theorem 1. First, substitute the baseloads’ decision
constraints (6) into SY STEM and eliminate the variables
qbk for all k /∈ S . This leads to the following stationarity
conditions:

∇cb(qbk)−
∑
k′∈Kk

(
π(λk′ , µ

−
k′ , µ

+
k′) + ξ−k′ − ξ

+
k′

)
= 0, k ∈ S;

∇cp(qpk)−
(
π(λk, µ

−
k , µ

+
k ) + ν−k − ν

+
k

)
= 0, k ∈ K,

where the vectors ∇cb(qbk) := (cb
′

1 (qbk,1), . . . , cb
′

N (qbk,N )) and
∇cp(qpk) := (cp

′

1 (qpk,1), . . . , cp
′

N (qpk,N )). Now, the stationarity
conditions for ED are given by:

∇cb(qbk)−
(
π(λk, µ

−
k , µ

+
k ) + ξ−k − ξ

+
k

)
= 0, k ∈ S;

∇cp(qpk)−
(
π(λk, µ

−
k , µ

+
k ) + ν−k − ν

+
k

)
= 0, k ∈ S,

and those for FRk are given by:

∇cp(qpk)−
(
π(λk, µ

−
k , µ

+
k ) + ν−k − ν

+
k

)
= 0.

If (8) holds, then any solution to the KKT conditions of ED
and (FRk)k∈K\S is also a solution to the KKT conditions of
SY STEM and vice versa. Next, assume that the generation
constraints are not binding which implies that ξ−k = ξ+

k =
ν−k = ν+

k = 0. Suppose further that any solution to the KKT
conditions of ED and (FRk)k∈K\S is also a solution to the
KKT conditions of SY STEM and vice versa. Then it is
straightforward to see that (8) holds.
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